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Morrison, D.F. (1960) Multivariate Statistical Methods. 

Jolliffe, I.T. (2002) Principal Component Analysis. Springer. 
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The first two texts are the prime sources for much of the material in 

these notes and specific acknowledgements to examples from them 

have not been provided. The two texts by Trevor Cox and Brian Everitt 

cover most of the material in the course and are modestly priced. The 

text by Bryan Manly provides an excellent introduction to many of the 

techniques in this course and is the source of some of the examples in 

this course. It is recommended for those who want a preliminary 

introduction on specific topics before returning to the presentation in 

these notes. 
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0.1 Objectives 

The objectives of this book are to give an introduction to the practical 

and theoretical aspects of the problems that arise in analysing 

multivariate data. Multivariate data consist of measurements made on 

each of several variables on each observational unit. Some multivariate 

problems are extensions of standard univariate ones, others only arise 

in multidimensions. Similarly, the statistical methodology available to 

tackle them is in part an extension of standard univariate methods and in 

part methods which have no counterpart in one dimension. One of the 

aims of the book is to give emphasis to the practical computational 

implementation of the analyses using R. On accasions reference is 

made to other packages, notably S-PLUS and  MINITAB, especially where 

there are differences of any note.  

0.2 Organization of course material 

The main Chapters 1–9 are largely based on material in the first two 

books in the list of recommended texts above (i.e. Gnanadesikan and 

Mardia et al), supplemented by various examples and illustrations. Some 

background mathematical details (properties of eigenvalues & 

eigenvectors, Lagrange multipliers, differentiation with respect to 

vectors, maximum likelihood estimation) are outlined in Appendix 0. If 

you want more details of matrix algebra, in particular how to use R to 

manipulate matrices, then see the notes Basics of Matrix Algebra with R 

(which are still under development) at 

 http://nickfieller.staff.shef.ac.uk/sheff-only/BasicMatrixAlgebra.html   

These notes go considerably further than is required for this course. 
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Appendices 1–8 are provided for those wanting an introduction to some 

of the useful recently developed techniques that are widely used in 

industry and which may be of use in other courses involving project 

work. This material is largely based on the book by Venables & Ripley. 

There are some chapters (5 – 7) and a few individual sections that are 

marked by a star,, which indicates that although they are part of the 

course they are not central to the main themes of the course. Largely 

these contain technical material or further topics. In some cases they 

provide the underlying justification of the material and and are not 

needed for practical applications but their existence gives confidence in 

the interpretation and application of the data analytic methods 

described. 

The expository material is supplemented by simple ‘quick problems’ 

(task sheets) and more substantial exercises. These task sheets are 

designed for you to test your own understanding of the material.  If you 

are not able to complete the tasks then you should go back to the 

immediately preceding sections (and re-read the relevant section (and if 

necessary re-read again & …). Solutions are provided at the end of the 

book. 
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0.3 A Note on S-PLUS and R  

The main statistical package for this course is R.   

R is a freely available programme which can be downloaded over the 

web from http://cran.r-project.org/ or any of the mirror sites linked from 

there. It is very similar to the copyright package S-PLUS and the 

command line commands of S-PLUS are [almost] interchangeable with 

those of R. Unlike S-PLUS, R has only a very limited menu system which 

covers some operational aspect but no statistical analyses.  Almost all 

commands and functions used in one package will work in the other. 

 However, there are some differences between them. In particular, there 

are some options and parameters available in R functions which are not 

available in S-PLUS. Both S-PLUS and R have excellent help systems 

and a quick check with help(function) will pinpoint any differences 

that are causing difficulties.  A key advantage of R over S-PLUS is the 

large number of libraries contributed by users to perform many 

sophisticated analyses.  These are updated very frequently and extend 

the capabilities substantially.  If you are considering using multivariate 

techniques for your own work then you would be well advised to use R in 

preference to S-PLUS. Command-line code for the more substantial 

analyses given in the notes for this course have been tested in R.  In 

general, they will work in S-PLUS as well but there could be some minor 

difficulties which are easily resolved using the help system. The version 

of R at time of going to press is 3.0.1.  but some parts of the material 

were prepared with slightly earlier versions. Both packages are fully 

upwardly compatible but there could be slight discrepancies between 

output produced now and those in thebook. These are most unlikely to 

be substantial or of practical importance. 
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0.4 Data sets 

Some of the data sets used in this course are standard example data 

sets which are automatically installed with the base system of R or with 

the MASS library. Others are available in a variety of formats on the 

associated  web page available here.  
 

0.4.1 R data sets 

Those in R are given first and they have extensions .Rdata; to use them 

it is necessary to copy them to your own hard disk. This is done by using 

a web browser to navigate to the web page here, clicking with the right-

hand button and selecting ‘save target as…’ or similar which opens a 

dialog box for you to specify which folder to save them to.  Keeping the 

default .Rdata extension is recommended and then if you use Windows 

explorer to locate the file a double click on it will open R with the data set 

loaded and it will change the working directory to the folder where the 

file is located.  For convenience all the R data sets for the course are 

also given in a WinZip file. 

NOTE: It is not in general possible to use a web browser to locate 

the data set on a web server and then open R by double clicking. 

The reason is that you only have read access rights to the web page 

and since R changes the working directory to the folder containing the 

data set write access is required. 

 

0.4.2 Data sets in other formats 

Most but not all of the data sets are available in other formats (Minitab, 

SPSS etc). It is recommended that the files be downloaded to your own 

hard disk before loading them into any package. 
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0.5 Brian Everitt’s Data Sets and Functions 

The website http://biostatistics.iop.kcl.ac.uk/publications/everitt/ provides 

many data sets and useful functions which are referred to in these 

notes. There is a link to the website on the associated webpage. These 

can be downloaded individually or all together in a single zipped file. If 

you want to use some of these functions and data sets then download 

the zip file from the webpage and unpack it (or download the files 

separately).    

 

The file containing all of the functions is an ordinary text file functions.txt, 

the data sets are stored as commands which can be read into S-PLUS or 

R with the source command (see below).  Additionally script files are 

provided to reproduce all output in each chapter and these come as 

versions for R and S-PLUS. 

 

To load the functions into your R or S-PLUS session you can either 

include them in the .First function or you can open the file in a text 

editor (e.g. Notepad or Word), select the entire contents, copy to the 

clipboard (with CTRL+C) and then paste to the command window (with 

CTRL+V). The functions will then be available for the entire session (or 

longer if you save it). Alternative you can keep them in an R script file 

with extension .R. 

The data files have names with a prefix indicating the chapter in which 

they are described, e.g. chap2airpoll.dat; however they are not ordinary 

data files but need to be read into the R or session with the source 

command.  First, you need to know the full pathname to the file which 

depends on which path you gave when downloading or unzipping the 

file. It can be found using Windows Explorer, navigating to the directory 
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containing the file and noting the address in the navigator window at the 

top. For example, it might be (as on my laptop), 
C:\Documents and Settings\Nick Fieller\My Documents\My   

    Teaching\MVA\EverittRcompanion\Data  .   

To read the file into the R dataset airpoll issue the command 

airpoll<-source("pathname")$value, where pathname is the full 

path as above but with double backslashes followed by the name of the 

file: airpoll<-source("C:\\Documents and Settings\\Nick 
Fieller\\My Documents\\My Teaching\\MVA\\EverittRcomp

anion\\Data\\chap2airpoll.dat"), on my particular machine. 

Incidentally, note that R uses a double backslash \\ in pathnames for 

external files but S-PLUS uses only a single one \. 

In S-PLUS the source command has a slightly different syntax and the 

instruction is airpoll<-source("pathname"). 

An alternative method is to open the data file in a text editor, copy the 

contents to the clipboard and paste it into the command window or script 

window. 

 

0.6 R libraries required  

Most of the statistical analyses described in this book use functions 

within the base and stats packages and the MASS package. It is 

recommended that each R session should start with 
library(MASS) 

The MASS library is installed with the base system of R and the stats 

package is automatically loaded. Other packages which are referred to 

are lattice, ICS, ICSNO, mvtnorm, CCA. 
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0.7 Subject Matter 

The course is concerned with analysing and interpreting multivariate 

data:  

 i.e. measurement of p variables on each of n subjects 

e.g.  

(i) body temperature, renal function, blood pressure, weight of 73 

hypertensive subjects (p=4, n=73). 

(ii) petal & sepal length & width of 150 flowers (p=4, n=150). 

(iii) amounts of 9 trace elements in clay of Ancient Greek pottery 

fragments (p=9). 

(iv) amounts of each of 18 amino acids in fingernails of 92 arthritic 

subjects (p=18, n=92). 

(v) presence or absence of each of 286 decorative motifs on 148 bronze 

age vessels found in North Yorkshire (p=286, n=148). 

(vi) grey shade levels of each of 1024 pixels in each of 15 digitized 

images (p=1024, n=15) 

(vii) Analysis of responses to questionnaires in a survey   

(p = number of questions, n = number of respondents)  

(viii) Digitization of a spectrum (p=10000, n=100 is typical) 

(ix) Activation levels of all genes on a genome   

(p=30000 genes, n=10 microarrays is typical) 
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Notes 

 Measurements can be discrete e.g. (v) & (vi), or continuous, e.g. 

(i)-(iv) or a mixture of both, e.g.(vii).  

 Typically the variables are correlated but individual sets of 

observations are independent. 

 There may be more observations than variables (n > p), e.g. 

(i)-(iv), or they may be more variables than observations (n < p), 

e.g. (v) & (vi) and especially (viii) [where n << p] and (ix) [where  

n <<< p]. 

 

 Some multivariate techniques are only available when n>p  

(i.e. more observations than variables) e.g. discriminant analysis, 

formal testing of parametric hypotheses etc. Other techniques 

can be used even if n < p (e.g. Principal Component Analysis, 

Cluster Analysis). 

 

[technical reason: standard estimate of covariance 

matrix is singular if n  p so techniques requiring 

inversion of this will fail when n  p] 
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0.8 Subject Matter / Some Multivariate Problems 

(i) Obvious generalizations of univariate problems: t-tests, analysis of 

variance, regression, multivariate general linear model.  

e.g. model data Y by Y=X + ,  

 where Y is the np data matrix, X is an nk matrix of known 

observations of k-dimensional regressor variables,  is kp matrix 

of unknown parameters,  is np with n values of p-dimensional 

error variables. 

(ii) Reduction of dimensionality for  

 (a) exploratory analysis 

 (b) simplification (MVA is easier if p=1 or p=2) 

 (c) achieve greater statistical stability 

   (e.g. remove variables which are highly correlated) 

 Methods of principal component analysis, factor analysis, non-

metric scaling.... 

(iii) Discrimination 

 Find rules for discriminating between groups, e.g. 2 known 

variants of a disease, data X, Y on each. What linear combination 

of the p variables best discriminates between them. Useful to have 

diagnostic rules and this may also throw light onto the conditions 

(e.g. in amino acids and arthritis example there are two type of 

arthritis :— psoriatic and rheumatoid, determining which 

combinations of amino acids best distinguishes between them 

gives information on the biochemical differences between the two 

conditions). 
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(iv)  Cluster Analysis/Classification  

Do data arise from a homogeneous source or do they come from a 

variety of sources, e.g. does a medical condition have sub-

variants. 

(v) Canonical Correlation Analysis  

Of use when looking at relationships between sets of variables, 

e.g. in particular in questionnaire analysis between response to 2 

groups of questions, perhaps first group of questions might 

investigate respondents expectations and the second group their 

evaluation. 

 

After an initial review of methods for displaying multivariate data 

graphically, this course will begin with topics from the second 

category (dimensionality reduction) before considering the 

estimation and testing problems which rest on distributional 

assumptions and which are straightforward generalizations of 

univariate statistical techniques. 

 

 “Much classical and formal theoretical work in 

Multivariate Analysis rests on assumptions of 

underlying multivariate normality — resulting in 

techniques of very limited value”.   
  (Gnanadesikan, page 2). 
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0.9 Basic Notation 

We deal with observations , a column p-vector. x 

x1

x2


xp





















Transpose: a dash  denotes transpose: x= (x1,x2,...,xp) 

The ith observation is = (xi1,xi2,...,xip). xi 

xi1

xi2


xip





















 

 

The np matrix X    

11 12 1p 1

21 22 2p 2

n1 n2 np n

x x x x
x x x x

x x x x

   
       
   
    



  




   
 

 

 is the data matrix. Note that X is pn and X is np. 

 

Note that we do not specifically indicate vectors or matrices (by 

underlining or bold face or whatever). Additionally, whether xi denotes 

the ith (vector) observation of x or the ith element of vector x is dependent 

on context (usually it is the ith observation since it is rare to need to refer 

to individual elements of vectors or matrices). 
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Define the sample mean vector 
1
n1 2 px ( x ,x ,...,x ) 1X     , where 1 is the column vector of n 1s. 

and the sample variance (or variance-covariance matrix) 

 var(X)= 1
n 1S (X X)(X X)    ,  

where X (x,x,...,x) is the pn matrix with all columns equal to x .  

 

0.9.1 Notes 

 S is a pp matrix, the diagonal terms give the variances of the p 

variables and the off-diagonal terms give the covariances between 

the variables. 

 S is (in general) non-singular and positive definite, provided all 

measured variables are ‘distinct’ (i.e. none is a linear combination of 

any of the others). 

 S can also be written as   
n n

 
 

     1 1
n 1 n 1i i i i

i 1 i 1
S (x x)(x x) ( x x nxx )  

 Also S=  n
1 1 1

(n 1) n ni i i j
i ji 1

S (1 ) (x )(x ) (x )(x


)              

 If w is any vector then var(Xw) = wvar(X)w = wSw 

 If A is any pq matrix then var(XA)=Avar(X)A=ASA 
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0.9.2 Proof of results quoted in §0.9.1  

 1
n 1S (X X)(X X)    1 1

1 1
1 1

n n

i i i in n
i i

(x x)(x x) x x nxx 
 

         

The first step follows on noting that X X  is a matrix consisting of 

columns i ib x  x  and so B = X X  has columns (b1,b2,…,bn) where 

each bi is a column p-vector and bb
1

i i


n

i
BB   . The second step 

follows directly from multiplying out the terms in the summation sign 

(keeping the ordering the same and taking the transpose  inside the 

brackets, i.e. noting  (x–y)(w–z) =xw–xz–yw+yz) and noting that x  

is a constant and can be taken outside the summation and the sum of 

the individual xi is n x , and that summing xx  from 1 to n gives n xx .  

 1 1 1
1

1
1

n

i i i j(n ) n n
i ji

S ( ) (x )(x ) (x )(x )


 
            

 
  .    

It is easiest to work backwards from the target expression: We have  
n

i i i jn n
i ji

( ) (x )(x ) (x )(x )


 
           

 
 1 1

1
1

  
n n n

i i i jn i j
i

(x )(x ) (x )(x )
 



            1
1 1

1  
n


n n

i i i jn i j
i

x x nx n (x ) (x )
 



            1
1 1

1
2

 
n

        21

1
2i i n

i
x x nx n n (x )(x )



    
n

i i
i

x x nxx (n )S


    
1

1
 

This result is included here because it provides a quick proof (see 

§8.1.4) that the sample variance of independent observations is 

[always] an unbiased estimate for the population variance. It is a 

direct generalization of the standard proof of this result for univariate 
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data but it is very far from ‘obvious’, especially if attempting to work 

from the left hand side of the identity rather than simplifying the right 

hand side.  

 If w is any p-vector then var(Xw) = wvar(X)w = wSw,   

This actually follows directly from the expression for var(Y) putting 

yi=wxi etc.   

1 1
1 1

1 1
i i i in n

i i
var(Y ) (y Y)(y Y) (w x w X)(w x w X) 

 

           
n n



1
1

1

n

i in
i

w (x x)(x x) w w Sw


      , 

(noting i i i i(w x w X) (x w X w) (x X )w (x X) w              etc.). 

 

  

 

© NRJF 1982 16



Multivariate Data Analysis: Chapter 0: Introduction 

0.10 R Implementation 

 

The dataset airpoll referred to above consists of 7 measurements 

relating to demographic and environmental variables on each of 60 US 

towns, i.e. n=60, p=7.  To calculate the mean of the seven variables use 

the function apply(.), (see help(apply)) . First read in the dataset 

as described in §0.5, 
> apply(airpoll,2,mean) 

 Rainfall Education Popden Nonwhite   NOX    SO2 Mortality  

   37.367    10.973 3866.1    11.87 22.65 53.767    940.38 

> 

To calculate the variance matrix use the function var() 
> var(airpoll) 
           Rainfall  Education      Popden  Nonwhite  
 Rainfall   99.6938   -4.13921     -128.66   36.8061 
Education   -4.1392    0.71453     -290.89   -1.5744 
   Popden -128.6627 -290.88847  2144699.44 -166.5103 
 Nonwhite   36.8061   -1.57437     -166.51   79.5869 
      NOX -225.4458    8.78881    11225.58    7.5995 
      SO2  -67.6757  -12.55718    39581.66   90.0827 
Mortality  316.4340  -26.83677    23813.64  357.1744 
 
                  NOX        SO2  Mortality  
 Rainfall   -225.4458    -67.676    316.434 
Education      8.7888    -12.557    -26.837 
   Popden  11225.5771  39581.656  23813.642 
 Nonwhite      7.5995     90.083    357.174 
      NOX   2146.7737   1202.425   -223.454 
      SO2   1202.4254   4018.351   1679.945 
Mortality   -223.4540   1679.945   3870.386 
> 
 

Thus, for example the variance of the amount of rainfall is 99.69 inches2, 

that of SO2 measurements is 4018.35, the covariance between Popden 

& education is –290.89 and that between NOX and Mortality is –223.45. 
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Note that both the mean and the variance can be assigned to variables, 

a vector in the case of the mean and a matrix in the case of variance. 
> airmean<- apply(airpoll,2,mean) 
> airmean 
 Rainfall Education Popden Nonwhite   NOX    SO2 Mortality  
   37.367    10.973 3866.1    11.87 22.65 53.767    940.38 
> airvar<- var(airpoll) 
> airvar 
           Rainfall  Education      Popden  Nonwhite  
 Rainfall   99.6938   -4.13921     -128.66   36.8061 
Education   -4.1392    0.71453     -290.89   -1.5744 
   Popden -128.6627 -290.88847  2144699.44 -166.5103 
 Nonwhite   36.8061   -1.57437     -166.51   79.5869 
      NOX -225.4458    8.78881    11225.58    7.5995 
      SO2  -67.6757  -12.55718    39581.66   90.0827 
Mortality  316.4340  -26.83677    23813.64  357.1744 
 
                  NOX        SO2  Mortality  
 Rainfall   -225.4458    -67.676    316.434 
Education      8.7888    -12.557    -26.837 
   Popden  11225.5771  39581.656  23813.642 
 Nonwhite      7.5995     90.083    357.174 
      NOX   2146.7737   1202.425   -223.454 
      SO2   1202.4254   4018.351   1679.945 
Mortality   -223.4540   1679.945   3870.386 
> 
 

Further example: The version of the Anderson’s Iris Data available from 

the course webpage is a dataframe with five columns named irisnf 

(the system data set iris is a different version of the same data). The 

data give the lengths and widths of petals and sepals of iris flowers of 3 

varieties. The fifth column is a factor indicating the varieties and the first 

four are named Sepal.l, Sepal.w, Petal.l, Petal.w. 

Since the dataframe contains one variable which is a factor the mean 

and variance commands above cannot be applied top the whole 

dataframe. Instead individual variables must be selected and named in 

the commands. 
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Assuming that the dataset has been downloaded and read into R, e.g. 

by double clicking on it in Windows Explorer or running directly from the 

webpage (this latter option is not recommended), the summary statistics 

of the lengths of the sepals and petals can be obtained by: 
> attach(irisnf) 

> var(cbind(Sepal.l, Petal.l)) 

        Sepal.l Petal.l  

Sepal.l 0.68569  1.2743 

Petal.l 1.27432  3.1163 

> apply(cbind(Sepal.l,Petal.l),2,mean) 

 Sepal.l Petal.l  

  5.8433   3.758 

Note the use of attach() and cbind(),(try help(attach) and 

help(cbind) to find out more). 

Notes  

 The commands apply() and var()are also available in S-PLUS. 

The command mean() operates slightly differently in R and S-PLUS: 

in S-PLUS it produces a scalar which is the overall mean of all values 

(which is rarely useful); in R it produces a vector if the argument is a 

dataframe but an overall mean of all values if the argument is a 

matrix (as produced by cbind()) or an array. 

 Summary statistics of individual variables can be obtained in S-PLUS 

by using the menus (Statistics>Data Summaries>) but this is 

not recommended since firstly doing so treats each variable 

separately (i.e. lots of univariate observations on the same cases) 

instead of regarding the data as a multivariate data set and each 

observation as a vector measurement on each case. Secondly, the 

menus do not allow the mean p-vector and the variance pp matrix to 

be stored as variables for later calculations. 
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0.10.1 Illustration in R that var(XA)=Avar(X)A 

The data frame scor found in openclosed.Rdata available from the 

course webpage gives the examination marks of 88 students who took 

five examinations under either open or closed book examinations in 

mathematics at the University of Hull in c.1970 and are given in Mardia, 

Kent & Bibby (1981). The five examinations were in Mechanics, Vectors, 

Algebra, Analysis and Statistics. The first two of these were taken under 

closed book conditions and the last three under open book conditions. 

The five variables in the data set are labelled mec, vec, alg, ana 

and sta.  

Below is a transcript from an R session with comments which illustrates 

the result var(XA)=Avar(X)A as well as basic matrix manipulation in R. 

The session is started by locating the file openclosed.Rdata on your 

hard disk in Windows Explorer (after downloading it to a suitable 

directory) and double clicking on it. This starts R, changes the working 

directory to that where the file openclosed.Rdata is located and loads 

the data. We will take A as the 52 matrix  

 

1
2
1
2

1
3
1
3
1
3

1
1
1A
1
1

 
 
 
 
 

 
  
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> ls()  # list all objects in the work space 
[1] "scor"     
>  
> scor[1:5,] # print the first few lines of the data set 
  mec vec alg ana sta 
1  77  82  67  67  81 
2  63  78  80  70  81 
3  75  73  71  66  81 
4  55  72  63  70  68 
5  63  63  65  70  63 
>  
>  
> dim(scor) #  find out how many rows and columns scor has 
[1] 88  5 
>  
> # want X' to be the data matrix scor so  
> # define X to be the matrix of the transpose of scor 
>  
> X<-as.matrix(t(scor)) 
>  
> dim(X) 
[1]  5 88 
>  
> var(t(X)) # find the variance matrix of X'=scor 
    mec   vec   alg   ana sta 
mec 306 127.2 101.6 106.3 117 
vec 127 172.8  85.2  94.7  99 
alg 102  85.2 112.9 112.1 122 
ana 106  94.7 112.1 220.4 156 
sta 117  99.0 121.9 155.5 298 
>  
> A<-matrix(c(1,1/2,1,1/2,1,-1/3,1,-1/3,1,-1/3),5,2,byrow=T)  
# enter the matrix A 
>  
> A  # check it is correct 
     [,1]   [,2] 
[1,]    1  0.500 
[2,]    1  0.500 
[3,]    1 -0.333 
[4,]    1 -0.333 
[5,]    1 -0.333 
>  
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> Y<-t(A)%*%X # let Y=A'X so that Y'=X'A 
> t(Y)[1:5,] # and print first few lines of t(Y) 
  [,1]  [,2] 
1  374  7.83 
2  372 -6.50 
3  366  1.33 
4  328 -3.50 
5  324 -3.00 
>  
> # note that Y’ gives the total score of each candidate 
# in column 1 and the difference in mean scores  
# on closed and open book exams in column 2 
# 
> scor[1:5,] # print the first few lines of the data set 
  mec vec alg ana sta 
1  77  82  67  67  81 
2  63  78  80  70  81 
3  75  73  71  66  81 
4  55  72  63  70  68 
5  63  63  65  70  63 
>  
>  
> var(t(X)%*%A)  # calculate var(X'A) 
        [,1]   [,2] 
[1,] 3351.31  -2.81 
[2,]   -2.81 138.57 
>  
> t(A)%*%var(t(X))%*%A  # calculate Avar(X'A)A' 
        [,1]   [,2] 
[1,] 3351.31  -2.81 
[2,]   -2.81 138.57 
> 
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Tasks 1  
(see §0.0–§1.5 & A0.1) 

1) Read the Study Guide for this course if you have not already done so. 

2) Verify the final result referred to in Chapter 0, §0.9.1 Notes that  

if A is any pq matrix then var(XA)=Avar(X)A=ASA.   

3) Access the Iris Dataset which is stored as an R data set 
irisnf.Rdata 

i) Find the 4-vector which is the mean of the four dimensions 

Sepal.l, Sepal.w, Petal.l, Petal.w and the 44 matrix 

which is their variance (see ‘Further example’ in §0.10). 

ii) Plot sepal length against sepal width using:  

a) the default choices 

b) using different symbols for each variety (with pch= and col=) 

iii) Construct a matrix plot of all four dimensions, using first the 

default choices and then enhancing the display as above. 

iv) Try the commands 
var(irisnf) 
diag(var(irisnf)) 

 

4) Try these simple exercises both ‘by hand’ and using R: 

Let  ,   

Find AB, BA, BA, aA,  aAa  

1 1
1 2 3

a 2 , A , B 3 4
4 5 6

3 5

   
              

   

2

6

 

© NRJF 1982 23



Multivariate Data Analysis: Chapter 0: Introduction 

5) Read through the sections on eigenvalues and eigenvectors, 

differentiation w.r.t. vectors and use of Lagrange Multipliers in 

Appendix 0: Background Results in course booklet. This material will 

be used in Chapter 2. At least some of the material will be familiar to 

almost all of you but probably the vector differentiation will be novel: 

the only cases that are required in this course are those listed in that 

section.  The important point to appreciate in the eigenanalysis 

section is that if we are trying to determine some vector x and we can 

shew that this vector must satisfy an equation of the form Sx = x 

(S a matrix and  a scalar) then we have essentially solved the 

problem and x is determined as one of the eigenvectors of S. This is 

equivalent to establishing that an unknown scalar x satisfies the 

equation ax2+bx+c=0 means that x must be one of the roots of the 

quadratic.  In R we can find roots of polynomials by the function 

polyroot() and similarly we can solve an eigenvalue problem with 

the function eigen(). Try help(polyroot) and help(eigen). 

6) Read the Study Guide for this course [again] if you have not already 

done so [or have done so only once]. 
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1 Graphical Displays  

1.1  1 Dimension 

 Small # points – 1-dimensional scatter plots, dot plots. 

 Large # points – stem & leaf plots, histograms, box plots.  

+ other special techniques dependent on particular form of data, e.g. 

circular data need circular histograms. 

Examples:  

 

(i) Karl Pearson’s data:  

1230 1318 1380 1420 1630 1378 

1348 1380 1470 1445 1360 1410 

1540 1260 1364 1410 1545  

capacities of male Moriori skulls 

 

 

 (ii) Lt. Herndon’s Venus Data 

 

–.30 +0.48 +0.63 –0.22 +0.18 

–0.44 –0.24 –0.13 -0.15 +0.39 

+1.01 +0.06 –1.40 +0.20 +0.10 

Semi-diameters of Venus (deviations from mean) 

 

Both the above sets of data have suspiciously large values: A simple 

plot allows assessment of how much these deviate from the rest of the 

data, taking into account the internal scatter of the values. 
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-1 0 1

residual
one dimensional scatterplot

?

 

 

1200 1300 1400 1500 1600
skull capacity

one dimensional scatterplot

?
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Examples of stem& leaf plots: temperature data  
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Stem & leaf plot of Fahrenheit values 

 

 

 

 

 

 

 

 

 

Stem & leaf plot of Celsius values. 

 

Plots suggest that original measurements were in Fahrenheit and then 

converted into Celsius (and rounded to one decimal). 
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Examples of histograms: Data are lengths of otoliths (fossilised 

fishbones) found at four archaeological sites in Oronsay (Inner 

Hebrides), together with samples taken from contemporary fish caught 

on known dates. The fishbones grow larger with age and the pictures 

suggest that the four archaeological sites had bones from fish caught on 

different dates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Archaeological samples 
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Contemporary samples 

Comparing a small number of histograms is possible. The histograms 

reveal the bimodality of the first two archaeological samples and the 

consistent increase in size of the contemporary ones.  With a larger 

number of samples (e.g. too large for a separate histogram of each to fit 

on a page) boxplots are preferable. 
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Example of Boxplots: Data are rim-circumferences of mummy-pots 

(containing mummified birds) found at various different galleries in the 

Sacred Animal Necropolis in Saqqara, Egypt.   The boxplots illustrate 

marked variation in sizes of pots between galleries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that boxplots may conceal features such as bimodality — do some 

galleries contain a mixture of big and little pots? Those with 

exceptionally large boxes (e.g. galleries 47 & 49) indicate large 

variances which might be a reflection of bimodality. 
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Example of circular data: data are orientations (i.e. compass 

directions) of the doorways of Bronze Age houses in the upper Plym 

Valley, Dartmoor. There are two groups of houses and the question of 

interest was whether the two groups were equally consistently 

orientated.   Ordinary histograms can be misleading but circular dotplots 

& histograms capture the features of the data. 
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Four possible histograms of the angles as measured from North, East, 

South and West.   Different (erroneous) conclusions might be drawn 

depending on which base direction is chosen. Better is to preserve the 

circularity of the data in the display: 
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A circular dotplot 

 

This shews clearly that the majority of are orientated to the South-West, 

with a few outliers in other directions. 
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A circular histogram 

 

The circular histograms have area proportional to relative frequency, 

this allows comparison of distributions of the two samples even though 

the sample sizes are different (just as with ordinary histograms). 
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1.2  2 Dimensions 

 Small # points – scatter plots 

 Large # points  

– bivariate histograms drawn in perspective 

– bivariate boxplots 

– 2-dim frequency plots 

– augmented scatter plots 

 

1.2.1 Examples: 

Anderson’s iris data: measurements of sepal and petal length and 

breadth of 50 of each of 3 varieties of iris.  

Two-dimensional scatter plot of two components. 
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Example of bivariate histograms: Digital fingerprinting data. 

Data are final digits in measurements of the same set of dogwhelks 

by two people, the second of whom measured them twice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second two histograms are very similar but quite distinct from the 

first: this indicates that the two measurers had different subconscious 

preferences for the final digit to be recorded. 
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1.2.2 Convex Hulls and Bivariate Boxplots 

Everitt provides a function chull() which determines which points form 

the convex hull in a bivariate scatterplot, i.e. those points which form a 

convex polygon encircling all the points in the two-dimensional 

scatterplot.  For example (using the dataset airpoll) : 
> plot(Education,Nonwhite,pch=15) 
> plot(Education,Nonwhite,pch=15) 
> hull<-chull(Education,Nonwhite) 
> polygon(Education[hull],Nonwhite[hull],density=5,angle=10) 
> 
produces: 
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A further function bvbox() (beware of the misspelling in the book) 

produces a ‘bivariate boxplot which is a pair of concentric ellipses; the 

inner (the “hinge”) contains the innermost 50% of the points and the 

outer ( the “fence”) excludes outliers: 
> bvbox(cbind(Education,Nonwhite),xlab="Education",  
+ ylab="Nonwhite") 
> 
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Education
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The version provided on the website is perhaps not satisfactory for all 

purposes but with experience of R or S-PLUS it is possible to alter the 

actual commands in the function to particular needs, e.g. to thicken and 

darken the lines and alter the symbols. 
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1.3  3 Dimensions 

 2-dim scatter plots of marginal components, (perhaps joined 

sensibly, see Tukey & Tukey,  in Interpreting Multivariate Data) 

 augmented scatterplots (e.g. code third dimension by size of 

symbol — see R function symbols(), or from the menus under 

bubbleplot in Plot Type see help(symbols)) 

 2-dim random views. 

 3-dim scatter plots drawn in perspective or rotated interactively, 

using R, S-PLUS or ISP or SAS-insight) 

 

Examples: 

 

 

 

 

 

 

 

 

 

 

Example of a 3-d scatterplot produced by a standard statistical package. 

This display is not very effective since it is difficult to appreciate the 

three dimensional structure (if any).  Better is to use symbols which can 

be drawn in perspective: 
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3-d scatterplot of iris data (actually after transformation to principal 

components (see later)). Use of perspective and hidden-line removal 

enhances three-dimensional information. 
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Another example on particle size data from beaches, dunes and 

archaeological middens in Oronsay. This example illustrates 

identification of outliers as well as separation of groups. 
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1.4   3 Dimensions 

1.4.1 Sensible Methods 

Matrix plots 

The key tool in displaying multivariate data is scatterplots of pairwise 

components arranges as a matrix plot. Most packages have a facility for 

producing this easily but the examples below illustrate that as soon as 

the number of dimensions becomes large (i.e. more than about 5) it is 

difficult to make sense of the display. If the number of observations is 

small then some other technique (e.g. star plots, see below) can handle 

quite large numbers of variables. If there are large numbers of both 

variables and observations then matrix plots after preliminary analysis 

has determined the “most interesting” few dimensions to look at (e.g. by 

principal component analysis, see later). In R a matrix plot can be from 

the command line with the command pairs(). 

 

The next two examples give a display of all four components of the iris 

data where a matrix plot is informative and a matrix plot of 12 

dimensional data giving measures of ability and performance of 43 US 

judges. In the second the number of variables is too large for useful 

assimilation from the matrix plot. 
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Matrix plot of Anderson’s Iris Data 

 

It is clear that we can see some structure in the data and might even 

guess that there are three distinct groups of flowers. 
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Matrix plot of Judge data 

The number of separate plots here is too large for any easy 

interpretation. 
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Star Plots 

The matrix plot above is difficult to comprehend. An alternative is a star 

plot where each observation is represented by a star or polygon where 

the length of the vector to each vertex corresponds to the value of a 

particular variable. 

Judge not ...

AARO ALEX ARME BERD BRAC BURN CALL

COHE DALY DANN DEAN DEVI DRIS GRIL

HADD HAMI HEAL HULL LEVIN LEVIS MART

MCGR MIGN MISS MULV NARU O'BR O'SU

PASK RUBI SADE SATA SHEA,D SHEA,J SIDO

SPEZ SPON STAP TEST TIER W ALL W RIG

ZARR
CONT

INTG
DMNRDILGCFMG

DECI
PREP

FAMI
ORALW RITPHYS

RTEN

 

We can begin to see something about similarities and differences 

between individual observations (i.e. judges) but not any relationships 

between the variables. 
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Another example: measurements of 11 properties of 32 cars (fuel 

consumption, engine size etc). 

mpg
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Again, not informative since there are too many plots. 
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M otor T rend Cars
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Merc 450SL Merc 450SLCCadillac FleetwoodLincoln ContinentalChrysler Imperial Fiat 128

Honda Civic Toyota CorollaToyota CoronaDodge ChallengerAMC Javelin Camaro Z28

Pontiac Firebird Fiat X1-9 Porsche 914-2Lotus EuropaFord Pantera L Ferrari Dino

Maserati Bora Volvo 142E mpg

cyl
disphpdrat
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qsec

 

This is perhaps more informative on individual models of cars but again 

not easy to see more general structure in the data. 
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1.4.2 Andrews’ Plots 

See D.F. Andrews, (1972) Plots of high dimensional data, Biometrics, 

28, 125–36. 

Data {xi; i=1,...,n},  (vector observations in p-dimensions so xij is 

 the jth element of the ith observation). 

Define 

i

1
x i1 i2 i3 i4 i5 ip2

sin pf (t) x x sin t x cos t x sin2t x cos2t .... x t
2cos

             
 

This maps p-dimensional data {xi} onto 1-dimensional { } for any t. If 

we plot  over –<t<+ we obtain a 1-dimensional representation of 

the data with 

ixf (t)

ixf (t)

Properties: (i) preserves means, i.e. 

i

n
1

x xn
i 1

f (t) f (t)


   

 (ii) preserves distances; i.e. if we define the square of the 

‘distance’ between two functions as the integrated squared difference: 

 
1 2 1 2

2 p2 2
x x x x 1j 2j 1

f (t) f (t) (f (t) f (t)) dt (x x )



      j  

(using properties of the orthogonal functions sin & cos) 

  =  square of Euclidean distance between x1 and x2. 

so close points appear as close functions (though not necessarily vice 

versa). 

 (iii) yields 1-dimensional views of the data: at t=t0 we obtain the 

projection of the data onto the vector  

 f1(t0)=(1/2, sin t0, cos t0, sin 2t0, ....) 

(i.e. viewed from some position the data look like the 1-dimensional 

scatter plot given on the vector f1(t0) -- i.e. the line intersecting the 

Andrews’ plot at t=t0). 

(iv),(v),.... etc:– tests of significance & distributional results available. 
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— the plot does depend upon the order in which the components are 

taken. A preliminary transformation of data may be sensible (e.g. 

principal components). 

— other sets of orthonormal functions are possible 

— the ‘coverage’ decreases rapidly as dimensionality increases, i.e. for 

high dimensions many ‘views’ of the data are missed and we miss 

separation between [groups] of points or other important features. 

 

Computational Note 

Many packages give facilities for producing Andrews Plots.   The R 

package andrews can be installed from the CRAN website. 
 

Examples: First, the example taken from David Andrews’ original paper 

referenced above. Data are 9-dimensional measurements of teeth taken 

from modern humans of different ethnic origins and various primates. 

Also, there are similar measurements on early hominids and the 

objective is to see whether the hominids ‘look like’ primates or humans. 

The second example is the iris data [again] shewing the dependence on 

order of variables. 
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Human and primate data shewing clear distinction between humans and 

primates. 
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The diagram shews that the early hominid is mostly like a modern 

primate but the fact that the curve for the hominid substantially overlaps 

the human region for part of the range indicates that from some points of 

view (literally) the tooth looks like a human tooth. Also, the fact that it 

diverges from the primates means that it does not look entirely like a 

primate. 
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Andrews Plot of iris data with components taken in order 

This shews that at least one group separates markedly from the other 

observations. The fact that the other two groups are only distinguishable 

in the colour version of this plot (see .pdf version of the notes) means 

that there is no convincing separation between the versicolor (red) and 

virginica (green) species. 
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Andrews Plot with order of components reversed 

 This shews the dependence in detail of the display on order though the 

conclusions that can be drawn are perhaps no different. 
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Andrews Plot of Principal Components 

This plot shews the iris data after transformation to principal components 

(see later) where the first component is the ‘most informative. Careful 

inspection of the colour version shews some separation between the 

versicolor and virginca species — (especially at around 0.5<t<0.5). 
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1.4.3 Whimsical Methods 

Use of complicated symbols: perhaps 2-dimensional scatter plots of 2 

components with other components (back variables) incorporated into a 

complicated symbol (c.f. weather maps).  

— complicated symbols: e.g. Anderson [Florence Nightingale] Glyphs, 

Kleiner-Hartigan trees & Chernoff faces (the latter code values of 

various variables as different facial features). The display below collates 

some of the suggestions: 
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1.4.4 Chernoff Faces 

This is not a very serious technique but is widely known and 

available in some packages (e.g. R in library aplpack with 

function faces(.) and in S-PLUS). The idea is to code each 

variable in some feature of a face (e.g. length of nose, curvature of 

mouth). Then you can display each observation as a face (cf using 

a star or polygon) and look for ‘family resemblances’. 

 

The first example (from Everitt, private lecture) gives an illustration of 

data on perceived national characteristics (data and labels of faces 

suppressed) and the second illustrates hourly measurements of air 

pollution during a 24 hour period. In this example the association 

of variables with features is carefully chosen to give the impression 

the pollution ‘gets worse’ by making the faces look increasingly 

unhappy with rising ozone, sulphur dioxide and radiation. 
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Each face represents a different country as assessed in terms of 

perceived national characteristics. (Details suppressed). 
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Chernoff face display of air quality data. 
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1.5 Further Reading 

The sections above have given only a brief guide to some examples of 

static graphics.  Many more sophisticated displays can be constructed 

and the book R Graphics by Paul Murrell (Chapman & Hall, 2006) is a 

good starting point.  More sophisticated interactive and dynamic 

graphics can be achieved by the add-in package rggobi available from 

the site http://www.ggobi.org .   A good start for working with these 

facilities is the book Interactive and dynamic graphics for data analysis 

by Dianne Cook and Deborah Swayne (Springer, 2007). 
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1.6 Conclusions  

The simple scatter plots arranged in a matrix work well when there are 

not too many variables. If there are more than about 5 variables it is 

difficult to focus on particular displays and so understand the structure.  

If there are not too many observations then we can construct a symbol 

(e.g. a star or polygon) for each separate observation which indicates 

the values of the variables for that observation. Obviously star plots will 

not be useful if either there are a large number of observations (more 

than will fit on one page) or if there are a large number of variables (e.g. 

> 20).   

However, many multivariate statistical analyses involve very large 

numbers of variables, e.g. 50+ is routine, 1000+ is becoming 

increasingly common in new areas of application. 

What is required is a display of ‘all of the data’ using just a few 

scatterplots (i.e. using just a few variables). That is we need to select 

‘the most interesting variables’.   This may mean concentrating on ‘the 

most interesting’ actual measurements or it may mean combining the 

variables together in some way to create a few new ones which are the 

‘most interesting’.  That is, we need some technique of dimensionality 

reduction. 
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2 Reduction of Dimensionality  

2.0 Preliminaries 

2.0.1 Warning:  

This section requires use of Lagrange Multipliers, eigenanalysis and 

results on differentiation with respect to vectors. Summaries of these 

topics are given in the Background Results notes in Appendix 0. Also 

required is the result that for any vector w then we have 

var(Xw)=wSw 

The derivation of principal components below is the first example of a 

powerful method of maximization which will be used in several different 

places in later sections and so it is of importance to follow the overall 

technique. 

2.0.2 A Procedure for Maximization 

   1: Introduce some constraint (either a required constraint or  
  one which is non-operative) 

  2: Introduce a Lagrange multiplier and define a new objective  

  function 

  3: Differentiate w.r.t. x and set =0 

  4: Recognise this is an eigenequation with the Lagrange  

  multiplier as eigenvalue 

  5: Deduce that there are ONLY a limited number of possible values  

  for this eigenvalue (all of which can be calculated numerically) 

  6: Use some extra step to determine which eigenvalue gives the  

  maximum (typically use the constraint somewhere) 
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2.1 Linear Techniques 

2.1.0 Introduction 

Data X = {xij ; i=1,...,n, j=1,...,p} = {xi ; i=1,...,n} 

Objective is to find a linear transformation X  Y such that 

the 1st component of Y is the “most interesting”, 

the 2nd is the “2nd most interesting”, 

the 3rd ....................................... etc. 

i.e. want to choose a new coordinate system so that the data, when 

referred to this new system, Y, are such that  

the 1st component contains “most information”,  

the 2nd component contains the next “most information”, ... etc. 

— & with luck, the first ‘few’ (2, 3 or 4 say) components contain ‘nearly 

all’ the information in the data & the remaining p–2,3,4 contain relatively 

little information and can be ‘discarded’ (i.e. the statistical analysis can 

be concentrated on just the first few components — multivariate analysis 

is much easier in 2 or 3 dimensions!) 

Notes 

A linear transformation XY is given by Y=XA where A is a pp 

matrix; it makes statistical sense to restrict attention to non-singular  

matrices A. If A happens to be an orthogonal matrix, i.e. AA=Ip (Ip the 

pp identity matrix) then the transformation XY is an orthogonal 

transformation, (i.e. just a rotation and/or a reflection of the n points in p-

dimensional space). 
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2.1.1. Principal Components 

The basic idea is to find a set of orthogonal coordinates such that the 

sample variances of the data with respect to these coordinates are in 

decreasing order of magnitude, i.e. the projection of the points onto the 

1st principal component has maximal variance among all such linear 

projections, the projection onto the 2nd has maximal variance subject to 

orthoganility with the first, projection onto the 3rd has maximal variance 

subject to orthogonality with the first two, ..... etc. 

Note 

     “most interesting”  “most information”  maximum variance 

 

 

 

Definition 

The first principal component is the vector a1 such that the projection of 

the data X onto a1, i.e. Xa1, has maximal variance, subject to the 

normalizing constraint a1a1=1. 

 

Now  var(Xa1) = a1var(X)a1 = a1Sa1 and note that a1 is 1p, S is pp 

and a1 is p1 so a1Sa1 is 1ppp1=11, i.e. a scalar. 

So, the problem is  

 to maximize a1Sa1 subject the constraint a1a1=1. 

 

Define  1 = a1Sa1–1(a1a1–1), where 1 is a Lagrange multiplier, and 

maximize 1 with respect to both a1 and 1. 

 

Setting 
1 0  gives a1a1=1. 
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Differentiating w.r.t. a1 gives 
 1

1
2 21 1a Sa a  1, and setting equal to 

zero gives   Sa1 – 1a1 = 0   .................. 

i.e. a1 is an eigenvector of S corresponding to the eigenvalue 1; 

S has p non-zero eigenvalues (provided it is non-singular):— 

 ¿ So which eigenvalue is 1?   

premultiply equation  by a1, so  a1Sa1 – a11a1 = 0, 

so var(Xa1) = a1Sa1 = 1a1a1 = 1 (since a1a1=1), 

so to maximize var(Xa1) we must take 1 to be the largest eigenvalue of 

S and a1 as the corresponding eigenvector, and then the maximum 

value of this variance is 1 (which is also the required value of the 

Lagrange multiplier). 
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The 2nd, 3rd,.... principal components are defined recursively: 

e.g. a2: projection of X onto a2 has maximal variance subject to a2a2=1 

and a2a1=0 (a1 and a2 are orthogonal) 

& then a3: projection of X onto a3 subject to a3a3=1 and a3a2=a3a1=0, 

etc. 

 

So, for a2 we require to maximize  

  2 = a2Sa2 – a2a1–2(a2a2–1) 

where  and 2 are Lagrange multipliers. 

Differentiating w.r.t.  and 2 and setting to zero just expresses the 

constraints.  

Differentiating w.r.t. a2 and setting to zero gives 

 2Sa2 – a1 – 22a2 = 0 .................... 

Premultiplying equation  by a1 gives 

 2a1Sa2 – a1a1 – 22a1a2 = 0 

i.e.  2a1Sa2 =     (since a1a2 = 0) 

premultiplying equation  by a2 gives 

 a2Sa1 – 1a2a1 = 0 

i.e. a2Sa1  = 0  (since a2a1 = 0), so  = 0 and so a2 satisfies 

  Sa2 – 2a2 = 0 

i.e. a2 is an eigenvector of S corresponding to the eigenvalue 2 

  (¿but which eigenvalue?) 

premultiplying by a2 gives   a2Sa2 – 2a2a2 = 0 

i.e.  var(Xa2) = a2Sa2 = 2 
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and so to maximize var(Xa2) we must take 2 as the second largest 

eigenvalue of S (note we cannot take it as the largest eigenvalue since 

then we would have a2=a1 but we have a2a1=0). 

 Proceeding recursively we can see that:— 

 

Theorem: The p principal components of data X are the p eigenvectors 

a1,a2,....,ap corresponding to the p ordered eigenvalues 12...p of S, 

the variance of X. 

 

 

 

NB The above is not a formal mathematical proof but it is easy to 

construct a proof by induction (i.e. assume that the first k principal 

components correspond to the first k eigenvectors and then shew that 

his implies that the (k+1)th  is as well. Since we have proved the result 

for k=1 the result follows by induction. 
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Notes 

 The argument above does not constitute a formal proof of the 

theorem but it is easy to construct a formal proof by induction: 

show that assuming the truth of the theorem for i=1,2,...,k implies 

that it also holds for i=k+1, since it is proved true for i=1 it will 

follow by induction that it is true for i=1,2,...,p. 

 There is a slight difficulty if either   

(i) i=i+1 since then ai and ai+1 can be chosen in arbitrarily many 

ways, i.e. mutually orthogonal but anywhere in the plane 

orthogonal to ai-1, or    

(ii) p=0 since ap is not then uniquely defined.  

However, neither of these is a practical difficulty with real data 

since it happens only with zero probability if there are more 

observations than variables and there is no implicit redundancy in 

the variables (i.e. none is a linear combination of any of the 

others). If there are fewer observations than variables (i.e. if n<p) 

then only the first n of the principal components will be of practical 

interest.   

With the population counterparts of principal components, i.e. the 

eigenvectors of a population variance matrix (as distinct from 

those of an observed sample variance matrix), then it could well be 

that i=i+1 or p=0 (or both) but this is not a practical problem. 
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2.1.2 Computation 

We have 1,2,...,p satisfy, for a=a1,a2,...,ap, 

 Sa – a = 0, i.e.  (S – Ip)a = 0.  This is a system p 

simultaneous equations in the components of a, so the determinant of 

the coefficients must be zero for non-trivial solutions to exist, i.e. we 

must have  det(S – Ip) = 0. 

Now det(S – Ip) is a polynomial of degree p in . In principle, this can 

be solved for the p values of , 1,2,...,p and then for each of these p 

values the simultaneous equations Sai – iai = 0 can be solved for the 

components of ai, together with the constraint that    aiai=1

  (i.e. 
p

2
ij

j 1
a 1



) . 

This is only practical for p=2 or perhaps p=3. 

For p3 there are iterative algorithms based on linear algebra — see 

Morrison §8.4, pp279. 

 

Easier method: use R, S-PLUS, MINITAB, SPSS, Genstat,... 

Many of these packages have complete built in ready-made analyses for 

principal component analysis, or it can be constructed from individual 

commands.  

e.g. in R with data in matrix X 
S<-var(X) 

S.eig<-eigen(S) puts the eigenvectors of S (i.e. the loadings of the 

principal components) in s.eig$vectors) and the eigenvalues (i.e. 

variance on the principal components) in S.eig$values. Technically 

better is to use the function svd() instead of eigen() because it is 

numerically more stable: 
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S.svd<-svd(S) 

S.svd$v and S.svd$d give the eigenvectors and eigenvalues of S 

respectively. 

 
Alternatively 

S.pca<-princomp(X) puts the eigenvectors of S in 

S.pca$loadings and the square roots of the eigenvalues in 

S.pca$sdev. 

S.pr<-prcomp(X) puts the eigenvectors of S in S.pr$rotation and 

the square roots of the eigenvalues in S.pr$sdev. 

These two ready made functions in R, princomp() and prcomp(), 

are based on eigen() and svd() respectively. prcomp() is 

generally preferred.  See §2.1.7 for more details. 
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Tasks 2  
(see §2.0–§2.1) 

1) Try these simple exercises both ‘by hand’ and using R: 

i) Find the eigenvalues and normalized eigenvectors of the 22 

matrix 1
7

208 144
144 292






  

ii) Find the eigenvalues and one possible set of normalized 

eigenvectors of the 33 matrix  
2 1 1
1 2 1
1 1 2

















iii) Find the inverse of  
2 0 0
0 2 1
0 1 2

















2) (optional — but at least note the results, these are counterexamples to false 

assumptions that are all to easy to make since they contradict ‘ordinary’ algebra). 

 Let 
0 1 0 1 1 1 1 1

A , B , C , D
1 0 0 0 1 1 1 1

      
                

1 1 1 1
E and F

1 1 1 1
   

        


 , 

        then show:– 

  

i) A2 = – I2 (so A is ‘like’ the square root of –1) 

ii) B2 = 0 (but B  0) 

iii) CD = – DC (but CD  0) 

iv) EF = 0 (but E  0 and F 0)  
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3) (see 0.10.1) The data file openclosed.Rdata consists of 

examination marks in five subjects labelled mec, vec, alg, ana 

and sta.  Download the datafile to your own hard disk. Using 

Windows Explorer double click on the file. This will open R, change 

the working directory to that where you have stored the data and read 

in the data to dataframe scor.  Mardia, Kent & Bibby (1981). 

i) Then issue the following commands and read the results 
ls()   # see what objects are in the works space; 
               #   there should be only the dataframe scor 
 
X<-as.matrix(t(scor)) # define X to be the matrix  
                      # of the transpose of scor 
 
S<-var(t(X)) # calculate  the variance matrix of X'=scor 
 
A<-eigen(S)$vectors # Calculate the eigenvectors of S  
#                     & store them in A 
V<-eigen(S)$values # and eigenvalues in V 
A  # look at A 
V  # look at V 
sum(diag(S))# look at trace(S) 
sum(V)      # look at sum of eigenvalues in V (they should be the same) 
 
options(digits=4) only print four decimal places 
 
A%*%t(A)   # check that A is an orthogonal matrix  
t(A)%*%A   # (as it should be, property of eigenvectors) 
 
round(A%*%t(A)) # easier to see if round to whole numbers 
round(t(A)%*%A) 
 
t(A)%*%S%*%A    # calculate A’SA 
 
Y<-t(A)%*%X # let Y=A'X so that Y'=X'A, the data rotated 
            # onto the principal components. 
var(t(Y))       # the variance of the data on the principal components 
            # note these are the same up to rounding errors 
round(t(A)%*%S%*%A) # easier to see if round to whole numbers 
round(var(t(Y)))  
V           # eigenvalues of S, also same. 
sum(diag(S)) # find trace(S) 
sum(V)        # same as above 
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4) The data file bodysize.Rdata consists of measurements of the 

circumferences (in centimetres) of neck, chest, abdomen, 

hip, thigh, knee, ankle, biceps, forearm and wrist 

of 252 men. Download the datafile to your own hard disk. Using 

Windows Explorer double click on the file. This will open R, change 

the working directory to that where you have stored the data and read 

in the data to dataframe bodysize. Next, download the function 

screeplot() contained in scriptfile scree.R to the same directory 

on you hard disk. Using the menu in R open the script file scree.R 

(top left icon in the menu bar), highlight all the lines in the function 

and click the middle icon to run the selected lines. This will load the 

function into your current R session. source: Journal of Statistics 

Education Data Archive 
i) Then issue the following commands and read the results 
 bodysize[1:5,]    # gives first few lines of the data file 
 diag(var(bodysize))   # gives variances of variables 
 sqrt(diag(var(bodysize))) # gives standard deviations 
 # note standard deviations vary by a factor of > 10  
 # so perform PCA with correlation matrix 
 body.pc<-princomp(bodysize,cor=T) 
 body.pc 
 summary(body.pc) 
 body.pc$loadings 
 screeplot(bodysize,T) 
 print(body.pc$loadings, cutoff=0.01) 

ii) How many principal components would you suggest adequately 

contain the main sources of variation within the data. 

iii) What features of the body sizes do the first three [four?] 

components reflect? 

5) Calculate the principal components of the 4 measurements on Irises: 

using the ’ready made’ facility for principal component analysis by 

first calculating the covariance matrix and then looking at the 

eigenanalysis of the matrix (try help(eigen)).  
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2.1.3 Applications 

The principal components a1,a2,...ap provide a useful coordinate system 

to which to refer the data and for displaying them graphically, i.e. better 

than the original coordinates 

1
0
0

0

0
1
0

0

0
0

1
0

0
0

0
1














































































































, , , ,  

Let A= (a1,a2,....,ap) — the p×p matrix with jth column=aj. 

 (Notice that AA’=Ip , i.e. A is orthogonal) 

Then the projection of the data X’ onto this coordinate system is 

    Y’=X’A 

— since A is orthogonal the transformation X’  Y’ is a rotation/reflection 

(i.e. no overall change of scale or origin) 

 

If we measure the ‘total’ variation in the original data as the sum of the 

variances of the original components,   

 i.e. s11+s22+...+spp= tr(S) 

then the ‘total’ variation of Y’ is 1+2+...+p   

  (by construction of A)   

and   i=tr(S)  (since the i are eigenvalues of S) (see property 

1 of  Background Results). 
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So we can interpret    

   1/i    (=1/tr(S) )  

as the proportion of the total variation ‘explained’ by the first principal 

component, and  

   (1+2)/i  

as the proportion of the total variation ‘explained’ by the first two 

principal components, ...... etc. 

If the first ‘few’ p.c.s explain ‘most’ of the variation in the data, then the 

later p.c.s are redundant and ‘little’ information is lost if they are 

discarded (or ignored). 

If e.g. 

k

i
j 1
p

i
j 1













say 80+%, then the (k+1)th,...., pth components contain 

relatively little information and the dimensionality of the data can be 

reduced from p to k with little loss of information. Useful if k=1, 2, 3, 4?, 

5??? The figure of 80% is quite arbitrary and depends really on the type 

of data being analysed — particularly on the applications area. Some 

areas might conventionally be satisfied if 40% of the variation can be 

explained in a few p.c.s, others might require 90%. A figure needs to be 

chosen as a trade-off between the convenience of a small value of k and 

a large value of the cumulative relative proportion of variance explained.  

© NRJF 1982 80



Multivariate Data Analysis: Chapter 3:– Multidimensional Scaling Techniques  

If p is large an informal way of choosing a ‘good’ k is graphically with a 

scree-plot, i.e. plot 

j

i
i 1
p

i
j 1












vs  j.   The graph will be necessarily monotonic 

and convex. Typically it will increase steeply for the first few values of j 

(i.e. the first few p.c.s) and then begin to level off. The point where it 

starts levelling off is the point where bringing in more p.c.s brings less 

returns in terms of variance explained. 

 

 

 

 

 

 

 

 

 

Scree graphs can be drawn easily in MINITAB,   

choose Stat>Multivariate>Principal Components ... and then the 

Graphs... button. 

 

The ready made menu for principal component analysis is useful but 

limited — there may be some calculations that you need to do with the 

command language using Eigen, Cova, Mult etc. 

 

Some formal tests of H: p=0 are available (but not used much). 

0 
j

p ...4 3 2 1 

j

i
i 1
p

i
i 1











 


‘kink’ or ‘elbow’ — 
graph suddenly 
flattens, take k=3 
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2.1.4 Example (from Morrison). 

Measurements in millimetres of length, width and height of shells of 24 

female painted turtles (Chrysemys picta marginata) collected in a single 

day in the St Lawrence Valley.   This is a rather artificial example since 

the dimensionality is already low but it illustrates some of the 

calculations and interpretation. 

  n=24, p=3 

451.39 271.17 168.70
S 171.73 103.29

66.65

 
   
   

,   tr(S)=689.77 

 Principal Components 

 a1 a2 a3 

1==length .8126 –.5454 –.2054 

2==width .4955 .8321 –.2491 

3=height .3068 .1008 .9465 

variance=j 680.4 6.5 2.86 

 

Checks:  (i) j = 689.76 

  (ii) e.g. Sa2–a2=0, i.e. 
.5454 .5454

S .8321 6.5 .8321 0
.1008 .1008

    
       
   
   

 

The first component accounts for 98.64% of the total variance. This is 

typical of data on sizes of items and it reflects variation in overall sizes of 

the turtles:  The value of it for any particular turtle 

(or the score on the 1st p.c.)  is  

Y1=.81length+.50width+.31height 

— it reflects general size. 

The 2nd p.c. is Y2=–.55length+.83width+.10height 
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Here, the coefficient of height is much smaller in absolute terms than the 

other two and so the second p.c. is dominated by variations in length 

and widths and is actually a contrast between them, so high values of Y2 

come from nearly round shells and low values from elongated elliptical 

shells, i.e. Y2 is a measure of shape or roundness. 

Similarly, Y3= –.21length–.25width+.95height which reflects height vs 

(length+width) and so is a measure of how peaked or pointed the shell 

is. 

Conclusions are that the shells vary most in overall size, next most in 

shape and third most in peakedness. 

 

2.1.4.1 R calculations 

> S<- 
      matrix(c(451.39,271.17,168.7,271.17,171.73,103.29,168.7, 
       103.29,66.65),nrow=3,ncol=3) 
> eigenS<-eigen(S) 
> eigenS 
$values: 
[1] 680.41111   6.50163   2.85726 
 
$vectors: 
         [,1]      [,2]      [,3]  
[1,] 0.812643 -0.545418  0.205257 
[2,] 0.495495  0.832072  0.249282 
[3,] 0.306752  0.100874 -0.946429 
 
> eigenS$vectors[,2] 
[1] -0.545418  0.832072  0.100874 
> S%*%eigenS$vectors[,2]-6.50163*eigenS$vectors[,2] 
              [,1]  
[1,] -1.86545e-006 
[2,]  2.84587e-006 
[3,]  3.45010e-007 
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2.1.5 General Comments 

 

 Generally, if data X’ are measurements of p variables all of the 

same ‘type’ (e.g. all concentrations of amino acids or all linear 

dimensions in the same units, but not e.g. age/income/weights) 

then the coefficients of principal components can be interpreted as 

‘loadings’ of the original variables and hence the principal 

components can be interpreted as contrasts in the original 

variables, as with the turtle shell example.  

 

This interpretation is less easy if the data are of mixed ‘types’ or if 

the variables have widely different variances, even if the eigen 

analysis is based on the correlation rather than the covariance 

matrix, see below.  

 

(The same difficulty arises with the interpretation of regression 

coefficients in all forms of regression model — linear, logistic, log-

linear, Cox proportional hazards,.........) 
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 Notice that principal components are not invariant under all linear 

transformations of original variables, in particular separate scaling 

of the variables. For example, principal components of data on 

people’ heights, weights and incomes measured in inches, pounds 

and £s are not the same as those on the same data converted to 

centimetres, kilograms and €s. This means one should be careful 

in the interpretation of analyses of data on mixed types. 

 

 One way of avoiding this problem is to do principal component 

analysis on the correlation matrix rather than the covariance 

matrix. R and S-PLUS allow this option and it is the default option in 

MINITAB & SPSS. This achieves invariance under linear 

transformations but loses some interpretability in formal statistical 

inference though it can still achieve the same reduction in 

dimensionality. This is especially useful if the variables have 

widely different variances even if they are all of the same type. If 

one variable has a very large variance then the first principal 

component will be dominated by this one variable.  

 

© NRJF 1982 85



Multivariate Data Analysis: Chapter 3:– Multidimensional Scaling Techniques  

2.1.6 Further Example of Interpretation of PCA Coefficients 

This data for this example are given in Wright (1954), The interpretation of multivariate systems. In 

Statistics and Mathematics in Biology (Eds. O. Kempthorne, T.A. Bancroft J. W. Gowen and J.L. 

Lush), 11–33. State university Press, Iowa, USA.  

Six bone measurements x1,…,x6 were made on each of 275 white 

leghorn fowl. These were: x1 skull length; x2 skull breadth; x3 humerus; 

x4 ulna; x5 femur; x6 tibia (the first two were skull measurements, the 

third and fourth wing measurements and the last two leg 

measurements).  The table below gives the coefficients of the six 

principal components calculated from the covariance matrix. 

 

 

Original  Principal Components 

variable a1 a2 a3 a4 a5 a6 

x1 skull l. 0.35 0.53 0.76 –0.04 0.02 0.00 

x2 skull b. 0.33 0.70 –0.64 0.00 0.00 0.03 

x3 humerus 0.44 –0.19 –0.05 0.53 0.18 0.67 

x4 ulna 0.44 –0.25 0.02 0.48 –0.15 –0.71 

x5 femur 0.44 –0.28 –0.06 –0.50 0.65 –0.13 

x6 tibia 0.44 –0.22 –0.05 –0.48 –0.69 0.17 
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To interpret these coefficients we 'round' them heavily to either just one 

digit  and ignore values 'close' to zero, giving 

 

Original  Principal Components 

variable a1 a2 a3 a4 a5 a6 

x1 skull l. 0.4 0.6 0.7 0 0 0 

x2 skull b. 0.4 0.6 –0.7 0 0 0 
skull

x3 humerus 0.4 –0.2 0 0.5 0 0.7 

x4 ulna 0.4 –0.2 0 0.5 0 –0.7 
wing

x5 femur 0.4 –0.2 0 –0.5 0.6 0 

x6 tibia 0.4 –0.2 0 –0.5 –0.6 0 
leg

 

 

 

 

 

Original  

 

 

 

 

 

Principal Components 

variable a1 a2 a3 a4 a5 a6 

x1 skull l. + + +    

x2 skull b. + + –    
skull

x3 humerus + –  +  + 

x4 ulna + –  +  – 
wing

x5 femur + –  – +  

x6 tibia + –  – –  
leg

 

© NRJF 1982 87



Multivariate Data Analysis: Chapter 3:– Multidimensional Scaling Techniques  

We can then see that the first component a1 is proportional to the sum of 

all the measurements. Large fowl will have all xi large and so their 

scores on the first principal component y1 (=x'a1) will be large, similarly 

small birds will have low scores of y1.  If we produce a scatter plot using 

the first p.c. as the horizontal axis then the large birds will appear on the 

right hand side and small ones on the left. Thus the first p.c. measures 

overall size. 

The second component is of the form (skull)–(wing & leg) and so high 

positive scores of y2 (=x'a2) will come from birds with large heads and 

small wings and legs. If we plot y2  against y1 then the birds with 

relatively small heads for the size of their wings and legs will appear at 

the bottom of the plot and those with relatively big heads at the top. The 

second p.c. measures overall body shape. 

The third component is a measure of skull shape (i.e. skull width vs 

skull length), the fourth is wing size vs leg size and so is also a measure 

of body shape (but not involving the head). The fifth and sixth are 

contrasts between upper and lower parts of the wing and leg 

respectively and so y5 measures leg shape and y6 measures wing 

shape. 
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For comparison we see the effect of using the correlation matrix for the 

principal component analysis instead of the covariance matrix. 

 

 

 
 x1 skull l. x2 skull b. x3 humerus x4 ulna x5 femur x6 tibia 

x1 skull l. 1.000 0.505 0.569 0.602 0.621 0.603 

x2 skull b. 0.505 1.000 0.422 0.467 0.482 0.450 

x3 humerus 0.569 0.422 1.000 0.926 0.877 0.878 

x4 ulna 0.602 0.467 0.926 1.000 0.874 0.894 

x5 femur 0.621 0.482 0.877 0.874 1.000 0.937 

x6 tibia 0.603 0.450 0.878 0.894 0.937 1.000 

 

 

The eigenanalysis of this correlation matrix gives the PCs as:— 

 

Original  Principal Components 

variable a1 a2 a3 a4 a5 a6 

x1 skull l. -0.35 -0.40 -0.85 -0.05 0.01 0.03 

x2 skull b. -0.29 -0.81 0.50 -0.02 0.01 0.04 

x3 humerus -0.44 0.26 0.11 -0.50 0.60 0.33 

x4 ulna -0.45 0.20 0.10 -0.47 -0.60 -0.41 

x5 femur -0.45 0.16 0.10 0.50 0.37 -0.58 

x6 tibia -0.45 0.21 0.07 0.47 -0.38 0.62 

eigenvalue 4.46 0.78 0.46 0.17 0.08 0.05 
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Original  Principal Components 

variable a1 a2 a3 a4 a5 a6 

x1 skull l. – – –    

x2 skull b. – – +    
skull

x3 humerus – +  – – + 

x4 ulna – +  – + – 
wing

x5 femur – +  + + – 

x6 tibia – +  + – + 
leg

 

Comparing these results with those from the covariance matrix note that: 

 some the + and – signs of the coefficients have swapped (but the 

signs are arbitrary and a different package might give different 

signs) 

 the overall interpretation of the individual components will be 

exactly the same, except perhaps the last two 

 the sum of the eigenvalues is 6.0 since the trace of the correlation 

matrix is 6.0 (it is a 66 matrix and the diagonal elements are 1.0) 

 the first component accounts for almost 75% of the 'variance' of 

the data — strictly it is 75% of the standardized data and not the 

original data. In fact, if the analysis were based on the covariance 

matrix then the first p.c. would appear even more dominant — this 

is typical with measurements of physical sizes. For dimensionality 

reduction in particular, it is sensible to base assessments on the 

analysis of the correlation matrix or else look at the proportions of 
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variance explained as a total of all the components excluding the 

first.  

 the first three components account for 95% of the variance of the 

standardized data and this might be a satisfactory initial reduction 

to these three components. 
 
2.1.7 Computation in R  

The basic functions for PCA are  prcomp(mydata) and 

princomp(mydata) where mydata is a dataframe. These are 

generally equivalent but prcomp() is generally the preferred one.  

This is because it will handle cases where the number of variables is 

larger than the number of observations (princomp() fails if this is so) 

and prcomp() is based on the numerically more stable function svd() 

whereas princomp() relies on eigen().  princomp() is provided in  

R for compatibility with S+. 

 

mydata.pca<-princomp(mydata) puts the principal components of 

mydata in mydata.pca$loadings and the square roots of the 

eigenvalues in mydata.pca$sdev and the scores (i.e. the values 

rotated onto the principle components) into mydata.pca$scores. 

plot(mydata.pca) produces a bar chart of the variances, 

plot(mydata.pca$scores[,1:2])plots the scores on PC 2 against 

those on PC 1. The basic results (proportions of variance for each 

principal component etc) can be examined with 
summary(mydata.pca). 
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mydata.pr<-prcomp(mydata) puts the principal components of 

mydata in mydata.pr$rotation and the square roots of the 

eigenvalues in mydata.pr$sdev and the scores (i.e. the values rotated 

onto the principle components) into mydata.pr$x 

plot(mydata.pr) produces a bar chart of the variances, 

plot(mydata.pr$x[,1:2])plots the scores on PC 2 against those 

on PC 1. The basic results (proportions of variance for each principal 

component etc) can be examined with summary(mydata.pr). 

The bar chart produced by plot(mydata.pca) or plot(mydata.pr) 

is no substitute for a scree graph of cumulative proportions of variance 

contained by successive principal components.  R does not have an 

inbuilt function to do this but it is simple to write a custom function, see 

§2.1.7.1 below. This function is on the course web page in script file 
scree.R 

 

Other differences between prcomp() and princomp()are to perform 

the analysis on the correlation matrix instead of the default covariance 

matrix an additional argument needs to be included, either 

prcomp(mydata, scale=T) or princomp(mydata, cor=T).  

For further details consult the help system. 

The examples given below in §2.1.8 and §2.1.10 use princomp(). It is 

suggested that you repeat these using prcomp()  taking care to change 

one or two details of the calls involved.  
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2.1.7.1 R function screeplot() 

This function produces screeplots of cumulative partial sums of 

variances on each PC against the number of dimensions. By default the 

PCs are calculated from the covariance matrix and the number of 

dimensions used is 10. Both of these can be overridden in the call 

statement, see the examples.  To use in an R session, copy and paste 

the complete list of commands to a script window and run them. It can 

be downloaded from the course webpage. 

 
 
screeplot<-function(mydata,cor=F,maxcomp=10) { 
my.pc<-prcomp(mydata, scale=cor) 
k<-min(dim(mydata),maxcomp) 
x<-c(0:k) 
y<-my.pc$sdev[1:k]*my.pc$sdev[1:k] 
y<-c(0,y) 
z<-100*cumsum(y)/sum(my.pc$sdev*my.pc$sdev) 
 
plot(x,z,type="l",xlab="number of dimensions", 

 cex.main=1.5, lwd=3, col="red", 
 ylim=c(0,100), 
 ylab="cumulative percentage of total variance", 
 main="Scree plot of variancees", 
 xaxt="n", yaxt="n") 
  

axis(1,at=x,lwd=2) 
axis(2,at=c(0,20,40,60,80,100),lwd=2) 
abline(a=100,b=0,lwd=2,lty="dashed",col="orange") 
text(x,z,labels=x,cex=0.8,adj=c(1.2,-.1),col="blue") 
} 
 
# Examples of calls to it are 
screeplot(mydata) # default uses covariance, maximum 10 components 
screeplot(mydata,T) #  uses correlations, maximum 10 components 
screeplot(mydata,maxcomp=7) # default use covariance, maximum 7 components 
screeplot(mydata,T,maxcomp=8) # use correlations, maximum 8 components 
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2.1.8 Example: Iris data. (Analysis in R) 

The following is an example of Principal Component Analysis in the 

package R. 
> ir<- irisnf[,-5] 
> ir.pca<-princomp(ir) 
> ir.pca 
Call: 
princomp(x = ir) 
 
Standard deviations: 
   Comp.1    Comp.2    Comp.3    Comp.4  
2.0494032 0.4909714 0.2787259 0.1538707  
 
 4  variables and  150 observations. 
> summary(ir.pca) 
Importance of components: 
                          Comp.1     Comp.2     Comp.3      Comp.4 
Standard deviation     2.0494032 0.49097143 0.27872586 0.153870700 
Proportion of Variance 0.9246187 0.05306648 0.01710261 0.005212184 
Cumulative Proportion  0.9246187 0.97768521 0.99478782 1.000000000 
> plot(ir.pca) 
> par(mfrow=c(2,2)) 
> plot(ir.pca) 
> loadings(ir.pca) 
                  Comp.1      Comp.2      Comp.3     Comp.4 
Sepal.Length  0.36138659  0.65658877 -0.58202985 -0.3154872 
Sepal.Width  -0.08452251  0.73016143  0.59791083  0.3197231 
Petal.Length  0.85667061 -0.17337266  0.07623608  0.4798390 
Petal.Width   0.35828920 -0.07548102  0.54583143 -0.7536574 
> ir.pc<- predict(ir.pca) 
> plot(ir.pc[,1:2]) 
> plot(ir.pc[,2:3]) 
> plot(ir.pc[,3:4]) 
> 
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Iris data PCA 

 

We see that the first PC contrast flowers with big petals and long sepals 

with those with small petals and short sepals, i.e. big flowers with small 

flowers. The second contrasts big sepals with small sepals. 

The first scatter plot contains 98% of the variation in the data. It be seen 

that much of this variation is because the data separate into [at least] 

two groups along the first PC. 
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2.1.9 Biplots 

It is possible to represent the original variables on a plot of the data on 

the first two principal components. The variables are represented as 

arrows, with lengths proportional to the standard deviations and angles 

between a pair of arrows proportional to the covariances.  The 

orientation of the arrows on the plot relates to the correlations between 

the variables and the principal components and so can be an aid to 

interpretation. 

> biplot(ir.pca) 
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2.1.10  Cars Example Again, Using Correlation Matrix 

(Analysis in R) 
 
> mtcars.pca<-princomp(mtcars,cor=T) 
> mtcars.pca 
Call: 
princomp(x = mtcars, cor = T) 
 
Standard deviations: 
   Comp.1    Comp.2    Comp.3    Comp.4    Comp.5    Comp.6    Comp.7    Comp.8  
2.5706809 1.6280258 0.7919579 0.5192277 0.4727061 0.4599958 0.3677798 0.3505730  
   Comp.9   Comp.10   Comp.11  
0.2775728 0.2281128 0.1484736  
 
 11  variables and  32 observations. 
> summary(mtcars.pca) 
Importance of components: 
                          Comp.1    Comp.2     Comp.3     Comp.4     Comp.5 
Standard deviation     2.5706809 1.6280258 0.79195787 0.51922773 0.47270615 
Proportion of Variance 0.6007637 0.2409516 0.05701793 0.02450886 0.02031374 
Cumulative Proportion  0.6007637 0.8417153 0.89873322 0.92324208 0.94355581 
                           Comp.6     Comp.7     Comp.8      Comp.9     Comp.10 
Standard deviation     0.45999578 0.36777981 0.35057301 0.277572792 0.228112781 
Proportion of Variance 0.01923601 0.01229654 0.01117286 0.007004241 0.004730495 
Cumulative Proportion  0.96279183 0.97508837 0.98626123 0.993265468 0.997995963 
                           Comp.11 
Standard deviation     0.148473587 
Proportion of Variance 0.002004037 
Cumulative Proportion  1.000000000 
> mtcars.pc<-predict(mtcars.pca) 
> plot(mtcars.pca) 
> plot(mtcars.pc[,1:2]) 
> plot(mtcars.pc[,2:3]) 
> plot(mtcars.pc[,3:4]) 
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> loadings(mtcars.pca) 
         Comp.1      Comp.2      Comp.3 
mpg      -0.36        0.01       -0.22 
cyl       0.37        0.04       -0.17 
disp      0.36       -0.04       -0.06 
hp        0.33        0.24        0.14 
drat     -0.29        0.27        0.16 
wt        0.34       -0.14        0.34 
qsec     -0.20       -0.46        0.40 
vs       -0.30       -0.23        0.42 
am       -0.23        0.42       -0.20 
gear     -0.20        0.46        0.28 
carb      0.21        0.41        0.52 
 
data(mtcars) 
 
Format: 
 
 A data frame with 32 observations on 11 variables. 
 
 [, 1] mpg  Miles/(US) gallon 
 [, 2] cyl  Number of cylinders 
 [, 3] disp Displacement (cu.in.) 
 [, 4] hp   Gross horsepower 
 [, 5] drat Rear axle ratio 
 [, 6] wt   Weight (lb/1000) 
 [, 7] qsec 1/4 mile time 
 [, 8] vs   V/S 
 [, 9] am   Transmission (0 = automatic, 1 = manual) 
 [,10] gear Number of forward gears 
 [,11] carb Number of carburettors 
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                  Comp.1      Comp.2      Comp.3 
 Miles/(US)        -0.36        0.01       -0.22 
 cylinders          0.37        0.04       -0.17 
 Displacement       0.36       -0.04       -0.06 
 horsepower         0.33        0.24        0.14 
 Rear axle ratio   -0.29        0.27        0.16 
 Weight             0.34       -0.14        0.34 
 ¼ mile time       -0.20       -0.46        0.40 
 V/S               -0.30       -0.23        0.42 
 Transmission      -0.23        0.42       -0.20 
 gears             -0.20        0.46        0.28 
 carburettors       0.21        0.41        0.52 

Interpretation of loadings:  

Comp.1 : All coefficients are of comparable size. Positive ones are 

mainly  properties of the car itself (with high values implying high 

performance), negative ones are measures of actual performance of car. 

Interpretation: contrast between predicted and actual performance. 

Comp.2: largest coefficients are Transmission, gears and carburettors 

contrasted with ¼ mile time. High scores on this are by cars with a fast 

¼ mile time and powerful transmission, i.e. overall power. 

Comp.3: (less clear) but highs scores on this component from large 

heavy cars that do few miles to the gallon and have slow ¼ mile speeds. 

 

The first scatter plot (85% of total variation) reveals some clusters of 

cars (i.e. they have similar performances etc) as well as several outliers. 

The second scatterplot (about 30% of total variation) indicates a few 

outliers. It would be of interest to see how these two plots link together 

and this can be done interactively with the brush facility in R, MINITAB or 

S-PLUS. In R  use panel.brush.splom(.) in the lattice package. 
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2.1.11 Notes  

 The full mathematical/algebraic theory of principal component 

analysis strictly applies ONLY to continuous data on comparable 

scales of measurements using the covariance matrix. Using the 

correlation matrix brings the measurements onto a common scale 

but a little care is needed in interpretation, especially in 

interpretation of the loadings. 

 The above example has a mixture of continuous and discrete 

variables on completely different scales of measurements. 

‘Experience’ shows that if you include a few discrete variables 

with several continuous ones (or if you have a large number of 

discrete ones without any continuous ones) then principal 

component analysis based upon the correlation matrix ‘WORKS’, 

i.e. you obtain interpretable answers.  

 Strictly, categorical variables with several levels should be 

recoded into binary dummy variables though in the example 

above the obvious categorical variables (gears, cylinders and 

carburettors) are effectively binary (i.e. gears either 3 or 4, 

cylinders either 4 or 6, carburettors either 1 or 2) 

 Since the key objective of pca is to extract information, i.e. 

partition the internal variation it is sensible to plot the data using 

equal scaling on the axes. In MINITAB this is cumbersome but can 

be done using the Min and Max options in Frame of Plot. This is 

easy in R or S-PLUS using the MASS function eqscplot(): 
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> plot(ir.pc[,1:2]) 
> eqscplot(ir.pc[,1:2]) 
> plot(mtcars.pc[,1:2]) 
> eqscplot(mtcars.pc[,1:2]) 
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Note (for R and S-PLUS users only) that unlike plot() the axes are not 

automatically labelled by eqscplot() and you need to do this by 

including  
    ,xlab="first p.c.",ylab="second p.c."  

 in the call to it. 

 

© NRJF 1982 102



Multivariate Data Analysis: Chapter 3:– Multidimensional Scaling Techniques  

2.1.12 Miscellaneous comments 

 supplementary data (i.e. further data not included in calculating 

the principal component transformation but measured on the same 

variables) can be displayed on a PCA plot (i.e. apply the same 

transformation to the new data).   Idea is particularly of use in 

related techniques such as discriminant and correspondence 

analysis. This can be handled in R with the function predict(), 

see the help system for details. 

 numerical interpretation of loadings is only viable with a small 

number of original variables. In many modern examples with 

several hundred examples other techniques have to be used, e.g. 

plot loadings against variable number (assuming that there is 

some structure to the variable numbering, e.g. digitising spectra). 

This may reveal, for example, that the first few PCs are 

combinations from the middle of the spectra, next few from one 

third the way along,…. . 

 PCA is obtained by choosing projections to maximize variances of 

projected data.  Choosing a different criterion can give ‘interesting’ 

views of data :— projection pursuit methods, e.g. maximize 

projected kurtosis. (See e.g. Venables & Ripley) 

 OUTLIERS: controversy of which PCs to use for outlier hunting 

(first few or last few?). Suggestion: also look at cut-off PCs — 

e.g. plot of ‘last interesting PC’ vs ‘first uninteresting one’. 

However, if searching for outliers then there are better ways of 

finding them (outlier displaying components). 
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2.1.13 PCA and Outliers 

Example: (data extracted from claypots data). Data are 

concentrations of 9 trace elements in ancient Greek pottery (part of a 

provenance study). PCA performed on correlation matrix because of 

widely different standard deviations/scales of measurement. 
Eigenvalue    3.2170    2.0423    1.4280    1.0995    0.5089    0.2426 
Proportion     0.357     0.227     0.159     0.122     0.057     0.027 
Cumulative     0.357     0.584     0.743     0.865     0.922     0.949 
 
Eigenvalue    0.1841    0.1761    0.1015 
Proportion     0.020     0.020     0.011 
Cumulative     0.969     0.989     1.000 
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Scree plot 

Scree plot identifies component 4 as cut-off PC — suggests looking 

at scatter plots of PC4 vs PC5 (or vs PC3): examination of these plots 

does shew one or two possible outliers. 
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2.1.14 Summary of Principal Component Analysis 

 Technique for transforming original variables into new ones which 

are uncorrelated and account for decreasing proportions of 

variance in the data. 

 New variables are linear combinations of old ones 

 Transformation is a rotation/reflection of original points  

 no essential statistical information is lost (or ‘created’) 

 Can assess the importance of individual new components and 

assess ‘how many are needed’ (—scree plots etc) 

 Scatterplots of data on first few components contain almost all 

information so may reveal features such as group structure, 

outliers, …… 

 Can assess the importance of original variables  

       (examination of loadings) 

 It is typical that the first p.c. reflects overall size or level i.e. objects 

often vary most in overall size or there may be large variation in 

base level of response (e.g. in ratings data from questionnaires). 

Suggestion: consider ignoring the first p.c. if it only reveals the 

obvious (i.e. look at proportions of variance explained excluding 

the first pc) 

 Many other techniques follow ‘by analogy’ even though they may 

not have all the strict mathematical theory underlying them: 

  i.e. rotate/transform original data to new variables,   

  assess importance of new variables,   

  interpret loadings of old variables:  

(includes aspects of projection pursuit, discriminant analysis, 

canonical correlation analysis, correspondence analysis,…… ) 
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Tasks 3 
(see §2.1–§2.5 & A0.1) 

Note and MEMORIZE the interesting identity   

  | I p  +  AB|  =  | I n  +  BA|  where  A  i s  pn and  B  i s  

np.  This identity is surprisingly difficult to prove directly 

so a proof is not given here, however it is extremely useful and 

will be utilized several times later. The examples below 

illustrate how effective it can be. In particular, taking the case 

n=1, if A=1p and B=1p then A is p1 so BA=p, In=1 and | I n  +  

BA|  is a scalar and =(1+p). So, noting that Jp = 1p1p  (the pp 

matrix with all entries = 1) we have that   |Ip + Jp|=(p+1).   More 

generally, |Ip + Jp| = p |Ip + (/)Jp| = p(1 + (/)p) = p–

1( + p) 

1)  Suppose the variance matrix takes the equicorrelation form 

. By writing S–Ip in the form 

aIp+b1p1p’ for appropriate a and b and using the result above, 

shew that if >0 then the first principal component accounts for a 

proportion (1+(p–1))/p of the total variation in the data. What can 

be said about the other p–1 components? What can be said if 

<0? (but note that necessarily  > some constant bigger than –1 

which you should determine, noting that S is a correlation matrix). 

S
pp

 2

1    

 1   

    
  

    1






















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2) If the variance matrix takes the form S=Ip+zz’ where z is a p-

vector, shew that z is an eigenvector of S. Under what 

circumstances is Z proportional to the first principal component of 

the data? 

 

 
3) If the variance matrix takes the form (with >0) 

find the first principal component and shew 

that it accounts for a proportion (2++2)/(2+3+2) of the total 

variation. Note that this is similar to the example above with 

z=(1,1,) 

S 
1 1 

1 1 

     2

















4) Referring to Q3 on Task Sheet 2, examination results in five 

mathematical papers, some of which were ‘open-book’ and others 

‘closed-book’, what interpretations can you give to the principal 

components? 
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2.2 Factor Analysis 

 Factor Analysis (and Latent Variable Analysis) are procedures 

closely related to PCA but starting from a different ‘philosophy’. The idea 

is that the observed correlations between p variables are the result of 

their mutual dependence on q factors or latent variables. So the factor 

model is  

x=f+ 

where the observations x are of dimension p,  is a pq matrix of factor 

loadings, and the underlying [unobservable] factors f are of dimension q.  

The desire is to determine both f and q. Assumptions may be made on 

the errors  (e.g. iid Normal). 

This model is inherently unidentifiable — even if q is specified then f is 

determinable only up to orthogonal transformations (i.e. only the factor 

space can be determined). Thus one commonly used procedure is to 

start with a PCA (to determine a suitable q, e.g. with the aid of a scree 

plot) and then apply orthogonal transformations to the PCs (i.e. 

rotations) to identify ‘factors’ which are interpretable. One commonly 

used procedure is to use varimax rotation which aims to maximize the 

variance (or some other function, e.g. quartimax) of the squared factor 

loadings. The result of doing this is that some factor loadings are ‘small’ 

(i.e. negligible) and others are large, thus making the factors easy to 

interpret. 
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2.3 Non-Linear Techniques 

2.3.1 Generalized Principal Components 

Linear principal component analysis attempts to find a linear coordinate 

system which is in concordance with the data configuration; it is 

particularly useful if the data contain a linear singularity or near linear 

singularity (fig A). 

 

 ×

 

 

 

 

  

If the data contain a non-linear singularity (fig B) then linear principal 

component analysis may fail to find it and a more general technique is 

required. The technique is similar to polynomial regression and its 

relationship with multiple regression. 

 

e.g. case p=2 and quadratic principal components. 

datum x=(x1,x2)   

— first step is to find   z=ax1+bx2+cx1
2+dx1x2+ex2

2 

such that the variance of z is maximal among all such quadratic 

functions of x1, x2. 

Let x3=x1
2, x4=x1x2, and x5=x2

2  

If x=(x1,x2,...,x5) and  a=(a,b,...,e) then the problem is to maximize 

var(ax) just as in the linear case. 

× 
× 

× 

× ×
×

××× × × 
× ×

× × × ×
××

××  ×

B

× 
××  ×

 ×

× 
×

×× × 
×  ××× 

× 
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For general p, augment the original p variables by p+½p(p–1) derived 

ones and perform PCA on the new set of 2p+½p(p–1) variables. This is 

only practical for small p since you need to have more than p+½p(p–1) 

negligible eigenvalues for the dimensionality of the original problem to 

be reduced. 

 

It would in principle be possible to define new augmenting variables 

such as sin(xi) or more complicated functions just as with multiple 

regression. However, determining which such functions are appropriate 

is not easy, unlike multiple regression with simple plotting of residuals 

etc available, and it is not a routine technique except in special cases 

where there is some theoretical suggestion from the nature of the 

problem. For example, in a study on dimensions of items of timber with 

circumference of trunk and length of trunk both included as 

measurements there may be some reason for thinking that the volume of 

the timber may be roughly constant, so including a new augmenting 

variable defined as length×circumference2 could be useful. However, 

such situations are rare in practice. 
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2.4 Summary 

 This section has introduced a powerful method for optimisation by 

introducing a constraint and Lagrange multipliers followed by 

identification of eigen equations. This technique is used in many 

other contexts. 

 Principal Component Analysis is the most useful technique for 

exploratory analysis of multivariate data. It can reveal unsuspected 

structure (subgroups, outliers etc) as well as giving interpretation 

of what ‘causes’ the variability (by interpretation of loadings). 

 Many techniques discussed later are interpreted by analogy with 

the techniques of PCA, even though strictly the mathematical 

underpinning is weaker. 

 Other techniques of biplots and factor analysis were introduced.  

 Generalizations to include searches for non-linear structures were 

introduced but the drawbacks were highlighted 

 Related techniques to PCA are Correspondence Analysis (for 

contingency tables of frequency data) and Outlier Displaying 

Components (See Appendices 3 & 4). 
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Tasks 4 
(see §2.1) 

1) Suppose X (n×p) is a centred data matrix (i.e. each variable has 

sample mean zero). Then the variance matrix S is given by   

      (n–1)S=XX 

Suppose i and ai are the eigenvalues and eigenvectors of XX.   

a) What are the eigenvalues and eigenvectors of S? 

b) Shew that the eigenvalues and eigenvectors of the nn matrix XX 

are i and Xai respectively.  

2) Recently, measurements were made on a total of 26 mummy-pots 

(which contained mummified birds) excavated from the Sacred 

Animal Necropolis in Saqqara, Egypt and sent to the British Museum 

in the last century, see figures 2(a) -2(d). The pots are approximately 

cylindrical, tapering slightly from the opening. The measurements 

made (in millimetres) were the overall length, the rim circumference 

and the base circumference (see Fig 1). Given below is a record of 

an R session analyzing the data.   

a)  What aspects of the pots do the two derived measurements 

stored in taper and point reflect?  

b)  Principal component analyses have been performed on the 

correlation matrix of all five variables but on the covariance matrix 

for just the three linear measurements. Why are these choices to 

be preferred for these data? 

c)  What features of the pots do the first two principal components in 

each analysis reflect?  

© NRJF 1982 114



Multivariate Data Analysis: Chapter 3:– Multidimensional Scaling Techniques  

 

Analysis of British Museum Mummy-Pots 

 
> attach(brmuseum) 
> taper<-(rim.cir-base.circ)/length 
> point<-rim.cir/base.circ 
> potsize<-cbind(length,rim.cir,base.circ) 
> potsize.pca<-princomp(potsize) 
> summary(potsize.pca) 
Importance of components: 
                           Comp.1     Comp.2     Comp.3 
    Standard deviation 59.8359424 22.6695236 18.8889569 
Proportion of Variance  0.8043828  0.1154578  0.0801594 
 Cumulative Proportion  0.8043828  0.9198406  1.0000000 
 
> loadings(potsize.pca) 
          Comp.1 Comp.2 Comp.3  
   length  0.502 -0.694  0.516 
  rim.cir  0.836  0.237 -0.494 
base.circ  0.221  0.680  0.699 
> potsizeshape<-
cbind(length,rim.cir,base.circ,taper,point) 
> potsizeshape.pca<-princomp(potsizeshape, cor=TRUE) 
> summary(potsizeshape.pca) 
Importance of components: 
                          Comp.1    Comp.2    Comp.3 
    Standard deviation 1.6082075 1.3352046 0.7908253 
Proportion of Variance 0.5172663 0.3565543 0.1250809 
 Cumulative Proportion 0.5172663 0.8738206 0.9989015 
 
                             Comp.4      Comp.5  
    Standard deviation 0.0698805556 0.024681162 
Proportion of Variance 0.0009766584 0.000121832 
 Cumulative Proportion 0.9998781680 1.000000000 
> loadings(potsizeshape.pca) 
          Comp.1 Comp.2 Comp.3 Comp.4 Comp.5  
   length  0.428 -0.366 -0.678 -0.316  0.352 
  rim.cir  0.548 -0.332  0.207 -0.129 -0.728 
base.circ        -0.715  0.371  0.466  0.365 
    taper  0.498  0.302  0.561 -0.367  0.461 
    point  0.519  0.392 -0.212  0.729        
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Base & Rim Circumferences 
+

Overall length

The 3 key measures
Fig 1:  Definition of 

 

 

 

 

 

 

  
Fig 2a: Mummy-pots in British Museum Fig 2b: Measuring mummy-pots in BM 

(Dr Julie Hopkins, 25/04/97) 
 
 

  
Fig 2c: Measuring mummy-pots in BM 

(Dr Julie Hopkins, 25/04/97) 
Fig 2d: Measuring mummy-pots in BM 

(Dr Julie Hopkins & Dr Paul Nicholson, 25/04/97) 
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Exercises 1  

1) Dataset nfl2000.Rdata gives performance statistics for 31 teams 

in the US National Football League for the year 2000. Twelve 

measures of performance were made, six include the syllable home in 

the variable name  and six include the syllable opp. The measures of 

performance were  
  homedrives50  drives begun in opponents' territory 
  homedrives20  drives begun within 20 yards of the goal 
  oppdrives50   opponents drives begun in team's territory 
  oppdrives20   opponents drives begun within 20 yards of goal 
  hometouch     touchdowns scored by team 
  opptouch      touchdowns scored against team 
  homeyards     total yardage gained by offence 
  oppyards      total yardage allowed by defence 
  hometop       time of possession by offence (in minutes) 
  opptop        time of possession by opponents' offence 
  home1sts      first downs obtained by offence 
  opp1sts             first downs allowed by defence 
 

The dataset contains a three letter abbreviation for the team as a row 

name. The coding is  
initials team initials team 
ARI Arizona Cardinals BAL Baltimore Ravens 
ATL Atlanta Falcons BUF Buffalo Bills 
CAR Carolina Panthers CIN Cincinnati Bengals 
CHI Chicago Bears CLE Cleveland Browns 
DAL Dallas Cowboys DEN Denver Broncos 
DET Detroit Lions IND Indianapolis Colts 
GB Green Bay Packers JAX Jacksonville Jaguars 
MIN Minnesota Vikings KC Kansas City Chiefs 
NO New Orleans Saints MIA Miami Dolphins 
NYG New York Giants NE New England Patriots 
PHI Philadelphia Eagles NYJ New York Jets 
SF San Francisco 49ers OAK Oakland Raiders 
STL St. Louis Rams PIT Pittsburgh Steelers 
TB Tampa Bay Buccaneers SD San Diego Chargers 
WAS Washington Redskins SEA Seattle Seahawks 
  TEN Tennessee Titans 

i) Do the syllables home and opp most probably refer to when the 

team was playing at home and playing away or do the refer to 

events by the team and against the team? 
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ii) Use principal component analysis to identify and describe the 

main sources of variation of the performances.  

iii) Produce a scatter plot of the teams referred to their principal 

component scores and comment on any features you think worthy 

of mention.  

(NB: You are strongly advised to work through  

Task Sheet 2, Q3 if you have not already done so). 
source: Journal of Statistics Education Data Archive 

 

2) Measurements of various chemical properties were made on 43 

samples of soil taken from areas close to motorway bridges suffering 

from corrosion.  The corrosion can be of either of two types and the 

ultimate aim of the investigation was to see whether these 

measurements could be used to discriminate between the two types. 

Before such a full-scale analysis was undertaken some preliminary 

analyses were performed, using MINITAB. The record of the session 

(edited in places) is given below.  

(a)   The principal component analysis has been performed on  the 

correlation matrix rather than the covariance matrix. Why is this 

to be preferred for these data?     

 (b)   By using some suitable informal graphical technique, how may 

components would you recommend using in subsequent 

analyses?  

 (c)   What features of the samples do the first three components 

reflect?   

 (d)   What, approximately, is the values of the sample correlation 

between the scores of PC-1 and  PC-2?   
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 (e)   After looking at the various scatter plots of the principal 

component scores, what recommendation would you give to the 

investigator regarding the advisability of continuing with a 

discriminant analysis?   
Worksheet size: 100000 cells 
MTB > Retrieve  "C:\soil.MTW". 
 
MTB > desc c2-c9; 
SUBC> by c1. 
 
Descriptive Statistics 
Variable   Type        N       Mean     StDev 
pH         Type 1     25      8.416     0.962 
           Type 2     18     8.0722    0.3102 
Water      Type 1     25      1.693     0.716 
           Type 2     18      2.831     1.812 
Acid       Type 1     25     0.5672    0.3937 
           Type 2     18     0.4322    0.2603 
Pyrite     Type 1     25     0.4628    0.2563 
           Type 2     18      1.019     0.500 
Carbon     Type 1     25     11.251     4.230 
           Type 2     18      9.783     1.862 
Moisture   Type 1     25     23.712     4.975 
           Type 2     18     21.922     2.647 
Organic    Type 1     25      2.556     0.720 
           Type 2     18      2.272     0.530 
MassLos    Type 1     25      5.536     1.575 
           Type 2     18      6.833     0.807 

 
MTB > PCA  'pH'-'MassLos'; 
SUBC>   Coefficients c31-c38; 
SUBC>   Scores'PC-1'-'PC-8'. 
Principal Component Analysis 
Eigenanalysis of the Correlation Matrix 
Eigenvalue   2.351   1.862   1.504  0.827  0.612  0.412  0.230  0.197 
Proportion   0.294   0.233   0.188  0.103  0.077  0.052  0.029  0.025 
Cumulative   0.294   0.527   0.715  0.818  0.895  0.947  0.975  1.000 
 
Variable      PC1     PC2     PC3     PC4     PC5     PC6     PC7     PC8 
pH          0.348  -0.032   0.559   0.267  -0.126   0.599   0.334   0.095 
Water      -0.455   0.270   0.339   0.219   0.042  -0.460   0.520   0.272 
Acid       -0.002  -0.367   0.622  -0.053   0.347  -0.238  -0.520   0.168 
Pyrite     -0.351   0.446   0.157   0.417  -0.344   0.157  -0.539  -0.214 
Carbon      0.520   0.291  -0.077   0.022  -0.355  -0.285  -0.206   0.624 
Moisture   -0.001  -0.582   0.068   0.148  -0.687  -0.318   0.090  -0.231 
Organic    -0.204  -0.392  -0.387   0.616   0.181   0.188  -0.067   0.450 
MassLos    -0.487  -0.118   0.048  -0.549  -0.336   0.363  -0.049   0.445 
 
MTB > Plot 'PC-1'*'PC-2' 'PC-2'*'PC-3' 'PC-3'*'PC-4''PC-4'*'PC-5'; 
SUBC>   Symbol 'Type'; 
SUBC>     Type 6 19; 
SUBC>     Size 1.0 1.5; 
SUBC>   ScFrame; 
SUBC>   ScAnnotation. 
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MTB > STOP 

Type 1
Type 2

210-1-2-3

3

2

1

0

-1

-2

-3

PC-2

P
C

-1

Type 1
Type 2

43210-1-2

2

1

0

-1

-2

-3

PC-3

P
C

-2

 
 
 

Type 1
Type 2

210-1-2

4

3

2

1

0

-1

-2

PC-4

P
C

-3

Type 1
Type 2

210-1-2

2

1

0

-1

-2

PC-5

P
C

-4

(This question is taken from the PAS370 1999/2000 examination) 
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3)  Suppose X={xij ; i=1,...,p, j=1,...,n} is a set of n observations in p 

dimensions with x ij  all i=1,...,p (i.e. each of the p variables has 

zero mean, so 

j

n


 

1
0

x  0 ) and S=XX/(n-1) is the sample variance of the 

data. Let uj=xjS–1xj (j=1,...,n) (so uj is the squared Mahalanobis 

distance of xj from the sample mean 0). Suppose the data are 

projected into one dimension by Y=X ( a p1 vector). Let yj=xj 

and define Uj()=(n–1)yj(YY)–1yj .  

i) Shew that Uj() is maximized with respect to  by the (right) 

eigenvector of S–1xjxj corresponding to its only non-zero 

eigenvalue. 

ii) If this eigenvector is j, shew that this maximum value Uj(j) is 

equal to this non-zero eigenvalue. 

iii) Shew that uj=Uj(j). 

iv) Shew that the non-zero eigenvalue of S–1xjxj is xjS–1xj and the 

corresponding eigenvector is proportional to S–1xj   
(Note that YY=XX is 11, i.e. a scalar, so Uj() = (n–1)yjyj/XX 

= (n–1)xjxj/XX = (n–1) ’xjxj’/XX since ’xj & xj are 11 and so 

commute.  Further note that multiplying  by a scalar constant does not alter the 

value of Uj() so the problem is not altered if you impose the constraint that the 

denominator of the expression is 1.) 
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3 Multidimensional Scaling Techniques  

3.0 Introduction 

Given a set of n points in Euclidean p-space one can compute the 

distance between any pair of points and can obtain an nn distance 

matrix or dissimilarity matrix (dij). This section considers the converse 

problem: given an nn [symmetrical] matrix (ij) of dissimilarities, can a 

configuration of points be found in Euclidean p-space (p open to choice) 

such that the calculated distance matrix (dij) reasonably matches the 

given dissimilarity matrix (ij)? The answer is generally yes for sufficiently 

large p (e.g. p=n–1, with some restrictions on the ij). The interest is in 

when it can be done for very small p (e.g. p=1, 2, 3, 4?, 5??,..). 

 

Note that the matrix (ij) of dissimilarities can be some general measure 

of dissimilarity, e.g. train journey times reflect distances between towns, 

numbers of times one Morse code symbol is mistaken for another 

reflects how similar/dissimilar they are. The measure may be very 

coarse, a measure of how ‘similar’ or dissimilar any pair of Departments 

of France are could be ij=1 if they have a common border and ij=0 if 

they have no common border — this is strictly a measure of similarity but 

clearly similarity measures can easily be converted to dissimilarities and 

vice versa. 
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Another common measure of similarity is illustrated by an example of 

prehistoric graves which [potentially] contain artefacts of M types: 

 

 

Artefact 

 1 2 3 4 5 . . . . . . . . . M 

grave i 0 0 1 1 . . 1 0 1 0 0 . . . 1 

grave j 0 1 1 0 . . 0 0 1 0 0 . . . . 

 

0=artifact absent from grave, 1=artifact present in grave. 

— define ij = #artefacts in common between grave i and grave j 

 

For such presence/absence data there are many (~100+) different 

measures of similarity/dissimilarity. 
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The objectives of the multidimensional scaling analysis can be any or 

some of: 

 to learn more about the measure of dissimilarity itself e.g. the Morse 

code example — what are the factors which cause the brain to 

confuse different Morse symbols? 

 to discover some underlying structure in the data themselves e.g. if 

the dissimilarities can be closely matched by a string of points lying 

on a line can the distance along the line be interpreted as some 

variable of interest such as time in the prehistoric graves example? 

 to discover whether the units divide ‘naturally’ into groups — these 

techniques are widely used in market research for ‘market 

segmentation’ – do the customers divide into different target groups 

that are reached by different forms of advertising? 

 to discover some ‘gap’ in the market than can be filled by a new 

product. 
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Applications of the methods to examples such as reconstructing the map 

of British towns from the railway timetable or the map of France from 

abuttal data on the Departments are designed to validate the techniques 

not to find out what France looks like. This latter example was used as a 

preliminary to doing the same analysis on reconstructing a map of 

ancient towns from inscriptions on linear B clay tablets — two towns 

scored 1 if their names appeared on the same tablet, 0 otherwise. It was 

thought that the tablets referred to trading between the towns so if they 

were mentioned together then they were likely to be geographically 

close. 

 

The available techniques for multi-dimensional scaling are mostly ad hoc 

methods — i.e. based on intuition rather than solid mathematical theory 

— and are mostly non-metric (i.e. use only the orderings of the given 

dissimilarities and not their actual absolute values). The one exception is 

the ‘classical solution’ which is often used as the initial trial solution for 

the start of one of the iterative methods. 
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3.1 Illustrations 

3.1.1 Reconstructing France 

 

 

 

 

 

 

 

 

 

 

 

 

Map of the Departments of France 

The measure of similarity used is a binary measure of 1 if two 

departments abut (i.e. have a common border) and 0 otherwise. 

Department 
 1 2 3 4 ….…. 14 15 16 17 … 

1  1 0 0 …….. 1 0 0 0 … 
2 1  0 0 ….…. 1 1 0 0 … 
3 0 0  1 ….…. 0 1 1 0 … 
4 0 0 1  ….…. 0 0 0 0 … 
….….….….….….….….….….….….….….….….….….….….….….….…. 

14 1 1 0 0 ….….  1 0 0 … 
15 0 1 1 0 ….…. 1  1 0 … 
16 0 0 1 0 ….…. 0 0  1 … 
17 0 0 0 0 ….…. 0 0 1 0 … 
… … … … … ….…. … … … … … 

The similarity matrix 
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Reconstructing from just this sparse information gives a map with each 

department positioned on it. The orientation and scaling on the map will 

be entirely arbitrary. The illustration below has had boundaries drawn in 

by inserting a Dirichlet tessellation around the points and then the map 

has been stretched and squashed to make it look as like the overall 

outline of France (the distinctive hexagon) as possible, but this still 

preserves the abuttal information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reconstructed Map of France 

(note that the numbering of departments is roughly in sequence around 

the coast and working in, not the standard numbering on car number-

plates) 
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3.1.2 British Towns By Road 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reconstruction of British Towns from Road Distances 

 

Again, the initial solution from the analysis has to be orientated to match 

the outline of the country but however that is done Inverness is still 

misplaced — this is because the road distance to Inverness from 

Glasgow (or Newcastle or Carlisle) is much further than the crow-fly 

distance, since the route has to pass through the Scottish Highlands. 
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3.1.3 Time Sequence Of Graves 

It is believed by archaeologists that the types of objects that are placed 

in prehistoric graves reflect changing fashion and custom. Thus graves 

which are close together in time will tend to have a similar collection of 

objects with many in common.  Thus if the similarity between graves is 

measured by counting the number of objects found in common then this 

similarity might reflect time and a map constructed from such data might 

reveal the time sequence of the graves.  The Bronze Age cemetery in 

Munsingen, Austria, has been a source of controversy amongst 

archaeologists for many years and many attempts have been made to 

sequence the graves. Below is an attempt using scaling techniques 

made by Kendall. First is an artificial example where the sequence of 

‘graves’ is constructed and ‘objects’ allocated to them as if they 

appeared in fashion for a few ‘years’ and then disappeared again. 
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Artificial Example 

This reconstructs the original sequence nearly perfectly, reading the 

sequence counter-clockwise around the ‘horseshoe’.  Note that the 

orientation of the map is entirely arbitrary. The ‘horsehoe effect’ is typical 

of this and similar problems — it arises since the similarity is scored as 0 

(and the two graves have no goods in common) this could be because 

they are moderately separated in time or because they are at far ends of 

the sequence, i.e. the measure cannot separate the ends of the 

horseshoe adequately so the end of the sequence are pulled together.  

The other typical feature is the lack of clear sequence at the ends of the 

horseshoe. 

 

The success of the artificial example lends credence to applying the 

same technique to the archaeological data: 
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Reconstruction of Munsingen Graves 

 

The numbers on the map are the ordering determined by Hodson. The 

correspondence with the ordering implied by this map is generally good. 

The lack of clear sequence at the top of this display illustrates that these 

graves are likely to cause controversy however they are placed in 

sequence. 
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3.2 Non-metric methods 

Such methods use only the relative orderings of the given distances ij 

and is iterative. In outline, the basis of all the techniques is to obtain a 

trial configuration of points, calculate the distance matrix (dij) for this 

configuration and see how well the ordering of the dij matches that of the 

given ij — then to perturb the trial configuration to try to improve the 

match of the orderings. 

 

e.g. suppose n=4 and we are given a 44 [symmetric] distance matrix 

(ij). Necessarily ii=0, i=1,...,4. Suppose the other six distinct ij have the 

ordering  

23<12<34<13<24<14  

We want to find a configuration of four points such that the distance 

matrix (dij) satisfy 

d23d12d34d13d24d24d14 

If this is the case, then a plot of ij vs. dij looks like 

 

  
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d 
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However, suppose the trial configuration turns out to have  

d23<d34<d12<d13<d24<d14<d24 

(i.e. d34 & d12 swapped, also d14 & d24 swapped) 
  

 

 

 

 

 

 

To assess the extent to which the dij differ from the ij (with respect to the 

ordering) we fit some set of values ij which satisfy the ordering 

constraint 23 12 34 13 24 14 , (i.e. weakly matching the same 

ordering as the given ij). These need not be a configuration of points 

with distances ij, they are 

d̂

d̂ d̂

d̂

d̂ d̂ d̂ d̂

merely a set of values with the same 

ordering as the ij. 

For this example, we could take 

d̂ 12= 34=½(d12+d34),  24= 14=½(d24+d14),  d̂ d̂ d̂

d̂ 23=d23, 3=d13 d̂

The measure of agreement of the ij with the dij is a measure of how 

well the ordering of the dij matches that of the original given ij.  We can 

define first a measure of agreement between the ij and the dij as  

d̂

d̂

ij ij
i j

ij
i j

ˆ(d d )
S

d




 
 

  
 
 




1
22

2  

S is termed the ‘stress’ of the configuration.  

14

d

24 

1334

12
23 

dij

ijd̂
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This is the standard choice of stress function but others that are used 

are a straightforward generalization proposed by 

Kruskal:  
ij ij

i j
Krus

ij
i j

ˆ( (d ) d )
S

d̂




  
 

 
 
 




1
22

2  for some monotonic  

      increasing function (.) 
 

and a rather different one by 

Sammon:    ij ij
Sam

i jij ij
i j

ˆ(d d )
S

d d



 

21  

 

Whichever stress function we select we choose the ij to minimize S 

subject to the ordering constraint, i.e. the ij are monotonic non-

decreasing with the ij. Then Smin  is a measure of how well the trial 

configuration matches the original ij. If we regard Smin as a function of 

the coordinates of the n points in p-space defining dij (i.e. a function of 

np variables), then we can minimize stress (Smin) with respect to these 

variables and find the least stressful configuration in p-space.  

d̂

d̂
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We calculate the minimal stress for p=1, 2, 3, .... and stop when 

increasing p does not decrease stress very much. This determines the 

dimensionality of the problem. 

 

We can use a scree plot to help choose a ‘good’ value of p: 

 Smin 

5 6 4321 

stop here 

 
 

 

 

 

 p 
 

 

Standard programs are available to minimize S (using monotonic 

regression algorithms) and hence to determine the optimal configuration, 

e.g. MDSCAL and GENSTAT.  R and S-PLUS functions isoMDS(.) and 

sammon(.) in the MASS library perform variants of non-metric scaling 

very easily, the distinction between them is in the form of the stress 

function used.   

Some comparative examples are given at the end of this chapter, 

together with illustrations of classical scaling (see below).  The general 

experience is that Sammon mapping produces configurations that are 

more evenly spread out and Kruskal or classical scaling may produce 

ones which are more tightly clustered.   Which is preferable is open to 

choice and depends upon the particular application. 
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3.3 Metric Methods:  The Classical Solution or   

      Principal Coordinate Analysis 

This method uses the actual distances and will produce a configuration 

of points with distance matrix precisely equal to that given if such a 

configuration actually exists (i.e. if the given distance matrix is indeed a 

matrix of distances for some configuration, i.e. is Euclidean). If such a 

configuration does not exist then this method will give a configuration 

with distance matrix approximating that given and this is a useful starting 

point for the iterative methods outlined in §3.2. 

 

Suppose D=(dij) is an nn distance matrix and define A=(aij) by 

aij= –½  ijd2

Let H=In– n
1 Jn , the centring matrix, where In  is the nn identity matrix, 

and Jn is the nn matrix with all entries equal to 1, so Jn=1n1n , where 1n  

is the unit n-vector. So 

n n n n

n n n

n

n n

H

    
    
 
 

 
   



 
 



1 1 1 1

1 1 1

1

1 1

1
1

1 n



1

 

H is called the centring matrix because pre- and post-multiplying a 

matrix by H centres all the elements by the row and column means: 

Define B=HAH,   then bij=aij

n n n n

ik kj kln n n
k k k l

a a
   

   a  2
1 1 1

1 1 1 1
 

     = ij i ja a a a      ------------  

Then: 
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Theorem: D is a matrix of Euclidean distances if, and only if, B is 

positive semi-definite. (i.e. There is a configuration of n points X in 

Euclidean p-space whose interpoint distances are given by D if, and only 

if, B0, i.e. all the eigenvalues of B are non-negative). 

Proof: ‘only if’ (i.e. start with n points and shew B0) 

Let X be an np data matrix, and X=(x1,x2,...,xn), xi a column 

p-vector. Then if D is the distance matrix derived from X we have 

that 

 –2aij=  so that ij i j i jd (x x )'(x x  2 ) ij i jb (x x)'(x x)    

i.e. B (X X)'(X X)    which is positive semi-definite, 

 i.e. B0. 

‘if’: (i.e. start with B0, == all eigenvalues 0) and find a configuration of 

points with distance matrix D): 

B0, so all eigenvalues i0.  

Suppose 12...p>0(=p+1=...=n) are the p non-zero 

eigenvalues. Let the corresponding eigenvectors be x(1),...x(p); 

where the scale is chosen so that x(i)x(i)=i; i=1,...,p. 

i.e. x(i) satisfy Bx(i)-ix(i)=0 & x(i)x(i)=i; i=1,...p. - - - - - - - - - - - - -  

Note that B is nn and so x(i) is n1. 

Let X=(x(1),....,x(p)) then X is np.  

We have XX=(x(i)x(j)) and x(i)x(j)=i if i=j, 0 otherwise.  

So XX=diag(i)= (say)  

   (the diagonal matrix with (i,i)th element i) 
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claim: the n points in p-space given by the n rows of X have 

distance matrix given by D. 

since: we have BX–X=0 and XX= (restatement of ) 

Let  and p,n p

n p,p n p

M 

 

 
  
 

0
0 0

    p,n p

n p,p n pI


 

 
 
 

0
0

N

and Y=(x(1),...,x(p),y(p+1),...,y(n)) where the y’s are chosen almost 

arbitrarily but such that they are orthogonal to each other and to 

the x(i) and such that y(i)y(i)=1 (i.e. the y(i) are the eigenvalues of B 

corresponding to the n–p zero eigenvalues). 

Then we can re-write  as BY–YM=0. 

Let =YN–½; where N–½ is obtained by taking each of the diagonal 

elements of N to the power –½, i.e.  

p
N






 
 
 
   
 
  
 

 
 




 

1
2

1
12
2

1 0 0
0

0 0
1 0

0 0 1

 

then ==In, so B-YMN–½=0 and so B=M. 

Thus B=M–½=M, so B=M, 

i.e. B=YN–½MN–½Y=XX, i.e. bij=xi
xj.  

Now the square of the (i,j)th element of the distance matrix of X is 

(xi–-xj)(xi–xj)=xixi–2xixj+xjxj =bii–2bij+bjj  

= aii–2aij+ajj (by ) =–2aij = dij
2  

(noting that dii
2
 = djj

2
 = 0, since D is a distance matrix) 
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3.4 Comments on practicalities 

The above result gives a practical way of finding a configuration of 

points with [approximately] a given data matrix. Given a distance matrix 

D: 

1.  Find the matrix A=(–½dij
2) 

2.  Find the matrix B=HAH 

3.  Find the eigenanalysis of B 

4.  Transpose the matrix of eigenvectors 

5.  Take the columns of this transposed matrix as the principal 

coordinates of the points. 

If all the eigenvalues are non-negative then the distance matrix will be 

an exact match. If some are negative then [pragmatically] take just the 

positive ones and the match will be approximate. Eigenvectors taken in 

order of magnitude of the positive eigenvalues will give increasingly 

better approximations to the desired configuration of points. 

All of this can be done in MINITAB straightforwardly: use the facilities in 

the Calc>Matrices menus.  

If the matrix B is not positive semi-definite (i.e. some eigenvalues are 

negative) then MINITAB will present the eigenvectors in the order of 

absolute magnitude (not arithmetical magnitude) of the eigenvalues. To 

sort out the eigenvectors corresponding to just positive eigenvalues, 

copy the eigenvectors into columns with the Use Rows.... option in the 

Calc>Matrices menu completed appropriately. Again, if B has negative 

eigenvalues then assess quality of representation informally by a scree 

plot based on squared eigenvalues.  

In R it is even easier since there is a built-in function cmdscale(.) to 

perform classical scaling.  
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3.5 Computer implementation 

Standard specialist programs are available to minimize S (using 

monotonic regression algorithms) and hence to determine the optimal 

configuration: best are on the CD-Rom supplied with Cox, T.F. & Cox, 

M.A.A (2001) Multidimensional Scaling (2nd Ed.), Chapman & Hall. Other 

standard programme is MDSCAL, facilities exist in general packages, 

e.g. SPSS and GENSTAT (but not MINITAB). In R, or S-PLUS, (with MASS 

library) classical scaling is provided by function cmdscale(.), Sammon 

and Kruskal versions are provided by functions sammmon(.) and 

isoMDS(.). 
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3.6 Examples 

3.6.1 Road distances between European cities 

The data set eurodist gives the distances by road in kilometres 

between 21 cities in Europe and is given below. Analysis is in R, (it is 

similar in S-PLUS) 
                Athens Barcelona Brussels Calais Cherbourg Cologne Copenhagen 
Barcelona         3313                                                        
Brussels          2963      1318                                              
Calais            3175      1326      204                                     
Cherbourg         3339      1294      583    460                              
Cologne           2762      1498      206    409       785                    
Copenhagen        3276      2218      966   1136      1545     760            
Geneva            2610       803      677    747       853    1662       1418 
Gibralta          4485      1172     2256   2224      2047    2436       3196 
Hamburg           2977      2018      597    714      1115     460        460 
Hook of Holland   3030      1490      172    330       731     269        269 
Lisbon            4532      1305     2084   2052      1827    2290       2971 
Lyons             2753       645      690    739       789     714       1458 
Madrid            3949       636     1558   1550      1347    1764       2498 
Marseilles        2865       521     1011   1059      1101    1035       1778 
Milan             2282      1014      925   1077      1209     911       1537 
Munich            2179      1365      747    977      1160     583       1104 
Paris             3000      1033      285    280       340     465       1176 
Rome               817      1460     1511   1662      1794    1497       2050 
Stockholm         3927      2868     1616   1786      2196    1403        650 
Vienna            1991      1802     1175   1381      1588     937       1455 

                Geneva Gibralta Hamburg Hook of Holland Lisbon Lyons Madrid 
Barcelona                                                                   
Brussels                                                                    
Calais                                                                      
Cherbourg                                                                   
Cologne                                                                     
Copenhagen                                                                  
Geneva                                                                      
Gibralta          1975                                                      
Hamburg           1118     2897                                             
Hook of Holland    895     2428     550                                     
Lisbon            1936      676    2671            2280                     
Lyons              158     1817    1159             863   1178              
Madrid            1439      698    2198            1730    668  1281        
Marseilles         425     1693    1479            1183   1762   320   1157 
Milan              328     2185    1238            1098   2250   328   1724 
Munich             591     2565     805             851   2507   724   2010 
Paris              513     1971     877             457   1799   471   1273 
Rome               995     2631    1751            1683   2700  1048   2097 
Stockholm         2068     3886     949            1500   3231  2108   3188 
Vienna            1019     2974    1155            1205   2937  1157   2409 
                Marseilles Milan Munich Paris Rome Stockholm 
Barcelona                                                    
Brussels                                                     
Calais                                                       
Cherbourg                                                    
Cologne                                                      
Copenhagen                                                   
Geneva                                                       
Gibralta                                                     
Hamburg                                                      
Hook of Holland                                              
Lisbon                                                       
Lyons                                                        
Madrid                                                       
Marseilles                                                   
Milan                  618                                   
Munich                1109   331                             
Paris                  792   856    821                      
Rome                  1011   586    946  1476                
Stockholm             2428  2187   1754  1827 2707           
Vienna                1363   898    428  1249 1209      2105 
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> data(eurodist) 
>      loc <- cmdscale(eurodist) 
>      x <- loc[,1] 
>      y <- -loc[,2] 
>      plot(x, y, type="n", xlab="", ylab="") 
>      text(x, y, names(eurodist), cex=0.5) 
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This reproduces the geography of Europe very closely and suggests that 

the technique itself ‘works’ and so can be applied to other data where 

we don’t know what the answer is beforehand, e.g. on Morse Code 

confusion data: 
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3.6.2 Confusion between Morse code signals 

The data are derived from a set presented by Rothkopf(1957). The 

original data give the percentages of times that 598 subjects responded 

"Same!" when two symbols were transmitted in quick succession, i.e. 

when symbol i (row) was transmitted first followed by symbol j (columns) 

second.   The original matrix for all 26 letters and ten numerals is 

asymmetric and is given in file morsefullasym.Rdata (and 

morsefullasym.csv).  These are similarity matrices. The file 

morsefull.Rdata gives a symmetric version of a distance matrix and 

indicates the percentages of times that two symbols were declared to be 

different.  It is derived from the original by first taking the symmetric part 

(i.e. half the sum of the original matrix and its transpose) and then 

subtracting these from 100. Finally the diagonal elements were set to 

zero to ensure that it was a true distance matrix.  

The file morse.Rdata gives just the submatrix of morsefull.Rdata that 

contains the digits 0-9.  

1:  – – – – 6: –      

2:   – – – 7: – –    

3:    – – 8: – – –    

4:     – 9: – – – –  

5:      0: – – – – – 
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3.6.3 Confusion between symbols for digits: R analysis 
 
> load("morse.Rdata") 
> attach(morse) 
> morse.cmd<-cmdscale(morse,k=9,eig=TRUE) 
Warning messages: 
1: In cmdscale(morse, k = 9, eig = TRUE) : 
  some of the first 9 eigenvalues are < 0 
2: In sqrt(ev) : NaNs produced 
> morse.cmd$eig 
[1]  1.143502e+04  6.354744e+03  4.482303e+03  2.330540e+03  
1.758846e+03 
[6]  9.104095e+02  1.524900e+01 -1.136868e-12 -7.103261e+02 
 
Using the option k=9 means that the eigenvectors corresponding to the 

first 9 non-negative eigenvalues are recorded and are stored in the 

matrix morse.cmd$points.  Omitting the option k=… would result in 

the first two eigenvectors only being calculated and they would be stored 

in a matrix morse.cmd[,.,]. Using the option eig=TRUE means 

that the eigenvalues are stored in the vector morse.cmd$eig. 

Note the warning message signalling that some eigenvalues are 

negative, this means it is not possible to find an exact Euclidean 

solution. 
 
>  
> plot(morse.cmd$points[,2],morse.cmd$points[,3],pch=16,col="red", 
+ cex=1.5) 
> text(morse.cmd$points[,2],morse.cmd$points[,3],row.names(morse), 
+ cex=0.8,adj=c(1.1,-0.6)) 
> 
> plot(morse.cmd$points[,3],morse.cmd$points[,4],pch=16,col="red", 
+ cex=1.5) 
> text(morse.cmd$points[,3],morse.cmd$points[,4],row.names(morse), 
+ cex=0.8,adj=c(1.1,-0.6)) 
> 
 

© NRJF 1982 144



Multivariate Data Analysis: Chapter 3:– Multidimensional Scaling Techniques  

After producing the first plot it is useful to make the plot the active 

window and then click on History in the menu bar and select 

Recording. This allows scrolling between all subsequent graphs and 

the first one with the page up and down keys.  Alternatively, issuing the 

command  
> par(mfrow=c(2,2)) 
> 
Before the plot commands produces  
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To compare with non-metric methods we have: 
 
> par(mfrow=c(2,2)) 
> m.samm<-sammon(morse) 
Initial stress        : 0.06906 
stress after  10 iters: 0.02855, magic = 0.500 
stress after  20 iters: 0.02829, magic = 0.500 
stress after  30 iters: 0.02829, magic = 0.500 
> 
eqscplot(m.samm$points[,1],m.samm$points[,2],pch=16,col="red",
cex=1.5) 
> text(m.samm$points,names(morse),cex=0.8,adj=c(1.1,-0.6)) 
>  
> m.iso<-isoMDS(morse,cmdscale(morse)) 
initial  value 13.103235  
iter   5 value 9.362759 
iter  10 value 7.943274 
final  value 7.652321  
converged 
> 
eqscplot(m.iso$points[,1],m.iso$points[,2],pch=16,col="red",ce
x=1.5) 
> text(m.iso$points,names(morse),cex=0.8,adj=c(1.1,-0.6)) 

> 
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Note that in the call to isoMDS(.) a starting configuration was required 

and this was given by the matrix cmdscal(morse).  The object 

morse.cmd could not be used since this was created with the k=9 

option (to obtain all nine dimensions and so morse.cmd is not a matrix.  

By default, cmdscale(.) with no optional arguments produces a 

matrix with the two dimensional configuration. 
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Tasks 5 
(see §3.1–§3.5) 

1) Continuing Q1 of tasks 4, i.e. X (n×p) is a centred data matrix: 

i) If D is the nn distance matrix of the n p-dimensional 

observations and A is the matrix given by aij = –½dij
2  and B=HAH, 

where H is the centring matrix, shew that B = kXX for some 

suitable scalar k. 

ii) Deduce that deriving a configuration of points from the matrix D 

by classical scaling is equivalent to referring the original data to 

principal components 

2) If cij represents the similarity between cases i and j (cij is a similarity if 

cij=cji and cij  cii) then the similarity matrix C can be converted to a 

distance matrix D by defining dij=(cii–2cij+cjj)½. Define B=HAH where 

A=(–½dij
2 ) 

i) Shew that B=HCH.  

ii) Deduce that you can proceed with classical scaling analysis 

analyzing C directly instead of converting it to a distance matrix 

and then calculating A. 

© NRJF 1982 147



Multivariate Data Analysis: Chapter 3:– Multidimensional Scaling Techniques  

3) The table below gives the road distances between 12 UK towns. The 

towns are Aberystwyth, Brighton, Carlisle, Dover, Exeter, Glasgow, 

Hull, Inverness, Leeds, London, Newcastle and Norwich.  

i) Is it possible to construct an exact map for these distances?  
 A B C D E G H I Le Lo Ne No 

A 0            

B 244 0           

C 218 350 0          

D 284 77 369 0         

E 197 167 347 242 0        

G 312 444 94 463 441 0       

H 215 221 150 236 279 245 0      

I 469 583 251 598 598 169 380 0     

Le 166 242 116 257 269 210 55 349 0    

Lo 212 53 298 72 170 392 168 531 190 0   

Ne 253 325 57 340 359 143 117 264 91 273 0  

No 270 168 284 164 277 378 143 514 173 111 256 0 

 These data are contained in data set towns.Rdata and in S-PLUS 

and Minitab format. The Minitab version has the names of the towns 

in the first column and the data matrix in the next 12 columns. The 

final 12 columns contain the 12×12 matrix A=(–½ ). The R and 

S-PLUS versions give a dataframe with just the symmetric matrix of 

distances.  

dij
2

To do it in R you can use the function cmdscale() and then plot the results by 

together with as.matrix()which is required for cmdscale to recognise the distance 

matrix so you need to issue the functions nested: cmdscale(as.matrix(towns)). 

Note that it is already a distance matrix so you should not use the 

multidimensional scaling menu in the MASS library which presumes that you 

have a raw data matrix and calls dist() internally to create a new distance matrix.  

It is also possible in R to try two varieties of non-metric scaling (sammon() and 

isomds()). 
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3.6.5 Notes (1): similarity or dissimilarity measures? 

 In the examples on the French Departments, Munsingen graves 

and Morse Code the measures were really similarities, whereas 

those on distances between towns and the Iris data the measures 

were dissimilarities. A ‘similarity’ is easily converted to a 

‘disimilarity’ by changing the sign or taking the reciprocal or 

subtracting from 100 or many similar devices.  In fact, one of the 

exercises shews that provided you convert between similarities 

and dissimilarities in a particular way then applying the Classical 

Solution of §3.3 gives precisely the same answers whether you 

start with a matrix of dissimilarities (as assumed there) or a matrix 

of similarities.  Generally, it dose not matter very much how 

dissimilarities are converted into similarities and vice versa and 

the resulting displays are very similar. 

 

3.6.6 Notes (2): caution on interpretation of close points 

 If two points are well separated in a scaling plot then it must be 

the case that they are dissimilar but the converse is not true. If 

two points are close together then they may or may not be 

similar. Plots on further dimensions might separate them. One 

way of assessing this is to look at the percentage of stress 

captured in the plot. If the greater part of the stress is represented 

in the plot then there ‘cannot be enough room’ to separate them. 

Another convenient way to assess this graphically is to 

superimpose a minimum spanning tree on the scaling plot. If 

this is annotate with the actual distances of each branch (only 

realistic for small numbers of plots) then this gives a full picture 

for interpretation. Exactly the same is true for PCA plots. 
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3.7 Minimum Spanning Trees 

The minimum spanning tree is calculated using the distance information 

(across all dimensions) using the original dissimilarity matrix (dij). It 

provides a unique path such that (i) all points are connected with no 

circuits; and (ii) has the shortest possible path of all such trees. It is not 

necessarily unique but in practical applications it is likely to be. It has the 

property that for nodes r and s drs must be greater than the maximum 

link in the unique path from r to s using the edges in the tree.  The idea 

is to give a direct visual impression of each individual’s “nearest 

neighbours” since in general these will be the individuals connected to it 

by the edges of the tree.  So, if two points appear to be close together in 

a scaling plot but the tree does not join them directly then it can be 

concluded that in fact they may not be very similar, though note that the 

converse does not hold (see the example below of “four” and “five” in the 

Morse confusion data). Nearby points on the plot which are not joined 

by edges indicate possible areas of distortion. 

3.7.1 Computation in R 

R has several facilities for calculating and plotting minimum spanning 

trees within the contributed packages. A selection of these is mst(.) in 

package ade4; mst(.) in package ape; dino.mst(.) and nmds(.) 

in package fossil; mstree(.) in package spdep; spantree(.) in 

package vegan. Only the last of these is illustrated here. 
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3.7.2 Example: Morse confusions 

 
> library(vegan) 
> morse.tr<-spantree(morse) 
> plot(morse.tr,cmdscale(morse),pch=16,col="red",cex=1.5) 
> text(cmdscale(morse),names(morse),cex=0.8,adj=c(0.5,-0.6)) 
> 
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Examining the minimum spanning tree shews that the points nine and 

zero are joined and also four and five.  However, all we can tell from this 

is these pairs are closer together than to any other point.  Of course with 

this small number of points this could be seen by examining the distance 

matrix. In this case it shews that sero and nine are indeed close but four 

and five are well separated (which of course can be seen from the 

earlier plot of dimensions 2 and 3).To examine the distances on the 

minimum spanning tree (and so fewer numbers to scan for a large 

dataset do 
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> morse.tr$kid 
[1] 1 2 3 4 7 8 9 1 9 
> morse.tr$dist 
[1] 38 41 62 44 35 35 42 43 21 
> 
morse.tr$kid gives the child node of the parent, starting from parent 

number two and morse.tr$dist gives the corresponding distances. 

The minimum spaning tree can also be added to other scaling plots: 
> plot(morse.tr,sammon(morse),pch=16,col="red",cex=1.5) 
Initial stress        : 0.06906 
stress after  10 iters: 0.02855, magic = 0.500 
stress after  20 iters: 0.02829, magic = 0.500 
stress after  30 iters: 0.02829, magic = 0.500 
> text(sammon(morse)$points,names(morse),cex=0.8,adj=c(0.5,-
0.6)) 
Initial stress        : 0.06906 
stress after  10 iters: 0.02855, magic = 0.500 
stress after  20 iters: 0.02829, magic = 0.500 
stress after  30 iters: 0.02829, magic = 0.500 
>  
> m.iso<-isoMDS(morse,cmdscale(morse)) 
initial  value 13.103235  
iter   5 value 9.362759 
iter  10 value 7.943274 
final  value 7.652321  
converged 
> plot(morse.tr,m.iso,pch=16,col="red",cex=1.5) 
> text(m.iso$points,names(morse),cex=0.8,adj=c(1.1,-0.6)) 

>
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The minimum spaning tree can also be added to plots of any two 

components of a scaling plots but extreme care is needed in 

interpretation. 
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3.8 Duality with PCA 

If we start with a data set and then calculate the Euclidean distance 

matrix for all the points (with function dist() in R or S-PLUS or in 

MINITAB with Stat>Multivariate>Cluster Observations) and then apply 

principal coordinate analysis, i.e. classical metric scaling, (with 

cmdscale() in R or S-PLUS) then we obtain precisely the same results 

as principal component analysis, except perhaps for arbitrary changes of 

sign of one or more axes, though we do not automatically have the 

additional information on proportions of variance or loadings available. 
> ir.scal<- cmdscale(dist(ir)) 
> eqscplot(ir.scal) 
> eqscplot(ir.pc) 
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The cmdscale plot on the left is identical to the pca plot on the right 

apart from a reflection about the horizontal axis. 
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3.9 Further Examples 

The four examples below compare classical metric scaling (equivalent to 

PCA for continuous data), Sammon Mapping and Kruskal isotonic 

regression multidimensional scaling. In the first set of data (the Iris Data) 

the first two PCs give 98% of the variation so it is not surprising that the 

three plots are indistinguishable.  The second set is on the Swiss 

demographic data and small differences can be found.  The third 

example is a data set on properties of glass fragments used in a forensic 

study. The fourth set is the Morse code confusion data used in 4.1. 

These data sets are standard ones within the R and S-PLUS (with MASS 

library) data libraries. Full R code (and data set descriptions for the 

second two examples taken from the R documentation)  are given. 

Very little distinction between the results of the methods is apparent in 

these examples, especially in the first example. It has been commented 

that Sammon mapping tends to produce displays with the points more 

evenly spread out than other methods and there may be a suggestion of 

this in the examples below, especially in the Morse Code confusion 

example. 
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Classical Scaling                              Sammon Mapping 
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     Kruskal 
 
 
R Code to produce above plots: 
 
> library(mass) 
>  
> data(iris) 
> attach(iris) 
> ir<-cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width) 
> ir.species<- factor(c(rep("s",50),rep("c",50),rep("v",50))) 
> par(mfrow=c(2,2)) 
> ir.scal<-cmdscale(dist(ir),k=2,eig=7) 
> ir.scal$points[,2]<--ir.scal$points[,2] 
> eqscplot(ir.scal$points,type="n") 
> text(ir.scal$points,labels=as.character(ir.species), 
  +col=3+codes(ir.species), cex=0.8) 
> ir.sam<-sammon(dist(ir[-143,])) 
Initial stress        : 0.00678 
stress after  10 iters: 0.00404, magic = 0.500 
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stress after  12 iters: 0.00402 
> eqscplot(ir.sam$points,type="n") 
> text(ir.sam$points,labels=as.character(ir.species[-143]), 
  + col=3+codes(ir.species),cex=0.8) 
> ir.iso<-isoMDS(dist(ir[-143,])) 
initial  value 3.024856  
iter   5 value 2.638471 
final  value 2.582360  
converged 
> eqscplot(ir.iso$points,type="n") 
> text(ir.iso$points,labels=as.character(ir.species[-143]),  
  +col=3+codes(ir.species),cex=0.8) 
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3.8.2 Swiss Demographic Data 
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R Code to produce above plots: 
 
> data(swiss) 
> attach(swiss) 
> swiss.x <- as.matrix(swiss[, -1]) 
> ir.scal<-cmdscale(dist(swiss.x),k=2,eig=7) 
> eqscplot(swiss.scal$points,type="n") 
> text(swiss.scal$points,labels=as.character(1:nrow(swiss.x)),  
  +cex=0.8) 
> swiss.sam <- sammon(dist(swiss.x)) 
Initial stress        : 0.00824 
stress after  10 iters: 0.00439, magic = 0.338 
stress after  20 iters: 0.00383, magic = 0.500 
stress after  30 iters: 0.00383, magic = 0.500 
> plot(swiss.sam$points, type="n") 
> text(swiss.sam$points, labels=as.character(1:nrow(swiss.x)), 
  +cex=0.8) 
> swiss.dist <- dist(swiss.x) 
> swiss.iso <- isoMDS(swiss.dist) 
initial  value 2.979731  
iter   5 value 2.431486 
iter  10 value 2.343353 
final  value 2.339863  
converged 
> plot(swiss.iso$points, type="n") 
> text(swiss.iso$points, labels=as.character(1:nrow(swiss.x)), 
  +cex=0.8) 
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Data Description: 
Swiss Fertility and Socioeconomic Indicators (1888) Data 
 
Description: 
 
     Standardized fertility measure and socio-economic 
indicators for each of 47 French-speaking provinces of 
Switzerland at about 1888. 
 
Usage: 
 
     data(swiss) 
 
Format: 
 
     A data frame with 47 observations on 6 variables, each of 
which is in percent, i.e., in [0,100]. 
 
[,1] Fertility Ig, ``common standardized fertility measure'' 
[,2] Agriculture % involved in agriculture as occupation 
[,3] Examination % ``draftees'' receiving highest mark on army 
examination 
[,4] Education % education beyond primary school. 
[,5] Catholic % catholic (as opposed to ``protestant''). 
[,6] Infant.Mortality live births who live less than 1 year. 
 
All variables but `Fertility’ give proportions of the 
population. 
 
Details: 
 
     (paraphrasing Mosteller and Tukey): 
 
Switzerland, in 1888, was entering a period known as the     
``demographic transition''; i.e., its fertility was beginning 
to fall from the high level typical of underdeveloped 
countries. The data collected are for 47 seven French-speaking 
``provinces'' at about 1888. Here, all variables are scaled to 
[0,100], where in the original, all but `"Catholic"' were 
scaled to [0,1]. 
 
Source: Project ``16P5'', pages 549-551 in Mosteller, F. and 
Tukey, J. W. (1977) Data Analysis and Regression: A Second 
Course in Statistics. Addison-Wesley, Reading, Mass,     
indicating their source as ``Data used by permission of 
Franice van de Walle. Office of Population Research, Princeton 
University, 1976.  Unpublished data assembled under NICHD 
contract number No 1-HD-O-2077.'' 
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3.8.3 Forensic Glass Data 
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R Code to produce above plots: 
 
> data(fgl) 
> attach(fgl) 
> fgl.dist<-dist(as.matrix(fgl[-40,-10])) 
> fgl.scal<-cmdscale(fgl.dist,k=2,eig=7) 
> eqscplot(fgl.scal$points,type="n") 
> text(fgl.scal$points,labels=c("F","N","V","C","T","H") 
+ [fgl$type[-40]],cex=0.7) 
> fgl.sam<-sammon(fgl.dist) 
Initial stress        : 0.03249 
stress after  10 iters: 0.01775, magic = 0.092 
stress after  14 iters: 0.01525 
> eqscplot(fgl.sam$points,type="n") 
> text(fgl.sam$points,labels=c("F","N","V","C","T","H") 
+ [fgl$type[-40]],cex=0.7) 
> fgl.iso<-isoMDS(fgl.dist) 
initial  value 11.518169  
iter   5 value 6.353547 
iter  10 value 5.993823 
iter  15 value 5.913937 
final  value 5.888284  
converged 
> eqscplot(fgl.iso$points,type="n") 
> text(fgl.iso$points,labels=c("F","N","V","C","T","H") 
+ [fgl$type[-40]],cex=0.7) 
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Data Description: 
 
Measurements of Forensic Glass Fragments 
 
Description: 
 
     The `fgl' data frame has 214 rows and 10 columns. It was 
collected by B. German on fragments of glass collected in 
forensic work. 
 
Usage: 
 
     data(fgl) 
 
Format: 
 
     This data frame contains the following columns: 
 
     `RI' refractive index; more precisely the refractive 
index is 1.518xxxx. 
 
          The remaining 8 measurements are percentages by 
weight of oxides. 
 
     `Na' sodium 
     `Mg' manganese 
     `Al' aluminium 
     `Si' silicon 
     `K' potassium 
     `Ca' calcium 
     `Ba' barium 
     `Fe' iron 
     `type'  
The fragments were originally classed into seven types, one          
of which was absent in this dataset.  The categories which          
occur are  window float glass (`WinF': 70), window non-float          
glass (`WinNF': 76), vehicle window glass (`Veh': 17),          
containers (`Con': 13),  tableware (`Tabl': 9) and vehicle          
headlamps (`Head': 29). 
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3.9 Summary and Conclusions 

 Multidimensional scaling is concerned with producing a 

representation of points in low dimensional space starting from a 

matrix of interpoint distances 

 The distances can be a general measure of similarity or 

equivalently dissimilarity.  

 The purpose of multidimensional scaling analyses may be to 

learn about the measure of (dis)similarity itself or to identify 

structure in the points themselves.  

 Applying the technique to an example where the ‘answer is 

known’ (e.g. French Departments) gives confidence when 

applying it to similar but unknown situations. 

 The Classical Solution, also known as Principal Coordinate 

Analysis, gives a method for constructing a display. If the 

distance matrix is Euclidean it gives an exact representation (up 

to arbitrary rotations and reflections). Otherwise it can be a 

starting point for iterative techniques of monotonic regression. 

 Scree plots of eigenvalues or stress values can give an informal 

aid to determining a suitable number of dimensions. 
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 Some eigenvalues determined in Principal Coordinate Analysis 

from non-Euclidean distance matrices will be negative. Care 

needs to be taken in construction of scree plots in such cases. 

 Principal Coordinate Analysis is the dual of Principal Component 

Analysis. 

 Other ‘unsupervised learning’ techniques for investigating 

similarities include Cluster Analysis (see Appendix 4) and 

Kohinen self-organising maps (see Appendix 9) 

 The axes produced by metric or non-metric scaling analysis are 

arbitrary. It may be possible to assign intuitive interpretations to 

them by examining the data but these are informal and not a 

property of the analysis (unlike the axes in PCA or Crimcoords). 

 In R and S-PLUS the key commands are cmdscale(), 

sammon() and kruskal(). 
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Tasks 6 
(see §3.1–§3.5, §5, §6 & A0.4) 

1) Continuing Q3 of the tasks 5 (road distances between 12 UK towns)  

i) Determine a configuration of points that will adequately 

represent the data.  

ii) Construct a two-dimensional map representing the road 

distances between these towns. 

To do it in R you can use the function cmdscale() and then plot the 

results by  
x<-cmdscale(as.matrix(towns)) 

plot(x) 

  The command as.matrix() is required for cmdscale to 

recognise the distance matrix. It is also possible in R to try two 

varieties of non-metric scaling (sammon() and isomds()). 
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4 Discriminant Analysis 

4.0 Summary 

A [collection of] technique[s] of use when data are classified into 

known groups. Objectives include: 

 Effective data display utilising this extra information 

 Dimensionality reduction whilst retaining information on differences 

between groups 

 Informal assessment by examination of loadings on nature of 

differences between groups. 

 Classification of future observations into one of the known groups.  

 

Linear Discriminant Analysis can aid all of these objectives but if the 

primary aim is the final one of classification of future observations then 

alternatives may do better on particular data sets, e.g. quadratic 

discriminant analysis or neural networks (see Appendices). 

 effectiveness of classification can be assessed by simulation 

methods (random-relabelling, jackknifing) or classifying further 

observations of known categories. 

 Method requires more observations than variables (i.e. n > p). 
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4.1 Introduction 

So far the data analytic techniques considered have regarded the data 

as arising from a homogeneous source — i.e. as all one data set. A 

display on principal components might reveal unforeseen features:– 

outliers, subgroup structure as well as perhaps singularities (i.e. 

dimensionality reduction). 

 

Suppose now we know that the data consist of observations classified 

into k groups (c.f. 1-way classification in univariate data analysis) so that 

data from different groups might be different in some ways. We can take 

advantage of this knowledge 

 to produce more effective displays  

 to achieve greater dimensionality reduction  

 to allow informal examination of the nature of the differences 

between the groups. 

Linear Discriminant Analysis finds the best linear combinations of 

variables for separating the groups, if there are k different groups then it 

is possible to find k–1 separate linear discriminant functions which 

partition the between groups variance into decreasing order, similar to 

the way that principal component analysis partitions the within group 

variance into decreasing order. The data can be displayed on these 

discriminant coordinates. Boundaries between classification regions 

are linear. 
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4.2 Outline of theory of LDA  

The starting point is to define a measure of separation between the 

known groups:– this is a matrix generalization of the F-statistic used for 

testing in one-way analysis of variance and is essentially the ratio of 

between group variance to within group variance.  

Step one is to identify that linear combination of variables which 

maximizes the F-statistic for testing differences between the groups in 

one-way analysis of variance on the univariate data. (cf maximizing 

variances in derivation of PCA). 

Mathematical theory shews this is achieved by the eigenanalysis of the 

ratio of between group variance to within group variance matrix. (cf the 

eigenanalysis of the variance matrix in PCA)  

The first eigenvector is the first linear discriminant (also known as 

Fishers linear discriminant). 

Up to this point the mathematical theory is impeccable:  subsequent 

steps and interpretations are by analogy with PCA 

Subsequent eigenvectors are extracted as ‘2nd, 3rd, …discriminant 

coordinates (or crimcoords)’ and data plotted on these axes 

though strictly these axes are not orthogonal. i.e. the 

transformation to discriminant coordinates is not just a 

rotation/reflection. 

Successive eigenvalues (and cumulative proportions etc) are 

interpreted as ‘successive amounts of discrimination achieved’ by 

each axis. 
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4.3 Preliminaries 

4.3.1 Setup:  

ni p-dimensional observations from group Gi; i=1,2,...,k;  with ni=n. 

4.3.2 Notation:  

Data matrix for ith group Gi is Xi (so Xi is nip), i=1,...,k 

 (so data are {xij;i=1,...,k; j=1,...,ni}, xij a p1 vector) 

 

Let 
ii i i inS (X X )(X X  1

1 i ) ' the within group i variance matrix 

i

i

n

ij i ij in
j

(x x )(x x )


  1
1

1
 (so Si is pp). 

 

Let 
k

in k
i

W (n


 1

1
1 i)S the [pooled] within groups variance. 

 

Define 
k

i i ik
i

B n (x x)(x x)'


  1
1

1
the between groups variance. 

 

Here x  is the overall mean and x i the mean of group Gi, (both p1) so 

X=[X1:X2: .... :Xk],  nnx X 1 1  and 
iii inx X n 1 1  

iX = x i  is the pni matrix with each row equal to 
in1 x i 
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W and B are analogous to the within and between groups mean 

squares in a univariate one-way analysis of variance and if we set p=1 

then the usual formulæ for these are retrieved.  

 

Further, it can be shewn that if  

  
ink

ij ij
i j

T (X X)(X X) (x x)(x x)
 

      
1 1

 

        (the ‘total sum of squares’)  

  then T=(n–k)W+(k–1)B   

(which is the ‘multivariate analysis of variance’ of ‘total 

variance’ into ‘within’ and ‘between’ components.) 

 

This will be exploited more formally later when considering multivariate 

analysis of variance (MANOVA) but here we consider just a simple 

analogy with 1-way analysis of variance. 
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4.3.3 Motivation:  

If we projected all the data into one dimension then we could perform a 

1-way analysis of variance and compare the between groups mean 

square with the within groups mean square: we would calculate F-

statistic which is the ratio of between to within groups mean squares. If 

there are large differences between the groups then the between group 

mean square will be relatively large and so the F-statistic will be large.  

 

As we choose different projections the ratio of between to within mean 

squares will vary: from some viewpoints it might look ‘insignificantly 

small’ and from others it might appear much more appreciable — i.e. 

from some viewpoints the differences between the groups may not be 

noticeable and from others the differences may be highlighted.  

 

The objective in determining discriminant coordinates is to choose the 

projection to highlight the differences between the groups. 
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4.4 Crimcoords 

 

Project all the p-dimensional data onto vector a1 (a column p-vector), so 

the projected data matrix for the ith group Gi is Xia1.  

 

Then the within ith group mean square (i.e. the sample variance of the 

one-dimensional projected data of the ith group) is a1Sia1.  

 

Note that this is a scalar (1pppp1=1) 

 and 
i

i

n

i ij i ijn
j

a Sa a (x x )(x x ) a


   1
1 1 1 11

1
i   

  
i i

i i

n n

ij i ij i ij in n
j j

(a x a x )(a x a x ) (a x a x ) 
 

            21 1
1 1

1 1
 

 

Similarly, the within group mean square of the projected data is a1Wa1 

and the between group mean square is a1Ba1. 

 

To highlight the distinction between the groups we want to choose a1 to 

maximize a BaF
a Wa




1 1

1
1 1

 

 

(i.e. just the usual F-ratio in a classical one-way analysis of variance, 

though note we have not [as yet] introduced the background of 

multivariate normality so we will not [as yet] claim that this has a 

statistical distribution related to the variance-ratio Snedecor 

F-distribution used to assess significance in a one-way analysis of 

variance.) 
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So the problem is to maximize a BaF
a Wa




1 1

1
1 1

  with respect to a1. 

 

Note that F1 is a ratio of quadratic forms in a1, so if a1 is multiplied by 

any scalar then the value of F1 is unaltered. This means that we can 

impose any scalar constraint on a1 without altering the maximization 

problem on F1, i.e. the maximization problem is invariant with respect to 

scalar multiplication of a1.  

 

That is, the problem ‘maximize F1 with respect to a1’  is the same as 

‘maximize F1 with respect to a1 subject to some [convenient to us] scalar 

constraint on a1’.   

 

Noting that F1 is a ratio of 2 quadratic forms, a convenient constraint to 

impose is that the denominator is one.  So, now the problem becomes 

‘maximize a BaF
a Wa




1 1

1
1 1

subject to a1Wa1=1,’ 

i.e. ‘maximize a1Ba1 subject to a1Wa1=1.’ 

 

This introduction of a [non-restrictive] constraint allows us to convert the 

original maximization problem to a constrained maximization problem 

which will be solved by using a Lagrange multiplier, thus making it an 

eigenvalue problem which can be solved easily (numerically at least by 

R, MINITAB, S-PLUS etc). 
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Introduce a Lagrange multiplier 1 and let 1 = a1Ba1 – 1(a1Wa1 – 1). 

Then a Ba Wa
    1

1 1 1 12 2 0   

i.e. W–1Ba1 – 1a1 = 0 

i.e. a1 is an  eigenvector of W–1B corresponding to the eigenvalue 1, 

strictly it is a right eigenvector since W–1B is not in general symmetric. 

 

To see which eigenvector is needed to maximize F1,  

pre-multiply by a1W  which gives a1Ba1 = 1a1Wa1 = 1  

    (since a1Wa1 = 1 — the original constraint) 

so to maximize a1Ba1 with a1Wa1 = 1 take 1 as the largest eigenvalue 

of W–1B and a1 as the corresponding eigenvector. 

 

Remark: The function f(x) = a1x is known as  

   Fisher’s linear discriminant function. 

 

In general W–1B has several non-zero eigenvalues 1,2, ....r  

 where r=rank(W–1B)=min(k–1,p)  

(unless there are pathological collinearities in either the 

data points in one or more groups or in group means) 
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Now if i and j are distinct eigenvalues of W–1B with [right] eigenvectors 

ai and aj then ai & aj are not necessarily orthogonal (since W–1B is  not 

necessarily symmetric). However, they have a sort of orthogonality 

property: 

we have  W–1Bai – iai = 0  Bai – iWai = 0 

and  W–1Baj – jaj = 0  Baj – jWaj = 0 

so ajBai –iajWai = 0 and aiBaj – jaiWaj = 0 

W and B are symmetric; so ajBai = aiBaj and ajWai = aiWaj and ij 

so, subtracting the two equations, ai and aj have the property that  

ajWai = 0 for ij. 

Definitions: The functions aix, i=1,2,...,r are called the discriminant 

coordinates or crimcoords and the space spanned by [the first t 

of] them is called the discriminant space.  Sometimes these 

functions are referred to as canonical variates, particularly in the 

context of interpreting the loadings of the variables so as to 

describe the nature of the difference between the groups, see 

§6.4. 

We can choose a suitable t by examination of the sequence 1,2,... 

using a scree plot (by analogy with PCA) but the non-orthogonality of the 

eigenvectors means that the ‘amount of discrimination’ is not partitioned 

into ‘separate bits’ in contradistinction to principal components and 

classical scaling. 

Examination of the loadings of variables in the crimcoords gives an idea 

of which variables provide discrimination between groups in an 

analogous way to the interpretation of principal components. 
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4.5 Computation 

The MASS library in R provides a function lda(.) which provides a full 

facility, type help(lda) to find out more.  S-PLUS provides a function 

discrim(.) for performing discriminant analysis but this is not 

available in R. However, the lda(.) function in the MASS library is in 

any case superior to this. 

MINITAB provides a ready made discriminant analysis module (under 

Stat>Multivariate>Discriminant Analysis ....) which is very limited in its 

scope. In particular, it is not possible to produce plots of the data on 

discriminant coordinates within the module (unlike the equivalent module 

for principal component analysis). This means that really we need to do 

the analysis ‘from scratch’. 

 We need the eigenanalysis of W–1B, which is not symmetric. 

MINITAB (and other packages) only compute eigenvalues etc for 

symmetric matrices but this facility can be used to obtain the anlysis of 

W–1B since both W and B are symmetric and the eigenanalyses of W 

and B can be used to derive that for W–1B: 

 

© NRJF 1982 177



Multivariate Data Analysis: Chapter 4:– Discriminant Analysis 

Suppose W has eigenvalues 1,...,p  

and normalised eigenvectors v1,...,vp, 

Let =diag(i)= 

p

 
 
 
  


1 0

0
 

and let  V=(v1,...,vp), 

so vivj = 0 if ij and1 if i=j,  

i.e. VV=VV = Ip 

 

We have WV –V = 0 

 so VWV = VV =  

 and W=VV ....... the spectral decomposition of W…….(4.5.1) 

 Let ½ = diag(i
½) = 

p

 
 

  


 



1
2

1
2

1 0

0

 (all i0 since W0) 

 and T=V½V  ……………………………………………..(4.5.2) 

(i.e. the ‘square root of W’, W½, so W=T2), then T is symmetric. 

 Let B=T–1BT–1 which is symmetric.  

 

Then: 

claim: B has the same eigenvalues as W–1B and the 

eigenvectors of W–1B are given by multiplying those of B 

by T–1. 
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since: Suppose the eigenvalues and eigenvectors of W–1B are 

i and ai, i=1,...,p (some of the i may be zero).  

so W–1Bai – iai = 0. 

 Let the eigenvalues and eigenvectors of B be i and bi  

        (i=1,...,p) 

 so Bbi – ibi = 0 

 so T–1BT–1bi – ibi = 0 

 so T–2BT–1bi – iT–1bi = 0 

 so W–1B(T–1bi) – i(T–1bi) = 0 

which shews that the [right] eigenvalues of W–1B are i and the [right] 

eigenvectors are T–1bi, i.e. i=i and ai=T–1bi.  

 

[This gives a method which can be used in a package which has only 

basic matrix manipulation facilities such as MINITAB to obtain the 

eigenanalysis of W–1B. In fact, the MANOVA (see a later chapter) routine 

in MINITAB (ANOVA>Balanced MANOVA... followed by checking the 

‘Eigen analysis’ box on the Results… menu) will produce the required 

values in the Session window but then they have to be cut&pasted (or 

read) Stat>Multivariate>Discriminant Analysis into the worksheet]. 
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4.6 Example (Iris Data) 

4.6.1 Analysis in R:  

Returning yet again to Anderson’s Iris data, given below is a record of 

an R session (S-PLUS is essentially the same) to produce a display on 

crimcoords and compare it with the display on principal components 
> load("irisnf.Rdata") 
> ir<-as.matrix(irisnf[,-5]) 
> ir.species<- factor(c(rep("s",50),rep("c",50),rep("v",50))) 
> ir.lda<-lda(ir,ir.species) 

Now plot the data on discriminant coordinates and compare with a 

principal component plot: 
> ir.ld<-predict(ir.lda,dimen=2)$x 
> eqscplot(ir.ld,type="n", 
+ xlab="first linear discriminant", 
+ ylab="second linear discriminant") 
> text(ir.ld,labels=as.character(ir.species)) 
> eqscplot(ir.pc,type="n", 
+ xlab="first principal component", 
+ ylab="second principal component ") 
> text(ir.pc,labels=as.character(ir.species)) 
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There is perhaps a very slightly better separation between the groups 

labelled v and c in the left hand plot than in the right hand one. 
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4.6.3 Prior Probabilities  

In R and S-PLUS the function lda() assumes by default that prior 

probabilities of group membership are equal to the observed proportions 

in the training data of the k groups.  To over-ride this the call to lda() 

should include a parameter prior=c(p1, p2, ..., pk). In the 

example on the iris data the training data had 50 observations in each 

group and so the prior probabilities were taken, by default, to be equal. 

The effect of taking prior probabilities different from the observed 

proportions is to alter the estimate of the within-groups variance W 

defined in §4.3.2 so that instead of using weights (ni – 1)/(n – k) it uses 

weights pi, i.e. W is estimated as instead of 
1

k

i i
i

W pS


  1

1

1
k

i in k
i

(n )S


 .  

 

However the major difference is in the function predict.lda() where 

by default the prior probabilities are taken from those in the original call 

to lda(). This can be over-ridden by specifying prior as something 

different. This can be useful if there is good prior information on group 

membership probabilities of test data.  Similar comments apply to the 

function qda() which performs quadratic discriminant analysis (see 

Appendices). 
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4.7 Application to informal (Data Analytic) Classification 

Suppose we have k groups of ‘reference’ data and a set of r unknown 

points uj; j=1,...,r., and we wish to classify each of the r points into one of 

the k groups, (e.g. multivariate data from reliably diagnosed patients with 

one of k different conditions, wish to diagnose r new patients on whom 

the same measurements are made). 

 

Suppose we have calculated the k reference group means or centroids 

( xi ; i=1,...,k). It is natural to assign an observation u to that group to 

which it is nearest in some sense.  

We might measure the distance of u from the group i centroid as D(i) 

where iD (i) (u x )M(u x )   i
2

 where M is some suitable weighting matrix 

which we require to be positive semi-definite (M0) to ensure that 

D2(i)0.   
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There are many possible choices for the weight matrix M: 

 

Simple is (i) If we take M=Ip then D is Euclidean distance. 

   i iD (i) (u x ) (u x )  2 )  

 

Better is  (ii) take M=Si
–1

 giving 

   i i iD (i) (u x ) S (u x )  2 1  

    (which requires ni>p to ensure Si non-singular) 

 e.g. p = 2, two clusters of points with ‘densities’ as shewn: 

 

x1 

 

 

u x2

 

 

 

 

 

 the point u would be assigned to group 1 under (i) Euclidean 

distance but to 2 under (ii) (the group i Mahalanobis distance). The 

second choice is more reasonable since u is well within the range 

of the observed data from group 2 and well away from the data 

cloud of group 1. 
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(iii) Take M=AtAt where At is the matrix of the first t eigenvectors of W–

1B, this gives  

  i t t i t i t iD (i) (u x ) A A (u x ) [A (u x )] [A (u x )]         2
 

and so is equivalent to projecting the data into discriminant space 

and then using Euclidean distance. 

 

(iv) Take M=W–1 giving  

  i iD (i) (u x ) W (u x )  2 1   

 which is the ‘average’ of the measures in (ii) — sensible if there 

are good reasons for expecting the covariances in the different 

groups to be similar. This is known as the Mahalanobis distance of 

u from the group mean 

 

 

All of these (and many more) are used in practice and they may give 

slightly different results in classification. It may be difficult to determine 

precisely which criterion ready-made analyses in packages actually use. 

The most commonly used criteria are (iii) (discriminant space distance) 

and (iv) the Mahalanobis distance. If the different groups have 

substantially different variances then (ii) is a possibility but extensions of 

the method to ‘quadratic discriminant analysis’ may also be useful (see 

e.g. MINITAB options or function qda(.) in R or S-PLUS). 
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4.8 Summary and Conclusions 

 Crimcoords (or discriminant coordinates) highlight differences 

between known groups of observations. Displays on these are 

strictly distorting the data slightly since the axes are not 

orthogonal but are conventionally drawn as such. 

 The first Crimcoord is also known as Fisher’s Linear Discriminant 

Function 

 Interpretations of factor loadings and use of scree plots is 

performed by analogy with PCA. 

 Referral to crimcoords allows informal classification of other 

points of unknown origin. 

 Other informal methods for classification are used, such as 

classifying by minimum Mahalanobis distance. 

 Some further illustrations of discriminant analysis (linear and 

quadratic) are given in Appendix 1.  

 Other techniques for investigating discrimination between known 

categories are Logistic Regression, Classification Trees (see 

Appendix 7) and Neural Networks (see Appendix 8).  

 Method requires more observations than variables (i.e. n > p). 

 Also note that equations 4.5.1 and 4.5.2 in §4.5 define the square 

root of a symmetric matrix via its spectral decomposition. This is 

used later in establishing standard properties of the multivariate 

normal distribution. 
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Exercises 2  

1) The data given in file dogmandibles. (in various formats) are 

extracted, via Manly (1994), from Higham etc (1980), J.Arch.Sci, 

149–165.  The file contains 9 measurements of various dimensions of 

the mandibles of 5 canine species as well as records of the sex and 

the species, eleven variables in total. These are  
  X1: length of mandible  

  X2: breadth of mandible  

  X3: breadth of articular condyle  

  X4: height of mandible below first molar  

  X5: length of 1st molar  

  X6: breadth of 1st molar  

  X7: length between 1st to 3rd molar inclusive (1st to 2nd for Cuons)  

  X8: length between 1st to 4th premolar inclusive  

  X9: breadth of lower canine  

  X10: gender (1  male, 2  female, 3  unknown)   

  X11: species (1  modern dog from Thailand, 2  Golden Jackal,   

    3  Cuon, 4  Indian Wolf, 5  Prehistoric Thai dog)   
All measurements are in mm; molars, premolars and canines are 

types of teeth; an articular condyle is the round knobbly bit in a joint; 

a Cuon, or Red Dog, is a wild dog indigenous to south east Asia and 

notable for lacking one pair of molars. 

i) Ignoring the group structure, what interpretations can be given 

to the first two principal components? 

ii) Construct a display of the measurements on the first two 

crimcoords, using different symbols for the five different groups. 

iii) If the linear discriminant analysis were performed on the data 

after transformation to the full set of nine principal components 

what differences (if any) would there be in the plot on crimcoords 

and the eigenvalues and eigenvectors of the matrix W–1B? 
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iv) Which group is separated from the other four by the first 

crimcoord? 

v) Which group is separated from the other four by the second 

crimcoord? 

vi) Which group is separated from the other four by the third 

crimcoord? 

vii) What features of the mandibles provide discrimination between 

the various species?  
Notes: if you do this in Minitab then you need to use the slicktrick outlined on 

p135 of the course notes and use the balanced manova facility within anova 

to obtain the eigenvectors and then cut&paste these into the worksheet, 

followed by a couple of steps of matrix manipulation. In S-PLUS the required 

plots can be obtained from the lda menu.  Interpretation of the crimcoords is a 

little easier after looking at the interpretations of the PCs.  

2)   The question of prime interest in the study of canines was related 

to an investigation of the origin of the prehistoric dogs. Try calculating 

the discriminant analysis based on the four groups of modern canines 

and then plot the prehistoric cases on the same coordinate system a 

(c.f. informal data classification method (iii) on p140 of course notes) 

and seeing to which of the modern groups the majority of the 

prehistoric are closest.    
(The interpretation of the results of this exercise are within the scope of PAS465; 

the required computer skills to produce it are useful but a little beyond the scope 

of PAS465, i.e. if you do not attempt it ensure that you look carefully at the 

printed solution in due course.)  
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5  Multivariate Regression Analysis 

5.0 Introduction 

This chapter provides a brief introduction to the extension of univariate 

regression methods to the multivariate case. There is little new in terms 

of statistical concepts and the univariate mathematical development 

carries through almost unchanged symbolically to the multivariate case.  

Formal statistical tests are not described here but are essentially 

applications of multivariate analysis of variance considered in Chapter 8.  

First, recall the univariate case with just one independent variable X. 

The parameters  and  in the model E[Y] =  + X or yi =  + xi + i  

where i ~ N(0,2), i.i.d., have least squares estimates (and maximum 

likelihood estimates) obtained by minimizing  which 

yields 

2
1

n
ii

ˆˆ(y x )


    i

ˆ xˆ y     and 2
i i

i

(x x)(y y)

(x x)
ˆ  


   . Note that the sample correlation 

coefficient is slightly different, 
2

i i(x x)(y
XY (x x)

 

 2
i i

y )

(y y)

 
 

. Note also that the 

correleation coefficient is symmetric in X and Y but the regression 

coefficient is not, emphasizing that the correlation coefficient is used for 

investigating the relationship between the X and Y variables whilst 

regression analysis investigates the dependence of the dependent 

variable Y upon the independent variable X, (perhaps with the aim of 

predicting one from the onther). 

If there are several independent variables X1, X2,…, Xq then the 

appropriate model can be written as E[Y] = X or Y = X +  where 

 ~ Nn(0, 2In) and  = (1, 2,…,q) and X is the nq matrix of 

observations of the q independent variables (and usually the first 

variable X1 would be taken to be the unit vector 1n, so the model 

includes a constant term). Note here the use of X as the nq matrix of 
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observations rather than X as in other chapters so as to conform with 

general usage in presentation of regression.  

Minimizing the sum of squares of the residuals, i.e. =(Y – X)(Y –X), 

yields, after differentiating  with respect to , 2X(Y – X) = 0 and thus 

XX)–1XY (provided n>p or, more exactly, provided XX is 

non-singular).   The extension to the case when Y is a matrix of vector 

observations is now straightforward. 

ˆ ( 
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5.1 Multivariate Regression 

The p-dimensional multivariate linear model is E[Y] = X or Y = X +  

where where Y is a np matrix of n observations of p-dimensional 

varaibles, X is nq,  is qp and  is an np matrix random variable. The 

matrix of residual sums of squares and cross products is  

 = (Y – X)(Y –X); differentiating  with respect to  yields  

2X(Y – X) = 0 and thus XX)–1XY (provided n>p or, more exactly, 

provided XX is non-singular). Note that  is a matrix so its 

differentiation may need to be taken ‘on trust’ as also the fact that this 

minimizes both the determinant and the trace of . This means that the 

p individual  in  are identical to those which would be obtained by 

separate [multiple] regressions of each Yi on the independent variables 

X1, X2,…, Xq. This is true of least squares estimation and of maximum 

likelihood estimation if the errors are assumed to be Normal with 

independence from one observation to the next, though they could be 

correlated between one variable to the next on the same observation, 

i.e. that the rows of  are i.i.d Np(0, ).  Predicted values of Y are given 

by  and  is estimated as 

ˆ ( 

i̂ ̂

ˆ ˆY X  1ˆ ˆˆ (Y X ) (Y X ) /(n q )        .  
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5.2 Example (Beef & Pork Consumption) 

This example is discussed by Cox (2005) and the data are taken from 

the Data and Story Library at  

http://lib.stat.cmu.edu/DASL/Datafiles/agecondat.html 

The data are  
YEAR   PBE CBE PPO CPO PFO DINC CFO  RDINC  RFP 
1925    59.7 58.6 60.5 65.8 65.8 51.4 90.9 68.5 877 
1926    59.7 59.4 63.3 63.3 68.0 52.6 92.1 69.6 899 
1927    63.0 53.7 59.9 66.8 65.5 52.1 90.9 70.2 883 
1928    71.0 48.1 56.3 69.9 64.8 52.7 90.9 71.9 884 
1929    71.0 49.0 55.0 68.7 65.6 55.1 91.1 75.2 895 
1930    74.2 48.2 59.6 66.1 62.4 48.8 90.7 68.3 874 
1931    72.1 47.9 57.0 67.4 51.4 41.5 90.0 64.0 791 
1932    79.0 46.0 49.5 69.7 42.8 31.4 87.8 53.9 733 
1933    73.1 50.8 47.3 68.7 41.6 29.4 88.0 53.2 752 
1934    70.2 55.2 56.6 62.2 46.4 33.2 89.1 58.0 811 
1935    82.2 52.2 73.9 47.7 49.7 37.0 87.3 63.2 847 
1936    68.4 57.3 64.4 54.4 50.1 41.8 90.5 70.5 845 
1937    73.0 54.4 62.2 55.0 52.1 44.5 90.4 72.5 849 
1938    70.2 53.6 59.9 57.4 48.4 40.8 90.6 67.8 803 
1939    67.8 53.9 51.0 63.9 47.1 43.5 93.8 73.2 793 
1940    63.4 54.2 41.5 72.4 47.8 46.5 95.5 77.6 798 
1941    56.0 60.0 43.9 67.4 52.2 56.3 97.5 89.5 830 

where  
1. PBE = Price of beef (cents/lb)  
2. CBE = Consumption of beef per capita (lbs)  
3. PPO = Price of pork (cents/lb)  
4. CPO = Consumption of pork per capita (lbs)  
5. PFO = Retail food price index (1947-1949 = 100)  
6. DINC = Disposable income per capita index (1947-1949 = 100)  
7. CFO = Food consumption per capita index (1947-1949 = 100)  
8. RDINC = Index of real disposable income per capita (1947-1949 = 100)  
9. RFP = Retail food price index adjusted by the CPI (1947-1949 = 100) 

For this illustration we will consider the dependence of consumption of 

beef and pork, i.e. Y=[CBE, CPO], upon the prices of beef and pork and 

disposable income and include a constant term in the regression, so 

X=[117, PBE, PPO, DINC].  
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So p = 2, q = 4, n=17 

 
  58.6 65.8     1 59.7 60.5 51.4  
   59.4 63.3     1 59.7 63.3 52.6  
   53.7 66.8     1 63.0 59.9 52.1  
   48.1 69.9     1 71.0 56.3 52.7  
   49.0 68.7     1 71.0 55.0 55.1  
   48.2 66.1     1 74.2 59.6 48.8  
   47.9 67.4     1 72.1 57.0 41.5  
   46.0 69.7     1 79.0 49.5 31.4  
   50.8 68.7     1 73.1 47.3 29.4  
   Y = 55.2 62.2    X =  1  70.2 56.6 33.2  
   52.2 47.7      1 82.2 73.9 37.0  
   57.3 54.4      1 68.4 64.4 41.8  
   54.4 55.0      1 73.0 62.2 44.5  
   53.6 57.4      1 70.2 59.9 40.8  
   53.9 63.9      1 67.8 51.0 43.5  
   54.2 72.4      1 63.4 41.5 46.5  

   60.0 67.4      1 56.0 43.9 56.3  

 

The least squares estimate of  is    

101.40 79.60
0.753 0.153ˆ

0.254 0.687
0.241 0.283

 
  
 
 
 
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[Task: check these multivariate calculations and also check that the 

same answers would be obtained by using separate univariate linear 

regressions.] 

 

The advantage of using the multivariate approach is that the correlation 

between beef and pork consumption is modelled and this allows 

construction of simultaneous confidence intervals.  

 is estimated as . 
4.412 7.572ˆ
7.572 16.835

 
    

 

5.3 Summary and Conclusions 

 Multivariate regression models the dependence of a 

p-dimensional random variable Y upon a q-dimensional variable 

X. 

 The individual equations relating the p individual Y variables upon 

the X variables are identical to those obtained by separate 

univariate regressions of the Yi upon the X variables. 

 The advantage of the multivariate approach is that the correlation 

structure of the dependent variables is modelled and this allows 

construction of simultaneous confidence intervals. 

 Formal tests of hypothesis (e.g. whether  = 0) are available. 

 It does not matter whether q < p or q > p. 

 It is required that n > max(p, q) and that XX is non-singular. 
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Tasks 7 

1) Retrieve the data on beef and pork consumption referenced in §5.2 

and verify the calculations given in §5.2 using R or S-plus. Predict the 

consumption of beef and pork if the prices in cents/lb are 79.3, 41.2 

and the disposable income index is 40.4.  

2) Retrieve the dataset chap8headsize referenced in §6.3 and calculate 

the estimates of the least squares multivariate regression parameters 

 of length and breadth of heads of first sons upon those of second 

sons. Is it possible to deduce from these results the estimates for the 

regression of second sons upon the first?  

3) Read the section on Maximum Likelihood Estimation in Background 

Results (Appendix 0.4).  This material will be required and used 

extensively in Chapter 8.  
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6  Canonical Correlation Analysis 

6.0 Introduction 

This chapter provides a brief introduction to the extension of methods of 

correlation analysis to the multivariate case. The similarity to and 

distinction between this and multivariate regression analysis is the same 

as that in the unviariate case. Canonical correlation analysis aims to 

investigate the relationship between two sets of variables — here 

referred to as the X variables and the Y variables rather than the 

dependence of one set upon the other which is the purpose of 

regression analysis. This means that canonical correlation analysis is 

symmetric in the X and Y variables though we can accommodate their 

having different dimensions, say p and q respectively. As with 

regression methods we require at least more observations than 

dimensions, i.e. n > max(p, q) and in particular we need various matrices 

to be non-singular and so possess inverses. 

The approach is to find linear combinations of the X and Y variables that 

have maximum correlation with each other amongst all such linear 

combinations. This is analgous to principal component analysis where 

linear combinations of variables with maximal variance are sought. 

 

© NRJF 1982 196



Multivariate Data Analysis: Chapter 6:– Canonical Correlation Analysis 

6.1 Derivation of results 

Suppose X=(X1, X2,…, Xq) and Y=(Y1, Y2,…, Yp) and n observations are 

available on each (measured simulataneously). Suppose var(X) = XX 

and var(Y) = YY and cov(X,Y) = XY where these may be taken as either 

the population [theoretical] values or the sample values based upon the 

n observations.  Let a and b be p- and q-vectors respectively and 

consider the correlation between aX and bY, noting that their variances 

are aXXa and bYYb respectively. This is XY = aXYb/(aXXabYYb).  

This is independent of the scale of both a and b so we may impose 

scale constraints on these without loss of generality, most conveniently 

to ensure the denominator is unity, i.e. aXXa = bYYb = 1. 

Maximizing XY subject to these constraints (by introducing  and  as 

Lagrange multipliers) yields XYb – XXa = 0 and XYa –YYb = 0, after 

differentiating XY with respect to a and b and setting the results equal to 

zero. Premultiplying these by a and b respectively and recalling the 

assumed constraints shews that  =   = aXYb = XY.  Premultiply the 

first equation by XY(XX)–1
 and the second by (XX)–1XY(YY)–1

 and 

adding the results gives (XX)–1XY(YY)–1XYa – (XY)2a = 0 shewing that 

a is an eigenvector of (XX)–1XY(YY)–1XY with eigenvalue (XY)2. A 

further step shews that to maximize the correlation we need to take the 

largest eigenvalue. Similar analysis shews that b is the eigevector 

corresponding to the largest eigenvalue of (YY)–1XY(XX)–1XY which is 

also (XY)2, (note the symmetry in X and Y). 

It is easy to shew that further eigenvectors a2, a3,… and b2, b3,.... 

maximise the correlation between linear functions of the X and Y 

variables subject to the constraints of orthogonality with earlier ones. 
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6.3 Example (head sizes of sons) 

This example is discussed by Everitt (2005) and the data are available 

from the website linked from the course webpage and also from these 

notes in section 0.4. They are dataset chap8headsize. 

The data give the length (X1) and breadth (X2) of first sons and Y1 and Y2 

the same measurements for second sons. 

Analysis gives  
 

 (XX)–1XY(YY)–1XY  = 
 
 

(YY)–1XY(XX)–1XY  = 

0.323 0.317
0.302 0.302
 
 
 

 

0.301 0.300
0.319 0.323
 
 
 

 

Both of these have eigenvalues 0.62 and 0.0029 (Task: check this in R 

or S-PLUS), giving canonical correlations of 0.7885 and 0.0537. The 

eigenvectors are a1 = (0.727, 0.687), a2 = (0.704, –0.710), 

b1 = (0.684, 0.730) and b2 = (0.709, –0.705) [noting that Table 8.3 on 

p164 of Everitt (2005) is almost totally incorrect]. 

The first two canonical variates are essentially averages of length and 

breadth and so proportional to circumference, shewing that the major 

characteristic shared by brothers in this respect is overall head size, with 

correlation estimated as 0.79. The second canonical variates are 

contrasts in length and breadth and so reflect shape. The correlation 

between the shapes of elder and younger brothers is 0.05 and thus 

whilst being highly correlated in overall size the shapes are virtually 

unrelated. 
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6.4 Further example of interpretation of loadings 

This example is also discussed by Everitt (2005) and further details of 

sample correlation matrices etc are given there.  The data arise from a 

study of depression in 294 people in Los Angeles.  The variables 

measured were CESD (a composite score measuring level of 

depression; high scores indicating low depression), Health (an overall 

self-perceived health score; high good), Gender (female = 1), Age, 

Education Level (high meaning highly), Income.  The interest is in the 

relationship between the first two (which are ‘health variables) and the 

final four social-demographic variables.  The first pair of canonical 

variates is 

a1 = 0.461 CESD – 0.900 Health 

b1 = 0.024 Gender + 0.885 Age – 0.402 Education + 0.126 Income 

which have correlation 0.409 and the second pair are  

a2 = – 0.95 CESD – 0.32 Health 

b2 = 0.62 Gender + 0.63 Age – 0.65 Education + 0.82 Income 

which have correlation 0.26. 

The interpretation of these is that relatively older people (both M & F) 

are associated with low depression levels but perceive their health as 

relatively poor,  while relatively younger people with good education tend 

to the opposite health perception. Looking at the second pair of 

canonical variates, the interpretation is that relatively young, 

uneducated, poor females are associated with higher depression scores 

and to a lesser extent with poorly perceived health. 
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6.4 Further comments 

 It may be shewn that if one of the variables, say the Y variable, is 

a group indicator or set of binary dummy variables then the 

canonical variates of the X variables are precisely the 

discriminant functions between the groups. This is the reason for 

the latter sometimes being referred to as canonical variates — 

they are the linear combinations of the X variables that ‘most 

highly correlate’ with the group structure, i.e. discriminate 

between them. The fact that a different scaling constraint is used 

in the analysis is immaterial since the result is invariant to scale.  

 The choice of sign for the eigenvectors is arbitrary, as with PCA. 

 Plots of the data referred to the canonical variates (either ai vs aj 

for just the X variables (likewise for the Y variables) or ai vs bi for 

all of the variables) may be useful ways of displaying the data to 

investigate structure. [Task: consider what sort of features these 

two possibilities might reveal, (hint: note the link with lda)]. 

 The number of non-zero eigenvalues (i.e. canonical correlations) 

is at most min(p, q). 

 As with multivariate regression we require various matrices to be 

non-singular, in particular that n > max(p, q) 

 Interpretation of loadings in the canonical variates is similar to 

that in PCA and LDA and gives insight into aspects of the data 

structure.  

 R functions for performing canonical correlation analysis are 

cancor(.) in the stats  

 library and [better] cc(.) in the CCA package. 
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7  Partial Least Squares 

The methods of linear discriminant analysis (LDA), multivariate 

regression analysis and canonical correlation analysis (CCA) considered 

in the last three chapters all required more observations than variables 

measured.  This contrasts with the exploratory technique of principal 

component analysis (PCA) in chapter 2 where there is no such 

restriction. In PCA if there are fewer observations than variables then 

the last few eigenvalues (and hence the corresponding eigenvectors or 

‘aspiring principal components’) are non-informative.  

In the contexts of the development of these methods and appreciating 

the computational restrictions of the time in the mid-twentieth century the 

‘n  > p’ requirement was not unduly restrictive since typically the data 

sets considered were small; n a few hundred at most say and p a few 

tens say (even as many as ten was formidable computationally). It was 

generally easy to obtain more observations (interview a few more people 

or measure a few more iris flowers) or else drop a few variables from 

consideration by using expert knowledge (e.g. that certain variables are 

more or less useful than others to the purpose at hand).    

However, in the past thirty years or so this situation has changed and it 

is now commonplace to encounter data sets where p >> n and it is not 

easy to reduce the number of variables or measure more objects. For 

example in measuring gene expression levels (or abundances of 

proteins or metabolites or…) it is routine to measure thousands of 

variables simultaneously on relatively few subjects. Measurement of 

each variable (i.e. each gene) may be cheap but each high-dimensional 

observation is expensive. If 13,000 genes are measured on 100 

samples then it is not realistic to reduce the number of variables to fewer 

than 100, especially if the objective of the study is to discover which 
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genes are the most important and there is no existent expert knowledge 

in the area (hence the reason for the study), nor is it realistic to obtain 

more samples if each costs some tens of dollars or pounds or euros or 

… . 

However, the underlying questions of what is the relationship between 

some dependent variable and the set of independent variables and how 

can we discriminate between groups of subjects are still of interest but if 

n < p then methods of multivariate regression and LDA  are not 

available.  Consequently there is a need for techniques which address 

these problems directly and which are immune to the singularity of the 

matrices required in regression and discriminant analysis.  This chapter 

considers such methods which go under the general (but not very 

descriptive) name of partial least squares. 

In passing, an obvious approach might be to reduce the dimensionality 

with PCA as a preliminary step. That is, if p > n then instead of 

attempting to use all X1,X2,…Xp in the regression analysis (noting that 

this will fail if p > n because XX is singular) one could regress the 

dependent variable Y on the first k principal components of the Xi where 

k < n < p.  This approach is particularly useful if XX is singular because 

of inherent multicollinearities in the Xi rather than because there are too 

few observations. In such cases the first few PCs corresponding to the 

non-zero eigenvalues genuinely contain all available information. In 

more general cases however the drawback is that the PCs are not 

derived with any regard to the dependence of the Y variable(s) upon the 

Xi.  Similar drawbacks are present in dimensionality reduction by PCA as 

a preliminary to LDA though in both situations it is a useful technique to 

try since it is quick and easy and the methods of PLS (Partial Least 
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Squares) need a little more effort, at least currently and especially in 

terms of interpretation.   

PLS is a dimensionality reduction method with components chosen with 

the response variable kept in mind, where the response variable may be 

a continuous dependent variable (possibly multivariate) [PLS 

Regression] or a group indicator [PLS Classification].  Essentially, PLS 

obtains linear components from the high-dimensional data which 

maximize covariance with the response variable. Unlike correlations, 

covariances require no inversion of matrices and so avoid problems of 

singularity of matrices calculated when n < p. 

Facilities for implementation of PLS are increasingly widely available and 

MINITAB and SAS provide built-in facilities. In the R system there are 

several contributed packages and these are well-documented with 

examples and references.  

 

Brief accounts of PLS are given in Cox (2005), p.190 and in Krzanowski 

& Marriott (1995), Vol. 2, p.111. Some readable references with 

applications are given in Boulesteix, A.L. (2004) PLS dimension 

reduction for classification of microarray data, Statistical Applications 

in Genetics and Molecular Biology, Vol. 3 Issue 1, Article 33, and 

Boulesteix, A.L. a& Strimmer, K. (2006), Partial Least Squares: a 

versatile tool for the analysis of high-dimensional genomic data, 

Briefings in Bioinformatics.  

Anne-Laure Boulesteix is also the lead author of the R package 

plsgenomics which is available from the R website which provides 

routines pls.regression(.) and pls.lda(.). 

Further details and examples can be found in the refernces above. 
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8 Statistical Analysis of Multivariate Data 

8.0 Introduction 

So far, the course has considered only data-analytic techniques:– 

methods of dimensionality reduction — data display, investigation of 

subgroup structure etc — which depend only upon the structure of the 

data themselves and not upon assumptions on the form of the 

generating process of the data. Such methods may be a useful 

[preliminary??] step in the analysis — they may simplify later analyses 

and are not prone to failures in assumptions (since none are made!) and 

they provide an invaluable intuitive understanding of the data. This 

section considers more formal statistical models and techniques for the 

analysis of multivariate data. 

The section starts with the definition of the p-dimensional multivariate 

normal distribution and its basic properties (mean, variance and 

sampling properties such as maximum likelihood estimation). This allows 

the construction of likelihood ratio tests and thus the extension to 

several dimensions of the routine one-dimensional tests such as t-tests 

and analysis of variance.  

 N. B. If you want to check the basic ideas of maximum likelihood 

estimation and likelihood ratio tests then you should read  

Appendix 0 (Background Results). 
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Also considered are tests of more complex hypotheses, which can only 

arise in multidimensions, such as whether the population mean is 

somewhere on the unit sphere. This requires use of Lagrange multipliers 

to maximize likelihoods subject to constraints. For this section you 

should read the material on Generalized Likelihood Ratio Tests given in 

the Background Results 

The second important topic of the section is the introduction of a new 

method for constructing hypothesis tests (the Union-Intersection 

principle) which in some circumstances can give a different form of test 

from a likelihood ratio test and in others provide a useful additional 

interpretation of likelihood ratio tests. This topic links in with the idea of 

projecting data into one dimension, choosing the dimension 

appropriately, which was encountered in the construction of principal 

components and crimcoords.  
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8.1 The Multivariate Normal Distribution 

8.1.1 Definition 

The random p-vector x has a p-dimensional Multivariate Normal 

distribution (with mean  and variance ,  a column p-vector,  a pp 

symmetric non-singular positive definite matrix) if the probability density 

function (p.d.f.) of x is 

 px
( )

f (x) exp{ (x ) (x )}

 
    

12 2

11 1
2

2
     (where ||=det() ) 

and we write x~Np(,). 

8.1.2 Standardization 

Suppose x~Np(,) and y=–½(x-), where –½ is as defined earlier (see 

§4.5, eqs 4.5.1 & 4.5.2), then (x-)–1(x-) = yy = . Now the 

density of y is 

p

i
i

y

 2

1

  py x
( )

y(y) exp{ y ' y}.J
 

f 
12 2

1 1
2

2
 

where Jxy is the Jacobean of the transformation given by dx
dy  where dx

dy  is 

the pp matrix with (i,j)th element i

j

dx
dy . 

Now y=–½(x-) so x=½y+  so i

j

dx
ijdy ( ) 

1
2  and so dx

dy  
1
2  

and Jxy=||½ giving p

p

y i
( ) i

f (y) exp{ y }
 

  
2

21 1
2

2 1
   

Thus, the yi’s are independent univariate N(0,1);  

 
[& notice therefore that fy(y) is > 0, integrates to 1 and 

so is a genuine p.d.f. and so therefore fx(x) is a p.d.f. also] 
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8.1.3 Mean & Variance 

Now if x~Np(,) and y=–½(x-) then  

 E[y]=–½(E[x]–) and var(y)= –½var(x) –½ 

but E[y]=0 and var(y)=Ip, so E[x]= and var(x)=. 

 

8.1.4 Random Samples 

x~Np(,); observations x1,x2,...,xn of x.  

Define  
n

in
i

x x


 1

1
  

and    n
i i(n ) (n )S (X X)(X X) x x nxx       1 1

1 1 1
 

Then E[ x ]= and var( x ) = n
i nn

var(x )  2
1 1

1
 

Also S=
n

i i i j(n ) n n
i ji

( ) (x )(x ) (x )(x )


 
           

 
 1 1 1

1
1

1   

(see Notes in §0.9) 

and E[(xi–)(xj–)] = 0 if ij  

    =  if i=j 

and so E[S] = , i.e. the sample mean and variance are unbiased 

for the population mean and variance. 

(note that as yet we have not used any assumption of normality) 

 

Further, using the fact that if x~Np(,) then the characteristic function of 

x is x(t)=E[ ]=exp{it-½tt}  [where i=(–1)½] it xe 

we can shew that  

 
x~Np(, n 

1 ). 
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8.2 Maximum Likelihood Estimation 

x1, x2, ..., xn independent observations of x~Np(, ) 

Then Lik(, ; X) np n

n

i i
( ) i

exp (x ) (x )

  

        
 


2 2

11 1
2

2 1
 

so (, ; X)=loge(Lik(, ; X)) 

 = 
n

i i
i

(x ) (x )



    11
2

1
   – ½nplog(2) – ½nlog(||) 

 = 
n

i i
i

{ (x x) (x x) n(x ) (x )} 



          1 11
2

1
  

– ½nplog(2) – ½nlog(||) 

 

So, 1n (x
     )  and thus x̂  . 

Further, if we set T=–1 it can be shewn that  

T {n (n )S n(x )(x ) }
          1  

diag{n (n )S n(x )(x ) }        1
2 1  

(where the derivative of the scalar   with respect to the pp matrix T is 

the pp matrix formed by the partial derivatives of   with respect to each 

of the elements tij of T, and where diag{App} is the diagonal matrix 

formed by just the diagonal elements of the pp matrix A, zeroes 

elsewhere. Some details of this are given in the appendix.) 
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So T


 =0 when n

n
ˆ S (x )(x )ˆ ˆ         1  and when x̂   this gives 

the [unrestricted] maximum likelihood estimates of  and  

 

 n
n

ˆx, Sˆ     1  

 

More generally, whatever the mle of  is, if d x ˆ    then we have  

 
n
n

ˆ S dd   1  

 

[This form is sometimes useful in constructing likelihood ratio tests of 

hypotheses that put some restriction on  and so under the null 

hypothesis the maximum likelihood estimate of  is not x . In these 

cases we can easily obtain the maximum likelihood estimate of  and 

thus the value of the maximized likelihood under the null hypothesis.]  
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8.2.1 The Maximized Log–Likelihood 

For the construction of likelihood ratio tests we need the actual form of 

the maximized likelihood under null and alternative hypotheses. 

Typically, the alternative hypothesis gives no restrictions on  and  and 

so the mles under the alternative hypothesis are as given earlier (i.e. 
nˆ 1
nx & S̂    ). The null hypothesis will either impose some 

constraint on  (e.g. H0: =0) or some constraint on  (e.g. H0: =0 or 

H0: =1). In these cases we obtain the estimate of  and then use the 

more general form given above.  

For example, under H0: =0 we have ̂=0 and so this gives  

 
n

n
i in n

i

ˆ S (x )(x ) (x )(x )



            1 1
0 0 0

1
0  = S† 
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To calculate the actual maximized likelihood in either case usually 

requires the use of a slick trick in manipulating matrices. This is the 

following: 

 First note that a vector product such as yAy where y is a p-vector 

and A is pp is a scalar (i.e. 11) 

 Next note that since this is a scalar we have trace(yAy)=yAy  

(only one diagonal element in a 11 matrix).  

 Next, applying the rule that trace(BC)=trace(CB), if both products 

are defined, gives yAy=trace(Ayy) 

 Next, noting that trace(B+C)=trace(B)+trace(C) gives   

   
n n

i i i i
i i

y Ay trace{A y y }
 

  
1 1

The advantage of this is that the matrix product on the right hand side 

might reduce to the identity matrix whose trace is easy to calculate. 
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Now we have (, ; X)=loge(Lik(, ; X)) 

 = 
n

i i
i

(x ) (x )



    11
2

1
   – ½nplog(2) – ½nlog(||) 

 = 
n

i i
i

{ (x x) (x x) n(x ) (x )} 



          1 11
2

1
  

– ½nplog(2) – ½nlog(||) 

and 
n

i i
i

(x x) (x x)



   1

1
 = trace{

n

i i
i

(x x) (x x)



   1

1
} 

  =trace{
n

i i
i

(x x)(x x)



  1
1

} = trace{–1(n–1)S}  

  = (n–1)trace{–1S} 

 

So (,;X) = 
n

i i
i

{ (x x) (x x) n(x ) (x )} 



          1 11
2

1
  

– ½nplog(2) – ½nlog(||) 

 

  = –½(n–1)trace{–1S} – n trace{ (x )(x ) }     1
2  

– ½nplog(2) – ½nlog(||) 

 

© NRJF 1982 216



Multivariate Data Analysis: Chapte 8:– Statistical Analysis of Multivariate Data 

and so  
,

ˆmax ( , ;X) ( , ;X)ˆ
 

     

  = –½(n–1)tr{–1S} – 0 – ½nplog(2) – ½nlog(| |) 

  = –½(n–1)tr{nS–1S/(n–1)}) – ½nlog|(n–1)S/n| 
– ½nplog(2 

  = –½ntr{Ip} – ½nplog((n-1)/n) – ½nlog|S| –½nplog(2) 

 

= –½np – ½nplog((n-1)/n) – ½nlog|S| –½nplog(2)  

 

More generally, whatever the mle of  is,  

if d= x ˆ   then we have n
n

ˆ S dd   1 and  

,
ˆmax ( , ;X) ( , ;X)ˆ

 
       

  = –½ ˆtr{  [(n )S ndd ]} 1  – ½nplog(2) – ½nlog(| |)  1 ̂

 
= –½np –  ½nplog(2) – ½nlog(| ̂  |)  

 

= –½np –  ½nplog(2) – ½nlog(| n
n S dd 1 |) 
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8.3 Related Distributions 

8.3.0 Introduction 

This section introduces two distributions related to the multivariate 

normal distribution. The densities are not given (they can be found in 

standard texts) but some basic properties of them are outlined. Their 

use is in the construction of tests, specifically in determining the 

distribution of test statistics. They are generalizations of familiar 

univariate distributions and their properties match those of their 

univariate special cases. 

 

8.3.1 The Wishart Distribution 

If X=(x1, x2, ... , xn), and if Mpp=XX  with xi~Np(0,), (i.i.d) 

then M~Wp(,n) — the Wishart distribution with scale matrix  and n 

degrees of freedom. 

This is a matrix generalization of the 2-distribution :—  

  if p=1 then M=  with xi~N(0,2) 
n

i
i

x

 2

1

Note that it is a ½p(p+1)–dimensional distribution (M is symmetric). 

Its ‘standard form’ is when =Ip. 
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Its properties are generalizations of those of the 2-distribution,  

e.g. additivity on the degrees of freedom parameter:  

  if U~ Wp(,m) and V~Wp(,n) independently 

    then U+V~Wp(,m+n) 

Its key use is as an intermediate step in deriving the distribution of things 

of real interest.  

 

In particular, if S= 
n

i in
i

(x x)(x x)


 1
1

1
, the sample variance, then 

 

 

(n-1)S~Wp(, n-1) independently of x  
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8.3.2 Hotelling’s T2–Distribution 

This is a univariate distribution of a scalar random variable, it is a 

generalization of student’s t-distribution or Snedecor’s F-distribution. 

 

Definition: If d~Np(0,Ip) and M~Wp(Ip,n) independently then  

ndM–1d~T2(p,n)   

  — Hotelling’s T2, parameter p, degrees of freedom  n. 

 

In particular, if x~Np(, ) and M~Wp(, n) then we have 

   n(x–)M–1(x–)~T2(p,n) 

 (— prove by writing d=–½(x–) and M=–½M–½) 

 

and especially; 

 
n( x–)S–1( x–)~T2(p,n–1) 

 

(Noting the independence of x  and S). 
This is the basis of one and two sample tests. To evaluate p-values we 

use the following  

Theorem: 
np

p,n pn pT (p,n) F   2
11  

 

Proof: Not given — see any standard text. 

 

This allows us to calculate a T2 value, multiply by (n–p+1)/np and then 

refer the result to F–tables with p and (n–p+1) degrees of freedom.
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8.4 Simple one– & two–sample tests 

8.4.1 One–sample tests 

If x1, x2, ..., xn are independent observations of x~Np(, )  

then we have n( x–)S–1( x–)~T2(p,n–1),  

so (n ) p
(n )p
  


1
1

1 n( x–)S–1( x–)~Fp,n–p  

i.e. n pn
n p


1 ( x–)S–1( x–)~Fp,n–p 

So we can test e.g. H0: =0 vs 0 since under H0 we have  
n pn

n p


1 ( x–0)S–1( x–0)~Fp,n–p and so we reject H0 when this is 

improbably large when referred to an F-distribution with (p,n–p) degrees 

of freedom. 
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8.4.2 Two–sample tests 

The Mahalanobis distance between two populations with means 1 and 

2 and common variance  is defined as  where 

  2 = (1–2)–1(1–2) 

If we have samples of sizes n1 and n2; means x 1 and x 2; variances S1 

and S2 then we define the sample Mahalanobis distance as 

  D2 = ( x 1– x 2)S–1( x 1– x 2) 

where S=[(n1–1)S1+(n2–1)S2]/(n–2) (i.e. the pooled variance [or pooled 

variance-covariance]); n=n1+n2  

Now if 1=2 then D2~ n
n n1 2

T2(p,n–2)  

since we have x i~Np(i,ni
-1) and (ni–1)Si~Wp(,ni–1); i=1,2 

so x 1– x 2~Np(1–2, n
n n1 2

) and (n–2)S~Wp(,n–2) 

and hence the result follows. 

The use is to test H0: 1=2 since we can reject H0 if 
n n (n p )

n(n )p D 


1 2 1 2
2  is improbably large when compared with Fp,n–p–1. 
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8.4.3 Notes 

 These one and two sample tests are easy to compute in R, 

S-PLUS or MINITAB by direct calculation using their matrix 

arithmetic facilities. The two-sample test can be calculated using 

the general MANOVA facilities, see §8.7.4 below. 

 The library ICSNP contains a function HotellingsT2(.) which 

provides one and two sample tests. 

 Note that in one dimension the best practice is always to use the 

separate variance version of the two-sample t-test. In principle it 

would be good to do the same in higher dimensions but there is 

no available equivalent of the Welch approximation to obtain 

approximate degrees of freedom for the T2-distribution so the 

pooled variance version is just a pragmatic expedient.   
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Tasks 8 
(see §8.0–§8.3) 

1) Read §8.1 – §8.4 paying particular attention to the results highlighted 

in boxes as well as §8.3.2 and §8.4. 

2) n observations are available on x~Np(,) and C is a known pq 

matrix (p>q). By finding the distribution of y=Cx (by calculating the 

mean and variance of y and using the result that [non-singular] linear 

transformations of Normal random variables are also Normal with 

appropriate mean, variance & dimension), shew that a test of 

H0: C=0 vs. HA: C  0 is given by Hotelling’s T2 with 

T2=n x C(CSC)–1C x   ( xand S are the sample mean and variance). 

What parameters does the T2 distribution have? 

3) Note: parts (i) & (ii) below should give the same p-value. 

i) A sample of 6 observations on sugar content x1 and stickiness 

x2 of a novel toffee give sample statistics of   

    x and S






 









8117
60 33

27 02 7 94
4 26

.

.
. .
* .

  

Test the hypothesis H0: 21=32  using a Hotelling’s T2-test  

[Suggestion: consider using the 21 matrix C=(2, –3)] 

ii) By noting that  if x = (x1,x2) ~ N2(,) where  = (1,2) and 

 has element ij then 2x1–3x2 ~ N((21–32),(42
11+92

22–1212)) 

test H0 in i) above using a Student’s t-test. 
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8.5 Likelihood Ratio Tests 

8.5.0 Introduction 

The one and two sample test statistics for =0 and 1=2 given above 

are easily shewn to be likelihood ratio statistics (i.e.  “optimal’’). LRTs 

are a useful general procedure for constructing tests and can often be 

implemented numerically using general purpose function maximization 

routines even when analytic closed forms for maximum likelihood 

estimates are not obtainable. 

 

Suppose data are available from a distribution depending on a 

parameter , where  may be a ‘vector parameter’, i.e. consist of several 

separate parameters,  

 

(e.g. =(,), the parameters of a univariate normal distribution which 

has 2 separate parameters, or e.g. =(,), the parameters of a 

p-dimensional normal distribution has p+½p(p+1)=½p(p+3) separate 

parameters).  

 

Typically, the null hypothesis H0 will specify the values of some of these, 

e.g. in the first case H0: =0 specifies 1 parameter and in the second it 

specifies p of them. 
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The general procedure for constructing a likelihood ratio test 

 (i.e. finding the LRT statistic) of H0 versus HA is: 

1. Find the maximum likelihood estimates of all parameters  assuming 

H0 is true to get ̂ 0 , e.g. with N(,2) or Np(,), if H0: =0 then 

estimate  or  assuming =0 giving in
i

x̂  2 21  or i in
i

x x̂  1   and 

then ̂ 0 =(0, in x
i
 21 ) or ̂ 0 =(0, i in

i
x x1 ) 

2. Find the maximum value of the log likelihood under H0 (i.e. substitute 

the mles of the parameters under H0 into the log likelihood function) to 

get  max
ˆ(H ) ( )  0 0

3. Find the maximum likelihood estimates of all parameters assuming HA 

is true, A̂ . Typically these will be the ordinary mles 
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4. Find the maximum value of the log likelihood under HA (i.e. substitute 

the mles of the parameters under HA into the log likelihood function) to 

get  max A A
ˆ(H ) ( )  

5. Calculate twice the difference in maximized log likelihoods,   

 )}  max A max{ (H ) (H  02 .  

6. Use Wilks’ Theorem which says that under H0 this statistic is 

approximately distributed as 2 with degrees of freedom given by the 

difference in the numbers of estimated parameters under H0  and HA, 

  i.e. ~2
k where k=dim(HA)–dim(H0)  

     or 

7. Find some monotonic function of  which has a recognisable 

distribution under H0. 
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8.5.1 LRT of H0: =0 vs. HA: 0 with =0 known 

 x1, x2, ..., xn independent observations of x~Np(, 0). 

To test H0: =0 vs. HA: 0 with 0 known (i.e. not estimated). 

Now (; X)= log lik(; X)  

  = –½nplog(2)–½nlog|0|–½(n–1)tr{0
–1S}  
–½n( x–)0

–1( x–) 

  = K – ½n( x–)0
–1( x–) 

So under H0 we have (0; X, H0) = K – ½n( x–0)0
–1( x–0) 

i.e. max(H0) = K – ½n( x–0)0
–1( x–0) 

 

Under HA the mle of  is x  giving   max(HA) = K 

 

So the LRT statistic is  

  =2{ max(HA) –  max(H0)} = n( x–0)0
–1( x–0) 

and the test is to reject this if it is improbably large when compared with 

2
p , noting that there are p parameters to be estimated under HA but 

none under H0.  

 

Also note that this is an exact result  

(i.e. not a Wilks’ Theorem approximation)  

since =yy=y2
i with yi~N(0,1) where y=n½0

–½( x -0)~Np(0,Ip). 
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8.5.2 LRT of H0: =0 vs HA: 0 ;  unknown. 

 x1, x2, ..., xn independent observations of x~Np(, ). 

 To test H0: =0 vs. HA: 0. 

Under H0 we have x̂   and =0. 

Under HA we have x̂   and n
n

ˆ   1 S = S say. 

Thus  max(H0) = –½ntr{0
-1S} – ½nplog(2) – ½nlog(|0|) 

and  max(HA) = –½np – ½nplog(2) – ½nlog(|S|) 

So =2{ max(HA) –  max(H0)}=ntr{0
-1S} – nlog(|0

-1 S|) – np 

and the test is to reject H0 if  is improbably large when compared with a 

2 distribution on ½p(p+1) degrees of freedom (using the asymptotic 

result of Wilks’ Theorem). 

 

Notice that tr{0
-1S} =  and |0

-1 S| = 
p

i
i


1

p

i
i


1

 

where i are the eigenvalues of 0
-1S and so we can express  as  

=np(  – log( ) – 1) where    and   are the arithmetic and geometric 

means  respectively of the i. 
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8.5.3. LRT of =1 with known =Ip 

 x1, x2, ..., xn independent observations of x~Np(, Ip). 

 To test H0: =1 vs. HA:  1. 

Let (; X) be the [unrestricted] likelihood of , then 

 (; X)= –½(n–1)trace(S) – ½n( x–)( x–) – ½nplog(2) 

To maximize  () under H0 we need to impose the constraint =1 and 

so introduce a Lagrange multiplier and let = ()–(–1). 

Then n(x )
     2   and differentiating w.r.t.  gives =1. 

So we require nx
n 2ˆ    and then =1 implies (n+2)2=n2 x  x  

So x
x xˆ    and  

 max(H0)=–½(n–1)trace(S) – ½n( x– x
x x )( x– x

x x ) –½nplog(2) 

=–½(n–1)trace(S) – ½n x (1– 1
x x )(1– 1

x x ) x–½nplog(2) 

=½(n–1)trace(S) – ½n( x x –1)2 – ½nplog(2). 

Under HA we have x̂   and so  

 max(HA) = ½(n–1)trace(S)– ½nplog(2) 

giving =2{ max(HA) – max(H0)}= n(  x x –1)2  

and the test is to reject H0 when this is improbably large when referred to 

a  distribution. 2
1

 

Note only 1 degree of freedom since  has p independent parameters so 

p are estimated under HA and under H0 with one constraint we have 

effectively p–1 parameters, p–(p–1)=1. 
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8.5.4 Test of =0; =0 known, 0 known. 

 x1, x2, ..., xn independent observations of x~Np(0, ). 

To test H0: =0 vs. HA:   0 where both 0 and 0 are known. 

(Note that under H0,  is the only unknown parameter but under HA all 

½p(p+1) parameters of  are unknown). 

 

Under H0 

 (; X)= –½ntr{(0)–1S†} – ½nlog(|0|)–½nplog(2) 

(where S†= 
n

1
n i 0 i 0

i 1
(x )(x )



     ) 

= –½n–1tr{0
–1S†}–½nplog()–½nlog(|0|)–½nplog(2) 

so 
  ½n–2tr{0

–1S†}–½np–1 

giving 1 †1
p 0

ˆ tr( S )     

so max(H0)=–½np–½nplog( )–½nlog(|0|)–½nplog(2)  ̂

 

Under HA we have  = S† and so  ̂

 max(HA) = –½np – ½nlog(|S†|) – ½nplog(2) 
 

Then the LRT statistic is 2{ max(HA) –  max(H0)} and this would be 

compared with  where r=½p(p+1)–1, using Wilks’ Theorem. 


2
r

 

Although this is not in a ‘simple’ algebraic form, it can be calculated 

numerically in practice and the test evaluated. 
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8.5.5 Comments 

 Examples 8.5.1 and 8.5.2 are multivariate generalizations of 

equivalent univariate hypotheses, and a useful check is to put 

p=1 and verify that the univariate test is obtained. (In Example 

8.5.2. note that the ‘eigenvalue’ of a ‘11 matrix’ (scalar) is the 

scalar itself). 

 Examples 8.5.3 and 8.5.4 illustrate the more structured 

hypotheses that can be tested in multivariate problems; they have 

no counterpart in univariate models. 

 Such LRTs are a powerful all-purpose method of constructing 

tests and can often be implemented numerically even if algebraic 

analysis cannot produce mles in closed form.  

 Further, they are an elegant application of general statistical 

theory and have various desirable properties — they are 

guaranteed to be [asymptotically] most powerful, i.e. they are 

more likely than any other test to be able to detect successfully 

that the null hypothesis is false provided that the sample is large 

enough and provided that the parent distribution of the data is 

indeed that presupposed  (e.g. multivariate normal). 
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 However, a difficulty in multivariate problems involving hypothesis 

testing is that when a hypothesis is rejected it may not be 

apparent just ‘why’ it is false. This is not so in univariate 

problems; if we have a model that univariate x~N(, 2) and we 

reject  H0: =0 then we know whether x>0 or x<0 and hence 

‘why’ H0 is false. In contrast, if we have a model that multivariate 

x~Np(,) and we reject  H0: =0 then all we know is that there is 

evidence that   

   (1, 2,...,p) (01, 02,...,0p).   

  [For multivariate  we cannot say >0].   

It may be that only one component in 0 is not ‘correct’ and that 

i=0i for all the others. That is we do not know the direction of 

departure from H0.  

 That is, a likelihood ratio test may be able to reject a hypothesis 

but not actually reveal anything interesting about the structure of 

the data, e.g. knowing that H0 was ‘nearly’ correct and only one 

component was wrong could provide a useful insight into the data 

but this might be missed by a LRT. 

 This leads to considering a different strategy for constructing 

tests which might provide more information for data analysis, 

though if they actually produce a different test from the LRT then 

they may not be so powerful (at least for sufficiently large data 

sets). 
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Tasks 9 
(see §8.3) 

1) Read the solutions to Exercises 2. These contain a detailed guide to 

the interpretation of principal components and of crimcoords by 

examining the loadings of the variables in the PCs and Crimcoords 

and so provide further practice at this important aspect. 

2) Referring to the data set dogmandibles. excluding the Prehistoric 

Thai dogs (group 5 on X11) test the hypotheses that Male and 

Female dogs have  

i) equally sized mandibles (i.e. variables X1 & X2 together) 

a) equally long mandibles (variable X1) 

b) equally broad mandibles (variable X2) 

ii) equal overall mandible characteristics (i.e. variables X1–X9) 

3) Test the hypotheses that Iris Versicolor and Iris Virginica have 

i) equally sized sepals 

ii) equally sized petals 

iii) equally sized sepals & petals. 
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8.6 Union–Intersection Tests 

8.5.0 Introduction 

Union-Intersection Tests (UITs) provide a different strategy for 

constructing multivariate tests. They are not available in all situations 

(unlike LRTs), they do not have any general statistical optimal properties 

(again unlike LRTs) and sometimes they produce test statistics that can 

only be assessed for statistical significance by simulation or Monte Carlo 

or Bootstrap procedures. However, they will automatically provide an 

indication of the direction of departure from a hypothesis (just as in 

univariate problems it is apparent whether the sample mean is too big or 

too small).   

 

The method is to project the data into one dimension (just as with many 

multivariate exploratory data analytic techniques) and test the 

hypothesis in that one dimension. The particular dimension chosen is 

that which shews the greatest deviation from the null hypothesis, again 

there are close analogies with multivariate EDA. 

 

The validity of the procedure relies on the Cramér–Wold Theorem which 

establishes the connection between the set of all one-dimensional 

projections and the multivariate distribution. 
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8.6.1 The Cramér–Wold Theorem 

The distribution of a p-vector x is completely determined by the set of all 

1-dimensional distributions of 1-dimensional projections of x, tx, where 

t{all fixed p-vectors} 

Proof: Let y=tx, then, for any t, the distribution (and hence the 

characteristic function) of y is known and is, say,  

y(s) = E[eisy] = E[ ist xe  ] 

Putting s=1 gives y(1) = E[ it xe  ] is known for all tp.  

But E[ ]=x(t), the characteristic function of x, it xe 

i.e. x(t) is known for all tp,  

i.e. the distribution of x is determined by specifying the distributions of tx 

for all tp. 

 

Importance: is that any multivariate distribution can be defined by 

specifying the distribution of all of its linear combinations (not just the p 

marginal distributions), e.g. if we specify that the mean of all one-

dimensional projections of x is 0, then necessarily the mean of the p-

dimensional distribution must be 0 (the converse is true also of course).  

Note that specifying that the p marginals have a zero mean is not 

sufficient to ensure that the p-dimensional distribution is zero. 
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8.6.2 An Example of a UIT 

Suppose x~Np(,Ip). Then for any p-vector  we have that if y=x then 

y~N(, Ip), i.e. y~N(, ) 

[and note that the C–W theorem shews the converse is true.] 

Suppose that we want to test the hypothesis H0: =0, based 

just on the single observation x. 

Then, under H0, we have that for all ,  H0: y~N(0,) is true. 

    i.e. H0 true  H0 true for all  

and (by the C–W theorem) H0 true for all   H0 true. 

i.e. H0 =  H0



H0 is the ‘intersection’ of all univariate hypotheses H0. 

For any , H0 is a ‘component’ of H0. 

 

Now for any specific , H0 is the hypothesis that the mean of a normal 

distribution with known variance 2= is zero, and we would reject H0 

at level  if y c

 
  , for some suitable c  

  (actually the upper 100×½% point of N(0,1).) 

i.e. the rejection region for H0 is  

 {y: 
y c

 
 } = {x: x c

 
 }= R say 

and we reject H0 if xR. 
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Further: H0 is true if and only if every H0 is true. 

i.e. if any of the H0 is false then H0 is false. 

So a sensible rejection region for H0 is the union of all the rejection 

regions for the component hypotheses H0, i.e. reject H0 if x .  R



 

i.e. reject H0: =0 if in any one-dimensional projection of x, x, is 

sufficiently different from 0. 

 

  x 

 

‘x 

   
x 

opt 

‘optx 

‘opt0 

optx

‘0 

 

 

 

 

      

 

 

 

 

 

 

— if H0 is rejected then we know which  (or s) “cause” the rejection, 

and hence the direction of deviation from H0. 

 

[c.f. a 2-sided test in the univariate case, then we know whether the 

mean is large or small] 

 

© NRJF 1982 238



Multivariate Data Analysis: Chapte 8:– Statistical Analysis of Multivariate Data 

 

8.6.3 Definition  

A union–intersection test of a multivariate hypothesis is a test 

whose rejection region can be written as a union of rejection 

regions R, where R is the rejection region of a component 

hypothesis H0, where H0 is the intersection of the H0. 

 

 

Ex 8.6.2. continued 

In the above case we reject H0 if for any  we have y c

 
 . 

i.e. H0 is not rejected (i.e. ‘accepted’) iff y c

 
  for all , 

i.e. iff ymax c

 
 ,  

i.e. iff 
2y 2max c

 
  

i.e. iff y y 2max c 
 
  

i.e. iff 2xx 'max c 
 

  
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Now xx ' 
   is invariant under scalar multiplication of , so we can impose 

the [non-restrictive] constraint =1 and maximize xx subject to this 

constraint. 

Introducing a Lagrange multiplier gives the problem:  

 maximize =xx – (–1) w.r.t.  and . 

Differentiating w.r.t.  gives   xx –  = 0  

so  is an eigenvector of xx  

Now xx is of rank 1 and so has only one non-zero eigenvalue. 

This eigenvector of xx is x with eigenvalue xx: 

Check: (xx)x – x=0 if =xx  

(since (xx)x=x(xx), noting xx is a scalar). 

i.e. xx ' x xx x
x xmax x x   

  
   

So the UIT of H0 is to reject H0 if xx>c, c chosen to give the desired size 

of test. Now xx~ 2
p  under H0, so for a size  test take c=upper 100% 

point of . 2
p

 

This is actually the same as the LRT. For this problem and clearly telling 

the direction of deviation from =0 is not difficult with just a single 

observation. The following examples illustrate cases where more 

information is obtained from the UIT over and above that gained from 

the LRT. 
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8.6.4  UIT of H0: =0 vs. HA:   0,  unknown. 

 x1, x2, ..., xn independent observations of x~Np(, ). 

To test H0: =0 vs. HA: 0 with  unknown (i.e. to be estimated). 

Let  be any p-vector, and y=x then y~N(, ), 

i.e. y~Ny, 2
y) say. 

A component hypothesis is H0: y=0y       (0y=0) 

This needs a test of a univariate normal mean, with unknown variance 

 usual one-sample t-test and we look at 

0y

21
n y

y
t

s


 
   where 

n n
2 21 1

n 1 n 1y i
i 1 i 1

s (y y) ( x 
 

2x)         

 =
n

1
n 1 i i

i 1
(x x)(x x) S



          

Also y–0y= ( x–0) and  

 ( y–0y)2 = {( x–0)}2 = ( x–0)( x–0) 

so 2 0 0n (x )(x )t
S

      


 
 and the component hypothesis H0 is 

rejected if this is large.  

The union–intersection test statistic is obtained by maximizing  with 

respect to :  

2t

i.e. it is t2 = 2 0 0n (x )(x )max t max
S 

      


 
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Now t2 is invariant under scalar multiplication of  so impose the [non-

restrictive] constraint S=1 and maximize instead  

 = n( x–0)( x–0) – (S–1) w.r.t.  and . 

Differentiating w.r.t.  shews that  satisfies  

 n( x–0)( x–0) – S = 0 

i.e. nS–1( x–0)( x–0) –  = 0 

i.e  is the eigenvector of the [rank 1 pp matrix]  

nS–1( x–0)( x–0) corresponding to the only non-zero eigenvalue. 

Now this eigenvector is S–1( x–0)  

(or more exactly a scalar multiple of it to satisfy S=1) 

Check: [nS–1( x–0)( x–0)].[ S–1( x–0)] –  S–1( x–0) = 0  

for = n( x–0)S–1( x–0) 

So t2 = n( x–0)S–1( x–0) which is Hotelling’s T2 and thus the UIT is 

identical to the LRT.    

Further, if H0 is rejected then this shews that the direction of deviation is 

along the vector S–1( x–0), and we can interpret this direction by looking 

at the magnitude of the loadings on the individual components, just as in 

PCA and LDA. 

i.e. not just along the difference ( x–0) but adjusted to take account of 

the differing variances of the components of S.  

If S=2Ip  then the direction of deviation is along ( x–0). 
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8.6.5 UIT of H0: =0 vs HA:   0 ;  unknown. 

 x1, x2, ..., xn independent observations of x~Np(, ). 

 To test H0: =0 vs. HA: 0. 

[N.B. The LRT for this problem was considered in 4.5.2] 

 

H0: 2
y = 2

0y, tested by U=(n–1)s2
y /2

0y    (~2
n-1 under H0) 

rejecting if either U<c1, or U>c2, . 

So, the UIT is obtained by rejecting H0  

 if min{U} < c1   or  if max{U} > c2 

(where c1 and c2 are chosen to give the test the desired size). 

 

Now U=(n–1)S/0 which is max/minimized when 

 (n–1)0
–1S –  = 0 and 0=1 

We have that if (n–1)0
–1S –  = 0 and 0=1 then (pre-multiplying 

by 0)  (n–1)S = 0 =  

And so max{U}=1 and min{U}=p where 1>2>...>p are the 

eigenvalues of 0
–1S. 

Thus the test is: 

 not the same as the LRT 

 indicates that the direction of deviation is along one or other of 

the first or last eigenvectors (and which it is will be evident from 

whether it is 1 that is too big or p that is too small) 

 requires simulation to apply in practice since there are no general 

results for UITs comparable to Wilks’ Theorem for LRTs 
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8.7 Multisample Tests — Multivariate Analysis of Variance 

 

Setup: k independent samples from Np(i, ) of sizes ni 

To test H0: 1=2= . . . =k  (= say) vs HA: at least one i  . 

 

8.7.1 Likelihood Ratio Approach:–  Wilks –test 

 (1,2,...,k,; X) =  

  ii i
k

n pn n1 11
2 2 2 2i i i i i i

i 1
log | | log(2 ) (n 1)tr( S ) tr (x )(x ) 



              

(i.e. the sum of the k separate log-likelihoods of the individual samples) 

 

Under H0 we have a sample of size n=
k

i
i 1

n

  from Np(,), so mles are 

n 1
n

ˆx, Sˆ      and so np npn n 1
2 n | S

2 2max 0(H ) log( |) log(2 )     , 

noting   i
k

n1 11
2 2i i i i

i 1

ˆ ˆ(n 1)tr( S ) tr (x )(x )ˆ ˆ 



          

 
i

i

nk
n1 11 n n

2 n 1 2 n 1ij i ij i i i
i 1 j 1

tr( S (x x )(x x ) tr S (x x)(x x) 
 

 

         
 

  and 

ink

ij i ij i i i i
i 1 j 1

(x x )(x x ) n (x x)(x x) (n 1)S
 

         
 

   

Under HA we have i xˆ i   the ith sample mean, 

 and 
k

n k 1
n n i

i 1

ˆ W (n 1


i)S    (W as defined in §3.0) 

and so   np npn n k
2 n 2max A(H ) log | W | log(2 )     2

  

 , noting 

1 1
i i i i i i i i

ˆ ˆ(x )(x ) (x x )(x x ) 0ˆ ˆ           

and thus 2[ max(HA) – max(H0)]=nlog   |S|n 1
n k |W|

   

and so a likelihood ratio test statistic for H0 is 1|S|
|W| | W S | , rejecting H0 if 

this is improbably large. 
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Now 
k

i i i
i 1

(k 1)B n (x x)(x x) (n 1)S (n k)W


         

and so an equivalent test statistic is |W–1[(k-1)B+(n-k)W]|  

or equivalently |Ip+ k 1
n k

 W–1B| rejecting if this is large  

or equivalently =|Ip+ k 1
n k

 W–1B|–1, rejecting if this is small. 

 

 is said to have a Wilks’ -distribution (p,n–k,k–1) which for some 

values of p, n, k (in particular k=2 or 3) is closely related to an 

F-distribution. Additionally, for other values of p, n and k, F and 2 

approximations are available and Biometrika Tables, vol 2, give 

percentage points. For k=2 this test reduces to the 2-sample Hotelling’s 

T2 test (see §8.3.2). 

 

8.7.2 Computational Note 

 In R and S-PLUS the function manova(.) provides facilities for 

multivariate analysis of variance. 

 MINITAB provides Wilks’ test (complete with p-values, exact for 

k3, approximate otherwise) for one-way multivariate analysis of 

variance in the menu Stat>ANOVA>Balanced MANOVA...)  

 In MINITAB the menu Stat>ANOVA>General MANOVA... provides 

the same facility. 
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8.7.3 The Union-Intersection Test 

Following the usual procedure, if  is any vector then the test statistic for 

testing H0 is F=B/W whose maximum value is the largest 

eigenvalue of W–1B (see §4.3 on Crimcoords). 

For k=2 this reduces to the 2-sample Hotelling’s T2 test (which is the 

same as the LRT) but for k>2 the UIT and LRT are different. 

The null distribution of this largest eigenvalue is closely related to Roy’s 

Greatest Root Distribution, see Biometrika Tables Vol. 2. 

 

8.7.4 Further Notes 

 R, MINITAB and S-PLUS provide Roy’s statistic as well as Wilks’ 

statistic in the routines referred to in §8.7.2.  

 In addition they produce two further statistics:– Pillai’s Trace and 

the Lawley-Hotelling Trace. The first of these is the trace of the 

matrix B(B+W)–1 and the second is the trace of W–1B.    

 Wilks’ test statistic can be expressed as the product of all the 

eigenvalues of W(B+W)–1.  

 All four of these statistics measure or reflect the ‘magnitude’ of 

the matrix W–1B which is the obvious multivariate generalization 

of the F-statistic in univariate 1-way analysis of variance. 

Generally, all four tests should lead to equivalent conclusions — 

if they do not then there is something very unusual about the data 

which needs further investigation. 
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 Hotelling’s T2 statistic is most easily computed as (n–2)× Lawley-

Hotelling Trace, using the MANOVA option described above, n 

the total number of observations. 

 In principle further extensions of MANOVA (e.g. 2-way or General 

Multivariate Linear Model) are possible.  MINITAB does not provide 

these — if you specify a two factor model in the Balanced Anova 

or General Linear Model menu and then ask for multivariate tests 

it will give you only two separate 1-way MANOVAs, even though 

it gives the full 2-way univariate ANOVAs for each component. 

 MANOVA is rarely the only stage in the analysis, not least 

because the interpretation of the results is often difficult. It is 

always useful to look at the separate univariate ANOVAs, 

supplemented by the first eigenvector of W–1B. 
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 A key advantage of MANOVA over p separate univariate 

ANOVAs is when an experiment consists of measuring lots of 

variables on the same individuals in the hope that at least one (or 

even some) will shew differences between the groups, but it is 

not known which of the p variables will do so.  This is a multiple 

comparison problem which is partially overcome by performing an 

initial MANOVA to see whether there are any differences at all 

between the groups. If the MANOVA fails to reveal any 

differences then there is little point in investigating differences on 

separate variables further. If there is some overall difference 

between the groups then examination of the coefficients in the 

first eigenvector of W–1B, together with informal examination of 

the individual ANOVAs will indicate which variables or 

combination of variables (i.e. directions) contribute to the 

differences. 
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8.8 Assessing Multivariate Normality 

If a p-dimensional random variable has a multivariate normal distribution 

then it follows that the p one dimensional marginal components must be 

univariate normal. However, the converse does not follow, it is possible 

that a p-dimensional viable has univariate Normal components but is not 

multivariate normal. This peculiarity means that although it is sensible to 

check each marginal component of sample data for Normality (e.g. by 

probability plotting) it does not follow that the multivariate data are 

satisfactorily multivariate Normally distributed for the statistical tests and 

other procedures to be appropriate.  A further check is provided by the 

fact that the squared Mahalanobis distances of each observation from 

the mean 
2 1
i i iD (x x) S (x x )    

have approximately a chi-squared distribution with p degrees of 

freedom, .  These distances will not actually be independent but are 

nearly so, consequently a test of Normaility is provided by assessing the 

 as a sample of observations from a 

2
p

2
iD 2

p -distribution.  Everitt provides 

a function chisplot() for producing a chi-squared probability plot (i.e. 

ordered observations against quantiles of 2
p ).   As an example, consider 

Everitt’s air pollution data airpoll and the variables Education and 

Nonwhite considered in §0.8.  First there are the two Normal probability 

plots of the marginal components (which give clear cause for concern) 

followed by the chisquared plot which is also not very satisfactory: 
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> attach(airpoll) 
> par(mfrow=c(1,2)) 
> X<-cbind(Education,Nonwhite) 
> qqnorm(X[,1],ylab="Ordered observations") 
> qqline(X[,1]) 
> qqnorm(X[,2],ylab="Ordered observations") 
> qqline(X[,2]) 
> 
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> par(mfrow=c(1,1)) 
> chisplot(X) 
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8.9 Summary and Conclusions 

 This chapter has illustrated the extension of basic univariate 

results to multivariate data.  

 Multivariate Normal, Wishart and Hotelling’s T2-distributions were 

introduced. 

 The sample mean and variance are unbiased estimates of the 

population mean and variance.  

 If additionally, the data are Multivariate Normal then the sample 

mean is also Normal, the variance is Wishart and they are 

independent. 

 One and two-sample T2-tests are direct generalizations of 

univariate t-tests. 

 Generalized likelihood ratio tests can be constructed of 

hypotheses which cannot arise in one dimension. 

 Union-Intersection tests provide an alternative strategy for 

constructing tests. These have similarities with multivariate EDA 

techniques such as PCA and LDA in construction and 

interpretation of ‘directions’. 

 All standard tests can be performed in standard packages. 
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© NRJF 1982 252

Tasks 10 
(see §8.6) 

1) Suppose we have samples of sizes n1 and n2 with means x 1 and x 2 

and variances S1 and S2 from populations Np(1,1
2) and Np(2,2 ), 

let S=[(n1–1)S1+(n2–1)S2]/(n–2) where n=n1+n2. 

2

i) Shew that the UIT of H0: 1 = 2 vs HA: 1   2 is given by 

Hotelling’s 1 2
1 2 1 2nT (x x ) S (xn n2 1  x )  

ii) Deduce that the greatest difference between the two 

populations is exhibited in the direction 1
1 2 . S (x x )

[Suggestion: adapt the argument of §8.6.4] 

 

2) Referring to the data set dogmandibles. excluding the Prehistoric 

Thai dogs (group 5 on X11) 

i) What combination of length and breadth of mandible exhibits 

the greatest difference between Males and Females? 

ii) What combination of length and breadth of mandible exhibits 

the greatest difference between the four species? 
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9 Statistical Discriminant Analysis  

9.0 Introduction 

Suppose we collect data on ‘objects’ which can be classified into one or 

other of k known categories (k2). 

e.g. ‘objects’  patients and the k=3 categories are 

Rheumatoid Arthritis / Psoratic Arthritis / Psoriasis 

e.g. ‘objects’  iris flowers and the k=3 categories are setosa 

/ versicolor / virginica. 

Suppose further that we measure p variates on each ‘object’ to obtain a 

p-dimensional datum x, so xp — p-dimensional space. 

 

A discriminant rule, d, is a partition of p
 into k regions R1, R2, ..., Rk (so 

=p and Ri  Rj=) such that if xRj then we classify x (i.e. the 

‘object’ with measurements x) as in category j.  

k

i
i 1

R



This is a formal way of saying that a discriminant rule, d say, is a way of 

deciding unambiguously which category an object x belongs to, just on 

the basis of the measurements x. 
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The informal or data-analytic methods of classification considered in 

§4.6 were proposed on intuitive or ad hoc grounds but will all lead to 

discriminant rules, which potentially are different from each other. 

Statistical discriminant analysis is concerned with  

 Regarding the measurements x as observations of some random 

variable whose distribution depends upon which category x 

belongs to, i.e. if xcategory j then the density of x is fj(.)  

 How can we construct a discriminant rule from data x1, x2, ..., xn 

known to belong to specified categories 

 What are the [statistical] properties of the rule and in particular 

how can we evaluate one rule d in relation to another d. 

Two cases need to be distinguished: 

(i) All fj(.) known completely 

(ii) fj(.) not known but observations from known categories are 

available 

Case (ii) can be subdivided into  

(ii)a fj(.) assumed to be of known parametric form depending on 

unknown but estimable parameters 

(ii)b no such assumption made 

 

Generally, the most exact statistical theory is available only for the case 

(i) which is unrealistic in practice — extensions to case (ii) are made on 

the basis of appeals to asymptotic theory of large samples etc and 

largely consist of estimating any unknown parameters (or densities) and 

then proceeding as if the densities were known, as in case (i). 
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9.1 Discrimination with k known category densities  
(i.e. all fj(.) known completely) 

9.1.1 The Maximum Likelihood Discriminant Rule 

The maximum likelihood discriminant rule is to allocate x to that category 

which gives the greatest likelihood to x.  

i.e. allocate x to category j where fj(x)=   
k

i
i 1

f (x)max


[Note that technically we should only consider likelihoods of  

parameters for given data, not of data themselves. Here we 

are effectively considering the index j of the categories as 

the parameter and so are considering the likelihood of j for 

data x]. 

 

Ex 9.1.1.1  Two one-dimensional Normal populations 

p=1, k=2,  x~N(ui, i
2) if in category i, i=1,2. 

 

We allocate x to category 1 if f1(x)>f2(x). i.e. if 

    2 1 2

1 1 2

2 2x x1 1
2 2exp 1  

      

i.e. if       2 2
1 2 1 2 2

2 2 2 2 2 2 11 2 1 2 1 2

2 1 1Q(x) x 2x 2log( ) 0    
     

          

 

Suppose 1>2 and the coefficient of x2 in Q(x) is negative.  

Then Q(x) < 0 if x is sufficiently small or sufficiently big. 
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1 2

R2

R1R1

 

 

R1 
R2 

Q(x) 

 

 

 R1

 

 

If 1=2 then log(2/1)=0 and the rule becomes allocate to 1 if  

|x–1| < |x–2| 

i.e. if 1<2 then allocate to 1 if x<½(1+2) 

 

 

1 2

R2R1

 

 

 

 

 

 

 

 

 

 
R1 R2  

1 2  
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Ex 9.1.1.2 p dimensions, k Normal populations 

means i, common variance . 

fi(x)=(2)–p/2||–½exp{–½(x–i)–1(x–i)} 

which is maximized when (x–i) –1(x–i) is minimized, 

i.e. allocate x to the category whose mean has the smallest Mahalanobis 

distance from x. 

 

 

Comments 9.1.1.3 

When k=2, Ex 8.1.1.2 reduces to the rule: allocate x to category 1  

if (1–2)–1(x–)>0, where =½(1+2). 

i.e. the dividing point (p=1), line (p=2), plane (p=3), hyperplane (p>3) 

between populations 1 & 2 with the same variances is  

(1–2)–1(x–)=0 

i.e. the Maximum Likelihood Discriminant Function for two Normal 

populations with the same variances is linear. 

i.e. the boundary  between the allocation regions is a hyperplane 

passing through , the mid-point of the line joining 1 and 2 (though is 

not necessarily perpendicular to this line). 
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9.1.2 Bayes Discriminant Rules 

In some circumstances it is sensible to recognise that there are differing 

a priori probabilities of membership of categories. For example, in 

medical diagnosis some conditions may be very rare and others very 

common although the symptoms (i.e. measurements available) may be 

very similar for the differing conditions (e.g. ‘flu and polio).  In these 

cases it is reasonable to make some allowance for this and shift the 

balance of classifying towards the more common category. 

If the k categories have prior probabilities 1, 2, ..., k  then the Bayes 

Discriminant Rule is to allocate x to that category for which ifi(x) is 

greatest. 

The Maximum Likelihood Rule is equivalent to a Bayes Discriminant 

Rule if 1=2= ... =k=k–1 i.e. the prior probabilities are equal. 
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9.2 Discrimination Under Estimation 

9.2.1 Sample ML Discriminant Rule 

 Suppose we know the form of the distributions fj(.) up to a few 

unknown parameters and that we have ni observations known to be 

from category i, each i=1, 2, ..., k. The idea is to replace unknown 

parameters in 8.1 by their mles. The approach is pragmatic and the 

theoretical justification is an appeal to the consistency of mles (i.e. for 

‘large’ samples). 

 

In particular, in the case k=2, two normal populations Np(i,) (common 

variance) then estimate 1 and 2 by the sample means and  by the 

pooled sample variance and then the rule becomes to allocate x to 

category 1 if (x x ) W {x (x x )}  1 1
21 2 1 2 0  

where 
2

1
n 2 i

i 1
W (n 1



  i)S , the pooled sample variance. 

 

Ex 9.2.1.1 Iris Setosa and Versicolor 

Taking just sepal length and width gives  

x x W1 2
5 01
3 43

5 94
2 77

0195 0 092
0 092 0121








 







 









.

.
,

.

.
,

. .

. .
 

so (x x ) W ( . , . )  1 2
1 11 44 14 14  and the rule is to  

allocate x=(x1, x2) if ( . , . )
( . . )
( . . )


 
 









 1144 1414

5 01 5 94
3 43 2 77

01
1
2

2
1
2

x
x

 

i.e. if  –11.44x1 + 14.14x2 + 18.74 > 0. 
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9.2.2 The Likelihood Ratio Discriminant Rule 

This is a subtly different generalization of §8.1.  

Let Hi : x and the ni observations known to be from category i are all 

from category i, all others from known categories. 

The rule is to allocate x to category j where  
k

max j max ii 1
(H ) max{ (H )}


 

The distinction is that x is included in the ML estimation. 

 

Ex 9.2.2.1 Two Normal populations Np(i, ) 

ni observations from category i with means xi , variances Si, i=1,2. 

Let H1: x from population 1. Then under H1 we have n1+1 observations 

from population 1 which have mean n x x
n
1 1

1 1

  and n2 from population 2. 

So under H1 we have 1 1
1 1

1
 


n x x
n and 2 2 x  and the m.l.e of  is 

 1

1 2 1

n1
n n 1 n 11 1 1 2 2 1

ˆ (n 1)S (n 1)S (x x )(x x )           1  

and under H2 we have 1  x1 and 2 1
2 2

2
 


n x x

n  and the m.l.e of  is 

 2

1 2 2

n1
n n 1 n 12 1 1 2 2 2

ˆ (n 1)S (n 1)S (x x )(x x )           2  
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Now 1
2max 1 max 2 1 2 2 1

ˆ ˆ(H ) (H ) (n n 1){log | | log | |}         

and  i

1 2 i

n1
n n 1 n 1i 1 1 2 2 i

ˆ| | (n 1)S (n 1)S (x x )(x x )   i          

=(n1+n2+1)–p|T+ i

i

n
n 1 i i(x x )(x x )   |  

where T=(n1–1)S1+(n2–1)S2 

=(n1+n2+1)–p|T|.|Ip+ i

i

n 1
n 1 i iT (x x )(x x )
   |  

=(n1+n2+1)–p|T|.|1+ i

i

n 1
n 1 i i(x x ) T (x x )
   |  

(using result that |Ip+ApnBnp|=|In+BnpApn|) 

so  and x is allocated to population 1 if max 1 max 2(H ) (H ) 
2 1

2 1

n n1 1
n 1 n 12 2 1(x x ) T (x x ) (x x ) T (x x ) 

      1  

If n1=n2 then this is the same as the sample ML rule, and if n1 and n2 are 

both large then it is almost so. However if either sample size is small and 

n1  n2 then the allocation is different. 
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9.3 Fisher’s Linear Discriminant Function 

In §4 we shewed that if the data are projected into one dimension, the 

projection which maximizes the ratio of the between to within groups 

sums of squares, aBa/aWa is the [right] eigenvector of  

W–1B corresponding to its largest eigenvalue. 

 New observations, x, can be classified according to any of the 

criteria in §4.7. The most common practice is to calculate the 

discriminant score, ax, and allocate to that group j where  
k

i j
i 1

| a x a x | a x a xmin


       

In the case k=2, B has rank 1 and 1 2 1 2n n n n
n n1 2 1 2B (x x )(x x ) dd     (say) 

and W–1B has only one non-zero eigenvalue which is 1 2n n 1
n d W d  and 

eigenvector W–1d and the rule is to allocate to 1 if 
1 1

21 2 1 2(x x ) W {x (x x )} 0     

i.e. the same as the sample discriminant rule. 

 

The function h(x)=ax where a is the first eigenvector of W–`B, is called 

Fisher’s Linear Discriminant Function. 
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9.4 Probabilities of Misclassification 

9.4.1 Introduction 

Let pij = P[a type j object is classified as type i] 

— the performance of a discriminant rule is described by the pij. Good 

rules have pij small for ij and big for i=j (i.e. low probabilities of 

misclassification and high probabilities of correct classification). 

If d and d are two discriminant rules with classification probabilities pij 

and p
ij then we say d is better than d if 

 pii  p
ii  for all i=1,2,...,k and pjj > p

jj for at least one j, 1  j  k. 

If d is a discriminant rule for which there is no better rule then d is 

admissible. If d is better than d then d is inadmissible. 

Note that it may be that it is not possible to compare two rules d and d 

since, for example, it could be that p11 > p
11 but p22 < p

22. 

 

Suppose d is defined by the partition {Ri} , i.e. x is classified   

as category j if xRj, where Ri  Rj= if i  j and =p, and 
k

i
i 1

R



suppose the density of x is fj(.) when x is of type j, 

 i.e. if x belongs to category j then x has density fj(.). 

Now      pij=P[xRi when x is of type j] 

=P[xRi when x has density fj(.)] 

i
jR

f (x)dx   

i
i jR
(x)f (x)dx   where i(x) is the indicator function of Ri  

(i.e. i(x)=1 if xRi and i(x)=0 if xRi) 

p i j(x)f (x)dx


   
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9.4.2 Good Discriminant Rules 

Consider the case k=2 suppose we consider the probabilities of 

misclassification p12 and p21 and try to find a rule, d, which minimizes 

these.  

We could do this by minimizing p21 for fixed p12 (c.f. minimizing , type II 

error, for fixed , type I error in Neyman-Pearson theory of hypothesis 

testing).  

To preserve symmetry of the overall setup we consider instead a 

weighted sum of p12 and p21,  

say Ld=2p12+1p21 

=  p 1 2 2 2 1 1(x) f (x) (x) f (x)dx

    

=  say. p d(x)dx



Now  with equality holding if for each [fixed] x 

we take d=d, where  

pd dd d
min{L } min{ (x)}dx


 

*d d
(x) mi  dn{ (x)}

i.e. minimize Ld by constructing d so that d is minimized for each fixed x 

— which is done by taking  

 1(x)= 1 if 2f2(x) < 1f1(x) and 2(x)= 1 if 1f1(x) < 2f2(x) 

(note that defining 1(.) and 2(.) defines R1 and R2 which defines the 

rule d). 

 

Notice that if 1=2 then Ld = sum of misclassification probabilities 

=P[incorrect classification] and this construction gives the maximum 

likelihood rule.   
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Notice also that taking i = i the prior probability of category i gives the 

Bayes Discriminant Rule. 

In fact, all Bayes discriminant rules are admissible:  

Suppose d
 is a Bayes discriminant rule with respect to prior 

probabilities 1, , ..., k and that d is a better rule than d. Then pii 

 p
ii with strict inequality for at least one i.  

So ipii > ip
ii.  

But ipii = ii(x)fi(x) 

  i j jji
(x)max{ f (x)}dx 

= {i(x)}max{jfj(x)}dx 

= max{jfj(x)}dx   (sincei(x)=1 for any x) 

= i(x)ifi(x)dx (since Bayes discriminant rules maximize  

    ifi(x) thus defining i(.) and in the  

    summation only one term is non-zero for  

    any x)  

= ip
ii which is a contradiction. 

 

Note that in particular the maximum likelihood rule is admissible (since 

taking i=k–1 for each i=1,2,...,k gives this rule). 

Note also that this shews that there are arbitrarily many admissible rules 

since there are arbitrarily many different prior distributions over the k 

categories. 
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9.4.3  Particular Cases 

Ex 9.4.3.1 Two Normal Populations Np(i, ) 

Let =½(1+2) then when x Popn 1  

we have  (x–)~N(½(1–2), ) for any vector . 

When we classify x on the value of the discriminant function h(x)=(x–) 

with =–1(1–2) (classifying as Popn 1 if h(x)>0) then h(x)~N(½2,2) 

where 2=(1–2)–1(1–2). 

Similarly if xPopn 2, h(x)~ N(–½2,2). 

So, p12=P[h(x)>0| xPopn 2] =   21
2

2

 


  =(–½) 

and similarly p21=(–½). Thus, for two Normal populations with a 

common variance the misclassification probabilities are equal. 
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Ex. 9.4.3.2 Correlation in the Bivariate Normal 

Consider the case when p=2, with Normal populations N2(0,) and 

N2(,) where =(1,2) and suppose 1,2>0 and 21
1
 

    
  

Then  2=–1=
2 2
1 2 1 2

2 2
2

(1 )
    

 
 

If the variables were uncorrelated then we would have  

2=
2 2
1 2

2
2
0

 


   

Now the correlation will ‘improve’ the discrimination (i.e. reduce p12) if 

2> ,  i.e. if 2
0

2 2
1 2 1 2

2
2 2 2

1 2(1 )
    


    ,  

i.e. if ((1+(2/1)2)–2(2/1))>0,  i.e. if <0 or > 1 2
2 2
1 2

2 

 
, 

so if 1=2 then any positive correlation reduces the power of 

discrimination. 
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Ex 9.4.3.3 One variable or two? 

Continuing the above example, if the rule were based just on 

measurements of the first variable then p12=(–½) where 2=
2
1
2




 

and so using both variables instead of just one improves the 

discrimination if 
2 2
1 2 1 2

2 2
2 2

1(1 )
    

 
   

i.e. if      2
1
2

2
2

1 22 0  

i.e. if (1–2)2 > 0,  

i.e. always. 

 

9.4.4 Misclassification Probabilities under Estimation 

If parameters are estimated then these can be used to estimate the pij.  

For example, in Ex. 9.4.3.1 we can obtain 1
212

ˆp̂ ( )     where  
2 1

1 2 1 2
ˆ (x x ) S (x x )     

In example 9.2.1.1 of discriminating between iris setosa and iris 

versicola this gives p12=0.013 (i.e. 1.3%).  

Generally, such estimates tend to be over-optimistic — i.e. biased 

downwards. 

 

Alternatively, given any discriminant rule {Ri} let 

nij = #{xPopn
 j, xRi} then we can estimate pij by 

ij ij

jij
i

n
nij np̂   n  = proportion from popn j misclassified as i. 

Again, tends to be over-optimistic — improve by jackknifing or 

permutation tests etc. 
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9.4.4.1 Jackknifing 

The discriminant rule is calculated by leaving out each observation in 

turn and then using that rule to classify the omitted observation. The 

overall correct classification rate is then a jackknife estimate of the true 

probability of correct classification. 

 

9.4.4.2 Permutation and Randomization Tests 

To assess whether the observed correct classification rate is 

‘significantly’ higher than would be achieved by chance it is possible to 

perform the complete discrimant analysis on the same observations but 

by permuting the labels of group membership and calculating the correct 

classification rate for this permuted set of labels. Observing where the 

rate obtained from the correct labels falls in this permutation distribution 

provides the permutation test: if it is in the upper tail of the distribution 

then there is evidence that the rate obtained is higher than would be 

achieved by chance.  

Typically, the number of permutations is too large to compute the 

complete permutation distribution and so a reasonable number (e.g. 99 

or 999) random permutations are used to construct a randomisation test. 

Random permutations can be obtained by sampling with replacement 

from the label variable. 
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9.5 Summary and Conclusions 

 This chapter has considered the formal problem of classifying 

new observations on the basis of rules constructed from training 

data.  

 The ideal Maximum Likelihood Rule which assumes that all 

densities are known has two sample versions:– the sample 

discriminant rule  and the likelihood ratio discriminant rule which 

can give different results if the samples sizes are small and very 

different. 

 Probabilities of misclassification were considered and it was 

shewn that the ideal Maximum Likelihood Rule minimized the 

total probability of misclassification. 

 Admissible and inadmissible rules were defined. Bayes rules are 

always admissible. 

 Methods for estimating misclassification probabilities were 

outlined, in particular by jackknifing and by using randomisation 

tests. 

 Some illustrations of the use of randomisation tests are given in 

Appendices 1 & 2.  Appendix 8 on Neural Networks gives some 

examples of simulation methods similar to (but more general 

than) jackknifing. 
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Tasks 11 
(see §9.0–§9.5 & revision of §4.4–§4.7) 

 [Note that these questions are more substantial than on previous task sheets. 
Question 1 is a past examination question. Question 3 is only of benefit to 
those wanting more practice on PCA interpretation and practical data anlysis] 

1) An archaeologist wishes to distinguish pottery from two different 

sources on the basis of its chemical composition.  Measurements 

by Neutron Activation Analysis of the concentrations in parts per 

million of trace elements Cr and V in 19 samples of pottery from 

Tell el-Amarna gave mean results of 2.3 and 6.7, respectively, with 

sample variances 0.62 and 1.41 and covariance 0.09. Similar 

measurements on 23 samples from Memphis gave mean results of 

2.9 and 5.9 with sample variances 0.7 and 1.36 and sample 

covariance 0.08.  

i) Assuming that these measurements are adequately modelled 

by bivariate Normal distributions with a common variance, 

calculate the linear discriminant rule for distinguishing Amarna 

from Memphis pottery on the basis of the concentrations of Cr and 

V.  

ii) Prove that the estimated probabilities of misclassifying 

Memphis pottery as Amarna and vice versa are the same using 

this rule.   

iii) By how much is this misclassification probability an 

improvement over those using each of the elements separately?   

iv) What advice would you give to the archaeologist in the light of 

these results? 
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2) Referring to the data set dogmandibles. (including the Prehistoric 

Thai dogs (group 5 on X11)) 

i) Using lda() in R look at the discrimination between the 5 

species (using the nine measurements) and estimate the 

classifcation rate. [In R it is easy to find the cross-validation (or 

jackknife) estimate of classification rate using the CV=T option]. 

ii) Perform the discriminant analysis just on the first four [modern] 

species and then use this to classify the prehistoric Thai dogs. 

iii) Compare the results of these analyses with the results of the 

more informal exploratory analyses with Crimcoords in Exercises 

2. 

3) The datafile CLAYPOTS has 272 observations on the trace element 

content of clay samples from pots found at various archaeological 

sites around the Aegean. Column 1 gives the group number (i.e. 

archaeological site for most of the pots) and columns 2–9 give the 

amounts of 9 trace elements (which have been labelled A to I) found 

in samples of clay from the pots. It is suggested that before 

investigating the specific questions below it is advisable to do some 

exploratory analysis with PCA etc. Groups 1, 3 and 4 are from known 

sources; groups 2 and 5 are from unknown sources but are believed 

to come from one or other of 1,3 or 4.  

i) Construct a display on crimcoords of groups 1,3 and 4 and add 

in the points from groups 2 and 5.  

Which are the best classifications of these pots? 
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Exercises 3  

1)  

i) Measurements of cranial length x11 and cranial breadth x12 on 

35 female frogs gave x1=(22.860, 24.397) and  











407.24*
290.20683.17

S1 .  Test the hypothesis that 11=12.  

ii) Similar measurements on 14 male frogs gave    

     x2 =(21.821, 22.843) and  .  

Calculate the pooled variance matrix for male & female frogs and 

test the hypothesis that female & male frogs come from 

populations with equal mean vectors. 

S2
18 479 19 095

20 756









. .
* .

2) Using you favourite computer package, access the British Museum 

Mummy Pots data (see task sheet for week 4) and calculate the two 

shape variables ‘taper’ and ‘point’.  

i) Do the two batches of pots differ in overall shape as reflected 

by the calculated shape measures ‘taper’ and ‘point’? 

ii) Do the two batches of pots differ in overall size? 

iii) Without doing any calculations,  

a) would your answer to (ii) be different in any respect if you used 

the scores on the three PCs calculated from the size variables? 

b) would it make any difference were you to calculate the PCs 

using the correlation matrix instead of the covariance matrix? 

[Suggestion: Read §8.7.4 of the lecture notes] 
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3)  x1,…,xn are independent measurements of Np(,2Ip) 

i) Shew that the maximum likelihood estimate of , subject to 

 = r0
2 (a known constant) is the same whether  is known or 

unknown. 

ii) Find the maximum likelihood estimate of  when neither  nor  

are known. 

iii) Hence, in the case when  = 0 (a known constant) consruct 

the likelihood ratio test of H0 :  = r0
2 vs HA :   r0

2 based on n 

independent observations of Np(,0
2Ip). 

iv) In an experiment to test the range of a new ground-to-air 

missile thirty-nine test firings at a tethered balloon were performed 

and the three dimensional coordinates of the point of ignition of the 

missile’s warhead measured. These gave a mean result of 

(0.76, 0.69, 0.66) relative to the site expressed in terms of the 

target distance. Presuming that individual measurements are 

independently normally distributed with unit variance, are the data 

consistent with the theory that the range of the missile was set 

correctly? 
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Notes & Solutions for Tasks 1 

 

1) Read the Study Guide for this course if you have not already done so 
Trust you have done this by now 

 

2) If A is any pq matrix then var(XA)=Avar(X)A=ASA,   

This actually follows directly from the expression for var(Y) putting 

yi=Axi etc and is essentially identical to the special case when q=1 

and A is a vector.  

 

3) Access the Iris Dataset.   

i) Find the 4-vector which is the mean of the four dimensions Sepal.l, 

Sepal.w, Petal.l, Petal.w and the 44 matrix which is their variance. 

> attach(irisnf) 

> apply(cbind(Sepal.l,Sepal.w,Petal.l,Petal.w),2,mean) 

 Sepal.l Sepal.w Petal.l Petal.w  

  5.8433  3.0553   3.758  1.1993  

> var(cbind(Sepal.l,Sepal.w,Petal.l,Petal.w)) 

          Sepal.l   Sepal.w  Petal.l  Petal.w  

Sepal.l  0.685694 -0.040736  1.27432  0.51627 

Sepal.w -0.040736  0.193629 -0.32873 -0.12124 

Petal.l  1.274315 -0.328734  3.11628  1.29561 

Petal.w  0.516271 -0.121238  1.29561  0.58101 

> 
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ii) . Plot sepal length against sepal width using:  

a) the default choices 

> plot(Sepal.w,Sepal.l) 

>

2.0 2.5 3.0 3.5 4.0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

Sepal.w

S
ep

al
.l

 
Note that to plot length against width you must have length on 

vertical and width on horizontal axis. 
b) using different symbols for each variety (explore the menus and panels, 

and maybe the help system to find out how to do this). Also try adding 

titles etc. 

> plot(Sepal.w,Sepal.l, pch=unclass(Variety),  
+ col=unclass(Variety)) 

2.0 2.5 3.0 3.5 4.0

4.
5

5.
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5

7.
0

7.
5

8.
0

Sepal.w

S
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.l
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> plot(Sepal.w,Sepal.l, pch=unclass(Variety)+14, 

+ col=unclass(Variety), 

+ main="Sepal length vs Sepal width for three iris varieties") 

2.0 2.5 3.0 3.5 4.0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

Sepal length vs Sepal width for three iris varieties

Sepal.w

S
ep

al
.l

 
iii) Construct a matrix plot of all four dimensions, using first the default 

choices and then enhancing the display as above. 

> pairs(cbind(Sepal.l,Sepal.w,Petal.l,Petal.w), 

+ pch=unclass(Variety)+14, col=unclass(Variety)+3, 

+ main="Sepal length vs Sepal width for three iris varieties") 

Sepal.l

2.0 3.0 4.0 0.5 1.5 2.5

4.
5

5.
5

6.
5

7.
5

2.
0

3.
0

4.
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Petal.l

1
2

3
4

5
6

7

4.5 5.5 6.5 7.5
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5

1.
5

2.
5

1 2 3 4 5 6 7

Petal.w

Sepal length vs Sepal width for three iris varieties
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iv) Try the commands 

var(irisnf) 
diag(var(irisnf)) 

 
> options(digits=3) 
> var(irisnf) 
        Sepal.l Sepal.w Petal.l Petal.w Variety 
Sepal.l  0.6857 -0.0407   1.274   0.516   0.531 
Sepal.w -0.0407  0.1936  -0.329  -0.121  -0.152 
Petal.l  1.2743 -0.3287   3.116   1.296   1.372 
Petal.w  0.5163 -0.1212   1.296   0.581   0.597 
Variety  0.5309 -0.1523   1.372   0.597   0.671 
> diag(var(irisnf)) 
Sepal.l Sepal.w Petal.l Petal.w Variety  
  0.686   0.194   3.116   0.581   0.671  
> 
 

4) Try these simple exercises both ‘by hand’ and R.  
 

i) Let ,   

Find AB, BA, BA, aA,  aAa  

1 1
1 2 3

a 2 , A , B 3 4
4 5 6

3 5

   
              

   

2

6

> a<-matrix(c(1,2,3),3,1) 
> A<-matrix(c(1,2,3,4,5,6),2,3,byrow=T) 
> B<-matrix(c(1,2,3,4,5,6),3,2,byrow=T) 
> A%*%B 
     [,1] [,2] 
[1,]   22   28 
[2,]   49   64 
> t(B)%*%t(A) 
     [,1] [,2] 
[1,]   22   49 
[2,]   28   64 
> B%*%A 
     [,1] [,2] [,3] 
[1,]    9   12   15 
[2,]   19   26   33 
[3,]   29   40   51 
> t(a)%*%A 
Error in t(a) %*% A : non-conformable arguments 
> t(a)%*%A%*%a 
Error in t(a) %*% A : non-conformable arguments 
> 

Note that aA and  aAa are not defined since the dimensions do not 
match. 
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5) Read through the Sections on eigenvalues and eigenvectors, differentiation w.r.t. 

vectors and use of Lagrange Multipliers in the Background Results booklet. I 

trust that you have done this by now and would have contacted me if 

there were any problems. 

6) Read the Study Guide for this course [again] if you have not already done so [or 

have done so only once]…and this also [again]. 
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Notes & Solutions for Tasks 2  

1)  

i) Find the eigenvalues and normalized eigenvectors of the 22 matrix  

       
1
7

208 144
144 292






  

 

Solving  


 

208 144
7 7

292144
7 7

0  gives 2–500/7+40000/72=0 so 1=400/7 

and 2=100/7.  Putting (S–1I3)a1=0 gives  

 –192a11+144a12 =0 and 144 a11–108a12=0.   

(Note that these two equations are essentially identical).  

Using the normalizing constraint that a2
11+a2

12=1 gives a11=3/5=0.6 

and a12=0.8. Similarly a21=0.8 and a22=–0.6   

(note that a1=(–0.6,–0.8)’ and/or a2=(–0.8,0.6)’ are equally acceptable 

solutions for a1 and a2 since the signs of eigenvectors are arbitrary. 
> s<-matrix(c(208,144,144,292),nrow=2,ncol=2)/7 
> eigen(s) 
$values 
[1] 57.14286 14.28571 
 
$vectors 
     [,1] [,2] 
[1,]  0.6 -0.8 
[2,]  0.8  0.6 
 
> 
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ii) Find the eigenvalues and one possible set of normalized eigenvectors of 

the 33 matrix   

|S-I3|=3–62+9–4=(–4)(–1)2, so 1=4 and 2=3=1.  

(S–I3)a1=0  a12+a13=2a11, a11+a13=2a12 and a11+a12=2a13 so 

a11=a12=a13 and since a1'a1=1 we have a1=3–½(1,1,1)'.  For a2 and 

a3 we need any two normalized orthogonal vectors which are also 

orthogonal to the unit vector:   

e.g. 6–½(1,1,–2)' and 2–½(1,–1,0)'  or equally well 38–½(2,3,–5)' and 

114–½(–8,7,1) or infinitely many other possibilities. 

2 1 1
1 2 1
1 1 2

















> options(digits=3) 
> t<-matrix(c(2,1,1,1,2,1,1,1,2),nrow=3,ncol=3) 
> eigen(t) 
$values 
[1] 4 1 1 
 
$vectors 
       [,1]   [,2]   [,3] 
[1,] -0.577  0.816  0.000 
[2,] -0.577 -0.408 -0.707 
[3,] -0.577 -0.408  0.707 
 

iii) Find the inverse of . |S|=6;  S–1=
2 0 0
0 2 1
0 1 2















 


















420
240

003

6
1   

> solve(matrix(c(2,0,0,0,2,1,0,1,2),nrow=3,ncol=3)) 
     [,1]   [,2]   [,3] 
[1,]  0.5  0.000  0.000 
[2,]  0.0  0.667 -0.333 
[3,]  0.0 -0.333  0.667 
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2) (optional — but at least note the results, these are counterexamples to false 
assumptions that are all to easy to make since they contradict ‘ordinary’ algebra). 

Let 
0 1 0 1 1 1 1 1

A , B , C , D
1 0 0 0 1 1 1 1

      
                

1 1 1 1
E and F

1 1 1 1
   

        


 , 

        then show:– 

  

> A<-matrix(c(0,1,-1,0),2,2,byrow=T) 
> B<-matrix(c(0,1,0,0),2,2,byrow=T) 
> C<-matrix(c(1,1,1,-1),2,2,byrow=T) 
> D<-matrix(c(1,-1,-1,-1),2,2,byrow=T) 
> E<-matrix(c(1,1,1,1),2,2) 
> F<-matrix(c(1,1,-1,-1),2,2,byrow=T)  

 

i) A2 = – I2 (so A is ‘like’ the 

square root of –1) 
> A%*%A 
     [,1] [,2] 
[1,]   -1    0 
[2,]    0   -1 
 
 

ii) B2 = 0 (but B  0) 
> B%*%B 
     [,1] [,2] 
[1,]    0    0 
[2,]    0    0 

 

iii) CD = – DC (but CD  0) 
> C%*%D 
     [,1] [,2] 
[1,]    0   -2 
[2,]    2    0 
> D%*%C 
     [,1] [,2] 
[1,]    0    2 
[2,]   -2    0 

iv) EF = 0 (but E  0 and 

F 0)  
> E%*%F 
     [,1] [,2] 
[1,]    0    0 
[2,]    0    0 
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3) (see 0.10.1) The data file openclosed.Rdata consists of examination marks 

in five subjects labelled mec, vec, alg, ana and sta.  Download the 

datafile to your own hard disk. Using Windows Explorer double click on the file. 

This will open R, change the working directory to that where you have stored the 

data and read in the data to dataframe scor.  Mardia, Kent & Bibby (1981).  

 

i) Then issue the following commands and read the results 
 
 
> ls()   # see what objects are in the works space; 
[1] "scor" 
>                #   there should be only the dataframe scor 
>  
> X<-as.matrix(t(scor)) # define X to be the matrix  
>                       # of the transpose of scor 
>  
> S<-var(t(X)) # calculate  the variance matrix of X'=scor 
>  
> A<-eigen(S)$vectors # Calculate the eigenvectors of S  
> #                     & store them in A 
> V<-eigen(S)$values # and eigenvalues in V 
> A  # look at A 
           [,1]        [,2]       [,3]         [,4]        [,5] 
[1,] -0.5054457  0.74874751 -0.2997888  0.296184264 -0.07939388 
[2,] -0.3683486  0.20740314  0.4155900 -0.782888173 -0.18887639 
[3,] -0.3456612 -0.07590813  0.1453182 -0.003236339  0.92392015 
[4,] -0.4511226 -0.30088849  0.5966265  0.518139724 -0.28552169 
[5,] -0.5346501 -0.54778205 -0.6002758 -0.175732020 -0.15123239 
> V  # look at V 
[1] 686.98981 202.11107 103.74731  84.63044  32.15329 
> sum(diag(S))# look at trace(S) 
[1] 1109.632 
> sum(V)      # look at sum of eigenvalues in V (they should 
be the same) 
[1] 1109.632 
>  
> options(digits=4) # only print four decimal places 
>  
> A%*%t(A)   # check that A is an orthogonal matrix  
           [,1]       [,2]       [,3]       [,4]       [,5] 
[1,]  1.000e+00  1.476e-16 -2.964e-17  4.014e-17 -1.586e-17 
[2,]  1.476e-16  1.000e+00 -1.441e-16 -2.639e-16  3.010e-16 
[3,] -2.964e-17 -1.441e-16  1.000e+00 -1.121e-16 -3.787e-16 
[4,]  4.014e-17 -2.639e-16 -1.121e-16  1.000e+00 -3.263e-16 
[5,] -1.586e-17  3.010e-16 -3.787e-16 -3.263e-16  1.000e+00 
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> t(A)%*%A   # (as it should be, property of eigenvectors) 
           [,1]       [,2]       [,3]       [,4]       [,5] 
[1,]  1.000e+00 -6.101e-17  1.099e-16 -2.397e-16  1.118e-16 
[2,] -6.101e-17  1.000e+00 -1.115e-16  1.241e-16  1.837e-16 
[3,]  1.099e-16 -1.115e-16  1.000e+00  8.888e-16  1.701e-16 
[4,] -2.397e-16  1.241e-16  8.888e-16  1.000e+00 -1.225e-16 
[5,]  1.118e-16  1.837e-16  1.701e-16 -1.225e-16  1.000e+00 
>  
> round(A%*%t(A)) # easier to see if round to whole numbers 
     [,1] [,2] [,3] [,4] [,5] 
[1,]    1    0    0    0    0 
[2,]    0    1    0    0    0 
[3,]    0    0    1    0    0 
[4,]    0    0    0    1    0 
[5,]    0    0    0    0    1 
> round(t(A)%*%A) 
     [,1] [,2] [,3] [,4] [,5] 
[1,]    1    0    0    0    0 
[2,]    0    1    0    0    0 
[3,]    0    0    1    0    0 
[4,]    0    0    0    1    0 
[5,]    0    0    0    0    1 
>  
> t(A)%*%S%*%A    # calculate A’SA 
           [,1]       [,2]       [,3]       [,4]       [,5] 
[1,]  6.870e+02  2.381e-13 -1.029e-13  6.612e-14  4.718e-14 
[2,]  2.595e-13  2.021e+02  3.081e-15 -3.109e-15 -2.730e-15 
[3,] -1.219e-13 -1.259e-14  1.037e+02  5.388e-14 -8.734e-15 
[4,]  7.972e-14  1.552e-14  4.434e-14  8.463e+01  3.257e-14 
[5,]  3.606e-14  5.202e-15 -3.147e-15  3.728e-14  3.215e+01 
>  
> Y<-t(A)%*%X # let Y=A'X so that Y'=X'A, the data rotated 
>             # onto the principal components. 
> var(t(Y))       # the variance of the data on the 
principal components 
           [,1]      [,2]       [,3]      [,4]      [,5] 
[1,]  6.870e+02 2.678e-13 -1.291e-13 9.386e-14 2.932e-14 
[2,]  2.678e-13 2.021e+02  4.731e-15 1.460e-14 1.758e-15 
[3,] -1.291e-13 4.731e-15  1.037e+02 3.553e-14 5.889e-15 
[4,]  9.386e-14 1.460e-14  3.553e-14 8.463e+01 3.651e-14 
[5,]  2.932e-14 1.758e-15  5.889e-15 3.651e-14 3.215e+01 
>        # note these are the same up to rounding errors 
> round(t(A)%*%S%*%A) # easier to see if round to whole 
numbers 
     [,1] [,2] [,3] [,4] [,5] 
[1,]  687    0    0    0    0 
[2,]    0  202    0    0    0 
[3,]    0    0  104    0    0 
[4,]    0    0    0   85    0 
[5,]    0    0    0    0   32 
> round(var(t(Y)))  
     [,1] [,2] [,3] [,4] [,5] 
[1,]  687    0    0    0    0 
[2,]    0  202    0    0    0 
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[3,]    0    0  104    0    0 
[4,]    0    0    0   85    0 
[5,]    0    0    0    0   32 
> V           # eigenvalues of S, also same. 
[1] 686.99 202.11 103.75  84.63  32.15 
> sum(diag(S)) # find trace(S) 
[1] 1110 
> sum(V)        # same as above 
[1] 1110 
> 

4) The data file bodysize.Rdata consists of measurements of the 

circumferences (in centimetres) of neck, chest, abdomen, hip, thigh, 

knee, ankle, biceps, forearm and wrist of 252 men. Download the 

datafile to your own hard disk. Using Windows Explorer double click on the file. 

This will open R, change the working directory to that where you have stored the 

data and read in the data to dataframe bodysize. Next, download the function 

screeplot() contained in scriptfile scree.R to the same directory on you hard 

disk. Using the menu in R open the script file scree.R (top left icon in the menu 

bar), highlight all the lines in the function and click the middle icon to run the 

selected lines. This will load the function into your current R session. source: 

Journal of Statistics Education Data Archive 

i) Then issue the following commands and read the results 

 bodysize[1:5,]    # gives first few lines of the data file 
 diag(var(bodysize))   # gives variances of variables 
 sqrt(diag(var(bodysize))) # gives standard deviations 
 # note standard deviations vary by a factor of > 10  
 # so perform PCA with correlation matrix 
 body.pc<-princomp(bodysize,cor=T) 
 body.pc 
 summary(body.pc) 
 body.pc$loadings 
 screeplot(bodysize,T) 
 print(body.pc$loadings, cutoff=0.01) 
 
 
> # function to draw screeplots of cumulative 
> # eigenvalues in principal component analysis 
>  
> screeplot<-function(mydata,cor=F,maxcomp=10) { 
+ my.pc<-princomp(mydata, cor=cor) 
+ k<-min(dim(mydata),maxcomp) 
+ x<-c(0:k) 
+ y<-my.pc$sdev[1:k]*my.pc$sdev[1:k] 
+ y<-c(0,y) 
+ z<-100*cumsum(y)/sum(my.pc$sdev*my.pc$sdev) 
+  
+ plot(x,z,type="l",xlab="number of dimensions", 
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+  cex.main=1.5, lwd=3, col="red", 
+  ylim=c(0,100), 
+  ylab="cumulative percentage of total variance", 
+   main="Scree plot of variancees", 
+  xaxt="n", yaxt="n") 
+   
+ axis(1,at=x,lwd=2) 
+ axis(2,at=c(0,20,40,60,80,100),lwd=2) 
+ abline(a=100,b=0,lwd=2,lty="dashed",col="orange") 
+ text(x,z,labels=x,cex=0.8,adj=c(1.2,-.1),col="blue") 
+ } 
>  
> bodysize[1:5,] # gives first few lines of the data file 
  neck chest abdomen   hip thigh knee ankle biceps forearm wrist 
1 36.2  93.1    85.2  94.5  59.0 37.3  21.9   32.0    27.4  17.1 
2 38.5  93.6    83.0  98.7  58.7 37.3  23.4   30.5    28.9  18.2 
3 34.0  95.8    87.9  99.2  59.6 38.9  24.0   28.8    25.2  16.6 
4 37.4 101.8    86.4 101.2  60.1 37.3  22.8   32.4    29.4  18.2 
5 34.4  97.3   100.0 101.9  63.2 42.2  24.0   32.2    27.7  17.7 
>  diag(var(bodysize)) # gives variances of variables 
   neck   chest abdomen     hip   thigh    knee   ankle  biceps forearm   
wrist  
  5.909  71.073 116.275  51.324  27.562   5.817   2.873   9.128   4.083   
0.872  
>  sqrt(diag(var(bodysize))) # gives standard deviations 
   neck   chest abdomen     hip   thigh    knee   ankle  biceps forearm   
wrist  
  2.431   8.430  10.783   7.164   5.250   2.412   1.695   3.021   2.021   
0.934  
>  # note standard deviations vary by a factor of > 10  
>  # so perform PCA with correlation matrix 
>  body.pc<-princomp(bodysize,cor=T) 
>  body.pc 
Call: 
princomp(x = bodysize, cor = T) 
 
Standard deviations: 
 Comp.1  Comp.2  Comp.3  Comp.4  Comp.5  Comp.6  Comp.7  Comp.8  Comp.9 
Comp.10  
  2.650   0.853   0.819   0.701   0.547   0.528   0.452   0.405   0.278   
0.253  
 
 10  variables and  252 observations. 
>  summary(body.pc) 
Importance of components: 
                       Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 
Standard deviation      2.650 0.8530 0.8191 0.7011 0.5471 0.5283 0.4520 0.4054 
Proportion of Variance  0.702 0.0728 0.0671 0.0492 0.0299 0.0279 0.0204 0.0164 
Cumulative Proportion   0.702 0.7749 0.8420 0.8912 0.9211 0.9490 0.9694 0.9859 
                        Comp.9 Comp.10 
Standard deviation     0.27827  0.2530 
Proportion of Variance 0.00774  0.0064 
Cumulative Proportion  0.99360  1.0000 
>  body.pc$loadings 
 
Loadings: 
        Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 
neck    -0.327        -0.259  0.339         0.288  0.719  0.318                
chest   -0.339  0.273         0.243 -0.447        -0.235  0.127 -0.543 -0.419  
abdomen -0.334  0.398         0.216 -0.310 -0.147 -0.134         0.303  0.669  
hip     -0.348  0.255  0.210 -0.119                      -0.349  0.551 -0.563  
thigh   -0.333  0.191  0.180 -0.411  0.255  0.105  0.289 -0.404 -0.524  0.234  
knee    -0.329         0.273 -0.135  0.446 -0.442 -0.118  0.624                
ankle   -0.247 -0.625  0.583        -0.416  0.168                              
biceps  -0.322        -0.256 -0.304         0.671 -0.471  0.197  0.130         
forearm -0.270 -0.363 -0.590 -0.404 -0.262 -0.440                              
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wrist   -0.299 -0.377 -0.141  0.568  0.429        -0.271 -0.396                
 
               Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 
SS loadings       1.0    1.0    1.0    1.0    1.0    1.0    1.0    1.0    1.0 
Proportion Var    0.1    0.1    0.1    0.1    0.1    0.1    0.1    0.1    0.1 
Cumulative Var    0.1    0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9 
               Comp.10 
SS loadings        1.0 
Proportion Var     0.1 
Cumulative Var     1.0 
>  screeplot(bodysize,T) 
 

Scree plot of variancees
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>  print(body.pc$loadings, cutoff=0.01) 
 
Loadings: 
        Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 
neck    -0.327        -0.259  0.339  0.054  0.288  0.719  0.318  0.079 -0.023  
chest   -0.339  0.273 -0.059  0.243 -0.447 -0.081 -0.235  0.127 -0.543 -0.419  
abdomen -0.334  0.398  0.066  0.216 -0.310 -0.147 -0.134 -0.061  0.303  0.669  
hip     -0.348  0.255  0.210 -0.119  0.059 -0.070  0.071 -0.349  0.551 -0.563  
thigh   -0.333  0.191  0.180 -0.411  0.255  0.105  0.289 -0.404 -0.524  0.234  
knee    -0.329 -0.022  0.273 -0.135  0.446 -0.442 -0.118  0.624 -0.011  0.013  
ankle   -0.247 -0.625  0.583 -0.022 -0.416  0.168  0.066  0.016  0.022  0.047  
biceps  -0.322 -0.022 -0.256 -0.304  0.094  0.671 -0.471  0.197  0.130  0.031  
forearm -0.270 -0.363 -0.590 -0.404 -0.262 -0.440  0.087 -0.092  0.068  0.029  
wrist   -0.299 -0.377 -0.141  0.568  0.429 -0.073 -0.271 -0.396 -0.076  0.033  

kink at k=3 (or maybe 4) 
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               Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 
SS loadings       1.0    1.0    1.0    1.0    1.0    1.0    1.0    1.0    1.0 
Proportion Var    0.1    0.1    0.1    0.1    0.1    0.1    0.1    0.1    0.1 
Cumulative Var    0.1    0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9 
               Comp.10 
SS loadings        1.0 
Proportion Var     0.1 
Cumulative Var     1.0 
> 

ii) How many principal components would you suggest adequately contain 

the main sources of variation within the data. 

Looking at the scree plot, 3 or maybe 4 components (accounting for 

84% or 89% of total variation).  Ignore obvious kink at k=1 
iii) What features of the body sizes do the first three [four?] components 

reflect? 

It is maybe clearer to see what is going on if we suppress as many 

decimal places as possible and use a fairly high cutoff value (it isn’t 

possible to round to zero digits so try with just one): 
> print(body.pc$loadings, cutoff=0.1,digits=1) 
 

Loadings: 

        Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 

neck    -0.3          -0.3    0.3           0.3    0.7    0.3                  

chest   -0.3    0.3           0.2   -0.4          -0.2    0.1   -0.5   -0.4    

abdomen -0.3    0.4           0.2   -0.3   -0.1   -0.1           0.3    0.7    

hip     -0.3    0.3    0.2   -0.1                        -0.3    0.6   -0.6    

thigh   -0.3    0.2    0.2   -0.4    0.3    0.1    0.3   -0.4   -0.5    0.2    

knee    -0.3           0.3   -0.1    0.4   -0.4   -0.1    0.6                  

ankle   -0.2   -0.6    0.6          -0.4    0.2                                

biceps  -0.3          -0.3   -0.3           0.7   -0.5    0.2    0.1           

forearm -0.3   -0.4   -0.6   -0.4   -0.3   -0.4                                

wrist   -0.3   -0.4   -0.1    0.6    0.4          -0.3   -0.4                  

Now it is easy to see that the first PC reflects variations in overall size 

of body, the second contrasts arm size (mostly) with body and leg 

size, the third contrasts leg with rest of the body and the fourth is 

body versus limbs.  If we plot PC1 against PC2 (i.e. the scores of on 

first principal component against those on the second) with  
> plot(body.pc$scores[,2],body.pc$scores[,1]) 

© NRJF 1982 288



Multivariate Data Analysis: Solutions toTasks  

we can see one outlier at 

the bottom of the plot and 

two to the left.  Noting the 

signs of the loadings on the 

first PC (vertical axis) we 

can see that the outlier att 

he bottom arises from a 

subject with large 

measurements (i.e. a large 

person). The two outliers to 

the left are from people of 

average size but with proportionately well-developed arms by 

comparison with thei

-4 -3 -2 -1 0 1 2

-1
0

-5
0

5

body.pc$scores[, 2]

bo
dy

.p
c$

sc
or

es
[, 

1]

r legs. Using identify() gives 
> identify(body.pc$scores[,2],body.pc$scores[,1]) 

[1] 31 39 86 

which reveals that 

these outliers are 

observations 39 

(lower), 31 & 86 

(rightmost). 

 

 

 

If it is preferred to 

plot with the large 

people at the top of 

the plot then do 

-4 -3 -2 -1 0 1 2

-1
0

-5
0

5

body.pc$scores[, 2]

bo
dy

.p
c$

sc
or

es
[, 

1]

31

39

86

 > plot(body.pc$scores[,2],-body.pc$scores[,1]) 
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5) Calculate the principal components of the four measurements on Irises: 

i) using the ’ready made’ facility for principal component analysis 

ii) by first calculating the covariance matrix and then looking at the 

eigenanalysis of the matrix. 

> attach(irisnf) 
> options(digits=2) 
> iris.pc<-princomp(cbind(Sepal.l,Sepal.w,Petal.l,Petal.w)) 
> iris.pc 
Call: 
princomp(x = cbind(Sepal.l, Sepal.w, Petal.l, Petal.w)) 
 
Standard deviations: 
Comp.1 Comp.2 Comp.3 Comp.4  
  2.05   0.49   0.28   0.15  
 
 4  variables and  150 observations. 
> summary(iris.pc) 
Importance of components: 
                       Comp.1 Comp.2 Comp.3 Comp.4 
Standard deviation       2.05  0.494  0.280 0.1542 
Proportion of Variance   0.92  0.054  0.017 0.0052 
Cumulative Proportion    0.92  0.978  0.995 1.0000 
> iris.pc$loadings 
 
Loadings: 
        Comp.1 Comp.2 Comp.3 Comp.4 
Sepal.l  0.361 -0.650  0.590  0.316 
Sepal.w        -0.737 -0.592 -0.314 
Petal.l  0.857  0.171        -0.480 
Petal.w  0.358        -0.543  0.756 
 
               Comp.1 Comp.2 Comp.3 Comp.4 
SS loadings      1.00   1.00   1.00   1.00 
Proportion Var   0.25   0.25   0.25   0.25 
Cumulative Var   0.25   0.50   0.75   1.00 
> screeplot(cbind(Sepal.l,Sepal.w,Petal.l,Petal.w)) 
> iris.cov<-var(cbind(Sepal.l,Sepal.w,Petal.l,Petal.w)) 
> iris.cov 
        Sepal.l Sepal.w Petal.l Petal.w 
Sepal.l   0.686  -0.041    1.27    0.52 
Sepal.w  -0.041   0.194   -0.33   -0.12 
Petal.l   1.274  -0.329    3.12    1.30 
Petal.w   0.516  -0.121    1.30    0.58 
> eigen(iris.cov) 
$values 
[1] 4.228 0.246 0.079 0.024 
 
$vectors 
       [,1]   [,2]  [,3]  [,4] 
[1,]  0.361 -0.650 -0.59  0.32 
[2,] -0.084 -0.737  0.59 -0.31 
[3,]  0.857  0.171  0.08 -0.48 
[4,]  0.358  0.073  0.54  0.76 
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Note that instead of cbind(Sepal.l,Sepal.w,Petal.l,Petal.w)  

we could use irisnf[,-5] which is the data set without column 5 

which contains variety.  
 
> cov(irisnf[,-5]) 
        Sepal.l Sepal.w Petal.l Petal.w 
Sepal.l   0.686  -0.041    1.27    0.52 
Sepal.w  -0.041   0.194   -0.33   -0.12 
Petal.l   1.274  -0.329    3.12    1.30 
Petal.w   0.516  -0.121    1.30    0.58 
> 
Note that one of the covariances is negative and thus the first PC 

does not have loadings all of the same sign, though the negative 

covariance is very small by comparison with the others and so the 

corresponding coefficient is negligible and thus we can regard the 

first PC as reflecting variations in overall size. 
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Notes & Solutions for Tasks 3  

Note and MEMORIZE the interesting identity   

  | I p  +  A B |  =  | I n  +  B A |  w h e r e  A  i s  pn  a n d  B  i s  np .

  

A key application of this result, which is used extensively later in this 

course, is when n=1.  To evaluate |Ip+xx'| where x is p1 we have that 

this = |I1+x'x| which is the determinant of a 11 matrix (i.e. a scalar) and 

so =1+x'x=1+xi
2 . 

A variant on the result is the following (where c and d are scalars): 

|cIp+dAB|=cp|Ip+dAB/c|=cp|In+dBA/c|=cp–n|cIn+dBA|  

(noting that if Z is a pp matrix and c a scalar then |cZ|=cp|Z|) 

In particular, |cIp+dxx'|=c(p–1)(c+dxi
2) and especially, if x=1p then 

|cIp+d1p1p'|=c(p–1)(c+pd) since 1p'1p=p. 
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5)  Suppose the variance matrix takes the equicorrelation form 

. By writing S is the form S=aIp+b1p1p’ for 

appropriate a and b and using result above, shew that if >0 then the first 

principal component accounts for a proportion (1+(p–1))/p of the total 

variation in the data. What can be said about the other p–1 components? 

What can be said if <0? (but note that necessarily  > some constant bigger 

than –1 which you should determine, noting that S is a correlation matrix) 

S
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We can see that S=2[(1–)Ip+Jp] where Jp is the pp matrix with all 

entries =1 and easy to see that Jp=1p1p' where 1p is the unit p-vector with 

all entries=1.  Then, to obtain the eigenvalues we need |S–Ip| and 

obtain the roots of this p-degree polynomial in . We could use row and 

column manipulation of the determinant but using the result above we 

have  

|S-Ip|=|2[(1–)Ip+1p1p']–Ip| 

=|[(1–)2–]Ip+21p1p'|=[(1–)2–](p–1)[(1–)2–+21p'1p] 

=[(1–)2–](p–1)[(1–)2–+ p2]  (noting that 1p'1p=p) 

Thus the eigenvalues of S are (1+(p–1))2 and (1–)2 (the latter with 

multiplicity (p–1)). If >0 then the first of these is the largest (i.e. 

1=(1+(p–1))2 ) ).   

If <0 then we must have >–(p–1)–1 since we must have |S|>0:   

if <–(p–1)–1 then one and only one eigenvalue is negative and since 

|S|=i this would give |S|<0. 
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When >0, the first principal component  is a1 where Sa1–1a1=0, 
i.e. where Sa1=(1+(p–1))2 a1 and a1'a1=1.  

Easily seen that a1=p–½1p (i.e. proportional to the unit vector). 
The other (p–1) p.c.s are solutions of Sa–(1–)a=0 with a'a=1 
(normalizing constraint) and a'1p=0 (orthogonality with a1) (i.e. aj

2=1 
and aj=0) and there are infinitely many possibilities. One possible 
set is proportional to (1,–1,0,0,…,0)'; (1,1,–2,0,0,…0)'; (1,1,…,1,–(p–1))'. 
 
Note: This example explains intuitively why the first principal component of a data 

set consisting of dimensional measurements on physical objects is often a measure 

of overall size:  generally, if one of the objects is big then all of its dimensions will be 

big (presuming that the objects are more or less the same shape). This means that, 

generally, the measurements of all the dimensions will be positively correlated with 

each other. Consequently, the correlation (or covariance) matrix will be 

approximately like the equicorrelation matrix and so the first p.c. will be 

approximately proportional to the unit p-vector and so the score of any datum on the 

first p.c. will be proportional (approx) to the sum of its individual components). In fact 

the Perron-Frobenius theorem states that if all the elements of a (not necessarily 

symmetric) matrix are strictly positive then there is a unique positive eigenvalue 

corresponding to an eigenvector which can be chosen to have all positive elements 

and so could be interpreted as a weighted average of all measurements.   The closer 

the correlations are in value the closer the coefficients of the first eigenvector are to 

a common multiple of the unit p-vector. If a small number of correlations are negative 

then it is often the case that the 2nd or 3rd (or…..) PC is size measure. Note also that 

there can be only one PC at most which is a weighted average of all variables since 

PCs are necessarily orthogonal.  

 

6) If the variance matrix takes the form S=Ip+zz’ where z is a p-vector, shew 

that z is an eigenvector of S. Under what circumstances is Z proportional to 

the first principal component of the data? 
 

S=Ip+zz’  so Sz=(Ip+zz’)z=z+zz'z=z+ z(z'z)  
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then, noting z'z is a scalar and so commutes with z, 

=(+z'z)z =z where =+z'z. So z is an eigenvector of S with 

eigenvalue +z'z. Thus z/(z'z)½ is the first p.c. if +z'z is the largest 

eigenvalue. The other p–1 eigenvalues are easily seen to be  and so 

for z to be the first we need >0 (since z'z=zi
2>0). 

 

7) If the variance matrix takes the form (with >0) 

find the first principal component and shew 

that it accounts for a proportion (2++2)/(2+3+2) of the total variation.  

S=I3+' where =(1,1,)' (notice that the diagonal of S contains 
+ in each entry so subtracting I3 leaves a matrix which is easier 
to make an intelligent guess at factorizing).    
|S–I3|=|(–)I3+'|=(–)2(–+')=(–)2(–+2+2) and so the 
eigenvalues of S are 2++2 and  (twice). The largest must be 
the first (since 2+2>0) and so accounts for a proportion 
(2++2)/(2+3+2) of the total variation. 
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8) Referring to Q3 on Task Sheet 2, examination results in five mathematical 

papers, some of which were ‘open-book’ and others ‘closed-book’, what 

interpretations can you give to the principal components? .  

The principal components can be read from the eigenvectors calculated 
in Q3 or easily from  

> options(digits=1) 
> prcomp(scor)$rotation 
     PC1   PC2  PC3    PC4   PC5 
mec -0.5 -0.75  0.3 -0.296 -0.08 
vec -0.4 -0.21 -0.4  0.783 -0.19 
alg -0.3  0.08 -0.1  0.003  0.92 
ana -0.5  0.30 -0.6 -0.518 -0.29 
sta -0.5  0.55  0.6  0.176 -0.15 
> 

PC1 is a measure of overall ability across the five mathematical 
subjects, with low scores indicating high marks (not signs of PCs are 
arbitrary) . PC2 is a contrast between Pure&Statistics versus Applied 
Mathematics, with high scores indicating higher marks in Pure and 
Statistics than in Applied. PC3 is a contrast of the more applied subjects 
of Statistics and Mechanics versus the more theoretical Pure and 
Vectors, with high scores indicating preference for the applied. PC4 is 
primarily vectors versus analysis and PC5 is primarily ability at Algebra. 
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Notes & Solutions for Tasks 4 

1) uppose X (n×p) is a centred data matrix (i.e. each variable has sample mean 

zero). Then the variance matrix S is given by   

      (n–1)S=XX 

Suppose i and ai are the eigenvalues and eigenvectors of XX.   

a) What are the eigenvalues and eigenvectors of S?  

We have XXai = iai so Sai = [i/(n–1)]ai and so the eigenvalues 

and eigenvectors of S are i/(n–1) and ai. 

b) Shew that the eigenvalues and eigenvectors of the nn matrix XX are i and 

Xai respectively.   

We XXai = iai so XXXai = iXai i.e. XX(Xai) = i(Xai) and result 

follows. 

2) Recently, measurements were made on a total of 26 mummy-pots (which 

contained mummified birds) excavated from the Sacred Animal Necropolis in 

Saqqara, Egypt and sent to the British Museum in the last century. The pots are 

approximately cylindrical, tapering slightly from the opening. The measurements 

made (in millimetres) were the overall length, the rim circumference and the base 

circumference. The rim of one pot was slightly damaged. Given below is a record 

of a S-Plus session analyzing the data.   

a)  What aspects of the pots do the two derived measurements stored in taper 

and point reflect?   

They both reflect the shape of the pots. 
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b)  Principal component analyses have been performed on the correlation matrix 

of all five variables but on the covariance matrix for just the three linear 

measurements. Why are these choices to be preferred for these data?  

The five variables include three on linear dimensions in 

centimetres and two dimensionless shape variables and so are on 

quite different scales. The three linear variables are all linear 

dimensions and so the covariance analysis is to be preferred. 

c)  What features of the pots do the first two principal components in each 

analysis reflect?   

First analysis: Not that both taper and point are large if the rim-

circumference is large and so the first pc reflects overall size. The 

second pc is clearly size vs shape, specifically large straight plots 

vs small pointed ones. 
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Analysis of British Museum Mummy-Pots 
 
  
> attach(brmuseum) 
> taper<-(rim.cir-base.circ)/length 
> point<-rim.cir/base.circ 
> potsize<-cbind(length,rim.cir,base.circ) 
> potsize.pca<-princomp(potsize) 
> summary(potsize.pca) 
Importance of components: 
                           Comp.1     Comp.2     Comp.3 
    Standard deviation 59.8359424 22.6695236 18.8889569 
Proportion of Variance  0.8043828  0.1154578  0.0801594 
 Cumulative Proportion  0.8043828  0.9198406  1.0000000 
 
> loadings(potsize.pca) 
          Comp.1 Comp.2 Comp.3  
   length  0.502 -0.694  0.516 
  rim.cir  0.836  0.237 -0.494 
base.circ  0.221  0.680  0.699 
> potsizeshape<-cbind(length,rim.cir,base.circ,taper,point) 
> potsizeshape.pca<-princomp(potsizeshape, cor=TRUE) 
> summary(potsizeshape.pca) 
Importance of components: 
                          Comp.1    Comp.2    Comp.3 
    Standard deviation 1.6082075 1.3352046 0.7908253 
Proportion of Variance 0.5172663 0.3565543 0.1250809 
 Cumulative Proportion 0.5172663 0.8738206 0.9989015 
 
                             Comp.4      Comp.5  
    Standard deviation 0.0698805556 0.024681162 
Proportion of Variance 0.0009766584 0.000121832 
 Cumulative Proportion 0.9998781680 1.000000000 
> loadings(potsizeshape.pca) 
          Comp.1 Comp.2 Comp.3 Comp.4 Comp.5  
   length  0.428 -0.366 -0.678 -0.316  0.352 
  rim.cir  0.548 -0.332  0.207 -0.129 -0.728 
base.circ        -0.715  0.371  0.466  0.365 
    taper  0.498  0.302  0.561 -0.367  0.461 
    point  0.519  0.392 -0.212  0.729        
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Notes & Solutions for Tasks 5 

1) Continuing Q1 of tasks 4, i.e. X (n×p) is a centred data matrix: 

i) If D is the n×n distance matrix of the n p-dimensional observations and A 

is the matrix given by aij = –½dij
2  and B=HAH, where H is the centring matrix, 

shew that B=kXX for some suitable scalar k.  

dij
2 =(xi–xj)(xi–xj)=xixi-2xixj+xjxj  so bij=   a = xixj  

noting that 

aaa jiij

ix  = 0 so B = XX. 

ii) Deduce that deriving a configuration of points from the matrix D by 

classical scaling is equivalent to referring the original data to principal 

components  

If the data are referred to principal components then the 

coordinates of the rotated points are XA where A=(ai) are the 

eigenvectors of S=(n–1)–1XX. If we calculate the distance matrix 

directly from X, then the principal coordinates from this distance 

matrix are given by the eigenvectors of XX which are (from Q1 of 

week 4) Xai, i.e. XA, thus showing that deriving a configuration of 

points from the matrix D by classical scaling is equivalent to 

referring the original data to principal components. 
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2) If cij represents the similarity between cases i and j (cij is a similarity if cij=cji and cij 

 cii) then the similarity matrix C can be converted to a distance matrix D by 

defining dij=(cii–2cij+cjj)
½. Define B = HAH where A=(–½dij

2 ) 

i) Shew that B=HCH.   

   If dij = (cii–2cij+cjj)½ then aij = –½dij
2  = –½(cii–2cij+cjj) so 

bij =  aa j = iij  aa   cc j  and so B = HCH.  cciij

ii) Deduce that you can proceed with classical scaling analysis analyzing C 

directly instead of converting it to a distance matrix and then calculating A.  
So, we deduce that you can proceed with classical scaling 

analysis using C directly in place of the matrix A instead of 

converting C to a distance matrix and then calculating A from it. 
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3) The table below gives the road distances between 12 UK towns. The towns are 

Aberystwyth, Brighton, Carlisle, Dover, Exeter, Glasgow, Hull, Inverness, Leeds, 

London, Newcastle and Norwich.  

i) Is it possible to construct an exact map for these distances?  
 

 A B C D E G H I Le Lo Ne No 

A 0            

B 244 0           

C 218 350 0          

D 284 77 369 0         

E 197 167 347 242 0        

G 312 444 94 463 441 0       

H 215 221 150 236 279 245 0      

I 469 583 251 598 598 169 380 0     

Le 166 242 116 257 269 210 55 349 0    

Lo 212 53 298 72 170 392 168 531 190 0   

Ne 253 325 57 340 359 143 117 264 91 273 0  

No 270 168 284 164 277 378 143 514 173 111 256 0 

 
 These data are contained in data set TOWNS. The Minitab version has the 

names of the towns in the first column and the data matrix in the next 12 

columns. The final 12 columns contain the 12×12 matrix A=(–½ ). The R and 

S-plus versions give a dataframe with just the symmetric matrix of distances.  

 

dij
2
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The key to this is to calculate the eigenanalysis of the centred version of 

A (i.e. B=HAH). This gives the values 394473, 63634, 13544, 10246, –

7063, 2465, 1450, –1141, 500, –214, –17 and since some of these are 

negative it means no it is not possible to construct an exact map. A 

transcript of an R session to do this is given below. 

In R use the function cmdscale() (use the help system to find out how). 

A transcript is given below.  Note that towns.Rdata is a dataframe and 

so the function as.matrix() is required to convert this to a matrix. 
> options(digits=3) 
> x<-cmdscale(as.matrix(towns),k=11,eig=TRUE) 
Warning messages: 
1: In cmdscale(as.matrix(towns), k = 11, eig = TRUE) : 
  some of the first 11 eigenvalues are < 0 
2: In sqrt(ev) : NaNs produced 
> x$eig 
 [1]  3.94e+05  6.36e+04  1.35e+04  1.02e+04  2.46e+03  1.45e+03   
 [7] 5.01e+02  -9.09e-13 -1.69e+01 -2.14e+02 -1.14e+03 
> 

Note that it warns you of negative eigenvalues. 
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Notes & Solutions for Tasks 6 

1) Continuing Q3 of the tasks for week 5 (road distances between 12 UK towns)  

Determine a configuration of points that will adequately represent the data.

 First construct a scree plot (or else eyeball the [positive] 

eigenvalues and observe the first two dominate, so 2 dimensions is 

enough). 
> library(MASS) 
> options(digits=3) 
> x<-cmdscale(as.matrix(towns),k=11,eig=TRUE) 
Warning messages: 
1: In cmdscale(as.matrix(towns), k = 11, eig = TRUE) : 
  some of the first 11 eigenvalues are < 0 
2: In sqrt(ev) : NaNs produced 
>  
> x$eig 
 [1]  3.94e+05  6.36e+04  1.35e+04  1.02e+04  2.46e+03  1.45e+03    
 [7]  5.01e+02 -9.09e-13 -1.69e+01 -2.14e+02 -1.14e+03 
>  
> CMDscreeplot(towns,raw=FALSE,abs=TRUE,maxcomp=10) 
Warning messages: 
1: In cmdscale(as.matrix(mydata), k = n, eig = TRUE) : 
  some of the first 11 eigenvalues are < 0 
2: In sqrt(ev) : NaNs produced 
 
 
 
 
 
 
 
 
 

Scree plot of absolute values of eigenvalues
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i) Construct a two-dimensional map representing the road distances 

between these towns. 
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To do it in R you can use the function cmdscale() with  
x<-cmdscale(as.matrix(towns)) 

and then plot the results by the coordinates of the points are in x$ 

points and can be plotted. Note that towns.Rdata is already a 

distance matrix so you should not use the multidimensional scaling 

menu in the MASS library which presumes that you have a raw data 

matrix and calls dist() internally to create a new distance matrix.  

The command as.matrix() is required for cmdscale to recognise 

the distance matrix. It is also possible in R to try two varieties of non-

metric scaling (sammon() and isomds()).  

A record of an R session to perform these analyses is given below: 
> plot(x$points[,2],-x$points[,1],pch=15,col="red", 
+ xlim=c(-150,150),ylim=c(-250,400),cex=1.5, 
+ main="Classical Metric Scaling  
+ plot of UK inter-town road distances") 
>  
> text(x$points[,2],-
x$points[,1],row.names(towns),adj=c(0,1.3), 
+ xlim=c(-150,150),ylim=c(-250,400)) 
> 

Note the reversal of sign of the vertical axis — an initial plot revealed 

that Inverness appeared on the lower edge of the plot so re-plotting 

with the sign changed produces a plot more aligned to the geography 

of the UK.  Fortunately the east-west axis came out correctly but it 

would be possible to rotate or flip the plot in any way that is required. 
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>  
plot(x.sam$points[,2], 
+ -x.sam$points[,1],pch=19,col="purple", 
+ xlim=c(-150,170),ylim=c(-250,400),cex=1.5, 
+ main="Sammon Mapping   
+ plot of UK inter-town road distances") 
> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
>  plot(x.iso$points[,2],-
x.sam$points[,1],pch=16,col="violet", 
+ xlim=c(-150,170),ylim=c(-250,400),cex=1.5, 
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+ main="Isometric Scaling (Kruskal)   
+ plot of UK inter-town road distances") 
>  
>  
> text(x.iso$points[,2],-x.sam$points[,1],  
+ labels=row.names(towns),adj=c(0,1.3),xlim=c(-
150,170),ylim=c(-250,400)) 
>  
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Notes & Solutions for Tasks 7 

1) Retrieve the data on beef and pork consumption referenced in §5.2 and verify the 

calculations given in §5.2 using R or S-PLUS. Predict the consumption of beef and 

pork if the prices in cents/lb are 79.3, 41.2 and the disposable income index is 

40.4. 

First, create a data set with the name meat containing the six 

columns needed (including a column named constant containing 

just 1s), then: 
> attach(meat) 
> y<- cbind(cbe,cpo) 
> x<- cbind(constant, pbe,ppo,dinc) 
> betahat<- solve(t(x)%*%x)%*%t(x)%*%y 
> betahat 
             cbe    cpo 
constant 101.448 79.569 
pbe       -0.753  0.153 
ppo        0.254 -0.687 
dinc      -0.241  0.283> 
> sigmahat<-t(y-x%*%betahat)%*%(y-x%*%betahat) 
> sigmahat<-sigmahat/(17-3-1) 
> sigmahat 
      cbe   cpo 
cbe  4.41 -7.57 
cpo -7.57 16.83> 
 > x0<- c(1,79.3,41.2,40.4) 
> ypred<-x0%*%betahat 
> ypred 
      cbe  cpo 
[1,] 42.5 74.9 
>> 
So predicted consumption of beef is 42.5 and of pork 74.9 pounds. 

 
2) Retrieve the dataset chap8headsize referenced in §6.3 and calculate the 

estimates of the least squares multivariate regression parameters  of length and 

breadth of heads of first sons upon those of second sons. Is it possible to deduce 

from these results the estimates for the regression of second sons upon the first? 

(Note that the individual data files seem no longer to be available but 

you should be able to download the complete set of files from Brian 

Everitt’s webpage as a zipped archive.) 
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> "headsize" <-  

+ matrix(c(191, 195, 181, 183, 176, 208, 189, 197, 188, 192, 179, 183, 
174, 190, 188, 163, 195, 186, 181, 175, 192, 174, 

+  176, 197, 190, 155, 149, 148, 153, 144, 157, 150, 159, 152, 150, 158, 

147, 150, 159, 151, 137, 155, 153, 

+  145, 140, 154, 143, 139, 167, 163, 179, 201, 185, 188, 171, 192, 190, 

189, 197, 187, 186, 174, 185, 195, 

+  187, 161, 183, 173, 182, 165, 185, 178, 176, 200, 187, 145, 152, 149, 

149, 142, 152, 149, 152, 159, 151, 

+  148, 147, 152, 157, 158, 130, 158, 148, 146, 137, 152, 147, 143, 158, 

150) 

+ , nrow = 25, ncol = 4 ,  dimnames = list(character(0) 

+ , c("head1", "breadth1", "head2", "breadth2"))) 

> attach(data.frame(headsize)) 

The calculations for the regression of first son sizes on second son 

sizes are:- 
> y<-cbind(head1,breadth1) 
> x<-cbind(rep(1,25),head2,breadth2) 
> betahat<- solve(t(x)%*%x)%*%t(x)%*%y 
> betahat 
          head1 breadth1 
         34.282   35.802 
head2     0.394    0.245 
breadth2  0.529    0.471 
and this would allow prediction of first son head sizes  from second, 

though it would be more plausible to predict second from first and 

then the regression analysis would need to be done the other way 

around. It is not possible to deduce one from the other in the same 

way as in univariate regression regressing y on x does not give all the 

information needed for the regression of x on y.  Note however that 

you can get the estimates of the regression coefficients but not the 

variance matrix) from univariate [multiple] regressions:- 
> ll<-lm(head1~head2+breadth2) 
> ll 
Call: 
lm(formula = head1 ~ head2 + breadth2) 
Coefficients: 
(Intercept)        head2     breadth2   
     34.282        0.394        0.529   
> bb<-lm(breadth1~head2+breadth2) 
> bb 
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Call: 
lm(formula = breadth1 ~ head2 + breadth2) 
Coefficients: 
(Intercept)        head2     breadth2   
     35.802        0.245        0.471   

3) Read the section on Maximum Likelihood Estimation in Background Results.  

This material will be required and used extensively in Chapter 8. 

Trust you have done this by now. 
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Notes & Solutions for Tasks 8 

1) Read §8.1 – §8.4 paying particular attention to the results highlighted in boxes as 

well as §8.3.2 and §8.4. 

Trust you have done this by now. 
2) n observations are available on x~Np(,) and C is a known pq matrix (p>q). By 

finding the distribution of y=Cx, shew that a test of H0: C=0 vs. HA: C  0 is 

given by Hotelling’s T2 with T2=n x C(CSC)–1C x   ( x and S are the sample mean 

and variance). What parameters does the T2 distribution have? 

If x~Np(, ) then y=Cx~Nq(y,y) where y=C and y=CC, further 

Sy=CSC and y C x  and so the T2 statistic for testing y=0 which is 

n y Sy
–1 y  = n x C(CSC)–1C x  and the null distribution is T2(q,n–1). 

 
3) Note: parts (i) & (ii) below should give the same p-value. 

i) A sample of 6 observations on sugar content x1 and stickiness x2 of a 

novel toffee give sample statistics of   

    x and S






 









8117
60 33

27 02 7 94
4 26

.

.
. .
* .

.  

Test the hypothesis H0: 21=32   

[Suggestion: consider using the 21 matrix C=(2, –3)] 

We have n=6 and H0: 21–32=0 i.e.  0 ,   

i.e. C=(2,–3).    

)3,2(
2

1 












xC –18.65, CSC=51.14,   

so T2=40.81 :  5,1
2

1n
1

1
1n FT 
  and so we compare 40.81 with F1,5 

and then conclude that this is highly significant and so reject the 

null hypothesis. 

ii) By noting that  if x = (x1,x2) ~ N2(,) where  = (1,2) and  has element 

ij then 2x1–3x2 ~ N((21–32),(42
11+92

22–1212)) test H0 in i) above using a 

Student’s t-test. 
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1 22x 3x 18.65   ;    ,  n=6 

so 

2 2
11 22 124s 9s 12s 51.14  

18.65
51.14 / 6

t    6.39  and compare with t5 giving same p-value as in 

part (i) noting that 6.392 = 40.8 and t52  F1,5. 
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Notes & Solutions for Tasks 9 

1) Read the solutions to Exercises 2. These contain a detailed guide to the 

interpretation of principal components and of crimcoords by examining the 

loadings of the variables in the PCs and Crimcoords and so provide further 

practice at this important aspect. 

Trust you have done this by now. 

2) Referring to the data set dogmandibles. excluding the Prehistoric Thai dogs 

(group 5 on X11) test the hypotheses that Male and Female dogs have  

i) equally sized mandibles (i.e. variables X1 & X2 together) 

This calls for a Hotelling’s T2-test with (X1,X2). The easiest way of 

doing this is to use a MANOVA facility in. Values of T2 can be 

obtained as (n–2)Lawley-Hotelling statistic.  
> options(digits=7) 
>  
> mf.manova<-manova(cbind(length, breadth) ~ gender) 
>  
> summary.manova(mf.manova,test="H") 
          Df Hotelling-Lawley approx F num Df den Df  Pr(>F)   
gender     1          0.08025  2.56806      2     64 0.08457 
Residuals 65                                                   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
>  

The T2 is then (32 + 35 –2)0.08025 = 5.21625, converting this to an 

F-value gives 2.568 (as in table above) and p-value 0.085 (also as in 

table above) and so we conclude that there is only weak evidence of 

a difference in mean sizes of mandibles between male and female. 

© NRJF 1982 313



Multivariate Data Analysis: Solutions toTasks  

 

a) equally long mandibles (variable X1) 

b) equally broad mandibles (variable X2) 

These can be done using two separate univariate student t-tests: 
 
> options(digits=3) 
> t.test(length ~ gender) 
 
        Welch Two Sample t-test 
 
data:  length by gender  
t = 1.74, df = 64.9, p-value = 0.08606 
alternative hypothesis: true difference in means is not 
equal to 0  
95 percent confidence interval: 
 -1.12 16.42  
sample estimates: 
mean in group 1 mean in group 2  
            133             126  
 
> t.test(breadth ~gender) 
 
        Welch Two Sample t-test 
 
data:  breadth by gender  
t = 2.26, df = 64.8, p-value = 0.02699 
alternative hypothesis: true difference in means is not 
equal to 0  
95 percent confidence interval: 
 0.092 1.475 
 

and we conclude that there is good evidence of a difference in 

mean breadths between males and females.  Note that the 

apparent contradiction between the multivariate and univariate 

tests is in part because of the slight loss of power in the 

multivariate test caused by estimating more parameters and partly 

because these are different hypotheses. 
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ii) equal overall mandible characteristics (i.e. variables X1–X9) 

We have 
 
> xx.manova=manova(cbind(length, breadth, condyle.breadth, 
height,  
+ molar.length, molar.breadth, first.to.3rd.length, 
+ first.to.4th.length, canine.breadth) ~ gender) 
>  
> summary(xx.manova, "H") 
          Df Hotelling-Lawley approx F num Df den Df Pr(>F) 
gender     1            0.137    0.871      9     57   0.56 
Residuals 65       

 (so T2 = 8.9375, p=0.556) and we conclude there is no evidence in a 

difference in mean characteristics as measured by these variables. 

Note that there is no need to calculate the p-value again from the T2 

statistics: it is necessarily the same as that given already. 

3) Test the hypotheses that Iris Versicolor and Iris Virginica have 

i) equally sized sepals 

ii) equally sized petals 

iii) equally sized sepals & petals. 

This question calls for several two-sample Hotellings T2tests; for (i) we 

need p=2 with elements sepal lengths & widths, for (ii) we need p=2 with 

elements petal lengths & widths, for (iii) we need p=4 with elements 

sepal lengths & widths, petal lengths & widths. The easiest way of doing 

this is to use a MANOVA facility. Values of T2 can be obtained as  

(n–2)Lawley-Hotelling statistic.   Doing this in R has no new features 

and so it is not given here. 

To do this 'by hand' (and it is strongly recommended that you do try it by 

hand for at least one case) you need to calculate the means and 

covariances of the four measurements separately for the varieties.   
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Notes & Solutions for Tasks 10 

1) Suppose we have samples of sizes n1 and n2 with means x 1 and x 2 and 

variances S1 and S2 from populations Np(1,1
2) and Np(2,2

2), let   

S=[(n1–1)S1+(n2–1)S2]/(n–2) where n=n1+n2. 

i) Shew that the UIT of H0: 1 = 2 vs HA: 1   2 is given by Hotelling’s 

1 2
1 2 1 2nT (x x ) S (xn n2 1  x )  

ii) Deduce that the greatest difference between the two populations is 

exhibited in the direction 1
1 2S ( . x x )

[Suggestion: adapt the argument of §5.6.4] 

When the data are projected into one dimension we require a two-

sample t-test for the equality of two Normal means and we use the 

statistic 2 1 2 1 2 1 2n n (x x )(x x )t
n S   

      and maximizing this wrt  means 

we require that  is the eigenvector of the [rank 1 pp matrix]  

n n S (x x )(x x ) / 1 2 1 2 1 2 n1  corresponding to the only non-zero 

eigenvalue. Easily seen by the usual procedure that this maximum 

value is 1 2n n2
1 2

1 x )
1 2nT (x x ) S (x    and that the eigenvector is 

proportional to 1
1 2S (x x )   which therefore exhibits the maximum 

deviation between the two populations. 
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2) Referring to the data set dogmandibles. excluding the Prehistoric Thai dogs 

(group 5 on X11) 

i) What combination of length and breadth of mandible exhibits the greatest 

difference between Males and Females? 

In R: 
 
> library(MASS) 
> attach(dogmandibles) 
> moddogs=dogmandibles[1:67,] 
> detach(dogmandibles) 
> attach(moddogs) 
> lda(gender~length+breadth) 
Call: 
lda(gender ~ length + breadth) 
 
Prior probabilities of groups: 
        1         2  
0.5223881 0.4776119  
 
Group means: 
  length   breadth 
1 133.40 10.274286 
2 125.75  9.490625 
 
Coefficients of linear discriminants: 
                LD1 
length   0.01938347 
breadth -0.90204609 
Warning message: 
In lda.default(x, grouping, ...) : group 3 is empty 
> 
 
 

So the linear combination is 0.01938length –0.90205breadth, 

or rescaling breadth – 0.0214  length as before 
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ii) What combination of length and breadth of mandible exhibits the greatest 

difference between the four species? 

 

In R: 
 
>  lda(species~length+breadth) 
Call: 
lda(species ~ length + breadth) 
 
Prior probabilities of groups: 
        1         2         3         4  
0.2388060 0.2985075 0.2537313 0.2089552  
 
Group means: 
    length  breadth 
1 125.3125  9.70625 
2 111.0000  8.18000 
3 133.2353 10.72353 
4 157.3571 11.57857 
 
Coefficients of linear discriminants: 
               LD1        LD2 
length  0.08941756 -0.1189762 
breadth 0.60275578  1.5483264 
 
Proportion of trace: 
   LD1    LD2  
0.9333 0.0667  
Warning message: 
In lda.default(x, grouping, ...) : group 5 is empty 
 
 
So the linear combination is 0.08942length + 0.6028breadth, or 
rescaling breadth + 0.0000674  length  (i.e. primarily breadth). 
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Notes & Solutions for Tasks 11 

Notes & Solutions 
[Note that these questions are more substantial than on previous task sheets. Question 1 is a 
past examination question. Question 3 is only of benefit to those wanting more practice on 
PCA interpretation and practical data analysis] 

1) An archaeologist wishes to distinguish pottery from two different 

sources on the basis of its chemical composition.  Measurements by 

Neutron Activation Analysis of the concentrations in parts per million 

of trace elements Cr and V in 19 samples of pottery from Tell el-

Amarna gave mean results of 2.3 and 6.7, respectively, with sample 

variances 0.62 and 1.41 and covariance 0.09. Similar measurements 

on 23 samples from Memphis gave mean results of 2.9 and 5.9 with 

sample variances 0.7 and 1.36 and sample covariance 0.08.  

i) Assuming that these measurements are adequately modelled 

by bivariate Normal distributions with a common variance, 

calculate the linear discriminant rule for distinguishing Amarna 

from Memphis pottery on the basis of the concentrations of Cr and 

V.  

First, calculate pooled variance matrix as W = [18STA+22SM]/40  

0.664 0.085
1.383

 
   

 and so 1 1.518 0.093
W

0.729
  
   

 

If x=(xCr,xV) then the linear discriminant rule is to classify x as from 

Amarna if ((2.3,6.7) – (2.9,5.9))W–1(x – ½((2.3,6.7) + (2.9,5.9)))>0, 

i.e. if (–0.6, 0.8)W–1(x – (2.6,6.3)) > 0, 

i.e. if (–0.985,0.639)(x – (2.6,6.3)) > 0 

i.e. if – 0.985xCr + 0.639xV – 1.465 > 0 
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ii) Prove that the estimated probabilities of misclassifying 

Memphis pottery as Amarna and vice versa are the same using 

this rule.   

Classification rule is to allocate to Amarna if  

h(x) =  – 0.985xCr + 0.639xV –1.465 > 0  

Now if x is from Memphis then  

E[h(x)] = – 0.9852.9 + 0.6395.9 –1.465 = –0.551 and var(h(x)) =  

(–0.985)2(0.664) + (0.639)2(1.383) + 2(–0.985)(0.639)(0.085) = 

1.102,  

so P[classify as Amarna |from Memphis]  

= P[h(x) > 0 | h(x)~N(–0.551, 1.102)] = 1 – (0.551/1.102)  

= 1– (0.525) = 1 – 0.700 = 0.300. 

If x is from Amarna then  

E[h(x)] =  – 0.9852.3 + 0.6396.7 –1.465 = 0.551 and var(h(x)) =  

(–0.985)2(0.664) + (0.639)2(1.261) + 2(–0.985)(0.639)(0.085) = 

1.102.  

So P[classify as Memphis |from Amarna]  

= P[h(x) < 0 | h(x)~N(–0.551, 1.102)]   

= (–0.551 /1.102) = (–0.525) = 0.30  

Thus the two misclassification probabilities are equal. 
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iii) By how much is this misclassification probability an 

improvement over those using each of the elements separately?   

If only Cr is used then rule is to classify as Amarna if  

hCr(xCr)=(2.3 – 2.9)(0.664–1(xCr – 2.6) > 0, i.e. if xCr < 2.6. 

If x is from Memphis, then xCr~N(2.9,0.664) and  

so P[classify as Amarna | from Memphis] = (–0.3/0.664½)  

= ( –0.368) = 0.356 

Similarly if only V is used then rule is to classify as Amarna if xV > 

6.3 and so P[classify as Amarna | from Memphis]  

= 1 – (0.4/1.383½) = 1 – (0.340) = 1 – 0.633 = 0.367. 

Thus the improvement in misclassification probability over using 

just Cr is 5.6% and over using just V it is 6.7% 

iv) What advice would you give to the archaeologist in the light of 

these results? 

The archaeologist needs to be warned that the error rate will be at 

least 30% if (s)he uses either or both of the elements.  This is 

substantial and may give cause for not proceeding with the study. 

Measuring more trace elements will certainly not worsen the 

situation. 
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2) Referring to the data set dogmandibles. (including the Prehistoric Thai dogs 

(group 5 on X11)) 

i) Using lda() in R look at the discrimination between the 5 species (using 

the nine measurements) and estimate the classifcation rate. [In R it is easy to 

find the cross-validation (or jackknife) estimate of classification rate]. 

NB The computer analysis in the solutions given here and in Q3 have 
been produced using Minitab.  The R analysis is considerably easier and 
has not been given but if there are any difficulties then this can be 
provided  
 
MTB > Discriminant 'species' 'length'-'canine breadth'; 
SUBC>   Predict C51-C59. 
 

Discriminant Analysis: species versus length, breadth, ... 
Linear Method for Response:   species  
Predictors:  length  breadth  condyle  height  molar le  molar br  first to   
             first to  canine b   
 
Group        1        2        3        4        5 
Count       16       20       17       14       10 
 
Summary of Classification 
 
Put into     ....True Group.... 
Group            1        2        3        4        5 
1               15        0        0        0        2 
2                0       20        0        0        0 
3                0        0       17        0        0 
4                0        0        0       14        0 
5                1        0        0        0        8 
Total N         16       20       17       14       10 
N Correct       15       20       17       14        8 
Proportion   0.938    1.000    1.000    1.000    0.800  
 
N =   77     N Correct =   74     Proportion Correct = 0.961 
 

So estimated classification rate without using cross-validation is 96%: 

With cross-validation gives 
MTB > Discriminant 'species' 'length'-'canine breadth'; 
SUBC>   XVal; 
SUBC>   Predict C51-C59. 
 

Discriminant Analysis: species versus length, breadth, ... 
 
 
Linear Method for Response:   species  
Predictors:  length  breadth  condyle  height  molar le  molar br  first to   
             first to  canine b   
 
Group        1        2        3        4        5 
Count       16       20       17       14       10 
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Summary of Classification 
 
Put into     ....True Group.... 
Group            1        2        3        4        5 
1               15        0        0        0        2 
2                0       20        0        0        0 
3                0        0       17        0        0 
4                0        0        0       14        0 
5                1        0        0        0        8 
Total N         16       20       17       14       10 
N Correct       15       20       17       14        8 
Proportion   0.938    1.000    1.000    1.000    0.800  
 
N =   77     N Correct =   74     Proportion Correct = 0.961 
 
Summary of Classification with Cross-validation 
 
Put into     ....True Group.... 
Group            1        2        3        4        5 
1               14        1        0        0        3 
2                0       19        0        0        0 
3                0        0       17        0        0 
4                0        0        0       13        0 
5                2        0        0        1        7 
Total N         16       20       17       14       10 
N Correct       14       19       17       13        7 
Proportion   0.875    0.950    1.000    0.929    0.700  
 
N =   77     N Correct =   70     Proportion Correct = 0.909 
 

so an estimate of 91%. 
ii) Perform the discriminant analysis just on the first four [modern] species 

and then use this to classify the prehistoric Thai dogs. 
MTB > COPY C1-C11 C101-C111; 
SUBC> USE C11 = 5. 
MTB > copy c1-c11 c1-c11 ; 
SUBC> omit c11 = 5. 
MTB > Discriminant 'species' 'length'-'canine breadth'; 
SUBC>   Predict c101-c109. 
 

Discriminant Analysis: species versus length, breadth, ... 
 
 
Linear Method for Response:   species  
Predictors:  length  breadth  condyle  height  molar le  molar br  first to   
             first to  canine b   
 
Group        1        2        3        4 
Count       16       20       17       14 
 
Summary of Classification 
 
Put into     ....True Group.... 
Group            1        2        3        4 
1               16        0        0        0 
2                0       20        0        0 
3                0        0       17        0 
4                0        0        0       14 
Total N         16       20       17       14 
N Correct       16       20       17       14 
Proportion   1.000    1.000    1.000    1.000  
 
N =   67     N Correct =   67     Proportion Correct = 1.000 

Prediction for Test Observations 
 Observation  Pred Group  From Group Sqrd Distnc Probability 
           1           1 
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                                   1      14.722       0.987 
                                   2      23.353       0.013 
                                   3      71.906       0.000 
                                   4      63.387       0.000 
           2           1 
                                   1      14.226       1.000 
                                   2      36.185       0.000 
                                   3      88.289       0.000 
                                   4      49.060       0.000 
           3           1 
                                   1      17.875       1.000 
                                   2      52.703       0.000 
                                   3      93.366       0.000 
                                   4      37.821       0.000 
           4           1 
                                   1       8.635       0.998 
                                   2      21.142       0.002 
                                   3      66.208       0.000 
                                   4      69.793       0.000 
           5           1 
                                   1      39.810       1.000 
                                   2      83.256       0.000 
                                   3     113.618       0.000 
                                   4      75.934       0.000 
           6           1 
                                   1      27.584       1.000 
                                   2      69.580       0.000 
                                   3      65.908       0.000 
                                   4      66.938       0.000 
           7           1 
                                   1      39.170       1.000 
                                   2      59.289       0.000 
                                   3     126.981       0.000 
                                   4      74.862       0.000 
           8           1 
                                   1       8.226       1.000 
                                   2      33.646       0.000 
                                   3      78.406       0.000 
                                   4      55.935       0.000 
           9           1 
                                   1      16.727       1.000 
                                   2      42.650       0.000 
                                   3     108.792       0.000 
                                   4      73.268       0.000 
          10           1 
                                   1      12.329       1.000 
                                   2      40.900       0.000 
                                   3      75.376       0.000 
                                   4      57.443       0.000 

Note the apparent 100% correct classification on just the modern 

species and that with ‘near certainty’ all the prehistoric are classified 

as ‘modern’, even though 
iii) Compare the results of these analyses with the results of the more 

informal exploratory analyses with Crimcoords in Exercises 2. 
The plots on crimcoords revealed a consistent slight difference from 
modern dogs. 
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3) The datafile CLAYPOTS has 272 observations on the trace element content of 

clay samples from pots found at various archaeological sites around the Aegean. 

Column 1 gives the group number (i.e. archaeological site for most of the pots) 

and columns 2—9 give the amounts of 9 trace elements (which have been 

labelled A to I) found in samples of clay from the pots. It is suggested that before 

investigating the specific questions below it is advisable to do some exploratory 

analysis with PCA etc. Groups 1, 3 and 4 are from known sources; groups 2 and 

5 are from unknown sources but are believed to come from one or other of 1,3 or 

4.  

i) Construct a display on crimcoords of groups 1,3 and 4 and add in the 

points from groups 2 and 5.  

ii) Which are the best classifications of these pots?  

 

In R you can use the function lda() and the generic function predict() — use 

the Help system to find out the details. 

© NRJF 1982 325



Multivariate Data Analysis: Solutions toTasks  

 
Welcome to Minitab, press F1 for help. 
MTB > RETR "C:\TEACHING\MVA\CLAYPOTS.MTW" 
Retrieving worksheet from file: C:\TEACHING\MVA\CLAYPOTS.MTW 
# Worksheet was saved on 22/11/01 11:10:19 
 
 
Results for: CLAYPOTS.MTW 
 
# First remove all data from groups 6 and above, done using 
the Copy columns in Manip with the mit rows option 
MTB > Copy 'Group'-'I' 'Group'-'I'; 
SUBC>   Omit 'Group' = 6:99. 
# Next, copy out the data for groups 2 and 5, with the Use 
rows option, not forgetting to cancel the omit rows option 
from last time 
MTB > Copy 'Group'-'I' c101-c110; 
SUBC>   Use 'Group' = 2 5. 
# Next, copy remove the data from groups 2 and 5 from the main 
body by copying the columns into themselves, with the omit 
rows option, not forgetting to cancel the use rows option from 
last time 
MTB > Copy 'Group'-'I'  'Group'-'I'; 
SUBC>   Omit 'Group' = 2 5. 
# Now do the MANOVA to get the W**(-1)B matrix. This is in 
Balanced Manova within ANOVA in version 13 but in version 12 
it is in Multivariate, Balanced manova and some details of 
output may be different. 
MTB > ANOVA 'A'-'I' = Group; 
SUBC>   MANOVA; 
SUBC>   Eigen; 
SUBC>   NoUnivariate. 
 
ANOVA: A, B, C, D, E, F, G, H, I versus Group 
 
 
MANOVA for Group                s =  2    m =  3.0    n =    
24.5 
 
Criterion        Test Statistic           F            DF       P 
Wilk's                  0.06928      15.862   ( 18,   102)  0.000 
Lawley-Hotelling        6.35730      17.659   ( 18,   100)  0.000 
Pillai's                1.42097      14.179   ( 18,   104)  0.000 
Roy's                   4.91873 
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EIGEN Analysis for Group 
 
Eigenvalue    4.9187    1.4386   0.00000   0.00000   0.00000   0.00000 
Proportion    0.7737    0.2263   0.00000   0.00000   0.00000   0.00000 
Cumulative    0.7737    1.0000   1.00000   1.00000   1.00000   1.00000 
 
Eigenvector        1         2         3         4         5         6     
A             -0.010    -0.001    -0.007    -0.003     0.026    -0.031 
B             -0.027     0.197    -0.099    -0.103    -0.086     0.036 
C             -0.012     0.030     0.154     0.051    -0.006     0.085 
D              0.433    -0.332     0.260    -0.284     0.043    -0.018 
E             -3.026    -3.674    -4.324    -1.873    -1.920     0.182 
F             12.912    -8.621     0.784    -3.279    -2.330    -2.055 
G             -0.006    -0.017     0.010     0.005    -0.002    -0.001 
H             -0.060     0.054    -0.037     0.151    -0.218    -0.168 
I             -7.888     0.678    -5.970    12.367     9.882    -1.723 
 
Eigenvalue   0.00000   0.00000   0.00000 
Proportion   0.00000   0.00000   0.00000 
Cumulative   1.00000   1.00000   1.00000 
 
Eigenvector        7         8         9     
A             -0.033    -0.044    -0.045 
B             -0.005    -0.001     0.107 
C             -0.016     0.012     0.095 
D              1.537    -0.207    -0.025 
E             -3.408     2.042    -7.957 
F             -1.129    -0.909    -4.936 
G              0.021     0.023    -0.002 
H              0.017     0.037     0.024 
I             -0.001    -0.041    -3.756 
 
# Now highlight the first two eigenvectors by positioning the 
cursor just to the left of the -0.010 of eigenvector 1, 
holding down the ALT key and then with the left button 
depressed moving the cursor just to the right of 0.678, (this 
selects just the columns rather than all the  rows). Now click 
the copy icon to copy into the clipboard, then move to the 
data window and click the cell in row 1 of C12, then click the 
paste icon to paste the two eigenvectors into C12 and C13. 
# 
# Now move back the data for groups 2 and 5 to be in the same 
columns as the ‘training data’ for groups 1,3 and 4. Use 
Manip>Stack>Stack Blocks of columns to do this. 
MTB > Stack ('Group'-'I') (C101-C110) ('Group'-'I'). 
 
# Next, copy training data (groups 1,3, 4) and ‘new cases’ 
(groups 2 and 5) into a matrix m1. 
MTB > Copy 'A'-'I' m1. 
# copy the two eigenvectors (which have just been pasted into 
the data sheet) into matrix m2 
MTB > Copy  C12 C13 m2. 
# rotate all the data (training and new) onto the crimcoords. 
MTB > Multiply m1 m2 m3. 
 
# and copy the resulting matrix back into columns for 
plotting, naming them sensibly. 
MTB > Copy m3 c15 c16. 
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MTB > name c15 'Crimcoord 1' c16 'Crimcoord 2' 
# Now produce the plots with Graph>Plot and under Data display 
change the default in ‘For each’ from ‘Graph’ to ‘Group’ and 
give Group as the name of the variable, then go into Edit 
Attributes to choose pretty symbols for the plot 
(alternatively use the lines of code given below). 
MTB > Plot 'Crimcoord 1'*'Crimcoord 2'; 
SUBC>   Symbol 'Group'; 
SUBC>     Type 1 6 11 15 12; 
SUBC>     Color 9 2 11 12 4; 
SUBC>   ScFrame; 
SUBC>   ScAnnotation. 
 
Plot Crimcoord 1 * Crimcoord 2 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is clear from the plot that most of group 5 are like group 4 with one 

in the overlap region with group 1, the group 2 pot is most like group 

3 out of the three possibilities on offer but is not a ‘typical’ group 3 

pot. 

1   
2   
3   
4   
5   

-0.1-0.2-0.3-0.4-0.5-0.6-0.7-0.8-0.9-1.0-1.1

0.5

0.0

-0.5

C
rim

co
or

d 
1

© NRJF 1982 328



Multivariate Data Analysis: Solutions toTasks  

 
iii) Compare your opinions with the results from the ready-made analysis in 

STATS>MULTIVARIATE>DISCRIMINANT using the options to predict the 

membership of groups 2 and 5.   

 

First without cross-validation 
 
MTB > Discriminant 'Group' 'A'-'I'; 
SUBC>   Predict C102-C110. 
 
Discriminant Analysis: Group versus A, B, C, D, E, F, G, H, I 
 
 
Linear Method for Response:   Group    
Predictors:  A  B  C  D  E  F  G  H  I   
 
Group        1        3        4 
Count       20       23       19 
 
Summary of Classification 
 
Put into     ....True Group.... 
Group            1        3        4 
1               16        1        1 
3                0       21        0 
4                4        1       18 
Total N         20       23       19 
N Correct       16       21       18 
Proportion   0.800    0.913    0.947  
 
N =   62     N Correct =   55     Proportion Correct = 0.887 
 
Squared Distance Between Groups 
                1        3        4 
1          0.0000  21.6392   8.7280 
3         21.6392   0.0000  22.8474 
4          8.7280  22.8474   0.0000 
 
Linear Discriminant Function for Group 
                1        3        4 
Constant   -64.24   -72.82   -78.14 
A            1.90     1.55     1.86 
B           -8.32   -13.37   -12.23 
C            5.51     5.88     8.46 
D           56.90    80.71    65.72 
E           77.11    10.79    33.65 
F          196.22   750.93   248.60 
G            0.59     0.83     0.99 
H            6.44     2.74     4.81 
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I           37.33  -290.41   -66.66 
 
Summary of Misclassified Observations 
 
Observation     True     Pred    Group     Squared   Probability 
               Group    Group             Distance 
    5 **           1        4        1       18.52         0.090 
                                     3       34.33         0.000 
                                     4       13.89         0.910 
    9 **           1        4        1       7.631         0.265 
                                     3      26.576         0.000 
                                     4       5.591         0.735 
   12 **           1        4        1      10.001         0.313 
                                     3      31.864         0.000 
                                     4       8.431         0.687 
   14 **           1        4        1      11.013         0.054 
                                     3      30.185         0.000 
                                     4       5.277         0.946 
   24 **           3        4        1       8.920         0.061 
                                     3      15.680         0.002 
                                     4       3.444         0.937 
   34 **           3        1        1       12.22         0.854 
                                     3       19.98         0.018 
                                     4       16.01         0.129 
   56 **           4        1        1       6.681         0.512 
                                     3      28.222         0.000 
                                     4       6.776         0.488 
 

Prediction for Test Observations 

 
 Observation  Pred Group  From Group Sqrd Distnc Probability 
           1           3 
                                   1      68.554       0.000 
                                   3      29.937       1.000 
                                   4      58.479       0.000 
           2           4 
                                   1      25.307       0.032 
                                   3      37.330       0.000 
                                   4      18.517       0.967 
           3           4 
                                   1      78.880       0.000 
                                   3      86.709       0.000 
                                   4      63.197       1.000 
           4           4 
                                   1      92.554       0.001 
                                   3     102.880       0.000 
                                   4      79.229       0.999 
           5           4 
                                   1      80.461       0.001 
                                   3      98.965       0.000 
                                   4      65.380       0.999 
           6           4 
                                   1     138.275       0.007 
                                   3     152.710       0.000 
                                   4     128.415       0.993 
           7           1 
                                   1     202.608       0.600 
                                   3     226.511       0.000 
  
 
                                 4     203.419       0.400 
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Note that these classifications agree with those obtained 
informally with the crimcoord plot but that the classification 
of the group 2 plot as type 3 has been made with ‘near 
certainty’ making no allowance for the fact that it does not 
look like a typical group 3 pot. 
 
 
MTB > Discriminant 'Group' 'A'-'I'; 
SUBC>   XVal; 
SUBC>   Predict C102-C110. 
 
Discriminant Analysis: Group versus A, B, C, D, E, F, G, H, I 
 
 
Linear Method for Response:   Group    
Predictors:  A  B  C  D  E  F  G  H  I   
 
Group        1        3        4 
Count       20       23       19 
 
Summary of Classification 
 
Put into     ....True Group.... 
Group            1        3        4 
1               16        1        1 
3                0       21        0 
4                4        1       18 
Total N         20       23       19 
N Correct       16       21       18 
Proportion   0.800    0.913    0.947  
 
N =   62     N Correct =   55     Proportion Correct = 0.887 
 
Summary of Classification with Cross-validation 
 
Put into     ....True Group.... 
Group            1        3        4 
1               12        1        1 
3                1       21        0 
4                7        1       18 
Total N         20       23       19 
N Correct       12       21       18 
Proportion   0.600    0.913    0.947  
 
N =   62     N Correct =   51     Proportion Correct = 0.823 
 
Squared Distance Between Groups 
                1        3        4 
1          0.0000  21.6392   8.7280 
3         21.6392   0.0000  22.8474 
4          8.7280  22.8474   0.0000 
Summary of Misclassified Observations 
 

© NRJF 1982 331



Multivariate Data Analysis: Solutions toTasks  

Observation    True     Pred    X-val    Group    Squared Distance   
Probability 
              Group    Group    Group               Pred     X-val    Pred 
X-val 
    5 **          1        4        4        1     18.52     30.13    0.09  
0.00 
                                             3     34.33     40.13    0.00  
0.00 
                                             4     13.89     17.32    0.91  
1.00 
    8 **          1        1        4        1     23.84     45.18    0.95  
0.44 
                                             3     46.00     62.95    0.00  
0.00 
                                             4     29.83     44.73    0.05  
0.56 
    9 **          1        4        4        1     7.631     9.622    0.27  
0.12 
                                             3    26.576    26.928    0.00  
0.00 
                                             4     5.591     5.599    0.73  
0.88 
   10 **          1        1        4        1     5.174     6.208    0.63  
0.49 
                                             3    24.754    24.666    0.00  
0.00 
                                             4     6.196     6.125    0.37  
0.51 
   12 **          1        4        4        1    10.001    13.259    0.31  
0.10 
                                             3    31.864    33.507    0.00  
0.00 
                                             4     8.431     8.790    0.69  
0.90 
   14 **          1        4        4        1    11.013    14.930    0.05  
0.01 
                                             3    30.185    31.761    0.00  
0.00 
                                             4     5.277     5.500    0.95  
0.99 
   16 **          1        1        4        1     10.90     14.74    0.59  
0.24 
                                             3     29.16     30.51    0.00  
0.00 
                                             4     11.61     12.45    0.41  
0.76 
   19 **          1        1        3        1     19.87     33.52    0.94  
0.14 
                                             3     26.35     30.01    0.04  
0.83 
                                             4     27.46     37.11    0.02  
0.02 
   24 **          3        4        4        1     8.920     8.822    0.06  
0.06 
                                             3    15.680    23.329    0.00  
0.00 
                                             4     3.444     3.469    0.94  
0.94 
   34 **          3        1        1        1     12.22     12.77    0.85  
0.89 
                                             3     19.98     33.24    0.02  
0.00 
                                             4     16.01     16.91    0.13  
0.11 
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   56 **          4        1        1        1     6.681     6.679    0.51  
0.71 
                                             3    28.222    28.482    0.00  
0.00 
                                             4     6.776     8.446    0.49  
0.29 
 

Prediction for Test Observations 
 
 Observation  Pred Group  From Group Sqrd Distnc Probability 
           1           3 
                                   1      68.554       0.000 
                                   3      29.937       1.000 
                                   4      58.479       0.000 
           2           4 
                                   1      25.307       0.032 
                                   3      37.330       0.000 
                                   4      18.517       0.967 
           3           4 
                                   1      78.880       0.000 
                                   3      86.709       0.000 
                                   4      63.197       1.000 
           4           4 
                                   1      92.554       0.001 
                                   3     102.880       0.000 
                                   4      79.229       0.999 
           5           4 
                                   1      80.461       0.001 
                                   3      98.965       0.000 
                                   4      65.380       0.999 
           6           4 
                                   1     138.275       0.007 
                                   3     152.710       0.000 
                                   4     128.415       0.993 
           7           1 
                                   1     202.608       0.600 
                                   3     226.511       0.000 
                                   4     203.419       0.400 

Note that the cross-validated estimate of the classification rate is 

slightly lower and [of course] the classification of the new pots is 

unaltered by the cross-validation option. 
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1) x1,…,xn are independent measurements of Np(,2Ip) 

i) Shew that the maximum likelihood estimate of , subject to  = r0
2 (a 

known constant) is the same whether  is known or unknown.  

This example is very like example 5.5.3 in the lecture notes: 

We have  (; X)= –½(n–1)trace(S–2) – ½n( x –)( x –)–2 – 

½nplog(2) –½nplog(2) 

Let = ()–(–r0
2) then  2n(x ) 2

       . 

So we require 2
nx

n 2ˆ
 

   then =r0
2 implies (n+22)2r0

2=n2 x  x  

and so 0x r
x xˆ   which does not depend on 2. 

ii) Find the maximum likelihood estimate of  when neither  nor  are 

known. 

3 3(n 1)tr(S) n(x ) (x ) np 


1            

 1
npso (n 1)tr(S) n(x ) (x )ˆ ˆ        ̂  

21
np 0(n 1)tr(S) n( x x r )       
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iii) Hence, in the case when  = 0 (a known constant) construct the 

likelihood ratio test of H0 :  = r0
2 vs HA :   r0

2 based on n independent 

observations of Np(,0
2Ip). 

Under H0  

 2 2
max 0 0K ½n( x x r )      

Under HA we have  

 maxx so K̂    

so LRT statistic is 2 2
0 0n( x x r )     and under H0 this   2

1~ 

[1 d.f. since p parameters in  estimated 

under HA and p with 1 constraint under H0] 

 

iv) In an experiment to test the range of a new ground-to-air missile thirty-nine 

test firings at a tethered balloon were performed and the three dimensional 

coordinates of the point of ignition of the missile’s warhead measured. These 

gave a mean result of (0.76, 0.69, 0.66) relative to the site expressed in terms 

of the target distance. Presuming that individual measurements are 

independently normally distributed with unit variance, are the data consistent 

with the theory that the range of the missile was set correctly? 

We have 0=1=r0 and so  

2 2
0 0n( x x r )    = 39((0.76, 0.69, 0.66) (0.76, 0.69, 0.66) – 1)2  

= 1.894 (<<3.84= ) and so yes, the data are consistent with 

the theory that the range was set correctly 

2
1:0.95
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Background information for [partially seen] Quiz 

Data are available on national track records for various distances held by women 

from 55 different countries (as they stood at the start of the 1984 Los Angeles 

Olympics).  The distances are, in metres, 100, 200, 400, 800, 1500, 3000 and 

marathon. A small sample of the data is given below: 
> womentrackrecords[1:10,]; womentrackrecords[46:55,] 
         X100m X200m X400m X800m X1500m X3000m marathon 
argentin 11.61 22.94 54.50  2.15   4.43   9.79   178.52 
australi 11.20 22.35 51.08  1.98   4.13   9.08   152.37 
austria  11.43 23.09 50.62  1.99   4.22   9.34   159.37 
belgium  11.41 23.04 52.00  2.00   4.14   8.88   157.85 
bermuda  11.46 23.05 53.30  2.16   4.58   9.81   169.98 
brazil   11.31 23.17 52.80  2.10   4.49   9.77   168.75 
burma    12.14 24.47 55.00  2.18   4.45   9.51   191.02 
canada   11.00 22.25 50.06  2.00   4.06   8.81   149.45 
chile    12.00 24.52 54.90  2.05   4.23   9.37   171.38 
china    11.95 24.41 54.97  2.08   4.33   9.31   168.48 
..................          

..................          
..................          

singapor 12.30 25.00 55.08  2.12   4.52   9.94   182.77 
spain    11.80 23.98 53.59  2.05   4.14   9.02   162.60 
sweden   11.16 22.82 51.79  2.02   4.12   8.84   154.48 
switzerl 11.45 23.31 53.11  2.02   4.07   8.77   153.42 
taipei   11.22 22.62 52.50  2.10   4.38   9.63   177.87 
thailand 11.75 24.46 55.80  2.20   4.72  10.28   168.45 
turkey   11.98 24.44 56.45  2.15   4.37   9.38   201.08 
usa      10.79 21.83 50.62  1.96   3.95   8.50   142.72 
ussr     11.06 22.19 49.19  1.89   3.87   8.45   151.22 
wsamoa   12.74 25.85 58.73  2.33   5.81  13.04   306.00 
 
The complete list of countries as held in the data file is 
rownames(womentrackrecords) 
 [1] "argentin" "australi" "austria"  "belgium"  "bermuda"  
"brazil"   
 [7] "burma"    "canada"   "chile"    "china"    "columbia" 
"cookis"   
[13] "costa"    "czech"    "denmark"  "domrep"   "finland"  
"france"   
[19] "gdr"      "frg"      "gbni"     "greece"   "guatemal" 
"hungary"  
[25] "india"    "indonesi" "ireland"  "israel"   "italy"    
"japan"    
[31] "kenya"    "korea"    "dprkorea" "luxembou" "malaysia" 
"mauritiu" 
[37] "mexico"   "netherla" "nz"       "norway"   "png"      
"philippi" 
[43] "poland"   "portugal" "rumania"  "singapor" "spain"    
"sweden"   

© NRJF 1982 336



Multivariate Data Analysis: Exercises  

© NRJF 1982 337

[49] "switzerl" "taipei"   "thailand" "turkey"   "usa"      
"ussr"     
[55] "wsamoa"   
 

(NB gdr the [former] East Germany. frg is the [former] West Germany, gbni is the 

UK and png is Papua New Guinea. 
 
 

Below are some preliminary multivariate data analyses: 
> print(wtrcov.pc$loadings,cutoff=0.001);  
print(wtrcorr.pc$loadings) 
 
Loadings: 
         Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 
X100m    -0.010 -0.120  0.326 -0.150  0.925  0.002 -0.017 
X200m    -0.025 -0.315  0.880 -0.014 -0.354 -0.025 -0.012 
X400m    -0.062 -0.934 -0.328  0.122  0.013  0.022  0.025 
X800m    -0.003 -0.026 -0.037 -0.049 -0.015 -0.262 -0.963 
X1500m   -0.010 -0.039 -0.055 -0.340 -0.034 -0.899  0.265 
X3000m   -0.024 -0.082 -0.088 -0.919 -0.130  0.349 -0.041 
marathon -0.997  0.070 -0.002  0.020  0.002               
 
Loadings: 
         Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 
X100m    -0.368  0.490  0.286 -0.319 -0.231  0.620        
X200m    -0.365  0.537  0.230               -0.711 -0.109 
X400m    -0.382  0.247 -0.515  0.347  0.572  0.191  0.208 
X800m    -0.385 -0.155 -0.585        -0.620        -0.315 
X1500m   -0.389 -0.360        -0.430        -0.231  0.693 
X3000m   -0.389 -0.348  0.153 -0.363  0.463        -0.598 
marathon -0.367 -0.369  0.484  0.672 -0.131  0.142        
 
 

Various questions will follow later. 
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Notes & Solutions to Exercises 1  

 
4) Dataset nfl2000.Rdata gives performance statistics for 31 teams in the US 

National Football League for the year 2000. Twelve measures of performance 

were made, six relate to the home team performance and six to the opponent 

team (i.e. when the team was playing ‘at home’ and ‘away’).  The measures of 

performance were  

  homedrives50   drives begun in opponents' territory 
  homedrives20  drives begun within 20 yards of the goal 
  oppdrives50   opponents drives begun in team's territory 
  oppdrives20   opponents drives begun within 20 yards of goal 
  hometouch     touchdowns scored by team 
  opptouch      touchdowns scored against team 
  homeyards     total yardage gained by offence 
  oppyards      total yardage allowed by defence 
  hometop       time of possession by offence (in minutes) 
  opptop        time of possession by opponents' offence 
  home1sts      first downs obtained by offence 
  opp1sts             first downs allowed by defence 
 

The dataset contains a three letter abbreviation for the team as a row name. The 

coding is  

initials team initials team 
ARI Arizona Cardinals BAL Baltimore Ravens 
ATL Atlanta Falcons BUF Buffalo Bills 
CAR Carolina Panthers CIN Cincinnati Bengals 
CHI Chicago Bears CLE Cleveland Browns 
DAL Dallas Cowboys DEN Denver Broncos 
DET Detroit Lions IND Indianapolis Colts 
GB Green Bay Packers JAX Jacksonville Jaguars 
MIN Minnesota Vikings KC Kansas City Chiefs 
NO New Orleans Saints MIA Miami Dolphins 
NYG New York Giants NE New England Patriots 
PHI Philadelphia Eagles NYJ New York Jets 
SF San Francisco 49ers OAK Oakland Raiders 
STL St. Louis Rams PIT Pittsburgh Steelers 
TB Tampa Bay Buccaneers SD San Diego Chargers 
WAS Washington Redskins SEA Seattle Seahawks 
  TEN Tennessee Titans 

i) Use principal component analysis to identify and describe the main 

sources of variation of the performances.  

ii) Produce a scatter plot of the teams referred to their principal component 

scores and comment on any features you think worthy of mention.  

(NB: You are strongly advised to work through Task Sheet 2, Q3 if you have not 

already done so). 
source: Journal of Statistics Education Data Archive 
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First, open the datafile nfl2000 and then run the functions 

screeplot() and identifyPCH() (available from the folder R 

scriptfiles on the Semester 1 folder of MAS6011 module pages, as are 

the script file for the solution to this question). This is most easily done 

by downloading these files to a common folder and then double clicking 

on nfl2000.Rdata and then opening the two script files using the icon 

on the top left of the R session window. 
> nfl2000[1:5,]    # gives first few lines of the 
data file 
    homedrives50 homedrives20 oppdrives50 oppdrives20 
hometouch opptouch 
ARI           17            2          27           6        
24       52 
ATL           27            4          26           3        
25       46 
CAR           26            2          29           3        
30       35 
CHI           15            1          22           5        
22       43 
DAL           22            3          30           4        
31       41 
    homeyards oppyards hometop opptop home1sts opp1sts 
ARI      4756     5872    26.5   33.5      253     345 
ATL      4380     5749    29.6   30.4      256     308 
CAR      5036     5882    29.9   30.1      304     304 
CHI      4741     5464    28.5   31.5      239     297 
DAL      4724     5518    28.7   31.3      276     309 
> options(digits=3)    # suppress unnecessary 
decimal places 
>  sqrt(diag(var(nfl2000)))    # gives standard 
deviations 
homedrives50 homedrives20  oppdrives50  oppdrives20    
hometouch     opptouch  
        7.66         2.60         7.35         1.95        
11.09         9.57  
   homeyards     oppyards      hometop       opptop     
home1sts      opp1sts  
      757.83       531.59         1.94         1.94        
42.35        35.45  
> 
> apply(nfl2000,2,sum) 
homedrives50 homedrives20  oppdrives50  oppdrives20    
hometouch     opptouch  
         789          119          789          119         
1146         1146  
   homeyards     oppyards      hometop       opptop     
home1sts      opp1sts  
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     165973.0     165973.0        929.6        930.4       
9139.0       9139.0 
 
Note wide the variation in standard deviations so perform PCA with 

correlations.   Note also that homeXXX and oppXXX variables have 

matching totals so homeXXX counts events scored by the team and 

oppXXX the corresponding events against that team (rather than my 

initial guess of playing at home or away, apologies). Note that sum could 

equally well have been replaced by mean but since these are counts it 

seems natural to use totals. Also note that it would probably be sensible 

to look at some histograms to consider transforming the counts to 

achieve more symmetrical distributions (logarithmic or at least square 

roots are usually sensible for counts, but this is not critical for 

exploratory analysis such as PCA here). 
>  nfl.pc<-princomp(nfl2000,cor=T) 
>  summary(nfl.pc) 
Importance of components: 
                       Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 
Comp.6 Comp.7 Comp.8 
Standard deviation      2.415  1.764 0.9846 0.9128 0.6895 
0.5374 0.4078 0.3835 
Proportion of Variance  0.486  0.259 0.0808 0.0694 0.0396 
0.0241 0.0139 0.0123 
Cumulative Proportion   0.486  0.745 0.8259 0.8953 0.9350 
0.9590 0.9729 0.9851 
                        Comp.9 Comp.10 Comp.11  Comp.12 
Standard deviation     0.31153 0.23512 0.16141 5.40e-09 
Proportion of Variance 0.00809 0.00461 0.00217 2.43e-18 
Cumulative Proportion  0.99322 0.99783 1.00000 1.00e+00 
Looking at cumulative proportion suggests a cuttoff around 4 or 5 

components so look at a screeplot: 
>  screeplot(nfl2000,T,maxcomp=11) # note use of maxcomp = 11 
>                                   # since default is only 10 
eigenvaues 
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This suggests a kink at 4 (although 

there is a sharper kink at 2 this is 

rather a low dimension and gives a 

total of rather less than 80%) so 

the majority of the ‘information’ is 

likely to be in the first four PCs and 

the remaining seven are regarded 

as ‘noise’ — though may be worth 

checking the fifth for any obvious 

interpretation. 
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>  print(nfl.pc$loadings, cutoff=0.01) 
 
Loadings: 
             Comp.1 Comp.2 Comp.3 Comp.4 Comp.5  
homedrives50 -0.291 -0.189 -0.383  0.399  0.245  
homedrives20 -0.250 -0.217 -0.579  0.305 -0.147  
oppdrives50   0.253 -0.191 -0.434 -0.433 -0.535  
oppdrives20   0.268 -0.101 -0.397 -0.410  0.723  
hometouch    -0.208  0.445 -0.184        -0.041  
opptouch      0.272  0.314 -0.310 -0.011 -0.255  
homeyards    -0.222  0.445 -0.082 -0.253         
oppyards      0.284  0.322 -0.150  0.345  0.099  
hometop      -0.399  0.010 -0.031 -0.123 -0.069  
opptop        0.399 -0.010  0.031  0.123  0.069  
home1sts     -0.238  0.430 -0.094 -0.199  0.151  
opp1sts       0.309  0.297 -0.054  0.374 -0.034  
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suppressing more decimal places may make this easier to assimilate: 
> print(nfl.pc$loadings, cutoff=0.1,digits=1) 
 
Loadings: 
             Comp.1 Comp.2 Comp.3 Comp.4 Comp.5  
homedrives50 -0.3   -0.2   -0.4    0.4    0.2    
homedrives20 -0.2   -0.2   -0.6    0.3   -0.1    
oppdrives50   0.3   -0.2   -0.4   -0.4   -0.5    
oppdrives20   0.3   -0.1   -0.4   -0.4    0.7    
hometouch    -0.2    0.4   -0.2                  
opptouch      0.3    0.3   -0.3          -0.3    
homeyards    -0.2    0.4          -0.3           
oppyards      0.3    0.3   -0.2    0.3           
hometop      -0.4                 -0.1           
opptop        0.4                  0.1           
home1sts     -0.2    0.4          -0.2    0.2    
opp1sts       0.3    0.3           0.4           
(note that PCs beyond the 5th have been edited away but they appear in 

the output). 
i) Use principal component analysis to identify and describe the main 

sources of variation of the performances.  

The first component has positive signs for all opp variables and negative 

for all home ones and so reflects variations in aggregates of for – away 

counts over the various categories. Component 2 reflects drives against 

all other variables.   Component 3 has all signs the same for loadings of 

all variables (and checking without cutoff = 0.1 almost maintains this 

statement) and so reflects overall variations in total counts.  

Interpretation of component 4 would benefit from a greater knowledge of 

the intricacies of American football but it is notable that home and opp 

versions of pairs of variables have opposite signs with drives having 

positive signs and all others negative for the home versions.  This 

suggests it is a contrast between the differences for – against between 

drives and the other variables. Note that this explanation is a little 

complicated and attempts to interpret the fifth component are even more 

convoluted, supporting the suggestion that this reflects noise rather than 

coherent information. So, in summary, the prime source of variation is 

that some teams have many more counts of events such as drives, 
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touches, and yards than those scored against them whilst for others the 

converse is true.  More simply the greatest source of variation is in the 

quality of the teams, some are very much better than others. Secondly, 

some teams score many more drives than other noted events while 

others many fewer; thirdly some teams are involved in matches where a 

large number of ‘events’ are noted whilst for other teams the matches 

might be considered less eventful. Finally, there is a small component of 

variation attributable arising from teams which exceed the number of 

drives accrued over those against by more than the corresponding 

counts of touches, yards etc compared with those for which the 

converse is true. 
iii) Produce a scatter plot of the teams referred to their principal component 

scores and comment on any features you think worthy of mention.  

 
> par(mfrow=c(2,2)) 
> plot(nfl.pc$scores[,2],nfl.pc$scores[,1]) 
> plot(nfl.pc$scores[,3],nfl.pc$scores[,2]) 
> plot(nfl.pc$scores[,4],nfl.pc$scores[,3]) 
> screeplot(nfl2000,T,maxcomp=11) 
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The plot on the first two components (but not on others) suggests it may 

be worth investigating a few of the outliers and there is maybe a group 

of half a dozen points towards the top right hand corner: 

This could be done with identifyPCH() as below or else adding the 

row names as labels, though then there is some overlapping and 

illegibility but at least the outliers can be identified. 
> par(mfrow=c(1,1)) 
> plot(nfl.pc$scores[,2],nfl.pc$scores[,1]) 
> 
identifyPCH(nfl.pc$scores[,2],nfl.pc$scores[,1],col="red",pch=
15) 
[1]  1 30 23  8 12 21  
> 
identifyPCH(nfl.pc$scores[,2],nfl.pc$scores[,1],col="blue",pch
=17) 
[1] 16 19 13 
> 
identifyPCH(nfl.pc$scores[,2],nfl.pc$scores[,1],col="green",pc
h=19) 
[1] 20 27 
> 
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> plot(nfl.pc$scores[,2],nfl.pc$scores[,1],pch=15) 
> text(nfl.pc$scores[,2],nfl.pc$scores[,1], 
row.names(nfl2000), 
+ col="red",adj=c(-.2,-.1)) 

The next task is to 

say what it is that 

characterises the 

teams of interest. 

For example the 

team BAL appears 

on the bottom left 

corner so it has low 

scores on the first 

two PCs and so the 

Ravens have 

obtained 

exceptionally higher 

numbers of drives, 

touches etc than were obtained against them as well as unusually many 

more drives than touches and yards were counted in their games (need 

to look carefully at the signs of the coefficients of the various loadings in 

these two PCs to deduce these specific statements). Others can be 

described in a similar way, e.g. the Browns have obtained exceptionally 

lower numbers of drives, touches etc than were obtained against them 

as well as rather more drives than touches and yards were counted in 

their games. The Cardinals, Seahawks, City Chiefs, Vikings, 49ers and 

Colts have generally more counts of events against than for and 

comparably fewer drives than other events in matches involving them. 
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Comments: Note that this example does not have a first PC reflecting 
overall total level or amount (i.e. with identical signs for all loadings). 
Nevertheless the conclusion drawn from interpretation of the first PC is 
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‘obvious’ — of course some teams are much better than others and this 
accounts for the greater proportion of the variation. 
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2)  Measurements of various chemical properties were made on 43 samples of 

soil taken from areas close to motorway bridges suffering from corrosion.  The 

corrosion can be of either of two types and the ultimate aim of the investigation 

was to see whether these measurements could be used to discriminate between 

the two types. Before such a full-scale analysis was undertaken some preliminary 

analyses were performed, using MINITAB. The record of the session (edited in 

places) is given below.  

(a)   The principal component analysis has been performed on  the correlation 

matrix rather than the covariance matrix. Why is this to be preferred for 

these data?     

The measurements have very different standard deviations (a 

factor of five between smallest and largest, so a factor of >25 in 

variances). Additionally, the variables appear to be measuring 

different types of properties.  

 (b)   By using some suitable informal graphical technique, how may 

components would you recommend using in subsequent analyses? 

       

Draw a scree graph (not shewn here) — kink comes after 4 or 5 

so recommend 4 or 5. 

 (c)   What features of the samples do the first three components reflect? 

        

PC1 = (approx)  

 .4(pH+Carbon)–.4(Water+pyrite+organic+masslosss) and so is 

a contrast between pH& Carbon and these other 4 variables 

PC2: contrast between water, pyrite, carbon and the others 

(except pH)  

PC3: primarily organic vs rest 
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(d)   What, approximately, is the value of the sample correlation between the 

scores of PC-1 and  PC-2?    

Zero! (up to rounding error), despite the appearance of the first 

diagram. (PCs are always uncorrelated by construction!) 

 (e)   After looking at the various scatter plots of the principal component 

scores, what recommendation would you give to the investigator regarding 

the advisability of continuing with a discriminant analysis?   

Discursive: key points are (i) that type 2 does not appear to be 

a homogeneous group — plots of PC1 vs PC2 and PC2 vs PC3 

(71.5% of variation) reveal clear separation into distinct groups 

and so inadvisable to discriminate this from others, especially 

as one of the subgroups of type 2 appears to be very similar to 

type 1, (ii) No evidence of overall separation despite the first 5 

PCs accounting for 90% of the variation.  Could also mention 

(iii) outliers on PC 3.    

 
Worksheet size: 100000 cells 
MTB > Retrieve  "C:\soil.MTW". 
 
MTB > desc c2-c9; 
SUBC> by c1. 
 
Descriptive Statistics 
Variable   Type        N       Mean     StDev 
pH         Type 1     25      8.416     0.962 
           Type 2     18     8.0722    0.3102 
Water      Type 1     25      1.693     0.716 
           Type 2     18      2.831     1.812 
Acid       Type 1     25     0.5672    0.3937 
           Type 2     18     0.4322    0.2603 
Pyrite     Type 1     25     0.4628    0.2563 
           Type 2     18      1.019     0.500 
Carbon     Type 1     25     11.251     4.230 
           Type 2     18      9.783     1.862 
Moisture   Type 1     25     23.712     4.975 
           Type 2     18     21.922     2.647 
Organic    Type 1     25      2.556     0.720 
           Type 2     18      2.272     0.530 
MassLos    Type 1     25      5.536     1.575 
           Type 2     18      6.833     0.807 

 
MTB > PCA  'pH'-'MassLos'; 
SUBC>   Coefficients c31-c38; 
SUBC>   Scores'PC-1'-'PC-8'. 
Principal Component Analysis 
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Eigenanalysis of the Correlation Matrix 
Eigenvalue   2.351   1.862   1.504  0.827  0.612  0.412  0.230  0.197 
Proportion   0.294   0.233   0.188  0.103  0.077  0.052  0.029  0.025 
Cumulative   0.294   0.527   0.715  0.818  0.895  0.947  0.975  1.000 
 
Variable      PC1     PC2     PC3     PC4     PC5     PC6     PC7     PC8 
pH          0.348  -0.032   0.559   0.267  -0.126   0.599   0.334   0.095 
Water      -0.455   0.270   0.339   0.219   0.042  -0.460   0.520   0.272 
Acid       -0.002  -0.367   0.622  -0.053   0.347  -0.238  -0.520   0.168 
Pyrite     -0.351   0.446   0.157   0.417  -0.344   0.157  -0.539  -0.214 
Carbon      0.520   0.291  -0.077   0.022  -0.355  -0.285  -0.206   0.624 
Moisture   -0.001  -0.582   0.068   0.148  -0.687  -0.318   0.090  -0.231 
Organic    -0.204  -0.392  -0.387   0.616   0.181   0.188  -0.067   0.450 
MassLos    -0.487  -0.118   0.048  -0.549  -0.336   0.363  -0.049   0.445 
 
MTB > Plot 'PC-1'*'PC-2' 'PC-2'*'PC-3' 'PC-3'*'PC-4''PC-4'*'PC-5'; 
SUBC>   Symbol 'Type'; 
SUBC>     Type 6 19; 
SUBC>     Size 1.0 1.5; 
SUBC>   ScFrame; 
SUBC>   ScAnnotation. 
MTB > STOP 

Type 1
Type 2
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(This question is taken from the 1999/2000 examination.) 
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3)  (Not for submission) Suppose X={xij ; i=1,...,p, j=1,...,n} is a set of n 

observations in p dimensions with xij  all i=1,...,p (i.e. each of the p 

variables has zero mean, so 

j

n


 

1
0

x  0 ) and S=XX’/(n-1) is the sample variance of 

the data. Let uj=xjS–1xj (j=1,...,n) (so uj is the squared Mahalanobis distance of xj 

from the sample mean 0). Suppose the data are projected into one dimension by 

Y=X ( a p1 vector). Let yj=xj and define Uj()=(n–1)yj(YY)–1yj .  

i) Shew that Uj() is maximized with respect to  by the (right) eigenvector of 

S–1xjxj corresponding to its only non-zero eigenvalue.  

Uj()=(n–1)yj(YY)–1yj=(n–1)xj(XX)–1xj 

=(n–1)xjxj/XX (noting that XX is 1pp1, a scalar)  

=(n–1)xj xj/XX (noting that xj and xj are both scalars and so 

           commute). 

Uj() is invariant under scalar multiplication of  so we can 

impose the [non-restrictive] constraint that the denominator 

XX=1. (i.e. we only need to look for solutions amongst those 

s for which XX=1 ).    

Let =(n–1)xj xj–(XX–1):  

/=2(n–1)xj xj–2XX so we require  

(n–1)(XX)–1xj xj–=0…………………..()  

and so we need  to be the [right] eigenvector of   

(n–1)(XX)–1xj xj=S–1xj xj  which is of rank 1 (since xj xjis of rank 

1) and so has only one non-zero eigenvalue. 
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ii) If this eigenvector is j, shew that this maximum value Uj(j) is equal to this 

non-zero eigenvalue.  

multiplying () by XX gives Uj()=(n–1)xj xj=XX= 

iii) Shew that uj=Uj(j). 

iv) Shew that the non-zero eigenvalue of S–1xjxj is xjS–1xj and the 

corresponding eigenvector is proportional to S–1xj 

[S–1xj][xj(S–1xj)]=S–1xj(xjS–1xj)=[(xjS–1xj)][S–1xj] so S–1xjxj has 

eigenvalue =xjS–1xj and eigenvector proportional to S–1xj. 

Already shewn Uj()=. 
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Notes & Solutions to Exercises 2  

1) The data given in file dogmandibles. (in various formats) are extracted, via 

Manly (1994), from Higham etc (1980), J.Arch.Sci, 149–165.  The file contains 9 

measurements of various dimensions of the mandibles of 5 canine species as 

well as records of the sex and the species, eleven variables in total. These are

 X1: length of mandible  

  X2: breadth of mandible  

  X3: breadth of articular condyle  

  X4: height of mandible below first molar  

  X5: length of 1st molar  

  X6: breadth of 1st molar  

  X7: length between 1st to 3rd molar inclusive (1st to 2nd for Cuons)  

  X8: length between 1st to 4th premolar inclusive  

  X9: breadth of lower canine  

  X10: gender (1  male, 2  female, 3  unknown)   

  X11: species (1  modern dog from Thailand, 2  Golden Jackal,   

    3  Cuon, 4  Indian Wolf, 5  Prehistoric Thai dog)   

All measurements are in mm; molars, premolars and canines are types of teeth; 

an articular condyle is the round knobbly bit in a joint; a Cuon, or Red Dog, is a 

wild dog indigenous to south east Asia and notable for lacking one pair of molars. 

i) Ignoring the group structure, what interpretations can be given to the first 

two principal components? 

Step 1 is to perform a PCA on the linear measurements for the complete 

data set (i.e. all 5 groups).  Initial inspection shews (but not given here) 

that the standard deviations of the measurements vary widely — this is 

inevitable given that X1 has values in the 100s and X9 below 10 — so 

basing the PCA on the correlation matrix is preferable. (PCA on the 

covariance matrix gives the first eigenvalue as 0.956, with subsequent 

ones 0.027 and below, and first PC heavily dominated by X1, however 

the overall conclusions on the PCs are much the same but less 

clear-cut.)  
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R Analysis: 
 
 
> attach(dogmandibles) 
> dogmandibles[1:5,] 
  length breadth condyle.breadth height molar.length molar.breadth 
1    123    10.1              23     23           19           7.8 
2    127     9.6              19     22           19           7.8 
3    121    10.2              18     21           21           7.9 
4    130    10.7              24     22           20           7.9 
5    149    12.0              25     25           21           8.4 
  first.to.3rd.length first.to.4th.length canine.breadth gender species 
1                  32                  33            5.6      1       1 
2                  32                  40            5.8      1       1 
3                  35                  38            6.2      1       1 
4                  32                  37            5.9      1       1 
5                  35                  43            6.6      1       1 
> dog.pc<-princomp(dogmandibles[,-c(10,11)],cor=T) 
>  
> summary(dog.pc) 
Importance of components: 
                          Comp.1     Comp.2     Comp.3     Comp.4     Comp.5 
Standard deviation     2.6993793 0.85254056 0.58404915 0.43677899 0.38952230 
Proportion of Variance 0.8096276 0.08075838 0.03790149 0.02119732 0.01685862 
Cumulative Proportion  0.8096276 0.89038602 0.92828751 0.94948483 0.96634345 
                           Comp.6      Comp.7      Comp.8      Comp.9 
Standard deviation     0.35707481 0.296851411 0.262761145 0.135064109 
Proportion of Variance 0.01416694 0.009791196 0.007671491 0.002026924 
Cumulative Proportion  0.98051039 0.990301585 0.997973076 1.000000000 
> print(dog.pc$loadings,digits=1) 
 
Loadings: 
                    Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 
length              -0.4   -0.1   -0.3           0.2           0.1          
breadth             -0.3    0.3    0.2    0.2   -0.3    0.4    0.2   -0.6   
condyle.breadth     -0.3    0.3   -0.7          -0.3   -0.2    0.2          
height              -0.3    0.4    0.2    0.6    0.3   -0.2   -0.3    0.3   
molar.length        -0.3   -0.1          -0.4   -0.2    0.3   -0.7    0.1   
molar.breadth       -0.3           0.4   -0.4          -0.7          -0.2   
first.to.3rd.length -0.3   -0.7           0.4   -0.4   -0.1           0.1   
first.to.4th.length -0.3   -0.3   -0.2           0.7    0.1          -0.4   
canine.breadth      -0.3           0.3   -0.3           0.3    0.5    0.6   
                    
 

 

Note that in R the standard deviations on each component are the 

square roots of the eigenvalues. The rest of these solutions will 

concentrate on the interpretation of plots.  These have been produced in 

a different package but equivalent one can of course be produced in R. 

PC1 has coefficients all of the same sign and roughly the same 

magnitude. Thus low scores will be obtained (in this case, since the 

signs are all negative) by mandibles with all values of the variables 

which are large and there will be low values on PC1 when all variable 
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are small. Thus PC1 reflects size and large mandibles will appear at the 

extreme negative end of the axis, small ones at the positive end.  

 

PC2 has negative signs for X1, X5, X7 & X8 and positive signs for the 

other variables with X6 & X9 much smaller. These last two refer to the 

breadths of the 1st molar and the canine, so these are not important to 

PC2. Inspection of the variables reveals that those with negative signs 

are all lengths and those with positive signs are breadths and height so 

PC2 contrasts lengths with breadths and so can be interpreted as 

reflecting the shape of the mandible.  [Aside: these interpretations of 

size and shape for linear measurements on physical objects are very 

common and are likely to be appropriate for high order PCs, though not 

necessarily the second one in the case of shape.  This is not entirely for 

mathematical reasons, just the way the world is. One mathematical 

reason for size to be predominant is that linear measurements on 

objects are likely to be positively correlated – end of aside].  

Although not asked for, the next steps given here for illustration were to 

produce a scree plot and plots on the PCs. This is provided here for 

comparison with the plots on crimcoords and is always a virtually vital 

step in any analysis for any purpose of multivariate data.  The labels 

included the percentage of variation accounted for by that PC — a 

useful aid to the interpretation of the scatter plots which might 

alternatively be obtained by using equal scaling on the axes using 

eqscalplot() in the MASS library. The PC plots have the different 

groups distinguished, even though this information was ignored in the 

construction of the PCs.  
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This plot shews that 3 

PCs are adequate to 

capture most of the 

variation in the data. 

t

 

1 and X8, 

i.e. prehistoric dogs and cuons have short ‘chunky’ mandibles. 
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The plot on the first two 

PCs displays 89% of the 

variation. It separates out 

the wolves to the left of 

the plot (i.e. they are 

bigger) and the jackals to 

the right (i.e. hey are  

smaller) than the rest.  Note that the prehistoric and modern dogs are 

near inseparable on this plot and that this plot displays most of the
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The plot on PCs 2 & 3 

displays about 12% of the 

information. It separates 

the prehistoric (& the 

cuons) in the top right 

hand corner. To appear in 

the top r.h. corner cases 

have to have large values for those variables with positive coefficients 

on both PCs 2 & 3 and small values for those with negative coefficients 

on PCs 2 & 3, i.e. large values for X2 and X4 (ignoring any variable with a 

very small coefficient, even if positive) and small values for X
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The plot on PCs 3 & 4 

shews that the prehistoric 

separates from most 

groups other than the 

modern dogs on the 4th 

PC, though this 

separation is very slight 

noting that PC4% 

contains only 2.1% of the variation.   However, the fact that each of the 

groups is separated from the others on at least one of these plots 

suggests that it a discriminant analysis will be able to d
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istinguish them. 
ii) Construct a display of the measurements on the first two crimcoords, using 

different symbols for the five different groups. 

> library(MASS) 
>  
> dog.lda<-lda(species~length+breadth+condyle.breadth+height+ 
+ molar.length+molar.breadth+first.to.3rd.length+ 
+ first.to.4th.length+canine.breadth) 
>  
> print(dog.lda,digits=2) 
Call: 
lda(species ~ length + breadth + condyle.breadth + height + 
molar.length +  
    molar.breadth + first.to.3rd.length + first.to.4th.length 
+  
    canine.breadth) 
 
Prior probabilities of groups: 
   1    2    3    4    5  
0.21 0.26 0.22 0.18 0.13  
 
Group means: 
  length breadth condyle.breadth height molar.length 
molar.breadth 
1    125     9.7              21     21           19          
7.7 
2    111     8.2              19     17           18          
6.8 
3    133    10.7              24     24           21          
8.5 
4    157    11.6              26     25           25          
9.3 
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5    123    10.3              20     23           19          
8.2 
  first.to.3rd.length first.to.4th.length canine.breadth 
1                  32                  37            5.9 
2                  30                  33            4.8 
3                  29                  38            6.6 
4                  40                  45            7.4 
5                  33                  36            6.2 
 
Coefficients of linear discriminants: 
                       LD1    LD2    LD3    LD4 
length               0.150 -0.027 -0.079 -0.015 
breadth             -0.042  0.024  0.552  0.093 
condyle.breadth     -0.347 -0.024 -0.087 -0.282 
height               0.226  0.051  0.432  0.058 
molar.length         0.885 -0.746 -1.131  0.680 
molar.breadth        0.818  0.118  0.415  1.057 
first.to.3rd.length -1.375 -0.181  0.338  0.018 
first.to.4th.length -0.239 -0.090  0.014 -0.232 
canine.breadth       1.512  0.487  1.279 -1.028 
 
Proportion of trace: 
   LD1    LD2    LD3    LD4  
0.6539 0.2563 0.0859 0.0039 
 
type<-unclass(species) 
plot(predict(dog.lda)$x[,2],predict(dog.lda)$x[,1], 
pch=type,col=type) 
 
 
type<-unclass(species) 
plot(predict(dog.lda)$x[,2],predict(dog.lda)$x[,1], 
pch=type,col=type) 
 

 

This basic plot 

needs to be 

enhanced with a 

legend and 

proper labelling 

of axes and this 

is done below 

(though produced 

in a different 

plotting package) 
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This plot shews clear 

separation of all the 

groups from each other 

with the exception of the 

modern and prehistoric 

dogs which are 

intermingled on this 

display.  
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iii) If the linear discriminant analysis were performed on the data after 

transformation to the full set of nine principal components what differences (if 

any) would there be in the plot on crimcoords and the eigenvalues and 

eigenvectors of the matrix W–1B? 

There are two ways of looking at this. One is to do it and see what 

happens, the other is to look mathematically, at least initially. Both are 

useful.   However, on general principles, there should be no fundamental 

difference in the displays since a preliminary transformation to principal 

components is merely a rotation &/or a reflection of the data and no 

information is lost or gained. So plots on crimcoords after a PCA 

transformation should be expected to be essentially identical, up to 

perhaps a reflection.  To get some idea mathematically, suppose the 

original data matrix is denoted by X and the matrix of eigenvectors (of 

either the covariance or the correlation matrix, whichever is used) is 

denoted by A=(ai). Then we know that since aiai=1 and aiaj=0 for ij that 

AA =Ip .  The data referred to PCs is Y where Y=XA.  If W and B are 

the within and between groups variances of the original data X then 

those of Y are AWA and ABA respectively. So the crimcoords of the 

data referred to PCs are the eigenvalues of  

(AWA)–1 ABA, i.e. of A–1W–1A–1ABA = AW–1BA.  It is easy to see that 
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the eigenvalues of this are identical to those of W–1B. The original data 

referred to crimcoords are XU where U is the matrix of eigenvectors of 

W–1B and the [PCA transformed-]data referred to crimcoords after the 

PCA transformation are YV=XAV where V is the matrix of eigenvectors 

of AW–1BA.  It can be shewn (but not here) that these differ only in scale 

and an arbitrary sign difference. 

The try it and see approach is straightforward and is not given in detail 

here. The plots below are again in a different package and axes are not 

labelled (since this is just for a quick verification that nothing is 

essentially changed).  It can be see that the three plots are essentially 

identical except for [arbitrary] reflections.  
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iv) Which group is separated from the other four by the first crimcoord? 

Cuons 
v) Which group is separated from the other four by the second crimcoord? 

Wolves 
vi) Which group is separated from the other four by the third crimcoord? 

Need a plot of the third crimcoord: 

This shews that the third 

crimcoord separates the 

prehistoric dogs from the 
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rest. Further, the third in conjunction with the second separates the 

jackals from the rest. 
vii) What features of the mandibles provide discrimination between the various 

species?  

  

The first three crimcoords (from the original data) are 
 
                       LD1    LD2    LD3  
length               0.150 -0.027 -0.079  
breadth             -0.042  0.024  0.552  
condyle.breadth     -0.347 -0.024 -0.087  
height               0.226  0.051  0.432  
molar.length         0.885 -0.746 -1.131  
molar.breadth        0.818  0.118  0.415  
first.to.3rd.length -1.375 -0.181  0.338  
first.to.4th.length -0.239 -0.090  0.014  
canine.breadth       1.512  0.487  1.279  
 

High scores on crimcoord 1 are obtained by those cases which have 

big teeth, long mandibles and short distances between molars and 

premolars. These characteristics distinguish cuons from the others. 

High scores on crimcoord 2 are obtained by long narrow mandibles 

with long narrow teeth, these characteristics distinguish wolves from 

the other species [rather more specifically than just overall size as 

was deduced from the PCA above]. 

 

Low scores on crimcoord 3 are obtained by short broad (i.e. ‘chunky’) 

molars, short broad (‘chunky’) mandibles, and longer distances 

between molars. These features distinguish the prehistoric dogs from 

the others. [note that this is again a little more specific than obtained 

from just the PCA]. 
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2)   The question of prime interest in the study of canines was related to an 

investigation of the origin of the prehistoric dogs. Try calculating the discriminant 

analysis based on the four groups of modern canines and then plot the 

prehistoric cases on the same coordinate system a (c.f. informal data 

classification method (iii) on p140 of course notes) and seeing to which of the 

modern groups the majority of the prehistoric are closest.    

(The interpretation of the results of this exercise are within the scope of 

MAS465; the required computer skills to produce it are useful but a little beyond 

the scope of PA4370, i.e. if you do not attempt it ensure that you look carefully at 

the printed solution in due course.)  

  

Below are plots produced in a different package but code to do the 

equivalent in R is given later 
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This shews that the prehistoric are supe

Below is guidance on producing the plots in R. One difficulty is that to 

rimposed on the modern on 

crimcoords 1 & 2 but there is a distinction on crimcoord 3.   

add in points for the prehistoric samples onto existing plots on 

crimcoords for the modern dogs you may need to extend the plotting 

range o avoid trying to plot points outside the plotting area (hence use of 

the parameter ylim=c(.,.) below).  Note also the removal from both 

the PCA and the LDA the columns 10 and 11 which are factors 
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indicating gender and species. The code and examples below do not 

provide complete solutions to Q1 and Q2 but are intended as sufficient 

for you to adapt to your particular needs.  Just for illustration and for 

comparison, the analyses below have been done after taking [natural] 

logs of all measurements. 
> attach(dogmandibles) 
> library(MASS) 
> � 
> dog.pca<-princomp(log(as.matrix(dogmandibles[-c(10,11)]))) 

s,col=

 

 

 

..) : group 5 is empty 

>  
> plot(dog.pca$scores[,1],dog.pca$scores[,2],type="n") 
> 
text(dog.pca$scores[,1],dog.pca$scores[,2],labels=specie
type) 
> 

0.
3

 
 

-0.5 0.0 0.5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

>  
> mod <- log(as.matrix(dogmandibles[1:67, -c(10,11)])) 
> pre <- log(as.matrix(dogmandibles[68:77, -c(10,11)]))
> spec<-species[1:67] 
> mod.lda <- lda(mod, spec) 
Warning message: 
In lda.default(x, grouping, .
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> plot(predict(mod.lda, dimen = 2)$x, type="n") 
> text(predict(mod.lda)$x[,1],predict(mod.lda)$x[,2], 
labels=species) 
> points(predict(mod.lda,pre, dimen= 2)$x, pch=19) 
> 
 

 

-5 0 5

-4
-2

0
2

4
6

LD1

LD
2

1
1

1

1

1

1
1
1

1 1
1

1 1

1 1
1

2
2

2
2 2

2

2
2

2
2

2
2

22
2

2
2

2
2

2
3

3
3

33

3
3

3
33 3

3
3

3

3

3

3

44

4

4

4

4
4 4

4

4

4

44

4

5
5

5

5

5

5
5
5

5 5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
> plot(predict(mod.lda)$x[,2], 
predict(mod.lda)$x[,3],type="n",ylim=c(-7,4)) 
> text(predict(mod.lda)$x[,2], 
predict(mod.lda)$x[,3],labels=tp) 
> points(predict(mod.lda,pre)$x[,2], 
predict(mod.lda,pre)$x[,3],pch=19) 
> 
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Notes & Solutions to Exercises 3  

 

1)  

i) Measurements of cranial length x11 and cranial breadth x12 on 35 female 

frogs gave x1=(22.860, 24.397) and  









407.24*
290.20683.17

S1 .  Test 

the hypothesis that 11=12.  
Using the result from Task Sheet for week 8, Q2, illustrated Q3, we 

test H0 : C1 = 0 where C = (1,–1) by comparing   

35(22.860, 24.397)(1,–1)[(1,–1)S1(1,–1)]–1(1,–1)(22.860, 24.397) 

with T2(1,34), i.e. 35(–1.537)1.51–1(–1.537) = 54.75 and 

compare with (34 – 1 + 1)/34154.75 with F1,34–1+1 i.e. 7.4 with t34 

and conclude that there is very strong evidence that the cranial 

lengths and breadths of female frogs are different. 

ii) Similar measurements on 14 male frogs gave         

x2 =(21.821, 22.843) and  S .  

Calculate the pooled variance matrix for male & female frogs and test the 

hypothesis that female & male frogs come from populations with equal mean 

vectors.  

Pooled variance matrix is   

(34S1+13S2)/47 =  = S (say).   

Now    

 

2
18 479 19 095

20 756









. .
* .

. .
* .

 
 
 

903 19 959
23 397

 
 
 

973
73

17

. .
* .

0
0 8

S 1 1 140
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Hotelling’s T2 is [3514/49](1.039, 1.554)S–1(1.039, 1.554) = 

1.968 and we compare this with T2(2,47) = 2.0434F2,46 , i.e. 

compare 0.963 with F2,46 and we conclude that the data give no 

evidence of a difference between the sizes of skulls of Male and 

Female frogs. 

2) Using you favourite computer package, access the British Museum Mummy Pots 

data (see task sheet for week 4) and calculate the two shape variables ‘taper’ 

and ‘point’.  

Do the two batches of pots differ in overall shape as reflected by the calculated 
shape measures ‘taper’ and ‘point’?  
 

> attach(brmuseum) 
> library(MASS) 
> batch=factor(batch) 
> taper=(rim.cir-base.circ)/length 
> point=rim.cir/base.circ 
> shape.manova=manova(cbind(taper,point)~batch) 
> summary(shape.manova) 
          Df  Pillai approx F num Df den Df Pr(>F) 
batch      1 0.10362  1.27156      2     22 0.3002 
Residuals 23                                       
> summary(shape.manova,test="Hotelling-Lawley") 
          Df Hotelling-Lawley approx F num Df den Df 
Pr(>F) 
batch      1       0.1156   1.2716      2     22 0.3002 

Residuals 23          
 
 

You can see that the p-values for all of the tests are 0.3 (since only 

two groups all the tests are functionally related to each other and so 

equivalent. The value of Hotelling’s T2 is 230.1156=2.6588 and if 

you look at the corresponding p-value it is 0.300 (of course!). Note 

that there is one missing value and so this entire pot has been 

excluded from the analysis, leaving only 25 pots. The answer to the 

questions is no, there is no significant evidence that the pots differ in 

shape. 
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i) Do the two batches of pots differ in overall size? 

> 
size.manova=manova(cbind(length,rim.cir,base.circ)~batch) 
> summary(size.manova) 
          Df Pillai approx F num Df den Df   Pr(>F)    
batch      1 0.4323   5.3301      3     21 0.006877 ** 
Residuals 23                                           
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1  
> summary(size.manova,test="Hotelling-Lawley") 
          Df Hotelling-Lawley approx F num Df den Df   
Pr(>F)    
batch      1           0.7614   5.3301      3     21 
0.006877 ** 
Residuals 23                                                     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1 
Yes, all p-values are 0.007 and so conclude that there is very 

strong evidence of a difference in overall size between the 

batches. 
                                       
In this two group case there is no actual advantage in looking at 

both the Pilai trace (the R default) and the Hotelling-Lawley 

statistics since they have precisely the same significance. In 

general you should decide which statistics you are going to base 

your inference on and you should definitely not choose the one 

with the most significant result. In most cases there should be 

general agreement between the available statistics (p-values 

differing only marginally); if there is a substantial difference then it 

indicates something most unusual and unexpected about the data 

which is worth investigating — it may mean that you have outliers 

or some other form of non-normality indicating our model is not 

appropriate. 
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ii) Without doing any calculations,  

a) would your answer to (ii) be different in any respect if you used the scores 

on the three PCs calculated from the size variables? 

b) Would it make any difference were you to calculate the PCs using the 

correlation matrix instead of the covariance matrix? 

Since the PCs (provided you take all of them) are just a linear 

transformation of the data (whether the matrix of eigenvectors is 

calculated from the covariance or correlation matrix) there should 

be no difference in the results on using the PCs. If not convinced 

then look at the following: 
 
> size.pc<-princomp(cbind(length,rim.cir,base.circ)) 
> sizepc.manova=manova(size.pc$scores~batch) 
> summary(sizepc.manova,test="Hotelling-Lawley") 
          Df Hotelling-Lawley approx F num Df den Df   
Pr(>F)    
batch      1           0.7614   5.3301      3     21 
0.006877 ** 
Residuals 23                                                     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1  
> 

3) x1,…,xn are independent measurements of Np(,2Ip) 

i) Shew that the maximum likelihood estimate of , subject to  = r0
2 (a 

known constant) is the same whether  is known or unknown.  

This example is very like example 5.5.3 in the lecture notes: 

We have  (; X)= –½(n–1)trace(S–2) – ½n( x –)( x –)–2 – 

½nplog(2) –½nplog(2) 

Let = ()–(–r0
2) then  2n(x ) 2

       . 

So we require 2
nx

n 2ˆ
 

   then =r0
2 implies (n+22)2r0

2=n2 x  x  

and so 0x r
x xˆ   which does not depend on 2. 

ii) Find the maximum likelihood estimate of  when neither  nor  are 

known. 
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3 3(n 1)tr(S) n(x ) (x ) np 


1            

 1
npso (n 1)tr(S) n(x ) (x )ˆ ˆ        ̂  

2 21 1
np np0 i i 0(n 1)tr(S) n( x x r ) x x 2nr x x nr0
            
     
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iii) Hence, in the case when  = 0 (a known constant) construct the 

likelihood ratio test of H0 :  = r0
2 vs HA :   r0

2 based on n independent 

observations of Np(,0
2Ip). 

Under H0  

 2 2
max 0 0K ½n( x x r )      

Under HA we have  

 maxx so K̂    

so LRT statistic is 2 2
0 0n( x x r )     and under H0 this   2

1~ 

[1 d.f. since p parameters in  estimated 

under HA and p with 1 constraint under H0] 

 

iv) In an experiment to test the range of a new ground-to-air missile thirty-nine 

test firings at a tethered balloon were performed and the three dimensional 

coordinates of the point of ignition of the missile’s warhead measured. These 

gave a mean result of (0.76, 0.69, 0.66) relative to the site expressed in terms 

of the target distance. Presuming that individual measurements are 

independently normally distributed with unit variance, are the data consistent 

with the theory that the range of the missile was set correctly? 

We have 0=1=r0 and so  

2 2
0 0n( x x r )    = 39((0.76, 0.69, 0.66) (0.76, 0.69, 0.66) – 1)2  

= 1.894 (<<3.84= ) and so yes, the data are consistent with 

the theory that the range was set correctly 

2
1:0.95
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APPENDICES 

The following pages contain various appendices.  

Appendix 0 gives some background notes on some mathematical 

techniques and statistical methods which some people may not have 

seen before.   Everybody should make sure that they are sufficiently 

acquainted with the material in this appendix so that they know where to 

look up references to properties of eigenvalues and eigenvectors, 

differentiation with respect to vectors, maximum likelihood estimation 

and likelihood ratio tests. 

The other appendices are provided because they contain useful material 

for people involved in practical work both on courses in this University 

and in the future. Many of the techniques are relatively new and are still 

under development — they are tailored to people using R which is a 

FREE package downloadable from the web and is almost identical to 

S-PLUS.  S-PLUS users will have little difficulty in converting the examples 

below to run in S-PLUS.   

A full list of sites providing R can be found at  

http://www.ci.tuwien.ac.at/R/mirrors.html 

and the most local one is at http://cran.uk.r-project.org/ 

As well as the book by Venables & Ripley, a useful book recommended 

for additional reading about R is Nolan, D. & Speed, T. P. (2000), Stat 

Labs: Mathematical Statistics Through Applications. Springer. Support 

material is available at: http://www.stat.berkeley.edu/users/statlabs 

 

© NRJF 1982 372

http://www.ci.tuwien.ac.at/R/mirrors.html
http://cran.uk.r-project.org/
http://www.stat.berkeley.edu/users/statlabs


Multivariate Data Analysis: Appendices 

It is emphasized that this further additional material that is NOT part of 

PAS470, nor part of the examined part of PAS6011.   It has been 

provided because it is useful for practical studies and some people may 

find that they need to use these methods in the assessed projects in e.g. 

PAS354 and for the assessed project for PAS6011 and perhaps the 

MSc summer dissertation.  Some of the topics are just mentioned on an 

‘awareness’ level (e.g. Correspondence Analysis), for others (e.g. 

Neural Networks) there are detailed notes on how to run the analyses 

with commentaries on the examples. 
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APPENDIX 0: Background Results 

A0.1 Basic Properties of Eigenvalues & Eigenvectors  

Let A be a real pp matrix.  

The eigenvalues of A are the roots of the p-degree polynomial in : 

    q()= det(A – Ip)=0................................... 

Let these be 1,2,......p. Then, since the coefficient of p in equation  is 

(–1)p we have q()= .................. 
p

i
i 1

(


   )

i

1.  Comparing coefficients of p-1 in  and  gives 

   
p p

i i
i 1 i 1

trace(A) a
 

     

2.  Putting =0 in  and  gives 

   = |A| 

 Since the matrices A – iIp are singular (i.e. have zero determinant) 

there exist vectors xi called the 

p

i
i 1

det(A)


 

eigenvectors of A such that 

    (A – iIp)xi=0, i.e. Axi – ixi=0. 

 [Strictly, if A is non-symmetric, the xi are right-eigenvectors and we 

can define left-eigenvectors yi such that yiA – iyi=0] 

3.  Suppose C is any pp non-singular square matrix, since  

|A – Ip|=|C||A – Ip||C-1|=|CAC-1 – Ip| we have: 

 A and CAC-1 have the same eigenvalues. 

4.  If Axi=ixi then (CAC-1)(Cxi)=i(Cxi) so the eigenvectors of CAC-1 are 

Cxi 

5.  If A is np and B is pn then 

 |AB – In|= (-)n-p|BA – Ip| so the non-zero eigenvalues of AB and 

BA are identical. 
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6.  Since, if ABxi=xi then (BA)(Bxi)= (Bxi), we have that the 

eigenvectors of BA are obtained by premultiplying those of AB by B. 

7.  Suppose now that A is symmetrical, i.e. A=A, we can show that the 

eigenvalues of A are real, since suppose i and xi are the eigenvalues 

and vectors and that j=j+ij, xj=yj+izj then equating real and 

imaginary parts of Axj=jxj gives  

Ayj=jyj – jzj ......... and Azj=jyj+jzj ............. 

Premultiplying  by zj and  by yj and noting zjAyj=(zjAyj) 

(since it’s a scalar)=yjAj= yjAzj (since A is symmetric by presumption) 

and subtracting the two equations gives the result. 

8.  Suppose again A is symmetric and that j and k are distinct 

eigenvalues with corresponding eigenvectors xj and xk. Then Axj=jxj 

and Axk=kxk. Premultiplying these by xk and xj respectively and 

noting that xjAxk=xkAxj since A is symmetric gives  

(j – k)xjxk=0; since jk (by presumption) gives xjxk=0, 

 i.e. eigenvectors with distinct eigenvalues are orthogonal. 

SUMMARY 

pp matrix A with eigenvalues 1,...,p and [right] eigenvectors x1,...,xp 

then 

1.   i
i

p
trace A


( )

1

5. AB and BA have identical non-
zero eigenvalues. 

2.   i
i

p
A


det| |

1

6. Eigenvectors of BA = B  those 
of AB 

3. A and CAC-1 have identical 
eigenvectors for C non-singular 

7. A symmetric  eigenvalues 
real 

4. Eigenvalues of CAC-1 are Cxi 8. A symmetric  eigenvectors 
corresponding to distinct 
eigenvalues are orthogonal. 
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A0.2 Differentiation With Respect to Vectors 

A) if x=(x1,x2,...,xp)  is a p-vector and f=f(x) is a scalar function of x, we 

define   to be the vector (
f

x
  f f f
  x x xp1 2

, ,..., ). 

 

B) Quadratic Forms 

If f(x)=xSx, where S is a symmetric pp matrix then  
f

x =2Sx. 

Justification by example: 

Case p=1: i.e. x=(x1), S=(s11), f(x)=x1s11x1=x s  1
2

11

  


f
x =2s11x1=2Sx 

Case p=2: i.e. x=(x1,x2), S= , 
s s
s s

11 12

12 22









  then xSx=x  s x x s x s1
2

11 1 2 12 2
2

222 

 








f
x

f
x

f
x ( ,

1
)

2
 = ((2x1s11+2x2s12), (2x1s12+2x2s22)) 

      = 2Sx. 

General p: straightforward but tedious. 

 

C) If S is not symmetric then  
( ' )x Sx

x  = (S+S)x 

 

D) Special case: S=Ip,  
x x

x
' =2x 

 

E) Inner-products with scalars: 

 if f(x)=ax then   
f

x = a (obvious) 
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A0.3 Lagrange Multipliers 

Suppose x=(x1,...,xn). To maximize/minimize f(x) (a scalar function of x) 

subject to k scalar constraints g1(x)=0, g2(x)=0,...,gk(x)=0 where k<n we 

define    and max/minimize  with respect to the n+k 

variables x1,...,xn, 1,...,k . 

 


f x g xj j
j

( ) ( )
1

k

Proof: Omitted, other than ‘by example’. 

e.g. (1): x=(x1,x2), f(x)=xx=x ; 1 constraint x1+x2=1. x1
2

2
2

i.e. minimize  subject to x1+x2=1. x x1
2

2
2

Let   = x  +( x1+x2 –1),  x1
2

2
2





x ii

x i x x     2 12 1 2( , ), 1  . Setting these derivatives to 

zero yields x1=–/2, x2=–/2, x1+x2 =1, so =–1 and solution is  x1opt =+½ 

CHECK: Substitute for x2: x2=1–x1, f(x)=  + (1 – x1)2
, x1

2




f
x1

 = 2x1 – 2(1 – x1) and so x1opt = +½ (= x2opt). 

e.g.  (2): Suppose t1,...,tn are unbiased estimates of  with variances 

 : to find the best linear unbiased estimate of . Let =iti. We 

want to choose the i so that  has minimum variance subject to the 

constraint of being unbiased. Now E[]= all i, so E[]=, so we have the 

constraint i=1. Also var()= i
2i

2. Let =i
2i

2 +(i –1): 

 1
2,..., n

2





  

i i i i  2 12 :   .  

So i=–½/i
2, so ½/I

2=–1, so 
 


2
i2

1
1  and so 


 i

i i
 




1 1
2 2

1
and the BLUE estimate of  is 

 
 

 








t i
i

i

2

2
1
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A0.4 Maximum Likelihood Estimation 

Suppose x1,…,xn are n independent observations of a random variable X 

which has density function f(.;) depending on an unknown parameter . 

There are various methods of estimating  from the observations x1,…,xn 

— such as the method of least squares, the method of moments, the 

method of minimum chi-squared, ….. etc.  The most central method in 

statistical work is the method of maximum likelihood. The procedure 

is to calculate the the likelihood of  for the data which is essentially 

‘the probability of observing the data x1,…,xn’ (this probability will be a 

function of the unknown parameter ). Then we maximize this w.r.t.  — 

the value of  which maximizes the likelihood is the maximum 

likelihood estimate of .   

 

A0.4.1 Definition:  

The likelihood of  for data x1,…,xn  is  

L(;x1,…,xn)=f(x1;)f(x2;)….f(xn;) if X is continuous 

or L(;x1,…,xn)=P[X=x1;]P[X=x2;]….P[X=xn;] if X is discrete 

(i.e. it is the product of the values of the density function or probability 

function evaluated at each of the observations — it is the ‘probability’ of 

observing the data just obtained). 
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A0.4.2 Examples:    

(all with data x1,…,xn) 

(i) X~N(,1):  f(x;)= (2)–½exp{–½(x–)2} 

   L(;x1,…,xn)= (2)–½nexp{–½(xi–)2} 

(ii) X~Ex(): f(x;)=e–x 

   L(;x1,…,xn)= nexp{–xi} 

(iii) X~Bin(m,p):  P[X=x]=mCxpx(1–p)m–x 

   L(p; x1,…,xn)=   











 )xm(x

1i i

ii )p1(p
x
m

(iv) X~N(,2): f(x;,)= (2)–½–1 exp{–½(x–)2/2} 

   L(,;x1,…,xn)= (2)–½n–nexp{–½(xi–)2/2} 

(note that in this example the parameter =(,) has two components) 

(v) X~Po(): P[X=x]= xe–/x! 

   L(;x1,…,xn)=xe–n/xi! 

 

To obtain the maximum likelihood estimates of the parameters in these 

cases we maximize the likelihoods w.r.t the unknown parameters. 

Generally it is often simpler to take the [natural] logarithms of the 

likelihood and maximize the log-likelihood (if the log is maximized then 

obviously the original likelihood will be maximized). 
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(i) L(;x1,…,xn)= (2)–½nexp{–½(xi–)2} 

log(L())=()=–½nlog(2)–½(xi–)2 

/=(xi–) and setting this to zero gives xi=n so xˆ   

(the hat ^ on the parameter indicates  

that it is the estimate of the parameter) 

(ii)  L(;x1,…,xn)= nexp{–xi}log(L())=()=nlog()–xi 

 /=n/–xi and so x
1ˆ   

(iii)  L(p; x1,…,xn)=    











 )xm(x

1i i

ii )p1(p
x
m

  log(L(p))=(p)= xilog(p) + (m–xi)log(1–p) + K 

(K a constant not involving p) 

/p=xi/p –(m–xi)/(1–p) and so m/xp̂   

(iv)  L(,;x1,…,xn)= (2)–½n–nexp{–½(xi–)2/2} 

  log(L(,))=(,)=–½nlog(2)–nlog()–½(xi–)2/2 

  so /=(xi–)/2 and /=–n/+(xi–)2/3 

  giving xˆ   and   2
in

12 )xx(ˆ  

(v)  L(;x1,…,xn)=xe–n/xi! 

log(L())=()=xilog() – n + K 

/=xi/ –n so xˆ  . 
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A0.4.3 Further properties of MLEs: 

Maximum likelihood estimates (mles) have many useful properties. In 

particular they are asymptotically unbiased and asymptotically normally 

distributed (subject to some technical conditions) — i.e. for large 

samples they are approximately normally distributed with mean equal to 

the [unknown] parameter and variance which can be calculated.  This 

allows us to obtain standard errors of mles and so construct confidence 

intervals for them.  In addition they can be used in the construction of 

[generalized] likelihood ratio tests. 

 

To obtain the variance of the mle we need to calculate the expected 

value of the second derivative of the log-likelihood E[(2/2)] and then 

the variance is the minus the reciprocal of this, i.e. 

var( ̂ )= –{E[(2/2)]}–1 

(note: if  is a vector parameter of dimension p then we can interpret 

2/2 as a pp matrix in which case we need to  take the inverse of the 

matrix of expected values to get the variance-covariance matrix. To get 

just the variances of individual mles we can work with them singly and 

this is ok if we only want individual confidence intervals.] 
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A0.4.4 Examples: (continuing the examples above) 

(i) /=(xi–), so 2/2=–n and thus E[2/2]=–n and thus 

    var ̂=n–1 

(ii) /=n/–xi , so 2/2=–n/2, so E[2/2]=–n/2 and thus 

var( ̂ ) = 2/n.   In this case we would substitute the mle ̂  for  

to get the standard error of ̂  as ̂ /n½ 

(iii) /p=xi/p –(m-xi)/(1–p) so 2/p2=–xi/p2 +(m-xi)/(1–p)2 

and thus   

 E[2/p2]=–mp/p2 +(m-mp)/(1–p)2   

     (noting that E[xi]=mp for each i  

   =–nm/p+nm/(1-p)=–nm/p(1–p) 

and so var(p̂ )=p(1–p)/nm  

(iv) /=(xi–)/2 and /=–n/+(xi–)2/3 so   

2/2=–n/2 and 2/2=n/2–3(xi–)2/4  

and 2/=–(xi–)/3  

Now E[xi–]=0 and E[(xi–)2]=2 so E[2/2]=–n/2,   

E[2/2]=–2n/2 and E[2/]=0 and thus we have   

var( ̂ )=2/n, var(̂)=2/2n and cov( ̂ ,̂)=0. 
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(v) /=xi/ so 2/2=–xi/2 and we have that E[xi]= so 

E[2/2]=–n/ and thus var( ̂ )=/n 

 

Again, in examples (iii)–(v) we would substitute the mles for the 

unknown parameters in the expressions for the variances to get 

standard errors (taking square roots) and thus obtain an approximate 

95% confidence interval as mle  2  s.e.(mle) , 

 i.e. an approximate 95% confidence interval for  is 2s.e.( ) ̂ ̂
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A0.5 [Generalized] Likelihood Ratio Tests 

A useful procedure for constructing hypothesis tests is an adaptation of 

the simple likelihood ratio test — recall that the Neyman-Pearson lemma 

shews that the most powerful test of a given size of one simple 

hypothesis against another is based on the likelihood ratio. (A simple 

hypothesis is one that involves no unknown parameters — the likelihood 

is fully specified under the hypothesis).  The generalization is that [under 

suitable technical conditions] the [asymptotically] most powerful test of a 

composite hypothesis (i.e. one involving unknown parameters) against 

another can be based on the ratio of the maximized likelihoods, where 

any unknown parameters are replaced by their mles. 

In fact, it is more usual to consider the [natural logarithm of this ratio (or 

equivalently the difference in maximized log-likelihoods since there are 

theoretical results that allow the significance level of this statistic to be 

calculated. 

Specifically, if we have data x1,…,xn from a random variable X whose 

distribution depends on a parameter  and if we are testing a hypothesis 

H0 against and alternative HA then the likelihood ratio statistic  is 

=2{( )–( )} where  and are the estimates of  under the 

hypotheses HA and H0 respectively. H0 is rejected in favour of HA if  is 

sufficiently large.  It can be shewn that for large sample sizes  is 

approximately distributed as 2 on r degrees of freedom, where r is the 

difference in numbers of parameters estimated under HA and H0.  Note 

that ( ) and ( ) are the actual maximum values of the log-

likelihoods under HA and H0.  Sometimes we cannot obtain mles 

explicitly (or algebraically) but we can obtain the maximum values of the 

log-likelihoods numerically using some general optimization program. 

A̂

A̂

o̂ A̂ o̂

o̂
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A0.5.1 Examples  

(all with data x1,…,xn) 

(i) X~N(,1);  to test H0: =0 vs. HA:   0  

Now L()=(2)–½nexp{–½(xi–)2} 

 Under H0 , =0, so under H0 the maximum (in fact the only) 

 value of L() is (2)–½nexp{–½xi
2},   

  i.e. =0 and ( )=–½nlog(2)–½xi
2 

0̂ 0̂

Under HA we just have the ordinary likelihood and the mle of  is =A̂ x  

giving ( )=–½nlog(2)–½(xi–A̂ x )2, this gives the likelihood ratio 

statistic as =–2{( )–( )}=xi
2-(xi–A̂ 0̂ x )2=n x 2 and we reject H0 if this 

is large when compared with . 2
1

 

 

(ii)  X~Ex();  to test H0: =0 vs. HA:   0  

 L()=nexp{–xi}.   

Under H0 =0  so =0 and ( )=nlog(0)–0xi}. 0̂ 0̂

Under HA we have x
1

A
ˆ   so ( )=nlog(A̂ x )–n 

and the lrt statistic is 2{nlog( x )–n–nlog(0)+0xi} which would be 

referred to a  distribution. 2
1
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(iii) X~N(,2); to test H0: =0 vs. HA0 with 2 unknown. 

Here we need to estimate  under both H0 (i.e. assuming =0) and 

under HA (not assuming =0) and use these estimates in maximizing the 

likelihoods. 

We have (,)=–½nlog(2)–nlog()–½(xi–)2/2 so under H0 we have 

=0 and =0̂
2
0 n

1 x1
2    

and then ( , )=–½nlog(2)–½nlog(0̂
2
0 n

1 xi
2)–½n. 

Under HA we have =A̂ x  and =2
A̂ n

1 (xi– x )2 giving  

 ( , )=–½nlog(2)–½nlog(A̂
2
A̂ n

1 (xi– x )2)–½n and thus the lrt statistic is 

={nlog(x1
2)–nlog((xi– x )2)) which would be referred to a  

distribution. (Note that the 

2
1

n
1  terms in the logs are –nlog(n) and so 

cancel each other).  It can be shewn that this statistic is a monotonic 

function  of (and therefore equivalent to) the usual t-statistic for testing 

=0 when  is unknown. 

 
 
Further examples to try are: 

(i)  xi~N(,2), H0: 2=0
2,  unknown, HA: 20

2. 

(ii)  xi~N(,2), H0: 2=0
2,  known, HA: 20

2. 

(iii) xi~Bin(m,p), m known, HA: pp0, 

(iv)  xi~Po(), H0: =0, HA: 0. 

 

© NRJF 1982 386



Multivariate Data Analysis: Appendices 

APPENDIX 1: Using discriminant analysis for Classification 

A key objective of discriminant analysis is to classify further 

observations.  In R or S-PLUS this can be done using the predict function 

predict.lda(lda-object,newdata).  In the Cushings data (3 

groups plus unknowns) we can perform the lda on the first 21 

observations and then use the results to classify the final 7 observations 

of unknown categories. Note that we have to turn the final 7 

observations into a data matrix cushu in the same way as we did with 

the training data. 

> cush<-log(as.matrix(Cushings[1:21,-3])) 
> cushu<-log(as.matrix(Cushings[22:27,-3])) 
> tp<-factor(Cushings$Type[1:21]) 
 
> cush.lda<-lda(cush,tp) 
 
> upredict<-predict.lda(cush.lda,cushu) 
> upredict$class 
[1] b c b a b b 

These are the classifications for the seven new cases.  

We can plot the data on the discriminant coordinates with 
> plot(cush.lda) 

and then add in the unknown points with 
> points(jitter(predict(cush.lda,cushu)$x),pch=19,) 

and finally put labels giving the predicted classifications on the 

unknown points with 
> text(predict(cush.lda,cushu)$x,pch=19, 

+ labels=as.character(predict(cush.lda,cushu)$class)) 

(where the + is the continuation prompt from R) to give the plot below. 

The use of jitter() moves the points slightly so that the labels are 

not quite in the same place as the plotting symbol. 
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Example of discrimination and classification of three variants of 

Cushings syndrome (a, b and c, 21 cases in total) and classifying a 

further 6 unknown cases () (note one of these is outside the plotting 

range). 
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APPENDIX 2:  Quadratic Discriminant Analysis  

This generalizes lda to allow quadratic functions of the variables. Easily 

handled in R qda(). 
> cush.qda<-qda(cush,tp) 
> predict.qda(cush.qda,cushu)$class 
[1] b c b a a b 
It can be seen that the 5th unknown observation is classified differently 

by qda().   How can we see whether lda() or qda() is better?  One 

way is to see how each performs on classifying the training data (i.e. the 

cases with known categories. 
> predict.lda(cush.lda,cush)$class 
 [1] a a a b b a b a a b b c b b b b c c b c c 

and compare with the ‘true’ categories: 
> tp 
 [1] a a a a a a b b b b b b b b b b c c c c c 

We see that 6 observations are misclassified, the 5th,6th,9th,10th,13th and 

19th. To get a table of predicted and actual values: 
> table(tp,predict.lda(cush.lda,cush)$class) 

    
tp  a b c 
  a 4 2 0 
  b 2 7 1 
  c 0 1 4 

. Doing the same with qda() gives: 
> table(tp,predict.qda(cush.qda,cush)$class) 
    
tp  a b c 
  a 6 0 0 
  b 0 9 1 
  c 0 1 4 
 
so 19 out 21 were correctly classified, when only 15 using lda(). 
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If we want to see whether correctly classifying 15 out of 21 is better than 

chance we can permute the labels by sampling tp without replacement: 

 
> randcush.lda<-lda(cush,sample(tp)) 
> table(tp,predict.lda(randcush.lda,cush)$class) 
    
tp  a b c 
  a 3 2 1 
  b 1 9 0 
  c 0 5 0 

i.e. 12 were correctly classified even with completely random labels. 

Repeating this a few more times quickly shows that 15 is much higher 

than would be obtained by chance.  It would be easy to write a function 

to do this 1000 times say by extracting the diagonal elements which are 

the 1st,5th and 9th elements of the object table(.,.), i.e. 

table(.,.)[1], table(.,.)[5] and table(.,.)[9]. 
> randcush.lda<-lda(cush,sample(tp)) 
> table(tp,predict.lda(randcush.lda,cush)$class) 
    
tp  a  b c 
  a 1  5 0 
  b 0 10 0 
  c 0  5 0 
> randcush.lda<-lda(cush,sample(tp)) 
> table(tp,predict.lda(randcush.lda,cush)$class) 
    
tp  a b c 
  a 1 5 0 
  b 2 8 0 
  c 1 4 0 
> randcush.lda<-lda(cush,sample(tp)) 
> table(tp,predict.lda(randcush.lda,cush)$class) 
    
tp  a  b c 
  a 1  5 0 
  b 0 10 0 
  c 1  4 0 
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A2.2 Comments 

 Generally discrimination and classification on the training data 

improves with the number of dimensions and with the 

complexity of the model — quadratic should generally be 

better than linear; if number of dimensions approaches 

number of observations then should be possible to get near 

perfect discrimination of known cases but this does not mean 

that the classification procedure will work so well on future 

data. The informal principle of parsimony suggests that one 

should look for procedures which are minimally data-

dependent, i.e. which do not involve estimating large numbers 

of parameters from small amounts of data.   However, neural-

net classifiers (see later) seem to work extremely well in 

practice event though they are essentially highly complex non-

linear discriminant functions involving very large numbers of 

estimated parameters. 
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APPENDIX 3: Outlier Displaying Components 

Earlier it was shewn that PCA may or may not reveal outliers: as well as 

looking at both the high and the low order PCs and it is sensible to look 

at the ‘cut-off’ PCs as well. However, these are not guaranteed to reveal 

outliers. Instead, it is possible to display data on outlier displaying 

components.  

The idea is to consider each observation in turn and consider which 

projection will highlight that observation most as an outlier — this will 

actually be the linear discriminant function for separating the groups 

consisting of that single observation alone as one ‘group’ and the 

remaining n–1 observations as the other. It can be proved that the 

standard test statistic for assessing that observation as an outlier is 

identical whether it is calculated from the original p dimensions or from 

the single ‘outlier displaying dimension’ for that observation (though the 

actual test of significance depends upon the number of original 

dimensions).   

Further it can be shewn that the outlier test statistic for that observation 

calculated from any q-dimensional projection (q  p) is maximized when 

the projection includes the outlier displaying component (and it is then 

equal to the original p-dimensional calculation). Thus we can display the 

data on axes where the first is the outlier displaying dimension and the 

second is chosen orthogonally to that to maximize [e.g.] variance. 

Interpretation of loadings, display of supplementary points etc is useful. 

In the case of two outliers we need to distinguish between two 

independent outliers (two outlier displaying components), or an outlying 

pair (one component).  
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APPENDIX 4: Correspondence Analysis 

A technique for investigating/displaying the relationship between two 

categorical variables (i.e. frequency data in a contingency table) in a 

type of scatterplot. Broadly analogous to PCA except that instead of 

partitioning the total variance into successive components attributable to 

PCs it partitions the 2 statistic [known as the total inertia, (O–E)2/E] 

into components attributable to orthogonal underlying components. 

Interpretations of ‘proportions of inertia explained’ loadings of categories 

etc just as in PCA etc.  Mathematically it relies on eigenanalyses of an 

appropriate matrix.    

PCA of both covariances and correlations, CA, Biplots etc all have 

essentially the same ‘mathematical engine’ of eigenanalysis and differ 

only in the scaling of the central ‘variance’ matrix. 

Canonical Correspondence Analysis (very bad and confusing name, 

invented by Cajo ter Braak) is CA incorporating continuous covariates, 

i.e. it analyses the relationship between two categorical variables after 

allowance has been made for the dependence of one them on a 

covariate. E.G.: Data on frequencies of occurrence of species on various 

sites arranged in a sitesspecies contingency table, suitable for CA, to 

see which species tend to group together etc.  If also data on say soil pH 

and %LoI (percent loss on ignition — measures organic content) then 

can allow for these explanatory variables when investigating the 

dependence. Primarily used in ecology — maybe of use in other 

areas??  Main package is Canoco (from ter Braak). 

Multiple Correspondence Analysis is a generalization of CA to 3 or 

more variables. 
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APPENDIX 5: Cluster Analysis 

A5.1 Introduction 

Cluster Analysis is a collection of techniques for unsupervised 

examination of multivariate data with an objective of discovering ‘natural’ 

groups in the data, often used together with scaling methods. 

Hierarchical  methods start with each case in a separate cluster and 

proceed by agglomerating most similar cases into increasingly larger 

sized clusters. Thus a division into r clusters will be subdivison of one 

into s clusters when r>s. Non-hierarchical methods typically start by 

dividing all the cases into a pre-specified number of clusters. It is 

possible that a division in r clusters will bear little similarity with one into 

s clusters. For hierarchical methods the results can be displayed in a 

dendrogram rather like a family tree indicating which family objects 

belong to.  
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A5.2 Hierarchical Methods 

The first example is on data swiss which gives demographic 

measurements of 47 provinces in Switzerland. The first step is to 

calculate a distance matrix, using dist() and then to perform 

hierarchical cluster analysis using hclust(), The result can then be 

plotted as a dendogram using the generic function plot(). This 

example has used the default clustering method of complete linkage, 

others you might try are average linkage, single linkage or Wards 

method 
 
> data(swiss) 
> summary(swiss) 
   Fertility      Agriculture     Examination      Education     
 Min.   :35.00   Min.   : 1.20   Min.   : 3.00   Min.   : 1.00   
 1st Qu.:64.70   1st Qu.:35.90   1st Qu.:12.00   1st Qu.: 6.00   
 Median :70.40   Median :54.10   Median :16.00   Median : 8.00   
 Mean   :70.14   Mean   :50.66   Mean   :16.49   Mean   :10.98   
 3rd Qu.:78.45   3rd Qu.:67.65   3rd Qu.:22.00   3rd Qu.:12.00   
 Max.   :92.50   Max.   :89.70   Max.   :37.00   Max.   :53.00   
    Catholic       Infant.Mortality 
 Min.   :  2.150   Min.   :10.80    
 1st Qu.:  5.195   1st Qu.:18.15    
 Median : 15.140   Median :20.00    
 Mean   : 41.144   Mean   :19.94    
 3rd Qu.: 93.125   3rd Qu.:21.70    
 Max.   :100.000   Max.   :26.60    
> dswiss<-dist(swiss) 
> h<- hclust(dswiss) 
> plot(h) 
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This suggests three main groups, we can identify these with  
 
> cutree(h,3) 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 
22 23 24 25 26  
 1  2  2  1  1  2  2  2  2  2  2  1  1  1  1  1  1  1  1  1  1  
1  1  1  1  1  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
 1  1  1  1  2  2  2  2  2  2  2  2  1  1  1  1  1  1  3  3  3 

which gives the group membership for each of the provinces. 
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Next, we look at the iris data (yet again) and use the interactive function 

identify.hclust() which allows you to point with the mouse and 

click  on vertical bars to extract the elements in the family below. Click 

with the right button and choose stop to leave it. 
 
> distiris<-dist(ir) 
> hiris<- hclust(distiris) 
> plot(hiris) 
>  identify.hclust(hiris, function(k) print(table(iris[k,5]))) 
 
    setosa versicolor  virginica  
         0          0         12  
 
    setosa versicolor  virginica  
         0         23         37  
 
    setosa versicolor  virginica  
         0         27          1  
 
    setosa versicolor  virginica  
        50          0          0  
> 
 

The dendogram on the next pages shows four groups, and 

identify.clust was used to click on the four ancestor lines. Note 

that one of the groups is obviously the overlap group between 

versicolour and virginica. 
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Using a different method (Ward’s) gives: 

> hirisw<- hclust(distiris,method="ward") 
> plot(hirisw) 
>  identify.hclust(hirisw,function(k) print(table(iris[k,5]))) 
 
    setosa versicolor  virginica  
        50          0          0  
 
    setosa versicolor  virginica  
         0          0         36  
 
    setosa versicolor  virginica  
         0         50         14 
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And finally, using the ‘median’ method gives 
> hirimed<- hclust(distiris,method="median") 
> plot(hirimed) 
>  identify.hclust(hirimed,function(k)print(table(iris[k,5]))) 
    setosa versicolor  virginica  
        50          0          0  
    setosa versicolor  virginica  
         0         41         13  
    setosa versicolor  virginica  
         0          9         37 
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A5.3 Non-hierachical or Optimization Clustering 

Optimization clustering techniques aim to find a pre-specified number k 

of clusters that satisfy some optimal condition. In principle, the 

optimisation is over all possible allocations of n objects into k clusters. 

However, the number of allocations is large for realistic problems — with 

5 cases and 2 clusters it is 15, with 50 cases and 4 clusters it is 5.31028 

and 100 cases and 5 clusters 6.61067— is iterative techniques are used 

by considering moving that case which improves the optimisation 

criterion most, or (if large numbers of cases) by moving each 

observation in turn to that cluster which improves the criterion the most 

(rather than searching over all observations before deciding). The 

procedure then cycles through the complete data set until stability is 

achieved. 

The measures of ‘quality of clustering’ can reflect separability between 

clusters or homogeneity within clusters or a mixture of both, e.g. any of 

the three standard statistics for MANOVA (multivariate analysis of 

variance) can be used, c.f. Ward’s method for agglomerative hierarchical 

clustering. 

A standard and very fast method is K-means clustering where each 

observation is [re]assigned to that cluster to whose centroid it is closest, 

clusters initially being defined with arbitrary centroids. Typically, the 

method is used on continuous data and the distance is Euclidean, but 

more general distance measures (e.g. single linkage) could be used. 

© NRJF 1982 401



Multivariate Data Analysis: Appendices 

In one study of competing clustering methods (Jonathan Myles, PhD 

thesis, OU ~1990, supervised by David Hand) th K-means method 

emerged as ‘overall best buy’ on medium (100 cases) to large (~106) 

data sets.  

Since the criterion is optimised over discrete points, which are accessed 

sequentially, there can be apparent ‘local optima’, these may be 

dependent on the ordering of the cases and on the choice of starting 

clusters — JB reports this effect with SAS JMP, even with smaller data 

sets. This is inevitable with iterative techniques and a non-continuous 

‘space’ of variables, i.e. although the space consists of discrete points,  
k

k r n

r

k
( ) r

k! r




 
  

 


1

1 1  of them, the iterative technique only passes through a 

transect of them determined by the ordering of cases and starting points. 

Clearly, stability to ordering and starting needs to be investigated, but it 

may not be a serious problem if the objective is (as it is likely too be with 

large numbers of cases) one of qualitative results rather than detailed 

classification of individual cases. However, maybe this is an opportunity 

for some more sophisticated optimisation technique. 

The choice of the number of clusters, k, can be done by standard 

‘scree-graph’ techniques of the optimal value of the criterion with each 

number of clusters. 
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A5.4 Further Directions:  

The library cluster contains a variety of routines and data sets. The 

mclust library offers model-based clustering (i.e. a little more 

statistical). 

Key reference: Cluster Analysis, 4th Edition, (2001), by Brian Everitt, 

Sabine Landau and Morven Leese. 
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APPENDIX 6: Tree-Based Methods 

Classification and regression trees are similar supervised techniques 

which are used to analyse problems in a step-by-step approach.  

A6.1 Classification Trees 

We start (even yet again) with the iris data where the objective is to find 

a set of rules, based on the four measurements we have, of classifying 

the flowers into on of the fours species. The rules will be of the form: 

 ‘if petal length>x then…. , but if petal length  x then something else’ 

i.e. the rules are based on the values of one variable at a time and 

gradually partition the data set into groups. 
 
> data(iris) 
> attach(iris) 
> ir.tr<-tree(Species~.,iris) 
> plot(ir.tr) 
> summary(ir.tr) 
 
Classification tree: 
tree(formula = Species ~ ., data = iris) 
Variables actually used in tree construction: 
[1] "Petal.Length" "Petal.Width"  "Sepal.Length" 
Number of terminal nodes:  6  
Residual mean deviance:  0.1253 = 18.05 / 144  
Misclassification error rate: 0.02667 = 4 / 150  
> text(ir.tr,all=T,cex=0.5) 
 

Now look at  the graphical representation: 
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|Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95

Sepal.Length < 5.15

Petal.Length < 4.95

setosa

versicolor versicolor virginica
virginica virginica

 

 
 
> ir.tr 
node), split, n, deviance, yval, (yprob) 
      * denotes terminal node 
 
 1) root 150 329.600 setosa ( 0.33333 0.33333 0.33333 )   
   2) Petal.Length < 2.45 50   0.000 setosa ( 1.00000 0.00000 0.00000 ) * 
   3) Petal.Length > 2.45 100 138.600 versicolor ( 0.00000 0.50000 0.50000 )   
     6) Petal.Width < 1.75 54  33.320 versicolor ( 0.00000 0.90741 0.09259 )   
      12) Petal.Length < 4.95 48   9.721 versicolor ( 0.00000 0.97917 0.02083 )   
        24) Sepal.Length < 5.15 5   5.004 versicolor ( 0.00000 0.80000 0.20000 ) * 
        25) Sepal.Length > 5.15 43   0.000 versicolor ( 0.00000 1.00000 0.00000 ) * 
      13) Petal.Length > 4.95 6   7.638 virginica ( 0.00000 0.33333 0.66667 ) * 
     7) Petal.Width > 1.75 46   9.635 virginica ( 0.00000 0.02174 0.97826 )   
      14) Petal.Length < 4.95 6   5.407 virginica ( 0.00000 0.16667 0.83333 ) * 
      15) Petal.Length > 4.95 40   0.000 virginica ( 0.00000 0.00000 1.00000 ) * 
> 
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Another example: the forensic glass data fgl. the data give the 

refractive index and oxide content of six types of glass. 
 
> data(fgl) 
> attach(fgl) 
> summary(fgl) 
       RI                Na              Mg              Al        
 Min.   :-6.8500   Min.   :10.73   Min.   :0.000   Min.   
:0.290   
 1st Qu.:-1.4775   1st Qu.:12.91   1st Qu.:2.115   1st 
Qu.:1.190   
 Median :-0.3200   Median :13.30   Median :3.480   Median 
:1.360   
 Mean   : 0.3654   Mean   :13.41   Mean   :2.685   Mean   
:1.445   
 3rd Qu.: 1.1575   3rd Qu.:13.82   3rd Qu.:3.600   3rd 
Qu.:1.630   
 Max.   :15.9300   Max.   :17.38   Max.   :4.490   Max.   
:3.500   
       Si              K                Ca               Ba         
 Min.   :69.81   Min.   :0.0000   Min.   : 5.430   Min.   
:0.0000   
 1st Qu.:72.28   1st Qu.:0.1225   1st Qu.: 8.240   1st 
Qu.:0.0000   
 Median :72.79   Median :0.5550   Median : 8.600   Median 
:0.0000   
 Mean   :72.65   Mean   :0.4971   Mean   : 8.957   Mean   
:0.1750   
 3rd Qu.:73.09   3rd Qu.:0.6100   3rd Qu.: 9.172   3rd 
Qu.:0.0000   
 Max.   :75.41   Max.   :6.2100   Max.   :16.190   Max.   
:3.1500   
       Fe             type    
 Min.   :0.00000   WinF :70   
 1st Qu.:0.00000   WinNF:76   
 Median :0.00000   Veh  :17   
 Mean   :0.05701   Con  :13   
 3rd Qu.:0.10000   Tabl : 9   
 Max.   :0.51000   Head :29   
> fgl.tr<-tree(type~.,fgl) 
> summary(fgl.tr) 
 
Classification tree: 
tree(formula = type ~ ., data = fgl) 
Number of terminal nodes:  20  
Residual mean deviance:  0.6853 = 133 / 194  
Misclassification error rate: 0.1542 = 33 / 214  
> plot(fgl.tr) 
> text(fgl.tr,all=T,cex=0.5)) 
Error: syntax error 
> text(fgl.tr,all=T,cex=0.5) 
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|
Mg < 2.695

Na < 13.785

A l < 1.38

Fe < 0.085

Ba < 0.2

RI < 1.265

A l < 1.42

RI < -0.93

RI < -1.885 K < 0.29

Ca < 9.67 Mg < 3.75

Fe < 0.145

RI < 1.045 A l < 1.17

Mg < 3.455

Si < 72.84 Na < 12.835
K < 0.55

WinNF
Con WinNF

Tabl WinNF
Head

WinF Veh

WinF WinF

WinF WinFWinNFWinF

WinNF

V eh WinNF
WinF

WinNFWinNF
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A6.2 Decision Trees 

One common use of classification trees is as an aid to decision making 

— not really different from classification but sometimes distinguished. 

Data shuttle gives guidance on whether to use autolander or manual 

control on landing the space shuttle under various conditions such as 

head or tail wind of various strengths, good or poor visibility (always use 

auto in poor visibility!) etc, 6 factors in all.  There are potentially 256 

combinations of conditions and these can be tabulated and completely 

enumerated but displaying the correct decision as a tree is convenient 

and attractive. 
 
> data(shuttle) 
> attach(shuttle) 
> summary(shuttle) 
 stability   error   sign       wind         magn     vis          
use      
 stab :128   LX:64   nn:128   head:128   Light :64   no :128   
auto  :145   
 xstab:128   MM:64   pp:128   tail:128   Medium:64   yes:128   
noauto:111   
             SS:64                       Out   :64                       
             XL:64                       Strong:64                       
> table(use,vis) 
        vis 
use       no yes 
  auto   128  17 
  noauto   0 111 
> table(use,wind) 
        wind 
use      head tail 
  auto     72   73 
  noauto   56   55 
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> table(use,magn,wind) 
, , wind = head 
 
        magn 
use      Light Medium Out Strong 
  auto      19     19  16     18 
  noauto    13     13  16     14 
 
, , wind = tail 
 
        magn 
use      Light Medium Out Strong 
  auto      19     19  16     19 
  noauto    13     13  16     13 
 
> shuttle 
    stability error sign wind   magn vis    use 
1       xstab    LX   pp head  Light  no   auto 
2       xstab    LX   pp head Medium  no   auto 
3       xstab    LX   pp head Strong  no   auto 
…  …  …  …  …  … 
…  …  …  …  …  … 
…  …  …  …  …  … 
…  …  …  …  …  … 
255      stab    MM   nn head Medium yes noauto 
256      stab    MM   nn head Strong yes noauto 
> 
> shuttle.tr<-tree(use~.,shuttle) 

> plot(shuttle.tr) 

> text(shuttle.tr) 
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|vis:a

stability:a

error:bc

magn:abd
error:b

sign:a

auto

noauto auto
auto

noauto
noauto

noauto

 

In this default display, the levels of the factors are indicated by a,b,…. 

alphabetically and the tree is read so that levels indicated are to the left 

branch and others to the right, e.g. at the first branching vis:a indicates 

no for the left branch and yes for the right one. At the branch labelled 

magn:abd the right branch is for level c which is ‘out of range’; all 

other levels take the left branch. The plot can of course be enhanced 

with better labels. 
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A6.3 Regression Trees: 

We can think of classification trees as modelling a discrete factor or 

outcome as depending on various explanatory variables, either 

continuous or discrete. For example, the iris species depended upon 

values of the continuous variables giving the dimensions of the sepals 

and petals. In an analogous way we could model a continuous outcome 

on explanatory variables using tree-based methods, i.e. regression 

trees. The analysis can be thought of as categorizing the continuous 

outcome into discrete levels, i.e. turning the continuous outcome into a 

discrete factor.  The number of distinct levels can be controlled by 

specifying the minimum number of observations (minsize) at a node 

that can be split and the reduction of variance produced by splitting a 

node (mindev). This is illustrated on data on c.p.u. performance of 209 

different processors in data set cpus contained in the MASS library. The 

measure of performance is perf and we model the log of this variable.  
> library(MASS) 
> library(tree) 
> data(cpus) 
> attach(cpus) 
> summary(cpus) 
                   name          syct             mmin          
mmax       
 WANG VS10           :  1   Min.   :  17.0   Min.   :   64   
Min.   :   64   
 WANG VS 90          :  1   1st Qu.:  50.0   1st Qu.:  768   
1st Qu.: 4000   
 STRATUS 32          :  1   Median : 110.0   Median : 2000   
Median : 8000   
 SPERRY 90/80 MODEL 3:  1   Mean   : 203.8   Mean   : 2868   
Mean   :11796   
 SPERRY 80/8         :  1   3rd Qu.: 225.0   3rd Qu.: 4000   
3rd Qu.:16000   
 SPERRY 80/6         :  1   Max.   :1500.0   Max.   :32000   
Max.   :64000   
 (Other)             :203                                                
      cach          chmin          chmax           perf         
estperf     
 Min.   :  0.00 Min.   : 0.000 Min.   :  0.00 Min.   :   6.0 
Min.   :  15.0 
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 1st Qu.:  0.00 1st Qu.: 1.000 1st Qu.:  5.00 1st Qu.:  27.0 
1st Qu.:  28.0 
 Median :  8.00 Median : 2.000 Median :  8.00 Median :  50.0 
Median :  45.0 
 Mean   : 25.21 Mean   : 4.699 Mean   : 18.27 Mean   : 105.6 
Mean   :  99.3 
 3rd Qu.: 32.00 3rd Qu.: 6.000 3rd Qu.: 24.00 3rd Qu.: 113.0 
3rd Qu.: 101.0 
 Max.   :256.00 Max.   :52.000 Max.   :176.00 Max.   :1150.0 
Max.   :1238.0 
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> cpus.tr<-tree(log(perf)~.,cpus[,2:8]) 
> plot(cpus.tr) 
> text(cpus.tr) 

|cach < 27

mmax < 6100

mmax < 1750 syct < 360
chmin < 5.5

mmax < 28000

cach < 96.5mmax < 11240 cach < 56

2.507 3.285
3.911 4.546

2.947 4.206 4.916
5.350 5.223 6.141

 

The attraction of the display is that it gives a quick way of predicting cpu 

performance for a processor with specified characteristics. The accuracy 

of the predictions can be increased by increasing the number of terminal 

nodes (or leaves). However, this does not offer a substitute for more 

investigative modelling and outlier identification. 
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APPENDIX 7: Neural Networks 

A7.1 Introduction 

We have seen how we can consider classification and discrimination 

problems as a form of modelling the relationship between a categorical 

variable and various explanatory variables. We could make this more 

explicit and use, for example, logistic regression techniques. For 

example, suppose we have two categories, A and B, and explanatory 

variables x1,…,xk then we could model the probability that an object with 

values of x1,…,xk belongs to category A as a logistic function of the 

x1,…,xk: 

1 1 k k

1 1 k k

exp{ x ... x }P[belongs to A]
1 exp{ x ... x }

     


      
 

and then estimate the unknown parameters i from training data on 

objects with known classifications. New observations would be classified 

by classifying them as of type A if the estimated probability of belonging 

to A is > 0.5, otherwise classify them as of type B. The technique is 

widely used and is very effective, it is known as logistic discrimination. It 

can readily handle cases where the xi are a mixture of continuous and 

binary variables. If there is an explanatory variable whish is categorical 

with k>2 levels then it needs to be replaced by k–1 dummy binary 

variables (though this step can be avoided with tree-based methods). 

The idea could be extended to discrimination and classification with 

several categories, multiple logistic discrimination.  
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Neural networks, from a statistical point of view, can be thought of as a 

further extension of the idea and special cases of them are essentially 

non-linear logistic models. However, the technique is rather more 

general than just non-linear logistic modelling. It also has analogies with 

generalized additive modelling. 

The full model for a feed-forward neural network with one hidden layer is 

k 0 k hk h h ih i
h i

y w (        
 

 w x )  

where the ‘inputs’ are xi (i.e. values of explanatory variables), the 

‘outputs’ are yk (i.e. values of the dependent variable, and the j and wij 

are unknown parameters which have to be estimated (i.e. the network 

has to be ‘trained’) by minimising some fitting criterion, e.g. least 

squares or a measure of entropy. The functions j are ‘activation 

functions’ and are often taken to be the logistic function 

(x)=exp(x)/{1+exp(x)}.   The wij are usually thought of as weights 

feeding forward input from the observations through a ‘hidden layer’ of 

units (h) to output units which also consist of activation functions o. 

The model is often represented graphically as a set of inputs linked 

through a hidden layer to the outputs:  
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inputs 
xi 

h wih o whk 

outputs 
yk 

input 
layer 

hidden 
layer(s)  

 

The number of inputs is the number of explanatory variables xi (i.e. the 

dimension of the observations), the number of outputs is the number of 

levels of yk (if yk is categorical, though actually yk would be regarded as 

a k-dimensional vector with components being the dummy variables 

indicating the k categories), or the dimension of yk (if yk is continuous) 

and the number of ‘hidden units’ is open to choice. The greater the 

number of hidden units the larger the number of parameters to be 

estimated and (generally) the better will be the fit of the predicted yk  with 

the observed yk.    
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A7.2 A Simple Example: 

This is an artificial example: the objective is to train a network with a 

hidden layer containing two units to return a value A for low 

numbers and a value B for high ones. The following code sets up a 

dataframe (nick) which has 8 rows and two columns. The first 

column has the values of x and the second the targets. The first five 

rows will be used for training the net and the last three will be fed 

into the trained net for classification, so the first 3 rows have low 

values of x and target value A, the next 2 rows have high values of 

x and the target value B and the final 3 rows have test values of x 

and unknown classifications. 
> library(nnet) # open nnet library 
> nick<- 
+ data.frame(x=c(1.1,1.7,1.3,5.6,7.2,8.1,1.8,3.0), 
+ targets=c(rep("A",3),rep("B",2),rep("U",3))) 
> attach(nick) 
# check dataframe is ok 
> nick 
     x   targets 
1   1.1       A 
2   1.7       A 
3   1.3       A 
4   5.6       B 
5   7.2       B 
6   8.1       U 
7   1.8       U 
8   3.0       U 
> nick.net<-nnet(targets~.,data=nick[1:5,],size=2) 
# weights:  10 
initial  value 3.844981  
final  value 0.039811  
converged 
Warning message:  
group(s) U are empty in: nnet.formula(targets ~ ., 
data = nick[1:5, ], size = 2)  
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# check predictions on training data 
> predict(nick.net,nick[1:5,],type="class") 
[1] "A" "A" "A" "B" "B" 
# now classify new data 
> predict(nick.net,nick[6:8,],type="class") 
[1] "B" "A" "A" 
 
# see what the predictions look like numerically 
> predict(nick.net,nick[6:8,]) 
             A            B 
6 1.364219e-15 1.000000e+00 
7 1.000000e+00 4.659797e-18 
8 1.000000e+00 1.769726e-08 
> predict(nick.net,nick[1:5,]) 
             A            B 
1 1.000000e+00 2.286416e-18 
2 1.000000e+00 3.757951e-18 
3 1.000000e+00 2.477393e-18 
4 1.523690e-08 1.000000e+00 
5 2.161339e-14 1.000000e+00 
> 
# look at estimates of weights. 
> summary(nick.net) 
a 1-2-2 network with 10 weights 
options were - softmax modelling  
 b->h1 i1->h1  
 -7.58   1.32  
 b->h2 i1->h2  
-10.44   3.47  
 b->o1 h1->o1 h2->o1  
 20.06 -16.10 -22.59  
 b->o2 h1->o2 h2->o2  
-20.69  15.81  21.88 

h1(-7.58) 
 

 

 

 
21.88h2 (-10.44) 

3.47 x 

-22.59

15.81

-16.10
1.32 A (o1) (+20.06) 

B (o2) (-20.69) 

© NRJF 1982 419



Multivariate Data Analysis: Appendices 

To check how the calculations proceed inside the net we have an input 

x=1.1 which is to be classified as A and looking at the values given in 

the middle of the previous page this means that we want the net to 

produce the output vector (1,0) (actually it has produced (1, 2.286416e–

18). 

To see how this calculation goes, we see that the output at A is made of 

the sum of two elements obtained by the two possible routes from the 

input to A. The first of these is  

{20.06 –16.10()–22.59(–10.44+3.471.1)} 

and the second is 

{–20.69 +21.88(–10.44+3.471.1)+15.81(–7.58+1.321.1)} 

where (t)=exp(t)/{1+exp(t)}. 
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A7.3 Examples on Iris Data 

These next two examples are taken from the help(nnet) output and 

are illustrations on the iris data yet again, this time the classification is 

based on (i.e. the neural network is trained on) a random 50% sample of 

the data and evaluated on the other 50%. In the first example the target 

values are taken to be the vectors (1,0,0), (0,1,0) and (0,0,1) for the 

three species (i.e. indicator variables) and we classify new data (i.e. with 

new values of the sepal and petal measurements) by which column has 

the maximum estimated value. 
> library(nnet) 
> data(iris3) 
># use half the iris data 
> ir <- rbind(iris3[,,1],iris3[,,2],iris3[,,3]) 
> targets <-class.ind(c(rep("s",50),rep("c",50),rep("v",50))) 
> samp<-c(sample(1:50,25),sample(51:100,25), 
+ sample(101:150,25)) 
>ir1 <- nnet(ir[samp,], targets[samp,], size=2, rang=0.1,  
+                  decay=5e-4, maxit=200) 
# weights:  19 
initial  value 54.827508  
iter  10 value 30.105123 
iter  20 value 18.718125 
… … … … … … … … … … … … 
… … … … … … … … … … … … 
iter 190 value 0.532753 
iter 200 value 0.532392 
final  value 0.532392  
stopped after 200 iterations 
>      test.cl <- function(true, pred){ 
+              true <- max.col(true) 
+              cres <- max.col(pred) 
+              table(true, cres) 
+      } 
>      test.cl(targets[-samp,], predict(ir1, ir[-samp,])) 
    cres 
true  1  2  3 
   1 24  0  1 
   2  0 25  0 
   3  2  0 23 
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Thus, the classification rule only misclassifies 3 out of the 75 flowers 

which were not used in the analysis. If we used a net with only 1 unit in 

the hidden layer: 
 
> ir1 <- nnet(ir[samp,], targets[samp,], size=1, rang=0.1, 
+              decay=5e-4, maxit=200) 
# weights:  11 
initial  value 57.220735  
iter  10 value 35.168339 
… … … … … … 
iter  60 value 17.184611 
final  value 17.167133  
converged 
>      test.cl <- function(true, pred){ 
+              true <- max.col(true) 
+              cres <- max.col(pred) 
+              table(true, cres) 
+      } 
>      test.cl(targets[-samp,], predict(ir1, ir[-samp,])) 
    cres 
true  1  2  3 
   1 22  0  3 
   2  0 25  0 
   3  0  0 25 
> 
 

then it is still only 3, though a different 3 clearly. To see what the 

actual values of the predictions are we can print the first five rows of 

the estimated target values: 
 
> predict(ir1, ir[-samp,])[1:5,] 
             c         s v 
[1,] 0.1795149 0.9778684 0 
[2,] 0.1822938 0.9747983 0 
[3,] 0.1785939 0.9788104 0 
[4,] 0.1758644 0.9813966 0 
[5,] 0.1850007 0.9714523 0 

and we see that although it does not estimate the values as precisely 

(0,1,0) (or (1,0,0) or (0,0,1)) they are close. Hence the use of the 

mac.col function above. 
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We can find out more about the actual fitted (or trained) network, 

including the estimated weights with summary() etc: 
> ir1 
a 4-1-3 network with 11 weights 
options were - decay=5e-04 
> summary(ir1) 
a 4-1-3 network with 11 weights 
options were - decay=5e-04 
 b->h1 i1->h1 i2->h1 i3->h1 i4->h1  
 -0.15   0.41   0.74  -1.01  -1.18  
 b->o1 h1->o1  
 -0.06  -1.59  
 b->o2 h1->o2  
 -6.59  11.28  
 b->o3 h1->o3  
  3.75 -39.97 
 

and we could draw a graphical representation putting in values of the 

weights along the arrows. 

 

Another way of tackling the same problem is given by the following: 
 
> ird <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]), 
+          species=c(rep("s",50), rep("c", 50), rep("v", 50))) 
>      ir.nn2 <- nnet(species ~ ., data=ird, subset=samp, 
+ size=2, rang=0.1,  decay=5e-4, maxit=200) 
# weights:  19 
initial  value 82.614238  
iter  10 value 27.381769 
… … … … … 
iter 200 value 0.481454 
final  value 0.481454  
stopped after 200 iterations 
>      table(ird$species[-samp], predict(ir.nn2, ird[-samp,], 
type="class")) 
    
     c  s  v 
  c 24  0  1 
  s  0 25  0 
  v  2  0 23 
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again, 3 of the new data are misclassified. However, if try a net with 

only one hidden unit we actually succeed slightly better: 
 
>  ir.nn2 <- nnet(species ~ ., data=ird, subset=samp, size=1,  
+ rang=0.1, decay=5e-4, maxit=200) 
# weights:  11 
initial  value 82.400908  
final  value 3.270152  
converged 
>    table(ird$species[-samp], predict(ir.nn2, ird[-samp,],  
+ type="class")) 
    
     c  s  v 
  c 24  0  1 
  s  0 25  0 
  v  1  0 24 
 
 
> summary(ir.nn2) 
a 4-1-3 network with 11 weights 
options were - softmax modelling  decay=5e-04 
 b->h1 i1->h1 i2->h1 i3->h1 i4->h1  
 -1.79  -0.44  -0.91   1.05   1.65  
 b->o1 h1->o1  
  7.11  -0.99  
 b->o2 h1->o2  
 12.30 -36.31  
 b->o3 h1->o3  
-19.45  37.43 
 

 

Further experiments: Taking a random sample of 10 from each group I 

found that the misclassification rate on the new data was 6 out of 120 

and even with training samples of 5 from each species it was 8 out of 

135). 
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A7.4 Extended example: Data set Book 

This data set has 16 variables, plus a binary classification (QT). The 

variables are a mixture of continuous (5 variables), binary (8 vars) and 

ordinal (3). An exploratory PCA [in MINITAB] on the correlation matrix (not 

shewn here) on ‘raw’ variables (i.e. ordinal not transformed to dummy 

variables) indicates very high dimensionality, typical of such sets with a 

mixture of types. The first 6 PCs account for 75% of variability, the first 9 

for 90%. Plots on PCs indicate that there is some well-defined structure 

revealed on the mid-order PCs but strikingly the cases with QT=1 are 

clearly divided into two groups, one of which separates fairly well from 

cases with QT=0 but the other is interior to those with QT=0 from all 

perspectives. The background to this example reveals that it is 

particularly important to classify the QT=1 cases correctly and so rather 

than the overall or raw misclassification rate the more relevant measure 

is the misclassification rate of the QT=1 cases. 

A Linear Discriminant Analysis emphasizes that these latter points are 

consistently misclassified. The plot below (from R) shews the data on 

the first (and only) crimcoord against sequence number. There then 

follows various analyses using a random subset to classify the 

remainder using both LDA and various simple neural nets. In this 

exercise LDA appears to win. Again the ‘raw’ variables are used for 

illustration but recoding would be better. 
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Plot of Book data on first discriminant (vs index in data file) 

 
 
  Predicted 
         0  1  
  true 0 256  1  
   1  16 23  
    17  
 
Misclassification rates: raw=17/296(6%), QT=1 cases:  16/39(41%) 
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Next take random samples of 200 and then use the LDF obtained to 

classify the remaining 96 (details of code and some output suppressed): 

 
 
> samp<- sample(1:296,200) 
> books.lda<-lda(book[samp,],qt[samp]) 
> table(qt[-samp],predict(book.lda,book[-samp,])$class) 
                    predicted 
             0 1      0 1       0 1      0 1      0 1  
   true   0 82 0   0 87 0    0 84 1   0 88 0   0 84 0  
          1  7 7   1  2 7    1  3 8   1  4 4   1  6 6  
misclassif  
rates (raw)7        2         4        4        6   /96 
(QT=1)     7/14     2/9       3/11     4/8      6/12 
    
            0  1     0  1       0 1      0 1      0 1 
   true  0 81  1  0 79  0    0 81 0   0 89 0   0 83 1 
         1  4 10  1  6 11    1  7 8   1  2 5   1  4 8 
misclassify  
rates (raw)  5        6          7        2        5 
(QT=1)       4/14     6/17       7/15     2/7      4/12 
         
 
i.e. raw about 5% but QT=1 cases=37% 
 
Now try a neural net with 8 hidden units: 
 
 
> book.net<-nnet(book,qt,size=8,rang=0.1,decay=5e-4,maxit=200) 
> q<-class.ind(qt) 
> book.net<-nnet(book,q,size=8,rang=0.1,decay=5e-4,maxit=200) 
> book.net 
a 16-8-2 network with 154 weights 
options were - decay=5e-04 
> test.cl(q,predict(book.net,book)) 
    pred 
true   0  1 
   0 257  0 
   1  11 28 
    11 
Raw misclassification rate 11/296 (3.7%), QT=1cases is 11/39 (39%). 
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Now again with 15 hidden units:    
 
> book.net<-nnet(book,q,size=15,rang=0.1,decay=5e-4,maxit=200) 
# weights:  287 
> test.cl(q,predict(book.net,book)) 
    pred 
true   0  1 
   0 257  0 
   1   9 30 
    9 
 
Raw misclassification rate 9/296 (3%) & QT=1 cases 9/39 (23%)    
 
Now again with 20 hidden units: 
 
> book.net<-nnet(book,q,size=20,rang=0.1,decay=5e-4,maxit=200) 
# weights:  382 
> test.cl(q,predict(book.net,book)) 
    pred 
true   0  1 
   0 257  0 
   1   4 35 
     4 
Raw misclassification rate 4/296 (1.4%), & QT=1 cases 4/39 (10%) 
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Now try training the net on 200 randomly selected cases and classify the 
remaining 96. 
 
 
> book.net<-
nnet(book[samp,],q[samp,],size=20,rang=0.1,decay=5e-
4,maxit=200) 
# weights:  382 
> test.cl(q[-samp,],predict(book.net,book[-samp,])) 
    pred        pred       pred          pred        pred     
true  0 1   true  0 1  true  0  1    true  0 1   true  0 1    
   0 82 2      0 77 9     0 73 10       0 79 9      0 77 5    
   1  6 6      1  5 5     1  6  7       1  3 5      1  8 6    
misclassif  
 rates   
raw  8          14         16            12          13   /96 
(QT=1) 6/12     5/10       6/13          3/8          8/14 
     
 
    pred        pred        pred        pred        pred 
true  0 1   true  0 1  true  0  1    true  0 1   true  0 1    
   0 81 4      0 81 1      0 88 2      0 81 9      0 85 5 
   1  6 5      1  7 7      1  2 4      1  2 4      1  2 4 
 
misclassif  
 rates   
raw 10          8           4           11          7   /96 
(QT=1) 6/11     7/14        2/6          2/6        2/6 
 
   pred        pred 
true  0 1   true  0  1 
   0 86 4      0 80 10 
   1  2 4  
misclassif  

    1  2  4 

 rates   
raw    6           12   
(QT=1) 2/6      2/6 
 
i.e. overall about 10% and QT=1 cases 37% 
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Next, try this again with only 5 hidden units: 
 
 
> book.net<-
nnet(book[samp,],q[samp,],size=5,rang=0.1,decay=5e-
4,maxit=300) 
# weights:  97 
    pred        pred        pred        pred        pred 
true  0 1   true  0 1  true  0  1    true  0 1   true  0 1    
   0 85 5      0 82 4      0 77 7      0 82 2      0 77 8 
   1  2 4      1  3 7      1  6 6      1  7 5      1  4 7 
misclassif  
 rates   
raw 7           7           13          9           12 
(QT=1) 2/6      3/10        6/12        7/12        4/11 
 
    pred        pred        pred        pred         pred 
true  0 1   true  0 1  true  0  1    true  0 1   true  0 1    
   0 76 5      0 78 5      0 79 5      0 75 10      0 78 6 
   1  8 7      1  6 7      1  3 9      1  6  5      1  6 6 
 misclassif  
 rates   
raw 13          11          8           16           12   
(QT=1) 8/15     6/13        3/12          6/11        6/12 
 
> 
 
i.e. overall about 11% & QT=1 cases 44% 
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A7.4.1 Comment 

The misclassification rate of the LDA on the QT=1 cases is about 40% 

on both the complete data set and on random samples of 96 when the 

rule is based on the remaining 200. Simple neural nets with large 

numbers of hidden units appear to do much better on the overall data,i.e 

about 110% of QT=1  cases are misclassified when the rulle calculated 

from the complete data is used but when tested on random samples of 

96 not used in the construction of the rule (a more reliable assessment) 

the misclassification rate is about 40% and is comparable with that of 

the LDA. Thus this simple form of neural net offers no appreciable 

advantage over the LDA. 
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A7.5 SVMs 

Simple feed-forward single hidden layer neural nets such as that used 

above typically fail in discrimination & classification problems because 

the cases are not linearly separable, as is revealed by the PCA. Support 

Vector Machines try to overcome this by initially mapping (via an inner 

product Kernel function) the input vectors into a higher dimensional 

space (perhaps very high) termed the feature space where they are 

linearly separable so that standard LDA can be applied.  Different Kernel 

functions produce different learning machines such as polynomial, 

radial-basis or two-layer peceptron. For example, the first with Kernel 

function (xxi+1)p (p chosen a priori but not the dimension of the data) is 

equivalent to expanding the original variables to p-degree polynomials in 

them, e.g. in the case of original variable (x1,x2) and taking p=2 as well 

we obtain the variables in 5-dimensional feature space of 

(x1,x2,x1
2,x2

2,x1x2). If p=3 then the feature space has dimension 9. 
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A7.5 Summary 

The above account is only a very brief introduction to simple neural 

networks, with particular reference to their use for classification. As with 

tree-based methods they can also be used for regression problems.  

Some comparisons win performance in classification with LDA methods 

has been given where it the importance of assessing performance on 

new data (rather than the training set) is highlighted. 

Little has been said about the use and choice of activation functions, 

fitting criteria etc and examples have been given entirely in the context 

of the simple and basic facilities offered in the nnet library of R. To find 

out more then look at the reference Ripley (1996) given on p1, this is 

written with statistical terminology and largely from a statistical point of 

view.  Another definitive reference is Chris Bishop (1995), Neural 

Networks for Pattern Recognition, Oxford, Clarendon Press. A readable 

but ‘black box’ account is given  in  Simon Haykin (1999), Neural 

Networks, (2nd Ed.) Macmillan, 1998. 
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APPENDIX 8:  Kohonen Self-Organising Maps 

Kohonen mapping is an unsupervised technique (i.e. essentially a form 

of non-hierarchical cluster analysis) but which has similarities with feed-

forward neural nets. The objective is to produce a classification of 

objects into ‘clusters’ of similar cases and simultaneously construct a 

map of these clusters with neighbouring clusters as similar as possible. 

Kohonen says (quoted in Ripley, 1996): “I just wanted an algorithm that 

mapped similar patterns (pattern vectors close to each other in input 

space) into contiguous locations in output space”.  A good account is 

given in Everitt et al, (2001). 

 

Viewed as a network, it consists of two layers —  

 an input layer of p-dimensional observations 

 an output layer (represented by a grid) consisting of k nodes of 

the k clusters 

Initially each node has a p-vector of weights associated with it, initially 

arbitrarily chosen (e.g. as random weights between 0 and 1). The 

iteration proceeds by associating each observation to that node to which 

it is closest (inner product of observation and node weight). The winning 

node (and to a lesser extent, the neighbouring nodes) are ‘rewarded’ by 

moving the weights of that node[s] towards the observation. The process 

cycles round the complete set of observations until stability is reached, 

perhaps varying the degree of movement of nodes towards observations 

to a smaller and smaller amount. 
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