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Review...

Multivariate analysis immensely useful; anytime data are
correlated we have a joint distribution. The mean may be of
primary interest, the covariability, or both.

We covered primarily classical multivariate analysis.

Tried to throw in some more recent stuff along the way:
bootstrap, general regression model, mixed models, functional
data, infinite mixtures, discrimination beyond linear, LASSO,
EM algorithm, MCMC, etc. Many things came up that
post-date the book.

Natural followup/companion courses listed in first set of notes.

Elements of statistical learning should be offered Fall of 2015,
hopefully by Edsel.
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Review...

Course webpage provides good review.

Main topics: normal theory incl. small-sample results useful
for testing, regression & MANOVA, PCA, MDS, canonical
correlation, clustering, discrimination, and FA.

PCA usually exploratory, but now being used to construct
models. Very useful in “denoising” signals. Also useful:
general basis expansions, splines, Gaussian processes.

PCA provides main heuristic for MDS and FA. FA really a
model-based PCA.

In regression setting, two ways to model/allow for correlated
yi : direct (marginal models, structured covariance matrices),
and indirect or conditional (shared random effects leading to
mixed models).
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“Common components” models

Briefly mentioned in MKB 2.6.2. We discussed in addendum
to Chapter 6, mixed models.

This is really the main approach toward inducing correlation
among non-normal responses: generalized linear mixed models
(GLMM).

Poisson example

yij |β,γ i
ind .∼ Pois(λij), log(λij) = x′ijβ+z′ijγ i , γ i

ind .∼ Nq(0,Ω).

Bernoulli example

yij |β,γ i
ind .∼ Bern(πij), log

(
πij

1−πij

)
= x′ijβ+z′ijγ i , γ i

ind .∼ Nq(0,Ω).
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“Common components” models

Positive correlation induced among y′i = (yi1, . . . , yini ) through
the common components γ i .

Simplest version: random intercept models. Correlation
structure immediate for normal mixed model. Also termed
“repeated measures” model in early literature.

Factor analytic model xi = µ + Λi + ui another example.
Difference here is that loadings Λ are unknown; in mixed
model Zi is known.
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Structured error

Mixed models induce the correlation among the components of yi .
Another option is to model it directly.

In STAT 704/705 one common assumption is independence.
Often violated for data collected over time or space.

For example, say yij is blood pressure of subject i taken at
week j after starting medication. We expect the elements of
y′i = (yi1, . . . , yini ) to be correlated.

Assume yij = x′ijβ + uij (yielding yi = Xiβ + +ui ). Simple
autoregressive structure posits

uij |ui1, . . . , ui ,j−1 ∼ N(ρui ,j−1, σ
2).

Can show then that

V (ui ) = Σ(ρ, σ2) = σ2


1 ρ ρ2 · · · ρni−1

ρ 1 ρ · · · ρni−2

...
...

...
. . .

...
ρni−1 ρni−2 ρni−3 · · · 1

 .
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AR(1) structure

The covariance matrix has only two parameters, ρ and σ2.

Durbin-Watson test for independence is simply H0 : ρ = 0
(using only one group).

Other covariance structures: banded, Toeplitz, compound
symmetry, many others.

AR(1) generalized to ARMA(p, q), general time-series model
(STAT 520 & STAT 720). Time series approach often
“detrends” first; regression fits everything at once.

How to allow for seeing individuals at differently spaced
times? Markov temporal dependence, which leads to Gaussian
process with exponential covariance function.
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Spatial dependence

If observations are collected at different geographical locations, say
at coordinates si = (si1, si2) (often latitude/longitude), then
spatial structure can be used for the residuals. This helps properly
estimate regression effects and can also drastically improve
prediction.

Often there is repeated measures only over space, not within
individuals too. That is, each subject i is measured only once
yielding (yi , xi ), but the location where yi was collected si is
known. However, it is possible to have spatial correlation for
repeated mesures within a group and independence across groups.
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Exponential decay of correlation

The usual linear model can be assumed Y = Xβ + u, but now
u should have spatially-correlated elements.

Different spatial correlation functions are available in lme,
exponential is ρθ(s1, s2) = exp(−||s1 − s2||/θ) where θ is the
“range.” The ijth element of V (u) is
τ2ρθ(si , sj) + I{i = j}σ2. Last part is called “nugget.”

Generalizes AR(1)! Can be fit to longitudinal data with
irregularly observed observations.

Other spatial correlation models: spherical, Matérn, Gaussian.

Can fit correlogram to OLS residuals to see if there’s spatial
component; estimates ρ(d) = corr(u(s), u(s + ∆)) where
d = ||∆||. Since this is not a function of s, stationarity is
assumed.
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Example in R

The “thick” dataset is from SAS documentation. Want to predict
measured thickness of coal seams thick at different coordinates
(east & north) as a function of soil, measuring soil quality.

library(ncf)

library(nlme)

d=read.table("http://www.ats.ucla.edu/stat/r/faq/thick.csv",header=T,sep = ",")

d # east and north are the spatial locations

# look at correlogram of residuals from OLS fit

f1=lm(thick~soil,data=d)

cr=spline.correlog(x=d$east,y=d$north,z=resid(f1))

plot(cr) # seems to be positive correlation for residuals close to each other

# default is nugget=F; need replication to estimate nugget effect

f2=lme(fixed=thick~soil,data=d,random=~1|dummy, # dummy is all 1’s (only one set of repeated measures)!

correlation=corExp(form=~east+north),method="ML") # other spatial correlation also available

f3=gls(thick~soil,data=d) # Gaussian correlation also available

summary(f2) # much improved fit, soil quality no longer important after location taken into account

summary(f3) # same as lm fit, but gives AIC and BIC
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Spatial random effects

The linear predictor in most models can be augmented to include
spatial frailties.

The theoretical model is actually based on a Gaussian process, e.g.

η(s) = x(s)′β + u(s),

where u(s) is a mean-zero stationary Gaussian process. An
exponential covariance function guarantees that u(s) is infinitely
differentiable, i.e. very smooth. Finite realizations, e.g.
u′ = (u(s1), . . . , u(sn)) are multivariate normal.

This η(s) can be used in spatial Poisson regression, spatial logistic
regression, spatial normal-errors regression, a spatially-varying
proportional hazards model, etc.

Alternatively, a Gaussian process can be used in a marginal model
through a copula.
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Markov random fields

Sometimes geographic information is not in the form of exact
locations s, but rather is less exact, e.g. the county-of-residence a
subject lives in. A conditionally autoregressive (CAR) prior
smooths random effects u1, . . . , um according to geographic
location of the counties. Specifically,

uj |u−j ∼ N
(
ρũj ,

λ
nj

)
,

where ũj is the mean of the {ui}i 6=j that share a border with uj ,
and nj is the number that share a border. One can show (not easy)
that the joint distribution is then

u ∼ Nm(0, λ(D− ρW)−1),

where W is a “proximity matrix” and D is diagonal with elements
dii = wi+. ρ = 1 gives an intrinsic CAR, or ICAR; not proper;
typcially ρ ∈ [0, 1).
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Directional data

MKB Chapter 15. First step in shape-related data analysis,
statistical analysis of manifold data, etc. Ian Dryden used was here
up until a few years ago.

Directional data is essentially the consideration of probability
distributions on circles or spheres. McMillan et al. (2013)
combined circular data, splines, and random effects to deal with
multivariate repeated measures directional data across groups (a
kind of MANOVA with lots of structure).
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