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25.1 One-way random effects model

If treatment levels come from a larger population, their effects are
best modeled as random. A random-effects one-way model is

Yij = µ+ αi + εij ,

where

α1, . . . , αr
iid∼ N(0, σ2

α) independent of εij
iid∼ N(0, σ2).

As usual, i = 1, . . . , r and j = 1, . . . , ni .

The test of interest is H0 : α1 = · · · = αr = 0. This happens if and
only if H0 : σα = 0.

α1, . . . , αr are called random effects and σα and σ are termed
variance components. This model is an example of a random
effects model, because it has only random effects in it beyond the
intercept µ (which is fixed).
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Testing H0 : σα = 0

The MSE and MSTR are defined as they were before. One can
show E (MSE ) = σ2 and E (MSTR) = σ2 + nσ2

α when n = ni for
all i . SAS provides the expected mean squares on the last page of
output.

If σα = 0 we expect F ∗ = MSTR/MSE to estimate one. In fact,
just like the fixed-effects case, F ∗ ∼ F (r − 1, nT − r). This is the
test given by proc glm when you add a random A; statement.

One can also fit the model in proc mixed, but this procedure
provides a slightly cruder test of H0 : σα = 0.
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Apex Enterprises

r = 5 personnel officers were selected at random, and ni = 4
prospective employee candidates assigned at random to each
officer. Yij is the rating of the ith officer on their jth candidate.

Since the personnel officers are chosen randomly from a large
population of personnel officers, the random-effects one-way model
applies.

data apex;

input rating officer @@;

76 1 65 1 85 1 74 1 59 2 75 2 81 2 67 2

49 3 63 3 61 3 46 3 74 4 71 4 85 4 89 4

66 5 84 5 80 5 79 5

;

proc glm; class officer; * Chapter 16, fixed-effects approach;

model rating=officer;

proc glm; class officer; * Chapter 25, mixed-effects approach;

model rating=officer;

random officer;

proc glimmix; class officer; * Tim prefers method=mle;

model rating= / s;

random officer;

covtest zerog; * tests H0: sigma_alpha=0 vs. H0: sigma_alpha>0;
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25.5 & 27.2 Random block effects and repeated measures

When block levels come from a large population, we can consider a
complete randomized block design with random block effects. One
very important example of this is the repeated measures design,
where each block is an experimental unit in which all treatment
levels are randomly applied. In fact, the blocks are retermed
“subjects” and we consider a sample of subjects from their
population.

Yij = µ+ ρi︸︷︷︸
subject

+ τj︸︷︷︸
level

+εij ,

where

ρ1, . . . , ρn
iid∼ N(0, σ2

ρ) independent of εij
iid∼ N(0, σ2).

There are i = 1, . . . , n subjects receiving each of j = 1, . . . , r
treatments.
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Random block effects

Note that the model can be extended to factorial treatment
structure, e.g.

Yijk = µ+ ρi + αj + βk + (αβ)jk + εijk ,

Examples of subjects include people, animals, families, cities, and
clinics.

This is an example of a mixed effects model; there is a mix of
random (ρi ’s) and fixed (αj ’s, βk ’s, and (αβ)jk ’s) effects in the
model.
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Random blocks, comments

We assume subject effects and treatment effects do not
interact. Can check via Tukey’s 1 df test for additivity. Also
look at interaction plots as in fixed-effects C.R.B. designs.

ANOVA table, sums of squares exactly the same, except now
the F-test for blocks tests H0 : σρ = 0 instead of
H0 : ρ1 = · · · = ρn = 0.

Test for treatment is same H0 : τ1 = · · · = τr = 0.

Every treatment is given to every experimental unit in
randomized order.

Two sets of residuals to consider. Both should be normal; eij

should have constant variance.
1 eij = Yij − {µ̂+ ρ̂i + τ̂j}, and
2 ρ̂i .

corr(Yij1 ,Yij2) = σ2
ρ/(σ2 + σ2

ρ) for j1 6= j2 tells you how
correlated the repeated measures are.

We will use proc glimmix to fit these models.
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Road paint wear (p. 1082)

This is homework problems 25.19 and 25.20.

A state highway department studied wear of five paints at eight
randomly picked locations. The standard is paint 1. Paints 1, 3,
and 5 are white; paints 2 and 4 are yellow. At each location a
random ordering of the paints were applied to the road. After an
exposure period, a combined measure of wear Yij was recorded.
The higher the score, the better the wearing characteristics.

Recall the model

Yij = µ+ ρi︸︷︷︸
location

+ τj︸︷︷︸
paint

+εij ,

where

ρ1, . . . , ρn
iid∼ N(0, σ2

ρ) independent of εij
iid∼ N(0, σ2).

Here r = 5 and n = 8.
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Road paint wear in SAS

data road;

input wear location paint @@;

datalines;

11.0 1 1 13.0 1 2 10.0 1 3 18.0 1 4 15.0 1 5

20.0 2 1 28.0 2 2 15.0 2 3 30.0 2 4 18.0 2 5

8.0 3 1 10.0 3 2 8.0 3 3 16.0 3 4 12.0 3 5

30.0 4 1 35.0 4 2 27.0 4 3 41.0 4 4 28.0 4 5

14.0 5 1 16.0 5 2 13.0 5 3 22.0 5 4 16.0 5 5

25.0 6 1 27.0 6 2 26.0 6 3 33.0 6 4 25.0 6 5

43.0 7 1 46.0 7 2 41.0 7 3 55.0 7 4 42.0 7 5

13.0 8 1 14.0 8 2 12.0 8 3 20.0 8 4 13.0 8 5

;

proc glm plots=all; class location paint; * interaction plot to check additivity;

model wear=location|paint;

proc glimmix plots=all; class location paint; * 25.20(b,c,d)

model wear=paint; * only include fixed effects;

random location; * only include random effects;

lsmestimate paint "1 vs 2" 1.00 -1.00 0.00 0.00 0.00,

"1 vs 3" 1.00 0.00 -1.00 0.00 0.00,

"1 vs 4" 1.00 0.00 0.00 -1.00 0.00,

"1 vs 5" 1.00 0.00 0.00 0.00 -1.00 / adjust=bon cl alpha=0.9;

estimate "W vs Y" paint 0.34 -0.50 0.33 -0.50 0.33;
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Wine tasting

r = 4 Chardonnary wines of the same vintage were judged by
n = 6 judges. Each wine was blinded and given to each judge in
randomized order. The wines were scored on a 40-point scale Yij ,
with higher scores meaning better wine.

The six judges are considered to come from a large population of
wine-tasting judges and so a repeated measures model is
appropriate.

The analysis of these data are carried out in your textbook on pp.
1132–1137.
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Wine tasting in SAS proc glm

data wine;

input rating judge wine @@;

datalines;

20 1 1 24 1 2 28 1 3 28 1 4 15 2 1 18 2 2 23 2 3 24 2 4

18 3 1 19 3 2 24 3 3 23 3 4 26 4 1 26 4 2 30 4 3 30 4 4

22 5 1 24 5 2 28 5 3 26 5 4 19 6 1 21 6 2 27 6 3 25 6 4

;

* spaghetti plot figure 27.2 on p. 1133;

proc sgplot noautolegend;

series x=wine y=rating / group=judge;

scatter x=wine y=rating / group=judge markerchar=judge;

run;

* glm works, but is not really designed for repeated measures;

* this duplicates what is in your book;

proc glm plots=all; * gives figure 27.3 on p. 1133;

class wine judge;

model rating=wine judge;

random judge; * need to include ’judge’ in model using glm;

lsmeans wine / pdiff adjust=tukey alpha=0.05 cl;

run;
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Analysis in proc glimmix

* proc mixed or proc glimmix is a better choice overall;

* note that Tukey intervals are essentially the same;

* conditional residuals are r_ij;

proc glimmix plots=all;

class wine judge;

model rating=wine / s chisq; * model includes only ’fixed’ effects;

random judge; * random includes only ’random’ effects;

lsmeans wine / pdiff adjust=tukey alpha=0.05;

covtest zerog; * tests H0: sigma_rho=0 vs. H0: sigma_rho>0;

run;

* obtain estimates of rho_i;

ods listing close; ods output SolutionR=rand; * sends the rho_i to ’rand’;

proc glimmix data=wine;

class wine judge;

model rating=wine;

random judge / s; * ask for rho_i;

run;

ods output close; ods listing;

* check that rho_i estimates are approximately normal;

proc print data=rand; run;

proc univariate data=rand normal; var estimate;

run;
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