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Two-way ANOVA

Material covered in Sections 19.2–19.4, but a bit differently.

Have two factors, A and B.

Levels of A indexed by i = 1, . . . , a.
Levels of B indexed by j = 1, . . . , b.
Number sampled when A = i and B = j is nij . If data are
balanced then nij = n for all i , j .

nT =
∑a

i=1

∑b
j=1 nij . If balanced, nT = nab.

Yijk is kth replicate of factor A = i & B = j .
Let µij = E{Yijk}.
Have ab different means.

Factor B
Factor A 1 2 · · · b

1 µ11 µ12 · · · µ1b

2 µ21 µ22 · · · µ2b
...

...
...

. . .
...

a µa1 µa2 · · · µ1b
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Two-way ANOVA

Model is written

Yijk = µij + εijk , εijk
iid∼ N(0, σ2).

Most general, least restrictive case is when each combination of
levels (i , j) has its own distinct mean. We’ll look at special cases
that impose structure on {µij}.

I Yijk = µ+ εijk

II Yijk = µ+ αi + εijk

III Yijk = µ+ βj + εijk

IV Yijk = µ+ αi + βj + εijk

V Yijk = µ+ αi + βj + (αβ)ij + εijk
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I. µij = µ, neither A nor B important

When a = b = 2, means are
Factor A

Factor B 1 2
1 µ µ
2 µ µ
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I. µij = µ, neither A nor B important

If this model fits, you’re done! Nothing to look at.

Overall µ is estimated by µ̂ = Ȳ•••.

Fit in SAS proc glm as model response = ;
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II. µij = µ + αi , only A important

When a = b = 2, means are
Factor A

Factor B 1 2
1 µ+ α1 µ+ α2

2 µ+ α1 µ+ α2
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II. µij = µ + αi , only A important

If this fits, have oneway model in A. Interested in L =
∑a

i=1 ciαi .

SAS sets µ̂ = Ȳa•• and α̂i = Ȳi•• − Ȳa••.

Fit in SAS proc glm as model response = A;

Can get pairwise differences in factor A levels via, e.g. lsmeans A

/ pdiff adj=tukey;

General contrasts available in estimate or lsmestimate.
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III. µij = µ + βj , only B important

When a = b = 2, means are
Factor A

Factor B 1 2
1 µ+ β1 µ+ β1

2 µ+ β2 µ+ β2
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III. µij = µ + βj , only B important

If this fits, have oneway model in B. Interested in L =
∑b

j=1 cjβj .

SAS sets µ̂ = Ȳ•b• and β̂j = Ȳ•j• − Ȳ•b•.

Fit in SAS proc glm as model response = B;

Can get pairwise differences in factor B levels via, e.g. lsmeans B

/ pdiff adj=tukey;

General contrasts available in estimate or lsmestimate.
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IV. µij = µ + αi + βj , A and B additive

When a = b = 2, means are
Factor A

Factor B 1 2
1 µ+ α1 + β1 µ+ α2 + β1

2 µ+ α1 + β2 µ+ α2 + β2
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IV. µij = µ+αi +βj , both A and B important, but additive

Differences in factor A level means are the same for each level of
B. Differences in factor B level means are the same for each level
of A. For example, comparing mean differences for A = 1 to A = 2
we have

µ1j − µ2j = µ+ α1 + βj − (µ+ α2 + βj) = α1 − α2,

independent of j! Similarly, µi1 − µi2 = β1 − β2 indep. of i .
SAS computes the LS estimates as β̂ = (X′X)−1X′Y, doesn’t
simplify much. SAS sets αa = βb = 0.
Fit in SAS proc glm as model response = A B;

Can get pairwise differences in factor A levels via, e.g. lsmeans A

/ pdiff adj=tukey;

Can get pairwise differences in factor B levels via, e.g. lsmeans B

/ pdiff adj=tukey;

General forms L =
∑a

i=1

∑b
j=1 cijµij can be computed in

estimate or lsmestimate (more later).
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V. µij = µ + αi + βj + (αβ)ij , interaction model

When a = b = 2, means are
Factor A

Factor B 1 2
1 µ+ α1 + β1 + (αβ)11 µ+ α2 + β1 + (αβ)12

2 µ+ α1 + β2 + (αβ)21 µ+ α2 + β2 + (αβ)22

12 / 38



V. µij = µ + αi + βj + (αβ)ij , interaction model

Now we have

µ1j − µ2j = α1 − α2 + (αβ)1j − (αβ)2j︸ ︷︷ ︸
depends on B = j

.

Also
µi1 − µi2 = β1 − β2 + (αβ)i1 − (αβ)i2︸ ︷︷ ︸

depends on A = i

.

No longer have parallel curves; mean differences in A change with
levels of B and vice-versa.

SAS sets αa = βb = 0, (αβ)aj = 0 for j < b, and (αβ)ib = 0 for
i < a.

Estimates can be obtained from solving Ȳij• = µ̂+ α̂i + β̂j + (̂αβ)ij .
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Comments on model V

Interaction model gives each pairing (i , j) it’s own distinct
mean, no structure on {µij}. Same as oneway model on
r = ab groups.

Your book focuses on the model where
∑a

i=1 αi = 0,∑b
j=1 βj = 0,

∑a
i=1(αβ)ij = 0 for each j , and

∑b
j=1(αβ)ij = 0

for each i . This model has enhanced interpretability, but is
not straightforward to fit in SAS.

Interaction plots estimate the means using model V, e.g.
µ̂ij = Ȳij•. The overall shape of these plots give clues as to
which is the most appropriate model from I, II, III, IV, V.
More shortly.

Fit in SAS using either model response = A B A*B; or
model response = A|B;.

General forms L =
∑a

i=1

∑b
j=1 cijµij can be computed in

estimate or lsmestimate (more later).
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Model fitting

Say a = 3, b = 2, and nij = n = 2 for each pairing (i , j). The
parameters are β = (µ, α1, α2, β1, (αβ)11, (αβ)21). Note that
α3 = β2 = (αβ)12 = (αβ)22 = (αβ)32 = (αβ)31 = 0.

In general, the degrees of freedom for A, B, and A*B are the
number of free parameters associated with each of these:

dfA = a− 1 (α1, α2, . . . , αa−1)

dfB = b − 1 (β1, β2, . . . , βb−1)

dfAB = (a− 1)(b − 1)

(αβ)11 (αβ)12 · · · (αβ)1,b−1

(αβ)21 (αβ)22 · · · (αβ)2,b−1
...

...
. . .

...
(αβ)a−1,1 (αβ)a−1,2 · · · (αβ)a−1,b−1
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Matrix formulation

As usual, Y = Xβ + ε. For our example,

Y111

Y112

Y121

Y122

Y211

Y212

Y221

Y222

Y311

Y312

Y321

Y322



=



1 1 0 1 1 0
1 1 0 1 1 0
1 1 0 0 0 0
1 1 0 0 0 0
1 0 1 1 0 1
1 0 1 1 0 1
1 0 1 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0





µ
α1

α2

β1

(αβ)11

(αβ)21

 +



ε111

ε112

ε121

ε122

ε211

ε212

ε221

ε222

ε311

ε312

ε321

ε322



.
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Fitting

Your textbook has a lot on fitting, parameter estimation under
balance, etc. In general, easy to compute closed-form estimates do
not exist, especially with unbalanced data. In that case, matrix
algebra saves the day. The LS estimates are easily computed as
β̂ = (X′X)−1X′Y. Recall β̂ ∼ Np(β, (X′X)−1σ2) where p is the
number of mean parameters in β. Let c = (c1, . . . , cp). Then

L̂ = c′β̂ ∼ N(c′β, c′(X′X)−1cσ2).

Any linear combination of mean parameters L is easily estimated.
Recall that

L̂− L

se(L̂)
∼ t(nT − p).
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SAS estimate command

You can estimate any linear combination of model parameters
in β using estimate.

Say a = 3, b = 3. To estimate L1 = α2 − α1 use estimate

’L1’ A -1 1 0;

To estimate L2 = β3 − β1 + (αβ)23 − (αβ)21 use estimate

’L2’ B -1 0 1 A*B 0 0 0 -1 0 1 0 0 0;

To find order of levels for main effects and interaction, look at
table of estimated coefficients.

µ is called the intercept.

Confidence intervals obtained via clparm option.
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SAS lsmeans command

By definition, the least-squares means are either the raw µij or
simple averages of these under any of the models I, II, III, IV,
V. You can get estimates of these from lsmeans. For two-way
models there are three, lsmeans A, lsmeans B, and lsmeans

A*B, yielding estimates of

µ̄i• =
1

b

b∑
j=1

µij

µ̄•j =
1

a

a∑
i=1

µij

µij

These are defined on p. 818 in your text; your book uses, e.g.
µi · instead of µ̄i•.
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SAS lsmeans command

pdiff gives all pairwise differences in LS means. If additive
model IV fits, then lsmeans A / pdiff; gives all
µ̄i1• − µ̄i2• = αi1 − αi2 and lsmeans B / pdiff; gives all
µ̄•j1 − µ̄•j2 = βj1 − βj2 . You can adjust these using Tukey or
Bonferroni.

If V fits, and looking at a single factor A or B, then pdiff can
still be used, but pairwise differences are averaged over the
levels of the remaining factor(s); then µ̄i1• − µ̄i2• 6= αi1 − αi2

and lsmeans gives the former. cl adds confidence intervals;
the intervals are adjusted if using, e.g. adjust=tukey.

Can also look at lsmeans A*B. Gives all estimates of each
{µij}, pdiff gives all possible pairwise comparisons here too.

Alternatively can specify lsmeans A*B / slice=A or
lsmeans A*B / slice=B to look at all pairwise differences
at each level of the other factor.
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Grouping like factor levels

A “lines” plot shows groups of levels that are not significantly
different from each other, usually with an overall FER, say
FER = 0.05.

These can be obtained automatically in proc glimmix by adding
a lines subcommand to lsmeans.

For example,

proc glimmix data=bakery;

class height width;

model sales=height width / solution;

lsmeans height / pdiff adjust=tukey lines;
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SAS lsmestimate command

You can use lsmestimate in proc glimmix to obtain
inference for general linear combinations L =

∑a
i=1

∑b
j=1 cijµij

under any of the models.

You can obtain simultaneous inference using Bonferroni,
Scheffe, or Tukey (if pairwise differences).

The theory behind the multiple comparisons is similar to that
as from the one-way model, but a bit different; pp. 848–861
Sections 19.8 & 19.9. SAS takes care of the details for us.
Just make sure you know what you are estimating.

As before, Tukey works best when looking at all pairwise
comparisons.

Bonferroni works best when looking at only a few linear
combinations, Scheffe can work better when looking at a large
number of combinations.
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ANOVA table

The ANOVA table lists rows for Treatments (depends on
which model you are fitting I–V), Error, and Total as before.

As usual, the Pythagorean Theorem tells us

||Xβ̂ − 1nT Ȳ•••||
2 + ||Y − Xβ̂||2 = ||Y − 1nT Ȳ•••||

2.

SSTR+SSE=SSTO.

The p-value in the ANOVA table tests whether anything is
important beyond a simple intercept µ. For example, in the
interaction model V, the F-test is for
H0 : αi = 0, βj = 0, (αβ)ij = 0. In model IV
H0 : αi = 0, βj = 0, etc.
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Type 3 sums of squares and associated tests

There are also Type 3 sums of squares and associated tests.
In interaction model V, there are SSA, SSB, and SSAB; these
measure variability explained by model due to factors A, B,
and interaction respectively (pp. 836–841). By definition,
these are the differences in sums of squared errors comparing
model V to (a) a model with B and A*B, (b) a model with A
and A*B, and (c) a model with A and B. Only (c) is a
hierarchical model, so that’s the only test of interest here.

If the data are balanced, nij = n for all i , j , then
SSTR=SSA+SSB+SSAB. The book notes this (pp. 837–838)
and discusses associated testing at some length.
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Type 3 sums of squares and associated tests

Tim recommends fitting V and testing H0 : (αβ)ij = 0, i.e.
the additive model fits. If IV fits, then interpretation
simplifies. Furthermore, if IV fits, you may want to test
whether you can drop A or B from model IV; these two Type
3 tests are given to you automatically after fitting IV via
model response=A B; All of these are standard “nested
linear hypotheses” type F-tests.

Your book does not recommend refitting the model when you
accept H0 : (αβ)ij = 0. This goes against the book’s own
advice for fitting general regression models in STAT 704. Tim
recommends using the additive model if you accept the
interaction is not important; discussed briefly in 19.10.
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Type III test of no interaction in simple example

Recall data where a = 3, b = 2, and nij = n = 2. Want to test
H0 : (αβ)ij = 0 in full model V Y = XFβF + εF ; here



Y111
Y112
Y121
Y122
Y211
Y212
Y221
Y222
Y311
Y312
Y321
Y322


=



1 1 0 1 1 0
1 1 0 1 1 0
1 1 0 0 0 0
1 1 0 0 0 0
1 0 1 1 0 1
1 0 1 1 0 1
1 0 1 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0




µ
α1
α2
β1

(αβ)11
(αβ)21

 +



ε111
ε112
ε121
ε122
ε211
ε212
ε221
ε222
ε311
ε312
ε321
ε322


.

Reduced model is Y = XRβR + εR ; here


Y111
Y112
Y121
Y122
Y211
Y212
Y221
Y222
Y311
Y312
Y321
Y322


=



1 1 0 1
1 1 0 1
1 1 0 0
1 1 0 0
1 0 1 1
1 0 1 1
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 0
1 0 0 0




µ
α1
α2
β1

 +



ε111
ε112
ε121
ε122
ε211
ε212
ε221
ε222
ε311
ε312
ε321
ε322


.
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Type III test, continued...

For the full model β̂F = (X′FXF )−1X′FY,

SSE (F ) = ||Y − XF β̂F ||2, dfE (F ) = 12− 6 = 6, and
MSE (F ) = SSE (F )/dfE (F ).

For the reduced model β̂R = (X′RXR)−1X′RY,

SSE (R) = ||Y − XR β̂R ||2, and dfE (R) = 12− 4 = 8.

Define

F ∗ =
{SSE (R)− SSE (F )}/{dfE (R)− dfE (F )}

MSE (F )
.

Then if H0 : (αβ)11 = (αβ)21 = 0 is true,

F ∗ ∼ F (dfE (R)− dfE (F ), dfE (F )).

Use the Type III test for A*B in SAS.
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Castle Bakery (p. 833)

Castle Bakery supplies Italian bread to stores in a large city. They
want to sell more bread so they designed an experiment. Factor A
is shelf height, i = 1, 2, 3 for bottom, middle, or top. Factor B is is
width of the display, j = 1, 2 is regular, wide. The design is
balanced, with nij = n = 2 stores receiving one of the (i , j)
pairings.

data bakery;

input sales height width store;

datalines;

47 1 1 1

43 1 1 2

46 1 2 1

40 1 2 2

62 2 1 1

68 2 1 2

67 2 2 1

71 2 2 2

41 3 1 1

39 3 1 2

42 3 2 1

46 3 2 2

;

* initial fit of model V;

proc glm data=bakery plots=all;

class height width;

model sales = height width height*width / solution;

run;
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More Castle Bakery

This duplicates your textbook’s analyses:

* Example 1, pp. 853-855;

proc glm data=bakery;

class height width;

model sales=height width height*width / solution;

lsmeans height / pdiff adjust=tukey alpha=0.05 cl;

run;

* Example 2, p. 855;

proc glimmix data=bakery;

class height width;

model sales=height width height*width / solution;

lsmestimate height*width "reg width middle" 0 0 1 0 0 0,

"reg width high " 0 0 0 0 1 0

/ adjust=bon alpha=0.1 cl;

run;

Alternatively, you could use model sales = height width in
these commands instead of sales=height width

height*width, following Tim’s advice.
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Diagnostics and remedial measures

Interaction plots are given from plots=all fitting model V.
These will tell you which of models I–V are good candidates
for the data.

Residuals are defined as usual. For example, under model IV,
eijk = Yijk − Ŷijk = Yijk − [µ̂+ α̂i + β̂j ]. Look at least at eijk
vs. Ŷijk . Can plot the {eijk} vs. the indices i and j for two
additional plots. Look at normal probability plot.

If data have nonconstant variance but are normal, can use
repeated / group=A*B; in proc mixed. If variance only
changes with levels of A or B, can instead use repeated /

group=A; or repeated / group=B;

If data are nonnormal and have nonconstant variance, try a
Box-Cox transformation of the Yijk in proc transreg.
Sometimes a Box-Cox transformation of the Yijk can also get
rid of a signficant interaction (pp. 826–827).
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Strategy for analysis

Check whether A and B interact with Type 3 test. If not,
base inference on additive model or else model with A or B
only. Typically one looks at pairwise mean differences from
lsmeans.

If A and B signficantly interact, then you can examine
pairwise differences of averaged effects, e.g. µ̄•j1 − µ̄•j2 , or
else pairwise difference “slices” µij1 − µij2 for i = 1, . . . , a.
These are interpreted differently. For example, the slices may
be signficant whereas the averaged differences may not.

Check the appropriateness of the model with standard
diagnostic plots. If have both non-constant variance and
non-normal data, consider Box-Cox transformation of the
response. Often a Box-Cox transformation will also eliminate
significant interactions.
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Example pp. 870–871

nT = 24 programmers asked to predict how long a big project
would take in programmer-days. After project over Yijk is actual
minus predicted programmer-days (prediction errors).
Programmers classified by type of experience (A = 1 small
systems, A = 2 small & large); and experience (B = 1 is < 5 years,
B = 2 is 5− 10 years, B = 3 is ≥ 10 years).
data predict;

input days exper years @@;

datalines;

240.0 1 1 206.0 1 1 217.0 1 1 225.0 1 1 110.0 1 2 118.0 1 2 103.0 1 2 95.0 1 2

56.0 1 3 60.0 1 3 68.0 1 3 58.0 1 3 71.0 2 1 53.0 2 1 68.0 2 1 57.0 2 1

47.0 2 2 52.0 2 2 31.0 2 2 49.0 2 2 37.0 2 3 33.0 2 3 40.0 2 3 45.0 2 3

;

* gives all a*b choose 2 pairwise comparisons via Tukey;

* slice subcommand only gives F-test within each slice;

proc glm data=predict plots=all; class exper years;

model days=exper|years;

lsmeans exper*years / adjust=tukey slice=exper;

* slice command in glimmix better;

* gives PW comparisons within each slice, i.e.;

* b choose 2 comparisons within each of a slices;

proc glimmix; class exper years;

model days=exper|years;

slice exper*years / sliceby=exper adjust=tukey cl;

proc glimmix; class exper years;

model days=exper|years; * adjust=tukey not needed;

slice exper*years / sliceby=years adjust=tukey cl;
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Outline of book’s approach

Everything in Chapter 19 requires balance nij = n. Balance is
nice if you are computing ANOVA’s by hand, but more often
than not data are unbalanced and the nice formulae do not
apply. Chapter 23 is an entire chapter devoted to unbalanced
analyses.

19.1 Three examples of designs leading to two-way ANOVA.

19.2 Interpretation of model, overall means, additive and
interaction models, important and non-important interactions,
transforming the data to get rid of an interaction.

19.3 Cell-means model with two factors.

19.4 Interaction model: fitting via least squares, partitioning
sums of squares & degrees of freedom, an augmented ANOVA
table with SSTR=SSA+SSB+SSAB.

19.5 Residual analysis.
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Outline of book’s approach

19.6 F tests: three of them from only fitting model V using
augmented table. Kimball inequality
α ≤ 1− (1− α1)(1− α2)(1− α3) (has to do with doing
sequential tests on whether factors are important).

19.7 Strategy for analysis & flowchart.

19.8 Analyzing factor effects without an interaction (within
the context of V!)

19.9 Analyzing factor effects with an interaction.

19.10 Pooling sums of squares, i.e. using IV instead of V
when interaction not important.
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Focus on model V (as in textbook)

This is Minitab’s model. LS parameter estimates minimize

Q(µ,α,β,αβ) =
a∑

i=1

b∑
j=1

nij∑
k=1

(Yijk − (µ+ αi + βj + (αβ)ij)
2,

subject to α• = β• = (αβ)i• = (αβ)•j = 0. These are given by

µ̂ = Ȳ•••

α̂i = Ȳi•• − Ȳ•••

β̂j = Ȳ•j• − Ȳ•••

(̂αβ)ij = Ȳij• − Ȳi•• − Ȳ•j• + Ȳ•••

We have

Ȳij• − Ȳ•••︸ ︷︷ ︸
µ̂ij−µ̂

= Ȳi•• − Ȳ•••︸ ︷︷ ︸
α̂i

+ Ȳ•j• − Ȳ•••︸ ︷︷ ︸
β̂j

+ Ȳij• − Ȳi•• − Ȳ•j• + Ȳ•••︸ ︷︷ ︸
(̂αβ)ij

.

Fitted values are Ŷijk = Ȳij•. Estimates only for balanced data!
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Matrix formulation

For example considered earlier,

Y111

Y112

Y121

Y122

Y211

Y212

Y221

Y222

Y311

Y312

Y321

Y322



=



1 1 0 1 1 0
1 1 0 1 1 0
1 1 0 −1 −1 0
1 1 0 −1 −1 0
1 0 1 1 0 1
1 0 1 1 0 1
1 0 1 −1 0 −1
1 0 1 −1 0 −1
1 −1 −1 1 −1 −1
1 −1 −1 1 −1 −1
1 −1 −1 −1 1 1
1 −1 −1 −1 1 1





µ
α1

α2

β1

(αβ)11

(αβ)21

+



ε111

ε112

ε121

ε122

ε211

ε212

ε221

ε222

ε311

ε312

ε321

ε322



.

Uses α3 = −α1 − α2, β2 = −β1, (αβ)12 = −(αβ)11,
(αβ)22 = −(αβ)12, and
(αβ)32 = −(αβ)12 − (αβ)22 = (αβ)11 + (αβ)12.
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Model V SS

Recall model V is simply one-way model with cell-means {µij}.

SSTO =
a∑

i=1

b∑
j=1

nij∑
k=1

(Yijk − Ȳ•••)
2

SSTR =
a∑

i=1

b∑
j=1

nij(Ȳij• − Ȳ•••)
2

SSE =
a∑

i=1

b∑
j=1

nij∑
k=1

(Yijk − Ȳij•)
2

Note that each deviation can be broken up as

Yijk − Ȳ•••︸ ︷︷ ︸
ijkth deviation

= Ȳij• − Ȳ•••︸ ︷︷ ︸
explained by model

+Yijk − Ȳij•︸ ︷︷ ︸
left over

.
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Model V, balanced case nij = n (p. 841)

Can show that SSTR=SSA+SSB+SSAB where

SSA = nb
a∑

i=1

(Ȳi•• − Ȳ•••)2

SSA = na
b∑

j=1

(Ȳ•j• − Ȳ•••)2

SSAB = n
a∑

i=1

b∑
j=1

(Ȳij• − Ȳi•• − Ȳ•j• + Ȳ•••)2

SSA, SSB, and SSAB measure portion of variability explained by
model due to Factors A, B, and interaction, respectively. Leads to
a “refined ANOVA table”

Source SS df MS F p-value

A SSA a − 1 SSA
a−1

MSA
MSE

P{F (a − 1, (n − 1)ab) > MSA/MSE}
B SSB b − 1 SSB

b−1
MSB
MSE

P{F (b − 1, (n − 1)ab) > MSB/MSE}
AB SSAB (a − 1)(b − 1) SSAB

(a−1)(b−1)
MSAB
MSE

P{F ((a − 1)(b − 1), (n − 1)ab) > MSAB/MSE}

Error SSE (n − 1)ab SSE
(n−1)ab

Total SSTO nab − 1

Three tests test H0 : αi = 0, H0 : βj = 0, and H0 : (αβ)ij = 0
respectively. Only the last one, the test for the interaction, yields a
hierarchical model if accepted.
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