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Preface

The goal of this text is to give the reader a thorough grounding in old-school mul-
tivariate statistical analysis. The emphasis is on multivariate normal modeling and
inference, both theory and implementation. Linear models form a central theme of
the book. Several chapters are devoted to developing the basic models, including
multivariate regression and analysis of variance, and especially the “both-sides mod-
els” (i.e., generalized multivariate analysis of variance models), which allow model-
ing relationships among individuals as well as variables. Growth curve and repeated
measure models are special cases.

The linear models are concerned with means. Inference on covariance matrices
covers testing equality of several covariance matrices, testing independence and con-
ditional independence of (blocks of) variables, factor analysis, and some symmetry
models. Principal components, though mainly a graphical/exploratory technique,
also lends itself to some modeling.

Classification and clustering are related areas. Both attempt to categorize indi-
viduals. Classification tries to classify individuals based upon a previous sample of
observed individuals and their categories. In clustering, there is no observed catego-
rization, nor often even knowledge of how many categories there are. These must be
estimated from the data.

Other useful multivariate techniques include biplots, multidimensional scaling,
and canonical correlations.

The bulk of the results here are mathematically justified, but I have tried to arrange
the material so that the reader can learn the basic concepts and techniques while
plunging as much or as little as desired into the details of the proofs.

Practically all the calculations and graphics in the examples are implemented
using the statistical computing environment R [R Development Core Team, 2010].
Throughout the notes we have scattered some of the actual R code we used. Many of
the data sets and original R functions can be found in the file http://www.istics.
net/r/multivariateOldSchool.r. For others we refer to available R packages.
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0.1. Exercises 1

0.1 Exercises

Exercise 0.1.1. Show that the span in (5.3) is indeed a linear subspace.

Exercise 0.1.2. Verify that the four spans given in (5.5) are the same.

Exercise 0.1.3. Show that for matrices C (N × J) and D (N × K),

span{columns of D} ⊂ span{columns of C} ⇒ D = CA, (1)

for some J × K matrix A. [Hint: Each column of D must be a linear combination of
the columns of C.]

Exercise 0.1.4. Here, D is an N × K matrix, and A is K × L. (a) Show that

span{columns of DA} ⊂ span{columns of D}. (2)

[Hint: Any vector in the left-hand space equals DAγ for some L × 1 vector γ. For
what vector γ∗ is DAγ = Dγ∗?] (b) Prove Lemma 5.1. [Use part (a) twice, once for

A and once for A−1.] (c) Show that if the columns of D are linearly independent,
and A is K × K and invertible, then the columns of DA are linearly independent.
[Hint: Suppose the columns of DA are linearly dependent, so that for some γ 6= 0,
DAγ = 0. Then there is a γ∗ 6= 0 with Dγ∗ = 0. What is it?]

Exercise 0.1.5. Let d1, . . . , dK be vectors in RN . (a) Suppose (5.8) holds. Show that
the vectors are linearly dependent. [That is, find γj’s, not all zero, so that ∑ γidi = 0.]
(b) Suppose the vectors are linearly dependent. Find an index i and constants γj so
that (5.8) holds.

Exercise 0.1.6. Prove Lemma 5.2.

Exercise 0.1.7. Suppose the set of M × 1 vectors g1, . . . , gK are nonzero and mutually
orthogonal. Show that they are linearly independent. [Hint: Suppose they are linearly
dependent, and let gi be the vector on the left-hand side in (5.8). Then take g′

i times
each side of the equation, to arrive at a contradiction.]

Exercise 0.1.8. Prove part (a) of Theorem 5.1. [Hint: Show that the difference of v− v̂1
and v − v̂2 is orthogonal to W , as well as in W . Then show that such a vector must be
zero.] (b) Prove part (b) of Theorem 5.1. (c) Prove part (c) of Theorem 5.1. (d) Prove

part (d) of Theorem 5.1. [Hint: Start by writing ‖v − w‖2 = ‖(v − v̂)− (w − v̂)‖2,
then expand. Explain why v − v̂ and w − v̂ are orthogonal.]

Exercise 0.1.9. Suppose D1 is N × K1 and D2 is N × K2, and and D′
1D2 = 0. Let

Vi = span{columns of Di} for i = 1, 2. (a) Show that V1 and V2 are orthogonal
spaces. (b) Define W = span{columns of (D1, D2)}. (The subspace W is called the
direct sum of the subspaces V1 and V2.) Show that u is orthogonal to V1 and V2 if

and only if it is orthogonal to W . (c) For v ∈ RN , let v̂i be the projection onto Vi,
i = 1, 2. Show that v̂1 + v̂2 is the projection of v onto W . [Hint: Show that v − v̂1 − v̂2
is orthogonal to V1 and V2, then use part (b).]

Exercise 0.1.10. Derive the normal equations (5.16) by differentiating ‖v − γD′‖2

with respect to the γi’s.
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Exercise 0.1.11. Suppose A and B are both n × q matrices. Exercise 3.7.5 showed that
trace(AB′) = trace(B′A). Show further that

trace(AB′) = trace(B′A) = row(A) row(B)′. (3)

Exercise 0.1.12. This Exercise proves part (a) of Proposition 5.1. Suppose W =
span{columns of D}, where D is N × K and D′D is invertible. (a) Show that the

projection matrix PD = D(D′D)−1D′ as in (5.20) is symmetric and idempotent. (b)
Show that trace(PD) = K. [Use Exercise 5.8.11.]

Exercise 0.1.13. This Exercise proves part (b) of Proposition 5.1. Suppose P is a
symmetric and idempotent N × N matrix. Find a set of linearly independent vectors
d1, . . . , dK, where K = trace(P), so that P is the projection matrix for span{d1, . . . , dK}.
[Hint: Write P = Γ1Γ

′
1 where Γ1 has orthonormal columns, as in Lemma 3.1. Show

that P is the projection matrix onto the span of the columns of the Γ1, and use Exercise
5.8.7 to show that those columns are a basis. What is D, then?]

Exercise 0.1.14. (a) Prove part (c) of Proposition 5.1. (b) Prove part (d) of Proposition
5.1. (c) Prove (5.23).

Exercise 0.1.15. Consider the projection of v ∈ RN onto span{1′N}. (a) Find the
projection. (b) Find the residual. What does it contain? (c) Find the projection matrix
P. What is Q = IN − P? Have we seen it before?

Exercise 0.1.16. Suppose D is N × K and D∗ is N × L, where span{columns of D} ⊂
span{columns of D∗}. (a) Show that PDPD∗ = PD∗PD = PD. [Hint: What is PD∗D?]
(b) Show that QDQD∗ = QD∗QD = QD∗ .

Exercise 0.1.17. Suppose A is a K × K matrix such that γA = γ for all 1 × K vectors
γ. Show that A = IK.

Exercise 0.1.18. Show that the quadratic form in (5.36) equals ‖v∗−γD∗′‖ for v∗ and
D∗ in (5.34). Conclude that the weighted least squares estimator (5.35) does minimize
(5.34).

Exercise 0.1.19. Show that the weighted least squares estimate (5.35) is the same as

the regular least squares estimate (5.18) when in (5.24) the covariance Ω = σ2IN for

some σ2
> 0.

Exercise 0.1.20. Verify the steps in (5.40), (5.41) and (5.42), detailing which parts of
Proposition 3.2 are used at each step.

Exercise 0.1.21. Verify (5.44).

Exercise 0.1.22. Verify (5.60).

Exercise 0.1.23. Show that for any K1 × K2 matrix A,

(
IK1

A
0 IK2

)−1

=

(
IK1

−A
0 IK2

)
. (4)

Exercise 0.1.24. Suppose D = (D1, D2), where D1 is N × K1, D2 is N × K2, and
D′

1D2 = 0. Use Exercise 5.8.9 to show that PD = PD1
+ PD2

.



0.1. Exercises 3

Exercise 0.1.25. Suppose D = (D1, D2), where D1 is N × K1, D2 is N × K2 (but
D′

1D2 6= 0, maybe.) (a) Argue that span{columns of D} = span{columns of (D1, D2·1)},
where D2·1 = QD1

D2 as in (5.57). (b) Use Exercise 5.8.24 to show that PD =
PD1

+ PD2·1 . (c) Show that QD1
= QD + PD2·1 .

Exercise 0.1.26. Show that the equation for dj·1 in (5.61) does follow from the deriva-
tion of D2·1.

Exercise 0.1.27. Give an argument for why the set of equations in (5.68) follows from
the Gram-Schmidt algorithm.

Exercise 0.1.28. Given that a subspace is a span of a set of vectors, explain how one
would obtain an orthogonal basis for the space.

Exercise 0.1.29. Let Z1 be a N × K matrix with linearly independent columns. (a)
How would you find a N × (N − K) matrix Z2 so that (Z1, Z2) is an invertible N × N
matrix, and Z′

1Z2 = 0 (i.e., the columns of Z1 are orthogonal to those of Z2). [Hint:
Start by using Lemma 5.3 with D1 = Z1 and D2 = IN . (What is the span of the
columns of (Z1, IN)?) Then use either Gram-Schmidt or Exercise 5.8.13 on D2·1 to
find a set of vectors to use as the Z2. Do you recognize D2·1?] (b) Suppose the
columns of Z1 are orthonormal. How would you modify the Z2 obtained in part (a)
so that (Z1, Z2) is an orthogonal matrix?

Exercise 0.1.30. Consider the matrix B(k) defined in (5.72). (a) Show that the inverse

of B(k) is of the same form, but with the −bkj’s changed to bkj’s. That is, the inverse

is the K × K matrix C(k), where

C
(k)
ij =





1 if i = j

bkj if j > k = i

0 otherwise.

(5)

Thus C is the inverse of the B in (5.76), where C = C(K−1) · · · C(1). (b) Show that
C is unitriangular, where the bij’s are in the upper triangular part, i.e, Cij = bij for
j > i, as in (5.77). (c) The R in (5.79) is then ∆C, where ∆ is the diagonal matrix with
diagonal elements being the norms of the columns of D∗. Show that R is given by

Rij =





‖di·{1:(i−1)}‖ if j = i

d′
j·{1:(i−1)}di·{1:(i−1)}/‖di·{1:(i−1)}‖ if j > i

0 if j < i.

(6)

Exercise 0.1.31. Verify (5.83).

Exercise 0.1.32. Suppose d1, . . . , dK are vectors in RN , and d∗
1 , . . . , d∗

K are the corre-
sponding orthogonal vectors resulting from the Gram-Schmidt algorithm, i.e., d∗

1 =
d1, and for i > 1, d∗

i = di·{1:(i−1)} in (5.66). (a) Show that the d∗
1 , . . . , d∗

K are linearly

independent if and only if they are all nonzero. Why? [Hint: Recall Exercise 5.8.7.]
(b) Show that d1, . . . , dK are linearly independent if and only if all the d∗

j are nonzero.

Exercise 0.1.33. Suppose D is N × K, with linearly independent columns, and D =
QR is its QR decomposition. Show that span{columns of D} = span{columns of Q}.
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Exercise 0.1.34. Suppose D is an N × N matrix whose columns are linearly indepen-
dent. Show that D is invertible. [Hint: Use the QR decomposition in Theorem 5.4.
What kind of a matrix is the Q here? Is it invertible?]

Exercise 0.1.35. (a) Show that span{columns of Q} = RN if Q is an N × N orthogonal
matrix. (b) Suppose the N × 1 vectors d1, . . . , dN are linearly independent, and W =
span{d1, . . . , dN}. Show that W = RN . [Hint: Use Theorem 5.4, Lemma 5.1, and part
(a).]

Exercise 0.1.36. Show that if d1, . . . , dK are vectors in RN with K > N, that the di’s
are linearly dependent. (This fact should make sense, since there cannot be more axes
than there are dimensions in Euclidean space.) [Hint: Use Exercise 5.8.35 on the first
N vectors, then show how dN+1 is a linear combination of them.]

Exercise 0.1.37. Show that the QR decomposition in Theorem 5.4 is unique when
N = K. That is, suppose Q1 and Q2 are K × K orthogonal matrices, and R1 and
R2 are K × K upper triangular matrices with positive diagonals, and Q1R1 = Q2R2.

Show that Q1 = Q2 and R1 = R2. [Hint: Show that Q ≡ Q′
2Q1 = R2R−1

1 ≡ R,
so that the orthogonal matrix Q equals the upper triangular matrix R with positive
diagonals. Show that therefore Q = R = IK .] [Extra credit: Show the uniqueness
when M > K.]

Exercise 0.1.38. Verify (5.81). (Exercise 5.8.23 helps.) In particular: (a) Argue that
the 0s in the middle matrix on the left-hand side of (5.81) are correct. (b) Show
S22·1 = D′

2·1D2·1.

Exercise 0.1.39. Suppose

S =

(
S11 S12
S21 S22

)
, (7)

where S11 is K1 × K1 and S22 is K2 × K2, and S11 is invertible. (a) Show that

|S| = |S11| |S22·1|. (8)

[Hint: Use (5.81).] (b) Show that

S−1 =




S−1
11 + S−1

11 S12S−1
22·1S21S−1

11 −S−1
11 S12S−1

22·1

−S−1
22·1S21S−1

11 S−1
22·1


 . (9)

[Hint: Use (5.81) and (5.97).] (c) Use part (b) to show that

[S−1]22 = S−1
22·1, (10)

where [S−1]22 is the lower-right K2 × K2 block of S−1. Under what condition on the

Sij’s is [S−1]22 = S−1
22 ?

Exercise 0.1.40. For S ∈ S+
K , show that

|S| = S11S22·1S33·12 · · · SKK·{1···K−1}. (11)

[Hint: Use (5.82)). What is the determinant of a unitriangular matrix?]
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Exercise 0.1.41. Consider the multivariate regression model, as in (5.38) with z = Iq.
Partition x and β:

Y = xβ + R = (x1 x2)

(
β1
β2

)
+ R, (12)

where x1 is n × p1 and x2 is n × p2. Let x2·1 = Qx1 x2. (a) Show that

[Cx]22 = (x′2·1x2·1)−1, (13)

where [Cx]22 is the lower-right p2 × p2 part of Cx in (5.45). (See 5.103.) (b) Show that

β̂LS2, the lower p2 × q part of β̂LS in (5.43), satisfies

β̂LS = (x′2·1x2·1)
−1x′2·1Y. (14)

Exercise 0.1.42. Consider the model (5.38) where z is the q × l matrix

z =

(
Il
0

)
, (15)

with l < q, and partition ΣR as

ΣR =

(
Σ11 Σ12
Σ21 Σ22

)
, Σ11 is l × l, Σ22 is (q − l)× (q − l). (16)

Show that in (5.45), Σz = Σ11, and use (5.103) to show that in (5.42),

(z′Σ−1
R z)−1 = Σ11·2. (17)

Then find an explicit equation for Cov[β̂LS]−Cov[β̂WLS] from(5.42) and (5.44). Which
estimator has a better covariance? [We already know that Gauss-Markov answers this
last question.]

Exercise 0.1.43. Suppose S ∈ S+
K . Prove Theorem 5.5, i.e., show that we can write

S = R′R, where R is upper triangular with positive diagonal elements. [Hint: Use

the spectral decomposition S = GLG′ from (1.33). Then let D = L1/2G′ in (5.79).
Are the columns of this D linearly independent?]

Exercise 0.1.44. Show that if W = R′R is the Cholesky decomposition of W (K × K),
then

|W| =
K

∏
j=1

r2
jj. (18)

Exercise 0.1.45. Show that the Cholesky decomposition in Theorem 5.5 is unique.
That is, if R1 and R2 are K × K upper triangular matrices with positive diagonals,

that R′
1R1 = R′

2R2 implies that R1 = R2. [Hint: Let R = R1R−1
2 , and show that

R′R = IK. Then show that this R must be IK, just as in Exercise 5.8.37.]

Exercise 0.1.46. Show that the N × K matrix D has linearly independent columns if
and only if D′D is invertible. [Hint: If D has linearly independent columns, then
D′D = R′R as Theorem 5.5, and R is invertible. If the columns are linearly depen-
dent, there is a γ 6= 0 with D′Dγ = 0. Why does that equation imply D′D has no
inverse?]
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Exercise 0.1.47. Suppose D is N × K and C is N × J, K > J, and both matrices have
linearly independent columns. Furthermore, suppose

span{columns of D} = span{columns of C}. (19)

Thus this space has two bases with differing numbers of elements. (a) Let A be the
J × K matrix such that D = CA, guaranteed by Exercise 5.8.3. Show that the columns
of A are linearly independent. [Hint: Note that Dγ 6= 0 for any K × 1 vector γ 6= 0.
Hence Aγ 6= 0 for any γ 6= 0.] (b) Use Exercise 5.8.36 to show that such an A cannot
exist. (c) What do you conclude?

Exercise 0.1.48. This exercise is to show that any linear subspace W in RN has a basis.
If W = {0}, the basis is the empty set. So you can assume W has more than just the

zero vector. (a) Suppose d1, . . . , dJ are linearly independent vectors in RN . Show that

d ∈ RN but d 6∈ span{d1, . . . , dJ} implies that d1, . . . , dJ , d are linearly independent.
[Hint: If they are not linearly independent, then some linear combination of them
equals zero. The coefficient of d in that linear combination must be nonzero. (Why?)
Thus d must be in the span of the others.] (b) Take d1 ∈ W , d1 6= 0. [I guess we are
assuming the Axiom of Choice.] If span{d1} = W , then we have the basis. If not,
there must be a d2 ∈ W − span{d1}. If span{d1, d2} = W , we are done. Explain
how to continue. (Also, explain why part (a) is important here.) How do you know
this process stops? (c) Argue that any linear subspace has a corresponding projection
matrix.

Exercise 0.1.49. Suppose P and P∗ are projection matrices for the linear subspace

W ⊂ RN . Show that P = P∗, i.e., the projection matrix is unique to the subspace.
[Hint: Because the projection of any vector is unique, Pv = P∗v for all v. Consider v
being each of the columns of IN .]

Exercise 0.1.50. Find the orthogonal polynomial matrix (up to cubic) for the four time
points 1, 2, 4, 5.

Exercise 0.1.51 (Skulls). For the model on skull measurements described in Exercise
4.4.2, replace the polynomial matrix w with that for orthogonal polynomials.

Exercise 0.1.52 (Caffeine). In Exercise 4.4.4, the x is a quadratic polynomial matrix
in grade (8, 10, 12). Replace it with the orthogonal polynomial matrix (also 28 × 3),
where the first column is all ones, the second is is the linear vector (−1′9, 0′10, 1′9)

′, and
third is the quadratic vector is (1′9,−c1′10, 1′9)

′ for some c. Find c.

Exercise 0.1.53 (Leprosy). Consider again the model for the leprosy data in Exercise
4.4.6. An alternate expression for x is w∗ ⊗ 110, where the first column of w∗ rep-
resents the overall mean, the second tells whether the treatment is one of the drugs,
and the third whether the treatment is Drug A, so that

w∗ =




1 1 1
1 1 0
1 0 0


 . (20)

Use Gram-Schmidt to orthogonalize the columns of w∗. How does this matrix differ
from w? How does the model using w∗ differ from that using w?



Chapter 1

A First Look at Multivariate Data

In this chapter, we try to give a sense of what multivariate data sets looks like, and
introduce some of the basic matrix manipulations needed throughout these notes.
Chapters 2 and 3 lay down the distributional theory. Linear models are probably the
most popular statistical models ever. With multivariate data, we can model relation-
ships between individuals or between variables, leading to what we call “both-sides
models,” which do both simultaneously. Chapters 4 through 8 present these models
in detail. The linear models are concerned with means. Before turning to models
on covariances, Chapter 9 briefly reviews likelihood methods, including maximum
likelihood estimation, likelihood ratio tests, and model selection criteria (Bayes and
Akaike). Chapter 10 looks at a number of models based on covariance matrices, in-
cluding equality of covariances, independence and conditional independence, factor
analysis, and other structural models. Chapter 11 deals with classification, in which
the goal is to find ways to classify individuals into categories, e.g., healthy or un-
healthy, based on a number of observed variable. Chapter 12 has a similar goal,
except that the categories are unknown and we seek to group individuals based on
just the observed variables. Finally, Chapter 13 explores principal components, which
we first see in Section 1.6. It is an approach for reducing the number of variables,
or at least find a few interesting ones, by searching through linear combinations of
the observed variables. Multidimensional scaling has a similar objective, but tries to
exhibit the individual data points in a low-dimensional space while preserving the
original inter-point distances. Canonical correlations has two sets of variables, and
finds linear combinations of the two sets to explain the correlations between them.

On to the data.

1.1 The data matrix

Data generally will consist of a number of variables recorded on a number of indi-
viduals, e.g., heights, weights, ages, and sex of a sample of students. Also, generally,
there will be n individuals and q variables, and the data will be arranged in an n × q

7
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data matrix, with rows denoting individuals and the columns denoting variables:

Y =

Var 1 Var 2 · · · Var q
Individual 1
Individual 2

...
Individual n




y11 y12 . . . y1q

y21 y22 . . . y2q

...
...

. . .
...

yn1 yn2 . . . ynq


 .

(1.1)

Then yij is the value of the variable j for individual i. Much more complex data
structures exist, but this course concentrates on these straightforward data matrices.

1.1.1 Example: Planets data

Six astronomical variables are given on each of the historical nine planets (or eight
planets, plus Pluto). The variables are (average) distance in millions of miles from
the Sun, length of day in Earth days, length of year in Earth days, diameter in miles,
temperature in degrees Fahrenheit, and number of moons. The data matrix:

Dist Day Year Diam Temp Moons
Mercury 35.96 59.00 88.00 3030 332 0
Venus 67.20 243.00 224.70 7517 854 0
Earth 92.90 1.00 365.26 7921 59 1
Mars 141.50 1.00 687.00 4215 −67 2
Jupiter 483.30 0.41 4332.60 88803 −162 16
Saturn 886.70 0.44 10759.20 74520 −208 18
Uranus 1782.00 0.70 30685.40 31600 −344 15
Neptune 2793.00 0.67 60189.00 30200 −261 8
Pluto 3664.00 6.39 90465.00 1423 −355 1

(1.2)

The data can be found in Wright [1997], for example.

1.2 Glyphs

Graphical displays of univariate data, that is, data on one variable, are well-known:
histograms, stem-and-leaf plots, pie charts, box plots, etc. For two variables, scat-
ter plots are valuable. It is more of a challenge when dealing with three or more
variables.

Glyphs provide an option. A little picture is created for each individual, with char-
acteristics based on the values of the variables. Chernoff’s faces [Chernoff, 1973] may
be the most famous glyphs. The idea is that people intuitively respond to character-
istics of faces, so that many variables can be summarized in a face.

Figure 1.1 exhibits faces for the nine planets. We use the faces routine by H. P. Wolf
in the R package aplpack, Wolf and Bielefeld [2010]. The distance the planet is from
the sun is represented by the height of the face (Pluto has a long face), the length of
the planet’s day by the width of the face (Venus has a wide face), etc. One can then
cluster the planets. Mercury, Earth and Mars look similar, as do Saturn and Jupiter.
These face plots are more likely to be amusing than useful, especially if the number
of individuals is large. A star plot is similar. Each individual is represented by a
q-pointed star, where each point corresponds to a variable, and the distance of the
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Mercury Venus Earth

Mars Jupiter Saturn

Uranus Neptune Pluto

Figure 1.1: Chernoff’s faces for the planets. Each feature represents a variable. For
the these data, Distance = height of face, Day = width of face, Year = shape of face, Diameter
= height of mouth, Temperature = width of mouth, Moons = curve of smile.

point from the center is based on the variable’s value for that individual. See Figure
1.2.

1.3 Scatter plots

Two-dimensional scatter plots can be enhanced by using different symbols for the
observations instead of plain dots. For example, different colors could be used for
different groups of points, or glyphs representing other variables could be plotted.
Figure 1.2 plots the planets with the logarithms of day length and year length as the
axes, where the stars created from the other four variables are the plotted symbols.
Note that the planets pair up in a reasonable way. Mercury and Venus are close, both
in terms of the scatter plot and in the look of their stars. Similarly, Earth and Mars
pair up, as do Jupiter and Saturn, and Uranus and Neptune. See Listing 1.1 for the R
code.

A scatter plot matrix arranges all possible two-way scatter plots in a q × q matrix.
These displays can be enhanced with brushing, in which individual or groups of
individual plots can be selected in one plot, and be simultaneously highlighted in the
other plots.
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Listing 1.1: R code for the star plot of the planets, Figure 1.2. The data are in the
matrix planets. The first statement normalizes the variables to range from 0 to 1. The
ep matrix is used to place the names of the planets. Tweaking is necessary, depending
on the size of the plot.

p <− apply(planets,2,function(z) (z−min(z))/(max(z)−min(z)))
x <− log(planets[,2])
y <− log(planets[,3])
ep <− matrix(c(−.3,.4),c(−.5,.4),c(.5,0),c(.5,0),c(.6,−1),c(−.5,1.4),

c(1,−.6),c(1.3,.4),c(1,−.5))
symbols(x,y,stars=p[,−(2:3)],xlab=’log(day)’,ylab=’log(year)’,inches=.4)
text(x+ep[,1],y+ep[,2],labels=rownames(planets),cex=.5)

0 2 4 6

4
6

8
10

12

Mercury

VenusEarth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

log(day)

lo
g(

ye
ar

)

Figure 1.2: Scatter plot of log(day) versus log(year) for the planets, with plotting
symbols being stars created from the other four variables, distance, diameter, tem-
perature, moons.



1.3. Scatter plots 11

Sepal.Length

ssss
s

s

s
s

s
s

s
ss

s

s sss
s
ss s

s
sss sssss
s ssss
s
s

s
ss

s s
s ss s

s
ss

v
v
v

v

v

v
v

v

v

vv

vv v
v

v

vv
v

v vvv vv
vvv

vvvv vv
v

v
v

v
vvv
vv

v
v vv

v

v
v

g
g

g

gg

g

g

g
g

g
gg

g

g g
gg

gg

g

g

g

g

g
g

g

ggg

gg
g

ggg

g

gg
g

ggg

g

ggg
g g gg

ssss
s
s

s
s
s
s
s
ss

s

ssss
s
sss

s
ssss
ss
ss
sssss
s
s
s
ss
ss
sssss
ss

v
v
v

v

v

v
v

v

v

vv

vv v
v

v

vv
v

v vv vvvv
vv

vvvvv
v

v
v
v

v
vvv

vv

v
vvv
v

v
v

g
g

g

gg

g

g

g
g
g

gg
g

gg
gg

gg

g

g

g

g

g
g
g

gg g

gg
g

ggg

g

ggg

ggg

g

ggg
gggg

ssss
s

s

s
s
s
s
s
ss
s

ssss
s
sss

s
ssssss

ss
sssss

s
s
s
ss
ss

sssss
ss

v
v
v

v

v

v
v

v

v

vv

vv v
v

v

vv
v

v vvvvv
vv v
vvvvv v
v
v
v

v
vvv
vv

v
vvv
v

v
v

g
g

g

g g

g

g

g
g

g
gg
g

g g
gg

gg

g

g

g

g

g
g

g

gg g

g g
g

ggg

g

gg
g

g gg

g

ggg
gg gg

s
sss
s

s
s s

s s

s
s
ss

s
s

s
s

ss
s

ss
ss
s
sssss

s

ss

ss
ss

s
ss

s

s
s
s

s

s

s
s

s vv v

v
vv

v

v
vv

v

v

v

vv vv
v

v
v

v
v
v

vvvvvv
vvv
vv

v
v

v

v

v
vv

v
v

v
v
vv v

v
v

g

g
ggg g

g
g

g

g
g
g

g
g
g

gg

g

g
g

g
g gg

g g
ggg gg

g

ggg
g

g
gg ggg

g
ggg

g
g

g
g Sepal.Width

s
sss
s
s

ss
ss

s
s
ss

s
s
s
s
ss
s
ss
ss
s
sssss
s

ss

ss
ss

s
ss

s

s
s
s

s

s

s
s
s vvv

v
vv
v

v
vv

v

v

v

vv vv
v
v

v

v
v

v
vvvvvv

vvv
v v

v
v
v

v

v
vv

v
v

v
v
vvv

v
v

g

g
ggg g

g
g

g

g
g
g
g

g
g
gg

g

g
g

g
g gg

gg
gg ggg

g

ggg
g

g
ggggg

g
ggg

g
g
g

g
s
sss
s

s
ss

ss

s
s
ss

s
s
s

s
ss

s
ss
ss

s
sssss
s

ss

ss
ss

s
ss

s

s
s

s

s

s

s
s
s vvv

v
vv
v

v
vv

v

v

v

vvvvv
v

v

v
v

v
vvvv vv

vvv
v v

v
v
v

v

v
vv
v

v
v

v
vvv

v
v

g

g
gg gg

g
g
g

g
g
g

g
g

g
gg

g

g
g

g
ggg

gg
gg gg g

g

ggg
g
g

gg g gg
g

gg
g

g
g

g
g

ssss s ss ss s ssss ssss sssss
ssssssss sssss sss ssss sssss ss

vv v
v

vv v

v

v
vv

vv
v

v
vvv v

v
v
v
vvvvv

vv
vvvv

v
v v vvvvv

v
v

v
vvv v

v
v

g
g

ggg
g

g

gg g
gg ggg gg

gg

g
g

g

g

g
g g

gg
g gg

g
ggg

ggg
g

gggg
ggggggg

ssss s sssss ssss s sss sss ss
sss sssss s ssss sss sss s s ss ss ss

vvvv
vv v

v

v
vv

vv
v
v

vvvv
v

v
v

v vvvvvv
vvv v
v

v vvv vvv
v

v
v

v vvv

v
v

g
g

ggg
g

g

gg g
gg gg g gg

gg

g
g

g

g

g
gg

gg
ggg g
ggg g gg

g
gggg
gggg g gg

Petal.Length

sssssssssssssssssssssss
ssssssssssssssssssss sssssss

vvvv
vv v

v

v
vv
vv

v
v
vvv v

v
v

v
vvvvv

vv
vvvv

v
vvvvvvv

v
v

v
vvvv

v
v

g
g

gg g
g

g

gg g
gggg ggg

gg

g
g

g

g

g
gg

gg
gg ggggg

ggg
g

g ggg
ggggg gg

ssss s ss ss s ssss ssss sssss
s

sssssss s
ssss sss ssss

sssss ss

vv vv vv
v

v
vv

v
v
v
vv vv

v
v

v

v
vvvvvv

vv
vvvv

vv v vvvvv vvv
vvv vv v

g

g g
g
g g

g gg

g
gg gg

g g
g

gg

g

g
g gg

g
ggg

g
g
g gg

gg

gg

gg
g

gg
g

ggg
gg
g

g

ssss s sssss ssss s sss sss ss
s
ss sssss s

ssss sss sss s
s ss ss ss

vvvv vv
v

v
vv

v
v

v
vvvv

v
v

v

v
vv
vvvv

vv
vvv v
v v vvv vvv vvv
v vvvv v

g

g g
g
gg

g gg

g
gg gg

g g
g

gg

g

g
ggg

g
ggg

g
g

g gg

gg

g g

gg
g
gg

g
ggg

g g
g

g

sssssssssssssss
ssssssss
s
sssssssssssssssssss

sssssss

vvvv vv
v

v
vv

v
v
v

vv vv
v
v

v

v
v v

vvvv
vv

vvvv
vvvvvvvvvvv

vvvvv v

g

g g
g
g g

g gg

g
gggg
gg
g

gg

g

g
g gg

g
ggg

g
g
gg

g

gg

gg

gg
g
gg

g
ggg

gg
g

g

Petal.Width

Figure 1.3: A scatter plot matrix for the Fisher/Anderson iris data. In each plot, “s”
indicates setosa plants, “v” indicates versicolor, and “r” indicates virginica.

1.3.1 Example: Fisher-Anderson iris data

The most famous data set in multivariate analysis is the iris data analyzed by Fisher
[1936] based on data collected by Anderson [1935]. See also Anderson [1936]. There
are fifty specimens each of three species of iris: setosa, versicolor, and virginica. There
are four variables measured on each plant: sepal length, sepal width, petal length,
and pedal width. Thus n = 150 and q = 4. Figure 1.3 contains the corresponding
scatter plot matrix, with species indicated by letter. We used the R function pairs.
Note that the three species separate fairly well, with setosa especially different from
the other two.

As a preview of classification (Chapter 11), Figure 1.4 uses faces to exhibit five
observations from each species, and five random observations without their species
label. Can you guess which species each is? See page 27. The setosas are not too
difficult, since they have small faces, but distinguishing the other two can be a chal-
lenge.
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set set set set set

vers vers vers vers vers

virg virg virg virg virg

? ? ? ? ?

Figure 1.4: Five specimens from each iris species, plus five from unspecified species.
Here, “set” indicates setosa plants, “vers” indicates versicolor, and “virg” indicates
virginica.

1.4 Sample means, variances, and covariances

For univariate values x1, . . . , xn, the sample mean is

x =
1

n

n

∑
i=1

xi, (1.3)

and the sample variance is

s2
x = sxx =

1

n

n

∑
i=1

(xi − x)2. (1.4)

Note the two notations: The s2
x is most common when dealing with individual vari-

ables, but the sxx transfers better to multivariate data. Often one is tempted to divide
by n − 1 instead of n. That’s fine, too. With a second set of values z1, . . . , zn, we have
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the sample covariance between the xi’s and zi’s to be

sxz =
1

n

n

∑
i=1

(xi − x)(zi − z). (1.5)

So the covariance between the xi’s and themselves is the variance, which is to say that

s2
x = sxx. The sample correlation coefficient is a normalization of the covariance that

ranges between −1 and +1, defined by

rxz =
sxz

sxsz
(1.6)

provided both variances are positive. (See Corollary 8.1.) In a scatter plot of x versus
z, the correlation coefficient is +1 if all the points lie on a line with positive slope,
and −1 if they all lie on a line with negative slope.

For a data matrix Y (1.1) with q variables, there are q means:

yj =
1

n

n

∑
i=1

yij. (1.7)

Placing them in a row vector, we have

y = (y1, . . . , yq). (1.8)

The n × 1 one vector is 1n = (1, 1, . . . , 1)′, the vector of all 1’s. Then the mean vector
(1.8) can be written

y =
1

n
1′nY. (1.9)

To find the variances and covariances, we first have to subtract the means from the
individual observations in Y: change yij to yij − yj for each i, j. That can be achieved

by subtracting the n × q matrix 1ny from Y to get the matrix of deviations. Using
(1.9), we can write

Y − 1ny = Y − 1n
1

n
1′nY = (In −

1

n
1n1′n)Y ≡ HnY. (1.10)

There are two important matrices in that formula: The n × n identity matrix In,

In =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 , (1.11)

and the n × n centering matrix Hn,

Hn = In − 1

n
1n1′n =




1 − 1
n − 1

n . . . − 1
n

− 1
n 1 − 1

n . . . − 1
n

...
...

. . .
...

− 1
n − 1

n . . . 1 − 1
n


 . (1.12)
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The identity matrix leaves any vector or matrix alone, so if A is n × m, then A =
InA = AIm, and the centering matrix subtracts the column mean from each element
in HnA. Similarly, AHm results in the row mean being subtracted from each element.

For an n × 1 vector x with mean x, and n × 1 vector z with mean z, we can write

n

∑
i=1

(xi − x)2 = (x − x1n)
′(x − x1n) (1.13)

and
n

∑
i=1

(xi − x)(zi − z) = (x − x1n)
′(z − z1n). (1.14)

Thus taking the deviations matrix in (1.10), (HnY)′(HnY) contains all the ∑(yij −
yj)(yik − yk)’s. We will call that matrix the sum of squares and cross-products matrix.

Notice that
(HnY)′(HnY) = Y′H′

nHnY = Y′HnY. (1.15)

What happened to the Hn’s? First, Hn is clearly symmetric, so that H′
n = Hn. Then

notice that HnHn = Hn. Such a matrix is called idempotent, that is, a square matrix

A is idempotent if AA = A. (1.16)

Dividing the sum of squares and cross-products matrix by n gives the sample
variance-covariance matrix, or more simply sample covariance matrix:

S =
1

n
Y′HnY =




s11 s12 . . . s1q

s21 s22 . . . s2q

...
...

. . .
...

sq1 sq2 . . . sqq


 , (1.17)

where sjj is the sample variance of the jth variable (column), and sjk is the sample

covariance between the jth and kth variables. (When doing inference later, we may
divide by n − df instead of n for some “degrees-of-freedom” integer df.)

1.5 Marginals and linear combinations

A natural first stab at looking at data with several variables is to look at the variables
one at a time, so with q variables, one would first make q histograms, or box plots, or
whatever suits one’s fancy. Such techniques are based on marginals, that is, based on
subsets of the variable rather than all variables at once as in glyphs. One-dimensional
marginals are the individual variables, two-dimensional marginals are the pairs of
variables, three-dimensional marginals are the sets of three variables, etc.

Consider one-dimensional marginals. It is easy to construct the histograms, say.
But why be limited to the q variables? Functions of the variables can also be his-
togrammed, e.g., weight/height. The number of possible functions one could imag-
ine is vast. One convenient class is the set of linear transformations, that is, for some
constants b1, . . . , bq, a new variable is W = b1Y1 + · · ·+ bqYq, so the transformed data
consist of w1, . . . , wn, where

wi = b1yi1 + · · ·+ bqyiq. (1.18)
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Placing the coefficients into a column vector b = (b1, . . . , bq)′, we can write

W ≡




w1
w2
...

wn


 = Yb, (1.19)

transforming the original data matrix to another one, albeit with only one variable.
Now there is a histogram for each vector b. A one-dimensional grand tour runs

through the vectors b, displaying the histogram for Yb as it goes. (See Asimov [1985]
and Buja and Asimov [1986] for general grand tour methodology.) Actually, one does
not need all b, e.g., the vectors b = (1, 2, 5)′ and b = (2, 4, 10)′ would give the same
histogram. Just the scale of the horizontal axis on the histograms would be different.
One simplification is to look at only the b’s with norm 1. That is, the norm of a vector
x = (x1, . . . , xq)′ is

‖x‖ =
√

x2
1 + · · ·+ x2

q =
√

x′x, (1.20)

so one would run through the b’s with ‖b‖ = 1. Note that the one-dimensional
marginals are special cases: take

b′ = (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , or (0, 0, . . . , 1). (1.21)

Scatter plots of two linear combinations are more common. That is, there are two
sets of coefficients (b1j’s and b2j’s), and two resulting variables:

wi1 = b11yi1 + b21yi2 + · · ·+ bq1yiq, and

wi2 = b12yi1 + b22yi2 + · · ·+ bq2yiq. (1.22)

In general, the data matrix generated from p linear combinations can be written

W = YB, (1.23)

where W is n × p, and B is q × p with column k containing the coefficients for the kth

linear combination. As for one linear combination, the coefficient vectors are taken to
have norm 1, i.e., ‖(b1k, . . . , bqk)‖ = 1, which is equivalent to having all the diagonals

of B′B being 1.
Another common restriction is to have the linear combination vectors be orthogo-

nal, where two column vectors b and c are orthogonal if b′c = 0. Geometrically, or-
thogonality means the vectors are perpendicular to each other. One benefit of restrict-
ing to orthogonal linear combinations is that one avoids scatter plots that are highly
correlated but not meaningfully so, e.g., one might have w1 be Height + Weight, and
w2 be .99 × Height + 1.01 × Weight. Having those two highly correlated does not tell
us anything about the data set. If the columns of B are orthogonal to each other, as
well as having norm 1, then

B′B = Ip. (1.24)

A set of norm 1 vectors that are mutually orthogonal are said to be orthonormal .
Return to q = 2 orthonormal linear combinations. A two-dimensional grand tour

plots the two variables as the q × 2 matrix B runs through all the matrices with a pair
of orthonormal columns.
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1.5.1 Rotations

If the B in (1.24) is q × q, i.e., there are as many orthonormal linear combinations as
variables, then B is an orthogonal matrix

.

Definition 1.1. A q × q matrix G is orthogonal if

G′G = GG′ = Iq. (1.25)

Note that the definition says that the columns are orthonormal, and the rows are
orthonormal. In fact, the rows are orthonormal if and only of the columns are (if
the matrix is square), hence the middle equality in (1.25) is not strictly needed in the
definition.

Think of the data matrix Y being the set of n points in q-dimensional space. For
orthogonal matrix G, what does the set of points W = YG look like? It looks ex-
actly like Y, but rotated or flipped. Think of a pinwheel turning, or a chicken on a
rotisserie, or the earth spinning around its axis or rotating about the sun. Figure 1.5
illustrates a simple rotation of two variables. In particular, the norms of the points in
Y are the same as in W, so each point remains the same distance from 0.

Rotating point clouds for three variables work by first multiplying the n × 3 data
matrix by a 3 × 3 orthogonal matrix, then making a scatter plot of the first two re-
sulting variables. By running through the orthogonal matrices quickly, one gets the
illusion of three dimensions. See the discussion immediately above Exercise 1.9.21
for some suggestions on software for real-time rotations.

1.6 Principal components

The grand tours and rotating point clouds described in the last two subsections do
not have mathematical objectives, that is, one just looks at them to see if anything
interesting pops up. In projection pursuit [Huber, 1985], one looks for a few (often
just one or two) (orthonormal) linear combinations that maximize a given objective
function. For example, if looking at just one linear combination, one may wish to find
the one that maximizes the variance of the data, or the skewness or kurtosis, or one
whose histogram is most bimodal. With two linear combinations, one may be after
clusters of points, high correlation, curvature, etc.

Principal components are the orthonormal combinations that maximize the vari-
ance. They predate the term projection pursuit by decades [Pearson, 1901], and are the
most commonly used. The idea behind them is that variation is information, so if
one has several variables, one wishes the linear combinations that capture as much
of the variation in the data as possible. You have to decide in particular situations
whether variation is the important criterion. To find a column vector b to maximize
the sample variance of W = Yb, we could take b infinitely large, which yields infinite
variance. To keep the variance meaningful, we restrict to vectors b of unit norm.

For q variables, there are q principal components: The first has the maximal vari-
ance any one linear combination (with norm 1) can have, the second has the maximal
variance among linear combinations orthogonal to the first, etc. The technical defi-
nition for a data matrix is below. First, we note that for a given q × p matrix B, the
mean and variance of the elements in the linear transformation W = YB are easily
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obtained from the mean and covariance matrix of Y using (1.8) and (1.15):

w =
1

n
1′nW =

1

n
1′nYB = yB, (1.26)

by (1.9), and

SW =
1

n
W′HnW =

1

n
B′Y′HnYB = B′SB, (1.27)

where S is the covariance matrix of Y in (1.17). In particular, for a column vector b,
the sample variance of Yb is b′Sb. Thus the principal components aim to maximize
g′Sg for g’s of unit length.

Definition 1.2. Suppose S is the sample covariance matrix for the n × q data matrix Y. Let
g1, . . . , gq be an orthonormal set of q × 1 vectors such that

g1 is any g that maximizes g′Sg over ‖g‖ = 1;

g2 is any g that maximizes g′Sg over ‖g‖ = 1, g′g1 = 0;

g3 is any g that maximizes g′Sg over ‖g‖ = 1, g′g1 = g′g2 = 0;

...

gq is any g that maximizes g′Sg over ‖g‖ = 1, g′g1 = · · · = g′gq−1 = 0. (1.28)

Then Ygi is the ith sample principal component, gi is its loading vector, and li ≡ g′
iSgi

is its sample variance.

Because the function g′Sg is continuous in g, and the maximizations are over
compact sets, these principal components always exist. They may not be unique,
although for sample covariance matrices, if n ≥ q, they almost always are unique, up
to sign. See Section 13.1 for further discussion.

By the construction in (1.28), we have that the sample variances of the principal
components are ordered as

l1 ≥ l2 ≥ · · · ≥ lq. (1.29)

What is not as obvious, but quite important, is that the principal components are
uncorrelated, as in the next lemma, proved in Section 1.8.

Lemma 1.1. The S and g1, . . . , gq in Definition 1.2 satisfy

g′
iSgj = 0 for i 6= j. (1.30)

Now G ≡ (g1, . . . , gq) is an orthogonal matrix, and the matrix of principal com-
ponents is

W = YG. (1.31)

Equations (1.29) and (1.30) imply that the sample covariance matrix, say L, of W is
diagonal, with the li’s on the diagonal. Hence by (1.27),

SW = G′SG = L =




l1 0 · · · 0
0 l2 · · · 0
...

...
. . .

...
0 0 · · · lq


 ⇒ S = GLG′. (1.32)

Thus we have the following.
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Figure 1.5: The sepal length and sepal width for the setosa iris data. The first plot is
the raw data, centered. The second shows the two principal components.

Theorem 1.1 (The spectral decomposition theorem for symmetric matrices). If S is a
symmetric q × q matrix, then there exists a q × q orthogonal (1.25) matrix G and a q × q
diagonal matrix L with diagonals l1 ≥ l2 ≥ · · · ≥ lq such that

S = GLG′. (1.33)

Although we went through the derivation with S being a covariance matrix, all
we really needed for this theorem was that S is symmetric. The gi’s and li’s have
mathematical names, too: Eigenvectors and eigenvalues.

Definition 1.3 (Eigenvalues and eigenvectors). Suppose A is a q × q matrix. Then λ is
an eigenvalue of A if there exists a non-zero q × 1 vector u such that Au = λu. The vector
u is the corresponding eigenvector. Similarly, u 6= 0 is an eigenvector if there exists an
eigenvalue to which it corresponds.

A little linear algebra shows that indeed, each gi is an eigenvector of S correspond-
ing to li. Hence the following:

Symbol Principal components Spectral decomposition
li Variance Eigenvalue
gi Loadings Eigenvector

(1.34)

Figure 1.5 plots the principal components for the q = 2 variables sepal length and
sepal width for the fifty iris observations of the species setosa. The data has been
centered, so that the means are zero. The variances of the two original variables are
0.124 and 0.144, respectively. The first graph shows the two variables are highly cor-
related, with most of the points lining up near the 45◦ line. The principal component
loading matrix G rotates the points approximately 45◦ clockwise as in the second
graph, so that the data are now most spread out along the horizontal axis (variance is
0.234), and least along the vertical (variance is 0.034). The two principal components
are also, as it appears, uncorrelated.
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Best K components

In the process above, we found the principal components one by one. It may be
that we would like to find the rotation for which the first K variables, say, have the
maximal sum of variances. That is, we wish to find the orthonormal set of q × 1
vectors b1, . . . , bK to maximize

b′
1Sb1 + · · ·+ b′

KSbK. (1.35)

Fortunately, the answer is the same, i.e., take bi = gi for each i, the principal compo-
nents. See Proposition 1.1 in Section 1.8. Section 13.1 explores principal components
further.

1.6.1 Biplots

When plotting observations using the first few principal component variables, the
relationship between the original variables and principal components is often lost.
An easy remedy is to rotate and plot the original axes as well. Imagine in the original
data space, in addition to the observed points, one plots arrows of length λ along the
axes. That is, the arrows are the line segments

ai = {(0, . . . , 0, c, 0, . . . , 0)′ | 0 < c < λ} (the c is in the ith slot), (1.36)

where an arrowhead is added at the non-origin end of the segment. If Y is the matrix
of observations, and G1 the matrix containing the first p loading vectors, then

X̂ = YG1. (1.37)

We also apply the transformation to the arrows:

Â = (a1, . . . , aq)G1. (1.38)

The plot consisting of the points X̂ and the arrows Â is then called the biplot. See

Gabriel [1981]. The points of the arrows in Â are just

λIqG1 = λG1, (1.39)

so that in practice all we need to do is for each axis, draw an arrow pointing from

the origin to λ× (the ith row of G1). The value of λ is chosen by trial-and-error, so
that the arrows are amidst the observations. Notice that the components of these
arrows are proportional to the loadings, so that the length of the arrows represents
the weight of the corresponding variables on the principal components.

1.6.2 Example: Sports data

Louis Roussos asked n = 130 people to rank seven sports, assigning #1 to the sport
they most wish to participate in, and #7 to the one they least wish to participate in.
The sports are baseball, football, basketball, tennis, cycling, swimming and jogging.
Here are a few of the observations:



20 Chapter 1. Multivariate Data

Obs i BaseB FootB BsktB Ten Cyc Swim Jog
1 1 3 7 2 4 5 6
2 1 3 2 5 4 7 6
3 1 3 2 5 4 7 6
...

...
...

...
...

...
...

...
129 5 7 6 4 1 3 2
130 2 1 6 7 3 5 4

(1.40)

E.g., the first person likes baseball and tennis, but not basketball or jogging (too much
running?).

We find the principal components. The data is in the matrix sportsranks. We find it
easier to interpret the plot if we reverse the ranks, so that 7 is best and 1 is worst, then
center the variables. The function eigen calculates the eigenvectors and eigenvalues of
its argument, returning the results in the components vectors and values, respectively:

y <− 8−sportsranks
y <− scale(y,scale=F) # Centers the columns
eg <− eigen(var(y))

The function prcomp can also be used. The eigenvalues (variances) are

j 1 2 3 4 5 6 7
lj 10.32 4.28 3.98 3.3 2.74 2.25 0

(1.41)

The first eigenvalue is 10.32, quite a bit larger than the second. The second through
sixth are fairly equal, so it may be reasonable to look at just the first component.
(The seventh eigenvalue is 0, but that follows because the rank vectors all sum to
1 + · · ·+ 7 = 28, hence exist in a six-dimensional space.)

We create the biplot using the first two dimensions. We first plot the people:

ev <− eg$vectors
w <− y%∗%ev # The principal components
r <− range(w)
plot(w[,1:2],xlim=r,ylim=r)

The biplot adds in the original axes. Thus we want to plot the seven (q = 7) points as
in (1.39), where G1 contains the first two eigenvectors. Plotting the arrows and labels:

arrows(0,0,5∗ev[,1],5∗ev[,2])
text(7∗ev[,1:2],labels=colnames(y))

The constants “5” (which is the λ) and “7” were found by trial and error so that the
graph, Figure 1.6, looks good. We see two main clusters. The left-hand cluster of
people is associated with the team sports’ arrows (baseball, football and basketball),
and the right-hand cluster is associated with the individual sports’ arrows (cycling,
swimming, jogging). Tennis is a bit on its own, pointing south.
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Figure 1.6: Biplot of the sports data, using the first two principal components.

1.7 Other projections to pursue

Principal components can be very useful, but you do have to be careful. For one, they
depend crucially on the scaling of your variables. For example, suppose the data set
has two variables, height and weight, measured on a number of adults. The variance

of height, in inches, is about 9, and the variance of weight, in pounds, is 900 (= 302).
One would expect the first principal component to be close to the weight variable,
because that is where the variation is. On the other hand, if height were measured in
millimeters, and weight in tons, the variances would be more like 6000 (for height)
and 0.0002 (for weight), so the first principal component would be essentially the
height variable. In general, if the variables are not measured in the same units, it can
be problematic to decide what units to use for the variables. See Section 13.1.1. One
common approach is to divide each variable by its standard deviation, so that the
resulting variables all have variance 1.

Another caution is that the linear combination with largest variance is not nec-
essarily the most interesting, e.g., you may want one which is maximally correlated
with another variable, or which distinguishes two populations best, or which shows
the most clustering.

Popular objective functions to maximize, other than variance, are skewness, kur-
tosis and negative entropy. The idea is to find projections that are not normal (in the
sense of the normal distribution). The hope is that these will show clustering or some
other interesting feature.

Skewness measure a certain lack of symmetry, where one tail is longer than the
other. For a sample x1, . . . , xn , it is measured by the normalized sample third central
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(meaning subtract the mean) moment:

Skewness =
∑

n
i=1(xi − x)3/n

(∑n
i=1(xi − x)2/n)3/2

. (1.42)

Positive values indicate a longer tail to the right, and negative to the left. Kurtosis is
the normalized sample fourth central moment:

Kurtosis =
∑

n
i=1(xi − x)4/n

(∑n
i=1(xi − x)2/n)2

− 3. (1.43)

The “−3” is there so that exactly normal data will have kurtosis 0. A variable with
low kurtosis is more “boxy” than the normal. One with high kurtosis tends to have
thick tails and a pointy middle. (A variable with low kurtosis is platykurtic, and one
with high kurtosis is leptokurtic, from the Greek: kyrtos = curved, platys = flat, like a
platypus, and lepto = thin.) Bimodal distributions often have low kurtosis.

Entropy

(You may wish to look through Section 2.1 before reading this section.) The entropy
of a random variable Y with pdf f (y) is

Entropy( f ) = −E f [log( f (Y))]. (1.44)

Entropy is supposed to measure lack of structure, so that the larger the entropy, the
more diffuse the distribution is. For the normal, we have that

Entropy(N(µ, σ2)) = E f

[
log(

√
2πσ2) +

(Y − µ)2

2σ2

]
=

1

2
(1 + log(2πσ2)). (1.45)

Note that it does not depend on the mean µ, and that it increases without bound as σ2

increases. Thus maximizing entropy unrestricted is not an interesting task. However,
one can imagine maximizing entropy for a given mean and variance, which leads to
the next lemma, to be proved in Section 1.8.

Lemma 1.2. The N(µ, σ2) uniquely maximizes the entropy among all pdf’s with mean µ and

variance σ2.

Thus a measure of nonnormality of g is its entropy subtracted from that of the
normal with the same variance. Since there is a negative sign in front of the entropy
of g, this difference is called negentropy defined for any g as

Negent(g) =
1

2
(1 + log(2πσ2))− Entropy(g), where σ2 = Varg [Y]. (1.46)

This value is known as the Kullback-Leibler distance, or discrimination information,
from g to the normal density. See Kullback and Leibler [1951]. With data, one does
not know the pdf g, so one must estimate the negentropy.
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Figure 1.7: Projection pursuit for the iris data. The first plot is based on maximizing
the variances of the projections, i.e., principal components. The second plot maxi-
mizes estimated entropies.

1.7.1 Example: Iris data

Consider the first three variables of the iris data (sepal length, sepal width, and petal
length), normalized so that each variable has mean zero and variance one. We find
the first two principal components, which maximize the variances, and the first two
components that maximize the estimated entropies, defined as in Definition 1.28,
but with estimated entropy of Yg substituted for the variance g′Sg. The table (1.47)
contains the loadings for the variables. Note that the two objective functions do
produce different projections. The first principal component weights equally on the
two length variables, while the first entropy variable is essentially petal length.

Variance Entropy
g1 g2 g∗

1 g∗
2

Sepal length 0.63 0.43 0.08 0.74
Sepal width −0.36 0.90 0.00 −0.68
Petal length 0.69 0.08 −1.00 0.06

(1.47)

Figure 1.7 graphs the results. The plots both show separation between setosa and
the other two species, but the principal components plot has the observations more
spread out, while the entropy plot shows the two groups much tighter.

The matrix iris has the iris data, with the first four columns containing the mea-
surements, and the fifth specifying the species. The observations are listed with the
fifty setosas first, then the fifty versicolors, then the fifty virginicas. To find the prin-
cipal components for the first three variables, we use the following:

y <− scale(as.matrix(iris[,1:3]))
g <− eigen(var(y))$vectors
pc <− y%∗%g
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The first statement centers and scales the variables. The plot of the first two columns
of pc is the first plot in Figure 1.7. The procedure we used for entropy is negent3D in
Listing A.3, explained in Appendix A.1. The code is

gstar <− negent3D(y,nstart=10)$vectors
ent <−y%∗%gstar

To create plots like the ones in Figure 1.7, use

par(mfrow=c(1,2))
sp <− rep(c(’s’,’v’,’g’),c(50,50,50))
plot(pc[,1:2],pch=sp) # pch specifies the characters to plot.
plot(ent[,1:2],pch=sp)

1.8 Proofs

Proof of the principal components result, Lemma 1.1

The idea here was taken from Davis and Uhl [1999]. Consider the g1, . . . , gq as defined
in (1.28). Take i < j, and for angle θ, let

h(θ) = g(θ)′Sg(θ) where g(θ) = cos(θ)gi + sin(θ)gj. (1.48)

Because the gi’s are orthogonal,

‖g(θ)‖ = 1 and g(θ)′g1 = · · · = g(θ)′gi−1 = 0. (1.49)

According to the ith stage in (1.28), h(θ) is maximized when g(θ) = gi, i.e., when
θ = 0. The function is differentiable, hence its derivative must be zero at θ = 0. To
verify (1.30), differentiate:

0 =
d

dθ
h(θ)|θ=0

=
d

dθ
(cos2(θ)g′

iSgi + 2 sin(θ) cos(θ)g′
iSgj + sin2(θ)g′

jSgj)|θ=0

= 2g′
iSgj. (1.50)

✷

Best K components

We next consider finding the set b1, . . . , bK orthonormal vectors to maximize the sum

of variances, ∑
K
i=1 b′

iSbi, as in (1.35). It is convenient here to have the next definition.

Definition 1.4 (Trace). The trace of an m × m matrix A is the sum of its diagonals,
trace(A) = ∑

m
i=1 aii.

Thus if we let B = (b1, . . . , bK), we have that

K

∑
i=1

b′
iSbi = trace(B′SB). (1.51)
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Proposition 1.1. Best K components. Suppose S is a q × q covariance matrix, and define
BK to be the set of q × K matrices with orthonormal columns, 1 ≤ K ≤ q. Then

max
B∈BK

trace(B′SB) = l1 + · · ·+ lK, (1.52)

which is achieved by taking B = (g1, . . . , gK), where gi is the ith principal component loading
vector for S, and li is the corresponding variance.

The proposition follows directly from the next lemma, with S as in (1.33).

Lemma 1.3. Suppose S and BK are as in Proposition 1.1, and S = GLG′ is its spectral
decomposition. Then (1.52) holds.

Proof. Set A = G′B, so that A is also in BK. Then B = GA, and

trace(B′SB) = trace(A′G′SGA)

= trace(A′LA)

=
q

∑
i=1

[(
K

∑
j=1

a2
ij)li]

=
q

∑
i=1

cili, (1.53)

where the aij’s are the elements of A, and ci = ∑
K
j=1 a2

ij. Because the columns of A

have norm one, and the rows of A have norms less than or equal to one,

q

∑
i=1

ci =
K

∑
j=1

[
q

∑
i=1

a2
ij] = K and ci ≤ 1. (1.54)

To maximize (1.53) under those constraints on the ci’s, we try to make the earlier
ci’s as large as possible, which means that c1 = · · · = cK = 1 and cK+1 = · · · =
cq = 0. The resulting value is then l1 + · · · + lK. Note that taking A with aii = 1,
i = 1, . . . , K, and 0 elsewhere (so that A consists of the first K columns of Iq), achieves
that maximum. With that A, we have that B = (g1, . . . , gK).
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Proof of the entropy result, Lemma 1.2

Let f be the N(µ, σ2) density, and g be any other pdf with mean µ and variance σ2.
Then

Entropy( f )− Entropy(g) =−
∫

f (y) log( f (y))dy +
∫

g(y) log(g(y))dy

=
∫

g(y) log(g(y))dy −
∫

g(y) log( f (y))dy

+
∫

g(y) log( f (y))dy −
∫

f (y) log( f (y))dy

=−
∫

g(y) log( f (y)/g(y))dy

+ Eg

[
log(

√
2πσ2) +

(Y − µ)2

2σ2

]

− E f

[
log(

√
2πσ2) +

(Y − µ)2

2σ2

]
(1.55)

=Eg[− log( f (Y)/g(Y))]. (1.56)

The last two terms in (1.55) are equal, since Y has the same mean and variance under
f and g.

At this point we need an important inequality about convexity, to whit, what
follows is a definition and lemma.

Definition 1.5 (Convexity). The real-valued function h, defined on an interval I ⊂ R, is
convex if for each x0 ∈ I, there exists an a0 and b0 such that

h(x0) = a0 + b0x0 and h(x) ≥ a0 + b0x for x 6= x0. (1.57)

The function is strictly convex if the inequality is strict in (1.57).

The line a0 + b0x is the tangent line to h at x0. Convex functions have tangent
lines that are below the curve, so that convex functions are “bowl-shaped.” The next
lemma is proven in Exercise 1.9.13.

Lemma 1.4 (Jensen’s inequality). Suppose W is a random variable with finite expected
value. If h(w) is a convex function, then

E[h(W)] ≥ h(E[W]), (1.58)

where the left-hand expectation may be infinite. Furthermore, the inequality is strict if h(w)
is strictly convex and W is not constant, that is, P[W = c] < 1 for any c.

One way to remember the direction of the inequality is to imagine h(w) = w2,

in which case (1.58) states that E[W2] > E[W]2, which we already know because

Var[X] = E[W2]− E[W]2 ≥ 0.

Now back to (1.56). The function h(w) = − log(w) is strictly convex, and if g is
not equivalent to f , W = f (Y)/g(Y) is not constant. Jensen’s inequality thus shows
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that

Eg[− log( f (Y)/g(Y))] > − log (E[ f (Y)/g(Y)])

= − log

(∫
( f (y)/g(y))g(y)dy

)

= − log

(∫
f (y)dy

)
= − log(1) = 0. (1.59)

Putting (1.56) and (1.59) together yields

Entropy(N(0, σ2))− Entropy(g) > 0, (1.60)

which completes the proof of Lemma 1.2. ✷

Answers: The question marks in Figure 1.4 are, respectively, virginica, setosa,
virginica, versicolor, and setosa.

1.9 Exercises

Exercise 1.9.1. Let Hn be the centering matrix in (1.12). (a) What is Hn1n? (b) Suppose
x is an n × 1 vector whose elements sum to zero. What is Hnx? (c) Show that Hn is
idempotent (1.16).

Exercise 1.9.2. Define the matrix Jn = (1/n)1n1′n, so that Hn = In − Jn. (a) What
does Jn do to a vector? (That is, what is Jna?) (b) Show that Jn is idempotent. (c) Find
the spectral decomposition (1.33) for Jn explicitly when n = 3. [Hint: In G, the first
column (eigenvector) is proportional to 13. The remaining two eigenvectors can be
any other vectors such that the three eigenvectors are orthonormal. Once you have a
G, you can find the L.] (d) Find the spectral decomposition for H3. [Hint: Use the
same eigenvectors as for J3, but in a different order.] (e) What do you notice about
the eigenvalues for these two matrices?

Exercise 1.9.3. A covariance matrix has intraclass correlation structure if all the vari-
ances are equal, and all the covariances are equal. So for n = 3, it would look like

A =




a b b
b a b
b b a


 . (1.61)

Find the spectral decomposition for this type of matrix. [Hint: Use the G in Exercise
1.9.2, and look at G′AG. You may have to reorder the eigenvectors depending on the
sign of b.]

Exercise 1.9.4. Suppose Y is an n × q data matrix, and W = YG, where G is a q × q
orthogonal matrix. Let y1, . . . , yn be the rows of Y, and similarly wi’s be the rows of
W. (a) Show that the corresponding points have the same length: ‖yi‖ = ‖wi‖. (b)
Show that the distances between the points have not changed: ‖yi − yj‖ = ‖wi − wj‖,
for any i, j.
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Exercise 1.9.5. Suppose that the columns of G constitute the principal component
loading vectors for the sample covariance matrix S. Show that g′

iSgi = li and g′
iSgj =

0 for i 6= j, as in (1.30), implies (1.32): G′SG = L.

Exercise 1.9.6. Verify (1.49) and (1.50).

Exercise 1.9.7. In (1.53), show that trace(A′LA) = ∑
q
i=1[(∑

K
j=1 a2

ij)li].

Exercise 1.9.8. This exercise is to show that the eigenvalue matrix of a covariance
matrix S is unique. Suppose S has two spectral decompositions, S = GLG′ = HMH′,
where G and H are orthogonal matrices, and L and M are diagonal matrices with
nonincreasing diagonal elements. Use Lemma 1.3 on both decompositions of S to
show that for each K = 1, . . . , q, l1 + · · ·+ lK = m1 + · · ·+ mK. Thus L = K.

Exercise 1.9.9. Suppose Y is a data matrix, and Z = YF for some orthogonal matrix
F, so that Z is a rotated version of Y. Show that the variances of the principal com-
ponents are the same for Y and Z. (This result should make intuitive sense.) [Hint:
Find the spectral decomposition of the covariance of Z from that of Y, then note that
these covariance matrices have the same eigenvalues.]

Exercise 1.9.10. Show that in the spectral decomposition (1.33), each li is an eigen-
value, with corresponding eigenvector gi, i.e., Sgi = ligi.

Exercise 1.9.11. Suppose λ is an eigenvalue of the covariance matrix S. Show that
λ must equal one of the li’s in the spectral decomposition of S. [Hint: Let u be
an eigenvector corresponding to λ. Show that λ is also an eigenvalue of L, with
corresponding eigenvector v = G′u, so that livi = λvi for each i. Why does that fact
lead to the desired result?]

Exercise 1.9.12. Verify the expression for
∫

g(y) log( f (y))dy in (1.55).

Exercise 1.9.13. Consider the setup in Jensen’s inequality, Lemma 1.4. (a) Show that
if h is convex, E[h(W)] ≥ h(E[W]). [Hint: Set x0 = E[W] in Definition 1.5.] (b)
Suppose h is strictly convex. Give an example of a random variable W for which
E[h(W)] = h(E[W]). (c) Show that if h is strictly convex and W is not constant, that
E[h(W)] > E[W].

Exercise 1.9.14 (Spam). In the Hewlett-Packard spam data, a set of n = 4601 emails
were classified according to whether they were spam, where “0” means not spam, “1”
means spam. Fifty-seven explanatory variables based on the content of the emails
were recorded, including various word and symbol frequencies. The emails were
sent to George Forman (not the boxer) at Hewlett-Packard labs, hence emails with
the words “George” or “hp” would likely indicate non-spam, while “credit” or “!”
would suggest spam. The data were collected by Hopkins et al. [1999], and are in the
data matrix Spam. ( They are also in the R data frame spam from the ElemStatLearn
package [Halvorsen, 2009], as well as at the UCI Machine Learning Repository [Frank
and Asuncion, 2010].)

Based on an email’s content, is it possible to accurately guess whether it is spam
or not? Here we use Chernoff’s faces. Look at the faces of some emails known to
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be spam and some known to be non-spam (the “training data”). Then look at some
randomly chosen faces (the “test data”). E.g., to have twenty observations known
to be spam, twenty known to be non-spam, and twenty test observations, use the
following R code:

x0 <− Spam[Spam[,’spam’]==0,] # The non−spam
x1 <− Spam[Spam[,’spam’]==1,] # The spam
train0 <− x0[1:20,]
train1 <− x1[1:20,]
test <− rbind(x0[−(1:20),],x1[−(1:20),])[sample(1:4561,20),]

Based on inspecting the training data, try to classify the test data. How accurate are
your guesses? The faces program uses only the first fifteen variables of the input
matrix, so you should try different sets of variables. For example, for each variable
find the value of the t-statistic for testing equality of the spam and email groups, then
choose the variables with the largest absolute t’s.

Exercise 1.9.15 (Spam). Continue with the spam data from Exercise 1.9.14. (a) Plot the
variances of the explanatory variables (the first 57 variables) versus the index (i.e., the
x-axis has (1, 2, . . . , 57), and the y-axis has the corresponding variances.) You might
not see much, so repeat the plot, but taking logs of the variances. What do you see?
Which three variables have the largest variances? (b) Find the principal components
using just the explanatory variables. Plot the eigenvalues versus the index. Plot the
log of the eigenvalues versus the index. What do you see? (c) Look at the loadings for
the first three principal components. (E.g., if spamload contains the loadings (eigen-
vectors), then you can try plotting them using matplot(1:57,spamload[,1:3]).) What
is the main feature of the loadings? How do they relate to your answer in part (a)?
(d) Now scale the explanatory variables so each has mean zero and variance one:
spamscale <− scale(Spam[,1:57]). Find the principal components using this matrix.
Plot the eigenvalues versus the index. What do you notice, especially compared to
the results of part (b)? (e) Plot the loadings of the first three principal components
obtained in part (d). How do they compare to those from part (c)? Why is there such
a difference?

Exercise 1.9.16 (Sports data). Consider the Louis Roussos sports data described in
Section 1.6.2. Use faces to cluster the observations. Use the raw variables, or the prin-
cipal components, and try different orders of the variables (which maps the variables
to different sets of facial features). After clustering some observations, look at how
they ranked the sports. Do you see any pattern? Were you able to distinguish be-
tween people who like team sports versus individual sports? Those who like (dislike)
tennis? Jogging?

Exercise 1.9.17 (Election). The data set election has the results of the first three US
presidential races of the 2000’s (2000, 2004, 2008). The observations are the 50 states
plus the District of Columbia, and the values are the (D − R)/(D + R) for each state
and each year, where D is the number of votes the Democrat received, and R is the
number the Republican received. (a) Without scaling the variables, find the principal
components. What are the first two principal component loadings measuring? What
is the ratio of the standard deviation of the first component to the second’s? (c) Plot
the first versus second principal components, using the states’ two-letter abbrevia-
tions as the plotting characters. (They are in the vector stateabb.) Make the plot so
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that the two axes cover the same range. (d) There is one prominent outlier. What
is it, and for which variable is it mostly outlying? (e) Comparing how states are
grouped according to the plot and how close they are geographically, can you make
any general statements about the states and their voting profiles (at least for these
three elections)?

Exercise 1.9.18 (Painters). The data set painters has ratings of 54 famous painters. It
is in the MASS package [Venables and Ripley, 2002]. See Davenport and Studdert-
Kennedy [1972] for a more in-depth discussion. The R help file says

The subjective assessment, on a 0 to 20 integer scale, of 54 classical painters.
The painters were assessed on four characteristics: composition, drawing,
colour and expression. The data is due to the Eighteenth century art critic,
de Piles.

The fifth variable gives the school of the painter, using the following coding:

A: Renaissance; B: Mannerist; C: Seicento; D: Venetian; E: Lombard; F:
Sixteenth Century; G: Seventeenth Century; H: French

Create the two-dimensional biplot for the data. Start by turning the data into a matrix,
then centering both dimensions, then scaling:

x <− scale(as.matrix(painters[,1:4]),scale=F)
x <− t(scale(t(x),scale=F))
x <− scale(x)

Use the fifth variable, the painters’ schools, as the plotting character, and the four
rating variables as the arrows. Interpret the two principal component variables. Can
you make any generalizations about which schools tend to rate high on which scores?

Exercise 1.9.19 (Cereal). Chakrapani and Ehrenberg [1981] analyzed people’s atti-
tudes towards a variety of breakfast cereals. The data matrix cereal is 8 × 11, with
rows corresponding to eight cereals, and columns corresponding to potential at-
tributes about cereals. The attributes: Return (a cereal one would come back to),
tasty, popular (with the entire family), digestible, nourishing, natural flavor, afford-
able, good value, crispy (stays crispy in milk), fit (keeps one fit), and fun (for children).
The original data consisted of the percentage of subjects who thought the given ce-
real possessed the given attribute. The present matrix has been doubly centered, so
that the row means and columns means are all zero. (The original data can be found
in the S-Plus [TIBCO Software Inc., 2009] data set cereal.attitude.) Create the two-
dimensional biplot for the data with the cereals as the points (observations), and the
attitudes as the arrows (variables). What do you see? Are there certain cereals/at-
tributes that tend to cluster together? (You might want to look at the Wikipedia entry
[Wikipedia, 2011] on breakfast cereals.)

Exercise 1.9.20 (Decathlon). The decathlon data set has scores on the top 24 men in
the decathlon (a set of ten events) at the 2008 Olympics. The scores are the numbers
of points each participant received in each event, plus each person’s total points. The
data can be found at the NBC Olympic site [Olympics, 2008]. Create the biplot for
these data based on the first ten variables (i.e., do not use their total scores). Doubly
center, then scale, the data as in Exercise 1.9.18. The events should be the arrows. Do
you see any clustering of the events? The athletes?
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The remaining questions require software that will display rotating point clouds of
three dimensions, and calculate some projection pursuit objective functions. The Spin
program at http://istics.net/Spin is sufficient for our purposes. GGobi [Cook
and Swayne, 2007] has an excellent array of graphical tools for interactively exploring
multivariate data. See also the spin3R routine in the R package aplpack [Wolf and
Bielefeld, 2010].

Exercise 1.9.21 (Iris). Consider the three variables X = sepal length, Y = petal length,
and Z = petal width in the Fisher/Anderson iris data. (a) Look at the data while
rotating. What is the main feature of these three variables? (b) Scale the data so that
the variables all have the same sample variance. (The Spin program automatically
performs the scaling.) For various objective functions (variance, skewness, kurtosis,
negative kurtosis, negentropy), find the rotation that maximizes the function. (That
is, the first component of the rotation maximizes the criterion over all rotations. The
second then maximizes the criterion for components orthogonal to the first. The third
component is then whatever is orthogonal to the first two.) Which criteria are most
effective in yielding rotations that exhibit the main feature of the data? Which are
least effective? (c) Which of the original variables are most prominently represented
in the first two components of the most effective rotations?

Exercise 1.9.22 (Automobiles). The data set cars [Consumers’ Union, 1990] contains
q = 11 size measurements on n = 111 models of automobile. The original data can be

found in the S-Plus® [TIBCO Software Inc., 2009] data frame cu.dimensions. In cars,
the variables have been normalized to have medians of 0 and median absolute devi-
ations (MAD) of 1.4826 (the MAD for a N(0, 1)). Inspect the three-dimensional data
set consisting of the variables length, width, and height. (In the Spin program, the
data set is called “Cars.”) (a) Find the linear combination with the largest variance.
What is the best linear combination? (Can you interpret it?) What is its variance?
Does the histogram look interesting? (b) Now find the linear combination to maxi-
mize negentropy. What is the best linear combination, and its entropy? What is the
main feature of the histogram? (c) Find the best two linear combinations for entropy.
What are they? What feature do you see in the scatter plot?

Exercise 1.9.23 (RANDU). RANDU [IBM, 1970] is a venerable, fast, efficient, and very
flawed random number generator. See Dudewicz and Ralley [1981] for a thorough re-
view of old-time random number generators. For given “seed” x0, RANDU produces
xi+1 from xi via

xi+1 = (65539 xi) mod 231. (1.62)

The “random” Uniform(0,1) values are then ui = xi/231. The R data set randu is
based on a sequence generated using RANDU, where each of n = 400 rows is a set
of p = 3 consecutive ui’s. Rotate the data, using objective criteria if you wish, to look
for significant non-randomness in the data matrix. If the data are really random, the
points should uniformly fill up the three-dimensional cube. What feature do you see
that reveals the non-randomness?

The data sets Example 1, Examples 2, . . ., Example 5 are artificial three-dimensional
point clouds. The goal is to rotate the point clouds to reveal their structures.
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Exercise 1.9.24. Consider the Example 1 data set. (a) Find the first two principal
components for these data. What are their variances? (b) Rotate the data. Are the
principal components unique? (c) Find the two-dimensional plots based on maximiz-
ing the skewness, kurtosis, negative kurtosis, and negentropy criteria. What do you
see? What does the histogram for the linear combination with the largest kurtosis
look like? Is it “pointy”? What does the histogram for the linear combination with
the most negative kurtosis look like? Is it “boxy”? (d) Describe the three-dimensional
structure of the data points. Do the two-dimensional plots in part (c) give a good
idea of the three-dimensional structure?

Exercise 1.9.25. This question uses the Example 2 data set. (a) What does the his-
togram for the linear combination with the largest variance look like? (b) What does
the histogram for the linear combination with the largest negentropy look like? (c)
Describe the three-dimensional object.

Exercise 1.9.26. For each of Example 3, 4, and 5, try to guess the shape of the cloud
of data points based on just the 2-way scatter plots. Then rotate the points enough to
convince yourself of the actual shape.



Chapter 2

Multivariate Distributions

This chapter reviews the elements of distribution theory that we need, especially for
vectors and matrices. (Classical multivariate analysis is basically linear algebra, so
everything we do eventually gets translated into matrix equations.) See any good
mathematical statistics book such as Hogg, McKean, and Craig [2004], Bickel and
Doksum [2000], or Lehmann and Casella [1998] for a more comprehensive treatment.

2.1 Probability distributions

We will deal with random variables and finite collections of random variables. A ran-
dom variable X has range or space X ⊂ R, the real line. A collection of random vari-
ables is just a set of random variables. They could be arranged in any convenient way,
such as a row or column vector, matrix, triangular array, or three-dimensional array,
and will often be indexed to match the arrangement. The default arrangement will be
to index the random variables by 1, . . . , N, so that the collection is X = (X1, . . . , XN),
considered as a row vector. The space of X is X ⊂ RN , N-dimensional Euclidean
space. A probability distribution P for a random variable or collection of random
variables specifies the chance that the random object will fall in a particular subset
of its space. That is, for A ⊂ X , P[A] is the probability that the random X is in A,
also written P[X ∈ A]. In principle, to describe a probability distribution, one must
specify P[A] for all subsets A. (Technically, all “measurable” subsets, but we will not
worry about measurability.) Fortunately, there are easier ways. We will use densities,
but the main method will be to use representations, by which we mean describing
a collection of random variables Y in terms of another collection X for which we
already know the distribution, usually through a function, i.e., Y = g(X).

2.1.1 Distribution functions

The distribution function for the probability distribution P for the collection X =
(X1, . . . , XN) of random variables is the function

F : RN → [0, 1]

F(x1, x2, . . . , xN) = P[X1 ≤ x1, X2 ≤ x2, . . . , XN ≤ xN ]. (2.1)

33
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Note that it is defined on all of RN , not just the space of X. It is nondecreasing, and
continuous from the right, in each xi. The limit as all xi → −∞ is zero, and as all
xi → ∞, the limit is one. The distribution function uniquely defines the distribution,
though we will not find much use for it.

2.1.2 Densities

A collection of random variables X is said to have a density with respect to Lebesgue
measure on RN , if there is a nonnegative function f (x),

f : X −→ [0, ∞), (2.2)

such that for any A ⊂ X ,

P[A] =
∫

A
f (x)dx

=
∫ ∫

· · ·
∫

A
f (x1, . . . , xN)dx1 · · · dxN . (2.3)

The second line is there to emphasize that we have a multiple integral. (The Lebesgue

measure of a subset A of RN is the integral
∫

A dx, i.e., as if f (x) = 1 in (2.3). Thus if
N = 1, the Lebesgue measure of a line segment is its length. In two dimensions, the
Lebesgue measure of a set is its area. For N = 3, it is the volume.)

We will call a density f as in (2.3) the “pdf,” for “probability density function.”
Because P[X ∈ X ] = 1, the integral of the pdf over the entire space X must be 1.
Random variables or collections that have pdf’s are continuous in the sense that the
probability X equals a specific value x is 0. (There are continuous distributions that
do not have pdf’s, such as the uniform distribution on the unit circle.)

If X does have a pdf, then it can be obtained from the distribution function in (2.1)
by differentiation:

f (x1, . . . , xN) =
∂N

∂x1 · · · ∂xN
F(x1, . . . , xN). (2.4)

If the space X is a countable (which includes finite) set, then its probability can be
given by specifying the probability of each individual point. The probability mass
function f , or “pmf,” with

f : X −→ [0, 1], (2.5)

is given by
f (x) = P[X = x] = P[{x}]. (2.6)

The probability of any subset A is the sum of the probabilities of the individual points
in A,

P[A] = ∑
x∈A

f (x). (2.7)

Such an X is called discrete. (A pmf is also a density, but with respect to counting
measure on X , not Lebesgue measure.)

Not all random variables are either discrete or continuous, and especially a collec-
tion of random variables could have some discrete and some continuous members. In
such cases, the probability of a set is found by integrating over the continuous parts
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and summing over the discrete parts. For example, suppose our collection is a 1 × N
vector combining two other collections, i.e.,

W = (X, Y) has space W , X is 1 × Nx and Y is 1 × Ny, N = Nx + Ny. (2.8)

For a subset A ⊂ W , define the marginal set by

X A = {x ∈ RNx | (x, y) ∈ A for some y}, (2.9)

and the conditional space given X = x by

YA
x = {y ∈ RNy | (x, y) ∈ A}. (2.10)

Suppose X is discrete and Y is continuous. Then f (x, y) is a mixed-type density for
the distribution of W if for any A ⊂ W ,

P[A] = ∑
x∈X A

∫

YA
x

f (x, y)dy. (2.11)

We will use the generic term “density” to mean pdf, pmf, or the mixed type of density
in (2.11). There are other types of densities, but we will not need to deal with them.

2.1.3 Representations

Representations are very useful, especially when no pdf exists. For example, suppose
Y = (Y1, Y2) is uniform on the unit circle, by which we mean Y has space Y = {y ∈
R2 | ‖y‖ = 1}, and it is equally likely to be any point on that circle. There is no

pdf, because the area of the circle in R2 is zero, so the integral over any subset of
Y of any function is zero. The distribution can be thought of in terms of the angle
y makes with the x-axis, that is, y is equally likely to be at any angle. Thus we can
let X ∼ Uniform(0, 2π]: X has space (0, 2π] and pdf fX(x) = 1/(2π). Then we can
define

Y = (cos(X), sin(X)). (2.12)

In general, suppose we are given the distribution for X with space X and function
g,

g : X −→ Y . (2.13)

Then for any B ⊂ Y , we can define the probability of Y by

P[Y ∈ B] = P[g(X) ∈ B] = P[X ∈ g−1(B)]. (2.14)

We know the final probability because g−1(B) ⊂ X .
One special type of function yields marginal distributions, analogous to the mar-

ginals in Section 1.5, that picks off some of the components. Consider the setup in
(2.8). The marginal function for X simply chooses the X components:

g(x, y) = x. (2.15)

The space of X is then given by (2.9) with A = W , i.e.,

X ≡ XW = {x ∈ RNx | (x, y) ∈ W for some y}. (2.16)
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If f (x, y) is the density for (X, Y), then the density of X can be found by “integrating
(or summing) out” the y. That is, if f is a pdf, then fX(x) is the pdf for X, where

fX(x) =
∫

Yx

f (x, y)dy, (2.17)

and
Yx = YW

x = {y ∈ RNy | (x, y) ∈ W} (2.18)

is the conditional space (2.10) with A = W . If y has some discrete components, then
they are summed in (2.17).

Note that we can find the marginals of any subset, not just sets of consecutive
elements. E.g., if X = (X1, X2, X3, X4, X5), we can find the marginal of (X2, X4, X5)
by integrating out the X1 and X3.

Probability distributions can also be represented through conditioning, discussed
in the next section.

2.1.4 Conditional distributions

The conditional distribution of one or more variables given another set of variables,
the relationship of “cause” to “effect,” is central to multivariate analysis. E.g., what is
the distribution of health measures given diet, smoking, and ethnicity? We start with
the two collections of variables Y and X, each of which may be a random variable,
vector, matrix, etc. We want to make sense of the notion

Conditional distribution of Y given X = x, written Y |X = x. (2.19)

What this means is that for each fixed value x, there is a possibly different distribution
for Y.

Very generally, such conditional distributions will exist, though they may be hard
to figure out, even what they mean. In the discrete case, the concept is straightfor-
ward, and by analogy the case with densities follows. For more general situations,
we will use properties of conditional distributions rather than necessarily specifying
them.

We start with the (X, Y) as in (2.8), and assume we have their joint distribution
P. The word “joint” is technically unnecessary, but helps to emphasize that we are
considering the two collections together. The joint space is W , and let X denote the
marginal space of X as in (2.16), and for each x ∈ X , the conditional space of Y given
X = x, Yx, is given in (2.18). For example, if the space W = {(x, y) | 0 < x < y < 1},
then X = (0, 1), and for x ∈ X , Yx = (x, 1).

Next, given the joint distribution of (X, Y), we define the conditional distribution
(2.19) in the discrete, then pdf, cases.

Discrete case

For sets A and B, the conditional probability of A given B is defined as

P[A | B] =
P[A ∩ B]

P[B]
if B 6= ∅. (2.20)

If B is empty, then the conditional probability is not defined since we would have 0
0 .

For a discrete pair (X, Y), let f (x, y) be the pmf. Then the conditional distribution of
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Y given X = x can be specified by

P[Y = y | X = x], for x ∈ X , y ∈ Yx. (2.21)

at least if P[X = x] > 0. The expression in (2.21) is, for fixed x, the conditional pmf
for Y:

fY|X(y | x) = P[Y = y | X = x]

=
P[Y = y and X = x]

P[X = x]

=
f (x, y)

fX(x)
, y ∈ Yx, (2.22)

if fX(x) > 0, where fX(x) is the marginal pmf of X from (2.17) with sums.

Pdf case

In the discrete case, the restriction that P[X = x] > 0 is not worrisome, since the
chance is 0 we will have a x with P[X = x] = 0. In the continuous case, we cannot
follow the same procedure, since P[X = x] = 0 for all x ∈ X . However, if we have
pdf’s, or general densities, we can analogize (2.22) and declare that the conditional
density of Y given X = x is

fY|X(y | x) =
f (x, y)

fX(x)
, y ∈ Yx, (2.23)

if fX(x) > 0. In this case, as in the discrete one, the restriction that fX(x) > 0 is not
worrisome, since the set on which X has density zero has probability zero. It turns
out that the definition (2.23) is mathematically legitimate.

The Y and X can be very general. Often, both will be functions of a collection
of random variables, so that we may be interested in conditional distributions of the
type

g(Y) | h(X) = z (2.24)

for some functions g and h.

Reconstructing the joint distribution

Note that if we are given the marginal space and density for X, and the conditional
spaces and densities for Y given X = x, then we can reconstruct the joint space and
joint density:

W = {(x, y) | y ∈ Yx, x ∈ X} and f (x, y) = fY|X(y | x) fX(x). (2.25)

Thus another way to represent a distribution for Y is to specify the conditional
distribution given some X = x, and the marginal of X. The marginal distribution of
Y is then found by first finding the joint as in (2.25), then integrating out the x:

fY(y) =
∫

Xy

fY|X(y | x) fX(x)dx. (2.26)
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2.2 Expected values

Means, variances, and covariances (Section 1.4) are key sample quantities in describ-
ing data. Similarly, they are important for describing random variables. These are all
expected values of some function, defined next.

Definition 2.1 (Expected value). Suppose X has space X , and consider the real-valued
function g,

g : X −→ R. (2.27)

If X has pdf f , then the expected value of g(X), E[g(X)], is

E[g(X)] =
∫

X
g(x) f (x)dx (2.28)

if the integral converges. If X has pmf f , then

E[g(X)] = ∑
x∈X

g(x) f (x) (2.29)

if the sum converges.

As in (2.11), if the collection is (X, Y), where X is discrete and Y is continuous, and
f (x, y) is its mixed-type density, then for function g(x, y),

E[g(X, Y)] = ∑
x∈X

∫

Yx

g(x, y) f (x, y)dy. (2.30)

if everything converges. (The spaces are defined in (2.16) and (2.18).)
Expected values for representations cohere is the proper way, that is, if Y is a

collection of random variables such that Y = h(X), then for a function g,

E[g(Y)] = E[g(h(X))], (2.31)

if the latter exists. Thus we often can find the expected values of functions of Y based
on the distribution of X.

Conditioning

If (X, Y) has a joint distribution, then we can define the conditional expectation of
g(Y) given X = x to be the regular expected value of g(Y), but we use the conditional
distribution Y | X = x. In the pdf case, we write

E[g(Y) | X = x] =
∫

Yx

g(y) fY|X(y|x)dy ≡ eg(x). (2.32)

Note that the conditional expectation is a function of x. We can then take the expected
value of that, using the marginal distribution of X. We end up with the same result
(if we end up with anything) as taking the usual expected value of g(Y). That is

E[g(Y)] = E[ E[g(Y) |X = x] ]. (2.33)

There is a bit of a notational glitch in the formula, since the inner expected value is a
function of x, a constant, and we really want to take the expected value over X. We
cannot just replace x with X, however, because then we would have the undesired
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E[g(Y) | X = X]. So a more precise way to express the result is to use the eg(x) in
(2.32), so that

E[g(Y)] = E[eg(X)]. (2.34)

This result holds in general. It is not hard to see in the pdf case:

E[eg(X)] =
∫

X
eg(x) fX(x)dx

=
∫

X

∫

Yx

g(y) fY|X(y|x)dy fX(x)dx by (2.32)

=
∫

X

∫

Yx

g(y) f (x, y)dydx by (2.25)

=
∫

W
g(y) f (x, y)dxdy by (2.25)

= E[g(Y)]. (2.35)

A useful corollary is the total probability formula: For B ⊂ Y , if X has a pdf,

P[Y ∈ B] =
∫

X
P[Y ∈ B | X = x] fX(x)dx. (2.36)

If X has a pmf, then we sum. The formula follows by taking g to be the indicator
function IB, given as

IB(y) =

{
1 if y ∈ B,
0 if y 6∈ B.

(2.37)

2.3 Means, variances, and covariances

Means, variances, and covariances are particular expected values. For a collection
of random variables X = (X1, . . . , XN), the mean of Xj is its expected value, E[Xj].

(Throughout this section, we will be acting as if the expected values exist. So if E[Xj]
doesn’t exist, then the mean of Xj doesn’t exist, but we might not explicitly mention

that.) Often the mean is denoted by µ, so that E[Xj] = µj.

The variance of Xj, often denoted σ2
j or σjj, is

σjj = Var[Xj ] = E[(Xj − µj)
2]. (2.38)

The covariance between Xj and Xk is defined to be

σjk = Cov[Xj, Xk] = E[(Xj − µj)(Xk − µk)]. (2.39)

Their correlation coefficient is

Corr[Xj, Xk] = ρjk =
σjk√
σjjσkk

, (2.40)

if both variances are positive. Compare these definitions to those of the sample
analogs, (1.3), (1.4), (1.5), and (1.6). So, e.g., Var[Xj] = Cov[Xj, Xj].

The mean of the collection X is the corresponding collection of means. That is,

µ = E[X] = (E[X1], . . . , E[XN ]). (2.41)



40 Chapter 2. Multivariate Distributions

2.3.1 Vectors and matrices

If a collection has a particular structure, then its mean has the same structure. That
is, if X is a row vector as in (2.41), then E[X] = (E[X1], . . . , E[XN ]). If X is a column
vector, so is its mean. Similarly, if W is an n × p matrix, then so is its mean. That is,

E[W] = E







W11 W12 · · · W1p

W21 W22 · · · W2p

...
...

. . .
...

Wn1 Wn2 · · · Wnp







=




E[W11] E[W12] · · · E[W1p]
E[W21] E[W22] · · · E[W2p]

...
...

. . .
...

E[Wn1] E[Wn2] · · · E[Wnp]


 . (2.42)

Turning to variances and covariances, first suppose that X is a vector (row or

column). There are N variances and (N
2 ) covariances among the Xj’s to consider,

recognizing that Cov[Xj, Xk] = Cov[Xk, Xj]. By convention, we will arrange them into
a matrix, the variance-covariance matrix, or simply covariance matrix of X:

Σ = Cov[X]

=




Var[X1] Cov[X1, X2] · · · Cov[X1, XN ]
Cov[X2, X1] Var[X2] · · · Cov[X2, XN ]

...
...

. . .
...

Cov[XN, X1] Cov[XN , X2] · · · Var[XN ]


 , (2.43)

so that the elements of Σ are the σjk’s. Compare this arrangement to that of the

sample covariance matrix (1.17). If X is a row vector, and µ = E[X], a convenient
expression for its covariance is

Cov[X] = E
[
(X −µ)′(X −µ)

]
. (2.44)

Similarly, if X is a column vector, Cov[X] = E[(X −µ)(X −µ)′].
Now suppose X is a matrix as in (2.42). Notice that individual components have

double subscripts: Xij. We need to decide how to order the elements in order to
describe its covariance matrix. We will use the convention that the elements are
strung out by row, so that row(X) is the 1 × N vector, N = np, given by

row(X) =(X11, X12, · · · , X1p,

X21, X22, · · · , X2p,

· · ·
Xn1, Xn2, · · · , Xnp). (2.45)

Then Cov[X] is defined to be Cov[row(X)], which is an (np)× (np) matrix.
One more covariance: The covariance between two vectors is defined to be the

matrix containing all the individual covariances of one variable from each vector.
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That is, if X is 1 × p and Y is 1 × q , then the p × q matrix of covariances is

Cov[X, Y] = E[(X − E[X])′(Y − E[Y])]

=




Cov[X1, Y1] Cov[X1, Y2] · · · Cov[X1, Yq]
Cov[X2, Y1] Cov[X2, Y2] · · · Cov[X2, Yq]

...
...

. . .
...

Cov[Xp, Y1] Cov[Xp, Y2] · · · Cov[Xp, Yq]


 . (2.46)

2.3.2 Moment generating functions

The moment generating function (mgf for short) of X is a function from RN → [0, ∞]
given by

MX(t) = MX(t1, . . . , tN) = E
[
et1 X1+···+tN XN

]
= E

[
eXt′
]

(2.47)

for t = (t1, . . . , tN). It is very useful in distribution theory, especially convolutions
(sums of independent random variables), asymptotics, and for generating moments.
The main use we have is that the mgf determines the distribution:

Theorem 2.1 (Uniqueness of MGF). If for some ǫ > 0,

MX(t) < ∞ and MX(t) = MY(t) for all t such that ‖t‖ < ǫ, (2.48)

then X and Y have the same distribution.

See Ash [1970] for an approach to proving this result. The mgf does not always
exist, that is, often the integral or sum defining the expected value diverges. That
is ok, as long as it is finite for t in a neighborhood of 0. If one knows complex
variables, the characteristic function is handy because it always exists. It is defined
as φX(t) = E[exp(iXt′)].

If a distribution’s mgf is finite when ‖t‖ < ǫ for some ǫ > 0, then all of its moments
are finite, and can be calculated via differentiation:

E[Xk1

1 · · · XkN
N ] =

∂K

∂tk1

1 · · · ∂tkN
N

MX(t)
∣∣∣
t=0

, (2.49)

where the k1 are nonnegative integers, and K = k1 + · · ·+ kN . See Exercise 2.7.22

2.4 Independence

Two sets of random variables are independent if the values of one set do not affect
the values of the other. More precisely, suppose the collection is (X, Y) as in (2.8),
with space W . Let X and Y be the marginal spaces (2.16) of X and Y, respectively.
First, we need the following:

Definition 2.2. If A ⊂ RK and B ⊂ RL, then A × B is a rectangle, the subset of RK+L

given by

A × B = {(y, z) ∈ RK+L | y ∈ A and z ∈ B}. (2.50)



42 Chapter 2. Multivariate Distributions

Now for the main definition.

Definition 2.3. Given the setup above, the collections X and Y are independent if W =
X × Y , and for every A ⊂ X and B ⊂ Y ,

P[(X, Y) ∈ A × B] = P[X ∈ A]P[Y ∈ B]. (2.51)

In the definition, the left-hand side uses the joint probability distribution for (X, Y),
and the right-hand side uses the marginal probabilities for X and Y, respectively.

If the joint collection (X, Y) has density f , then X and Y are independent if and
only if W = X × Y , and

f (x, y) = fX(x) fY(y) for all x ∈ X and y ∈ Y , (2.52)

where fX and fY are the marginal densities (2.17) of X and Y, respectively. (Techni-
cally, (2.52) only has to hold with probability one. Also, except for sets of probability
zero, the requirements (2.51) or (2.52) imply that W = X ×Y , so that the requirement
we place on the spaces is redundant. But we keep it for emphasis.)

A useful result is that X and Y are independent if and only if

E[g(X)h(Y)] = E[g(X)]E[h(Y)] (2.53)

for all functions g : X → R and h : Y → R with finite expectation.
The last expression can be used to show that independent variables have covari-

ance equal to 0. If X and Y are independent random variables with finite expectations,
then

Cov[X, Y] = E[(X − E[X])(Y − E[Y])]

= E[(X − E[X])] E[(Y − E[Y])]

= 0. (2.54)

The second equality uses (2.53), and the final equality uses that E[X − E[X]] = E[X]−
E[X] = 0. Be aware that the reverse is not true, that is, variables can have 0 covariance
but still not be independent.

If the collections X and Y are independent, then Cov[Xk, Yl ] = 0 for all k, l, so that

Cov[(X, Y)] =

(
Cov[X] 0

0 Cov[Y]

)
, (2.55)

at least if the covariances exist. (Throughout this book, “0” represents a matrix of
zeroes, its dimension implied by the context.)

Collections Y and X are independent if and only if the conditional distribution of
Y given X = x does not depend on x. If (X, Y) has a pdf or pmf, this property is easy
to see. If X and Y are independent, then Yx = Y since W = X ×Y , and by (2.23) and
(2.52),

fY|X(y | x) =
f (x, y)

fX(x)
=

fY(y) fX(x)

fX(x)
= fY(y), (2.56)

so that the conditional distribution does not depend on x. On the other hand, if
the conditional distribution does not depend on x, then the conditional space and
pdf cannot depend on x, in which case they are the marginal space and pdf, so that
W = X × Y and

f (x, y)

fX(x)
= fY(y) =⇒ f (x, y) = fX(x) fY(y). (2.57)
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So far, we have treated independence of just two sets of variables. Everything
can be easily extended to any finite number of sets. That is, suppose X1, . . . , XS are
collections of random variables, with Ns and Xs being the dimension and space for
Xs, and X = (X1, . . . , XS), with dimension N = N1 + · · ·+ NS and space X .

Definition 2.4. Given the setup above, the collections X1, . . . , XS are mutually indepen-
dent if X = X1 × · · · × XS, and for every set of subsets As ⊂ Xs,

P[(X1, . . . , XS) ∈ A1 × · · · × AS] = P[X1 ∈ A1] · · · P[XS ∈ AS]. (2.58)

In particular, X1, . . . , XS being mutually independent implies that every pair Xi, Xj
(i 6= j) is independent. The reverse need not be true, however, that is, each pair could
be independent without having all mutually independent. Analogs of the equiva-
lences in (2.52) to (2.53) hold for this case, too. E.g., X1, . . . , XS are mutually indepen-
dent if and only if

E[g1(X1) · · · gS(XS)] = E[g1(X1)] · · · E[gS(XS)] (2.59)

for all functions gs : Xs → R, s = 1, . . . , S, with finite expectation.
A common situation is that the individual random variables Xi’s in X are mutually

independent. Then, e.g., if there are densities,

f (x1, . . . , xN) = f1(x1) · · · fN(xN), (2.60)

where f j is the density of Xj. Also, if the variances exist, the covariance matrix is
diagonal:

Cov[X] =




Var[X1] 0 · · · 0
0 Var[X2] · · · 0
...

...
. . .

...
0 · · · 0 Var[XN ]


 . (2.61)

2.5 Additional properties of conditional distributions

The properties that follow are straightforward to prove in the discrete case. They still
hold for the continuous and more general cases, but are not always easy to prove.
See Exercises 2.7.6 to 2.7.15.

Plug-in formula

Suppose the collection of random variables is given by (X, Y), and we are interested
in the conditional distribution of the function g(X, Y) given X = x. Then

g(X, Y) | X = x =D g(x, Y) | X = x. (2.62)

That is, the conditional distribution of g(X, Y) given X = x is the same as that of

g(x, Y) given X = x. (The “=D” means “equal in distribution.”) Furthermore, if Y
and X are independent, we can take off the conditional part at the end of (2.62):

X and Y independent =⇒ g(X, Y) |X = x =D g(x, Y). (2.63)
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This property may at first seem so obvious to be meaningless, but it can be very
useful. For example, suppose X and Y are independent N(0, 1)’s, and g(X, Y) =
X + Y, so we wish to find X + Y | X = x. The official way is to let W = X + Y, and
Z = X, and use the transformation of variables to find the space and pdf of (W, Z).
One can then figure out Wz, and use the formula (2.23). Instead, using the plug-in
formula with independence (2.63), we have that

X + Y | X = x =D x + Y, (2.64)

which we immediately realize is N(x, 1).

Conditional independence

Given a set of three collections, (X, Y, Z), X are Y are said to be conditionally indepen-
dent given Z = z if

P[(X, Y) ∈ A × B | Z = z] = P[X ∈ A | Z = z]P[Y ∈ B | Z = z], (2.65)

for sets A ⊂ Xz and B ⊂ Yz as in (2.51). If further X is independent of Z, then X is
independent of the combined (Y, Z).

Dependence on x only through a function

If the conditional distribution of Y given X = x depends on x only through the func-
tion h(x), then that conditional distribution is the same as the conditional distribution
given h(X) = h(x). Symbolically, if v = h(x),

Y |X = x =D Y | h(X) = v. (2.66)

As an illustration, suppose (X, Y) is uniformly distributed over the unit disk, so

that the pdf is f (x, y) = 1/π for x2 + y2
< 1. Then it can be shown that

Y | X = x ∼ Uniform(−
√

1 − x2,
√

1 − x2). (2.67)

Note that the distribution depends on x only through h(x) = x2, so that, e.g., condi-
tioning on X = 1/2 is the same as conditioning on X = −1/2. The statement (2.66)
then yields

Y | X2 = v ∼ Uniform(−
√

1 − v,
√

1 − v). (2.68)

That is, we have managed to turn a statement about conditioning on X to one about

conditioning on X2.

Variance decomposition

The formula (2.34) shows that the expected value of g(Y) is the expected value of the
conditional expected value, eg(X). A similar formula holds for the variance, but it is
not simply that the variance is the expected value of the conditional variance. Using

the well-known identity Var[Z] = E[Z2] − E[Z]2 on Z = g(Y), as well as (2.34) on

g(Y) and g(Y)2, we have

Var[g(Y)] = E[g(Y)2]− E[g(Y)]2

= E[eg2(X)]− E[eg(X)]
2. (2.69)
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The identity holds conditionally as well, i.e.,

vg(x) = Var[g(Y) | X = x] = E[g(Y)2 |X = x]− E[g(Y) | X = x]2

= eg2(x)− eg(x)
2. (2.70)

Taking expected value over X in (2.70), we have

E[vg(X)] = E[eg2(X)]− E[eg(X)
2]. (2.71)

Comparing (2.69) and (2.71), we see the difference lies in where the square is in the
second terms. Thus

Var[g(Y)] = E[vg(X)] + E[eg(X)
2]− E[eg(X)]

2

= E[vg(X)] + Var[eg(X)], (2.72)

now using the identity on eg(X). Thus the variance of g(Y) equals the variance of the
conditional expected value plus the expected value of the conditional variance.

For a collection Y of random variables,

eY(x) = E[Y | X = x] and vY(x) = Cov[Y | X = x], (2.73)

(2.72) extends to
Cov[Y] = E[vY(X)] + Cov[eY(X)]. (2.74)

See Exercise 2.7.12.

Bayes theorem

Bayes formula reverses conditional distributions, that is, it takes the conditional dis-
tribution of Y given X, and the marginal of X, and returns the conditional distribution
of X given Y. Bayesian inference is based on this formula, starting with the distri-
bution of the data given the parameters, and a marginal (“prior”) distribution of
the parameters, and producing the conditional distribution (“posterior”) of the pa-
rameters given the data. Inferences are then based on this posterior, which is the
distribution one desires because the data are observed while the parameters are not.

Theorem 2.2 (Bayes). In the setup of (2.8), suppose that the conditional density of Y given
X = x is fY|X(y | x), and the marginal density of X is fX(x). Then for (x, y) ∈ W , the

conditional density of X given Y = y is

fX|Y(x | y) =
fY|X(y | x) fX(x)∫

Xy
fY|X(y | z) fX(z)dz

. (2.75)

Proof. From (2.23) and (2.25),

fX|Y(x | y) =
f (x, y)

fY(y)

=
fY|X(y | x) fX(x)

fY(y)
. (2.76)

By (2.26), using z for x, to avoid confusion with the x in (2.76),

fY(y) =
∫

Xy

fY|X(y | z) fX(z)dz, (2.77)

which, substituted in the denominator of (2.76), shows (2.75).
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2.6 Affine transformations

In Section 1.5, linear combinations of the data were used heavily. Here we consider
the distributional analogs of linear functions, or their extensions, affine transforma-
tions. For a single random variable X, an affine transformation is a+ bX for constants
a and b. Equation (2.82) is an example of an affine transformation with two random
variables.

More generally, an affine transformation of a collection of N random variables X
is a collection of M random variables Y where

Yj = aj + bj1X1 + · · ·+ bjNXN , j = 1, . . . , M, (2.78)

the aj’s and bjk’s being constants. Note that marginals are examples of affine trans-
formations: the aj’s are 0, and most of the bjk’s are 0, and a few are 1. Depending on
how the elements of X and Y are arranged, affine transformations can be written as a
matrix equation. For example, if X and Y are row vectors, and B is M × N, then

Y = a + XB′, (2.79)

where B is the matrix of bjk’s, and a = (a1, . . . , aM). If X and Y are column vectors,

then the equation is Y = a′ + BX. For an example using matrices, suppose X is n × p,
C is m × n, D is q × p, and A is m × q, and

Y = A + CXD′. (2.80)

Then Y is an m × q matrix, each of whose elements is some affine transformation of
the elements of X. The relationship between the bjk’s and the elements of C and D is
somewhat complicated but could be made explicit, if desired. Look ahead to (3.32d),
if interested.

Expectations are linear, that is, for any random variables (X, Y), and constant c,

E[cX] = cE[X] and E[X + Y] = E[X] + E[Y], (2.81)

which can be seen from (2.28) and (2.29) by the linearity of integrals and sums. Con-
sidering any constant a as a (nonrandom) random variable, with E[a] = a, (2.81) can
be used to show, e.g.,

E[a + bX + cY] = a + bE[X] + cE[Y]. (2.82)

The mean of an affine transformation is the affine transformation of the mean.
This property follows from (2.81) as in (2.82), i.e., for (2.78),

E[Yj] = aj + bj1E[X1] + · · ·+ bjNE[XN ], j = 1, . . . , M. (2.83)

If the collections are arranged as vectors or matrices, then so are the means, so that
for the row vector (2.79) and matrix (2.80) examples, one has, respectively,

E[Y] = a + E[X]B′ and E[Y] = A + CE[X]D′. (2.84)

The covariance matrix of Y can be obtained from that of X. It is a little more
involved than for the means, but not too bad, at least in the vector case. Suppose X
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and Y are row vectors, and (2.79) holds. Then from (2.44),

Cov[Y] = E
[
(Y − E[Y])′(Y − E[Y])

]

= E
[
(a + XB′ − (a + E[X]B′))′(a + XB′ − (a + E[X]B′))

]

= E
[
(XB′ − E[X]B′)′(XB′ − E[X]B′)

]

= E
[
B(X − E[X])′(X − E[X])B′]

= BE
[
(X − E[X])′(X − E[X])

]
B′ by second part of (2.84)

= BCov[X]B′. (2.85)

Compare this formula to the sample version in (1.27). Though modest looking, the
formula Cov[XB′] = BCov[X]B′ is extremely useful. It is often called a “sandwich”
formula, with the B as the slices of bread. The formula for column vectors is the
same. Compare this result to the familiar one from univariate analysis: Var[a+ bX] =
b2Var[X]. Also, we already saw the sample version of (2.85) in (1.27).

For matrices, we again will wait. (We are waiting for Kronecker products as in
Definition 3.5, in case you are wondering.)

2.7 Exercises

Exercise 2.7.1. Consider the pair of random variables (X, Y), where X is discrete and
Y is continuous. Their space is

W = {(x, y) | x ∈ {1, 2, 3} & 0 < y < x}, (2.86)

and their mixed-type density is

f (x, y) =
x + y

21
. (2.87)

Let A = {(x, y) ∈ W | y ≤ x/2}. (It is a good idea to sketch W and A.) (a) Find X A

(b) Find YA
x for each x ∈ X A. (c) Find P[A]. (d) Find the marginal density and space

of X. (e) Find the marginal space of Y. (f) Find the conditional space of X given Y,
Xy, for each y. (Do it separately for y ∈ (0, 1), y ∈ [1, 2) and y ∈ [2, 3).) (g) Find the
marginal density of Y.

Exercise 2.7.2. Given the setup in (2.8) through (2.10), show that for A ∈ W ,

A = {(x, y) | x ∈ X A and y ∈ YA
x } = {(x, y) | y ∈ YA and x ∈ X A

y }. (2.88)

Exercise 2.7.3. Verify (2.17), that is, given B ⊂ X , show that

P[X ∈ B] =
∫

B

[∫

Yx

f (x, y)dy

]
dx. (2.89)

[Hint: Show that for A = {(x, y) | x ∈ B and y ∈ Yx}, x ∈ B if and only if
(x, y) ∈ A, so that P[X ∈ B] = P[(X, Y) ∈ A]. Then note that the latter probabil-
ity is

∫
A f (x, y)dxdy, which with some interchanging equals the right-hand side of

(2.89).]
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Exercise 2.7.4. Show that X and Y are independent if and only if E[g(X)h(Y)] =
E[g(X)]E[h(Y)] as in (2.53) for all g and h with finite expectations. You can assume
densities exist, i.e., (2.52). [Hint: To show independence implies (2.53), write out the
sums/integrals. For the other direction, consider indicator functions for g and h as in
(2.37).]

Exercise 2.7.5. Prove (2.31), E[g(Y)] = E[g(h(X))] for Y = h(X), in the discrete case.
[Hint: Start by writing

fY(y) = P[Y = y] = P[h(X) = y] = ∑
x∈Xy

fX(x), (2.90)

where Xy = {x ∈ X | h(x) = y}. Then

E[g(Y)] = ∑
y∈Y

g(y) ∑
x∈Xy

fX(x) = ∑
y∈Y

∑
x∈Xy

g(y) fX(x). (2.91)

In the inner summation in the final expression, h(x) is always equal to y. (Why?) Sub-
stitute h(x) for y in the g, then. Now the summand is free of y. Argue that the dou-
ble summation is the same as summing over x ∈ X , yielding ∑x∈X g(h(x)) fX(x) =
E[g(h(X))].]

Exercise 2.7.6. (a) Prove the plugin formula (2.62) in the discrete case. [Hint: For z
in the range of g, write P[g(X, Y) = z | X = x] = P[g(X, Y) = z and X = x]/P[X = x],
then note that in the numerator, the X can be replaced by x.] (b) Prove (2.63). [Hint:
Follow the proof in part (a), then note the two events g(x, Y) = z and X = x are
independent.]

Exercise 2.7.7. Suppose (X, Y, Z) has a discrete distribution, X and Y are conditionally
independent given Z (as in (2.65)), and X and Z are independent. Show that X is
independent of (Y, Z). [Hint: Use the total probability formula (2.36) on P[X ∈
A and (Y, Z) ∈ B], conditioning on Z. Then argue that the summand can be written

P[X ∈ A and (Y, Z) ∈ B | Z = z] = P[X ∈ A and (Y, z) ∈ B | Z = z]

= P[X ∈ A | Z = z]P[(Y, z) ∈ B | Z = z]. (2.92)

Use the independence of X and Z on the first probability in the final expression, and
bring it out of the summation.]

Exercise 2.7.8. Prove (2.67). [Hint: Find Yx and the marginal fX(x).]

Exercise 2.7.9. Suppose Y = (Y1, Y2, Y3, Y4) is multinomial with parameters n and
p = (p1, p2, p3, p4). Thus n is a positive integer, the pi’s are positive and sum to 1,
and the Yi’s are positive integers that sum to n. The pmf is

f (y) =

(
n

y1, y2, y3, y4

)
p

y1

1 · · · p
y4

4 , (2.93)

where ( n
y1,y2,y3,y4

) = n!/(y1! · · · y4!). Consider the conditional distribution of (Y1, Y2)

given (Y3, Y4) = (c, d). (a) What is the conditional space of (Y1, Y2) given (Y3, Y4) =
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(c, d)? Give Y2 as a function of Y1, c, and d. What is the conditional range of Y1? (b)
Write the conditional pmf of (Y1, Y2) given (Y3, Y4) = (c, d), and simplify noting that

(
n

y1, y2, c, d

)
=

(
n

n − c − d, c, d

)(
n − c − d

c, d

)
(2.94)

What is the conditional distribution of Y1 | (Y3, Y4) = (c, d)? (c) What is the condi-
tional distribution of Y1 given Y3 + Y4 = a?

Exercise 2.7.10. Prove (2.44). [Hint: Write out the elements of the matrix (X−µ)′(X−
µ), then use (2.42).]

Exercise 2.7.11. Suppose X, 1 × N, has finite covariance matrix. Show that Cov[X] =
E[X′X]− E[X]′E[X].

Exercise 2.7.12. (a) Prove the variance decomposition holds for the 1 × q vector Y, as
in (2.74). (b) Write Cov[Yi, Yj] as a function of the conditional quantities Cov[Yi, Yj | X =

x], E[Yi | X = x], and E[Yj | X = x].

Exercise 2.7.13. The beta-binomial(n, α, β) distribution is a mixture of binomial dis-
tributions. That is, suppose Y given P = p is Binomial(n, p) ( fY(y) = (n

y)py(1− p)n−y

for y = 0, 1, . . . , n), and P is (marginally) Beta(α, β):

fP(p) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1 − p)β−1, p ∈ (0, 1), (2.95)

where Γ is the gamma function,

Γ(α) =
∫ ∞

0
uα−1e−udu, α > 0. (2.96)

(a) The conditional mean and variance of Y are np and np(1 − p). (Right?) The

unconditional mean and variance of P are α/(α + β) and αβ/(α + β)2(α + β + 1).
What are the unconditional mean and variance of Y? (b) Compare the variance of
a Binomial(n, q) to that of a Beta-binomial(n, α, β), where q = α/(α + β). (c) Find
the joint density of (P, Y). (d) Find the pmf of the beta-binomial. [Hint: Notice that
the part of the joint density depending on p looks like a Beta pdf, but without the
constant. Thus integrating out p yields the reciprocal of the constant.]

Exercise 2.7.14 (Bayesian inference). This question develops Bayesian inference for a
binomial. Suppose

Y | P = p ∼ Binomial(n, p) and P ∼ Beta(α0, β0), (2.97)

that is, the probability of success P has a beta prior. (a) Show that the posterior
distribution is

P |Y = y ∼ Beta(α0 + y, β0 + n − y). (2.98)

The beta prior is called the conjugate prior for the binomial p, meaning the posterior
has the same form, but with updated parameters. [Hint: Exercise 2.7.13 (d) has the
joint density of (P, Y).] (b) Find the posterior mean, E[P |Y = y]. Show that it can be
written as a weighted mean of the sample proportion p̂ = y/n and the prior mean
po = αo/(α0 + β0).
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Exercise 2.7.15. Do the mean and variance formulas (2.33) and (2.72) work if g is a
function of X and Y? [Hint: Consider the collection (X, W), where W = (X, Y).]

Exercise 2.7.16. Suppose h(y) is a histogram with K equal-sized bins. That is, we
have bins (bi−1, bi], i = 1, . . . , K, where bi = b0 + d × i, d being the width of each bin.
Then

h(y) =

{
pi/d if bi−1 < y ≤ bi, i = 1, . . . , K

0 if y 6∈ (b0, bK],
(2.99)

where the pi’s are probabilities that sum to 1. Suppose Y is a random variable with
pdf h. For y ∈ (b0, bK], let I(y) be y’s bin, i.e., I(y) = i if bi−1 < y ≤ bi. (a) What is
the distribution of the random variable I(Y)? Find its mean and variance. (b) Find
the mean and variance of bI(Y) = b0 + dI(Y). (c) What is the conditional distribution

of Y given I(Y) = i, for each i = 1, . . . , K? [It is uniform. Over what range?] Find the
conditional mean and variance. (d) Show that unconditionally,

E[Y] = b0 + d(E[I ]− 1

2
) and Var[Y] = d2(Var[I ] + 1

12
). (2.100)

(e) Recall the entropy in (1.44). Note that for our pdf, h(Y) = pI(Y)/d. Show that

Entropy(h) = −
K

∑
i=1

pi log(pi) + log(d), (2.101)

and for the negentropy in (1.46),

Negent(h) =
1

2

(
1 + log

(
2π

(
Var[I ] + 1

12

)))
+

K

∑
i=1

pi log(pi). (2.102)

Exercise 2.7.17. Suppose Y is a random variable with finite variance, and one wishes
to guess the value of Y by the constant c, using the least squares criterion. That is,

we want to choose c to minimize E[(Y − c)2]. (a) What is the minimizing constant c?

(b) Using that c, what is the value of E[(Y − c)2]?

Exercise 2.7.18. Suppose for random vector (X, Y), one observes X = x, and wishes
to guess the value of Y by h(x), say, using the least squares criterion: Choose h to

minimize E[q(X, Y)], where q(X, Y) = (Y − h(X))2. This h is called the regression
function of Y on X. Assume all the relevant means and variances are finite. (a)
Write E[q(X, Y)] as the expected value of the conditional expected value conditioning
on X = x, eq(x). For fixed x, note that h(x) is a scalar, hence one can minimize
eq(x) over h(x) using differentiation. What h(x) achieves the minimum conditional
expected value of q? (b) Show that the h found in part (a) minimizes the unconditional
expected value E[q(X, Y)]. (c) Find the value of E[q(X, Y)] for the minimizing h.

Exercise 2.7.19. Continue with Exercise 2.7.18, but this time restrict h to be a linear
function, h(x) = α + βx. Thus we wish to find α and β to minimize E[(Y− α − βX)2].
The minimizing function is the linear regression function of Y on X. (a) Find the

α and β to minimize E[(Y − α − βX)2]. [You can differentiate that expected value

directly, without worrying about conditioning.] (b) Find the value of E[(Y− α− βX)2]
for the minimizing α and β.
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Exercise 2.7.20. Suppose Y is 1 × q and X is 1 × p, E[X] = 0, Cov[X] = Ip, E[Y | X =
x] = µ + xβ for some p × q matrix β, and Cov[Y | X = x] = Ψ for some q × q
diagonal matrix Ψ. Thus the Yi’s are conditionally uncorrelated given X = x. Find
the unconditional E[Y] and Cov[Y]. The covariance matrix of Y has a factor-analytic
structure, which we will see in Section 10.3. The Xi’s are factors that explain the
correlations among the Yi’s. Typically, the factors are not observed.

Exercise 2.7.21. Suppose Y1, . . . , Yq are independent 1 × p vectors, where Yi has
moment generating function Mi(t), i = 1, . . . , q, all of which are finite for ‖t‖ < ǫ
for some ǫ > 0. Show that the moment generating function of Y1 + · · · + Yq is
M1(t) · · · Mq(t). For which t is this moment generating function finite?

Exercise 2.7.22. Prove (2.49). It is legitimate to interchange the derivatives and ex-
pectation, and to set t = 0 within the expectation, when ‖t‖ < ǫ. [Extra credit: Prove
that those operations are legitimate.]

Exercise 2.7.23. The cumulant generating function of X is defined to be cX(t) =
log(MX(t)), and, if the function is finite for t in a neighborhood of zero, then the

(k1, . . . , kN)th mixed cumulant is the corresponding mixed derivative of cX(t) evalu-
ated at zero. (a) For N = 1, find the first four cumulants, κ1, . . . , κ4, where

κi =
∂

∂t
cX(t)

∣∣∣
t=0

. (2.103)

Show that κ3/κ3/2
2 is the population analog of skewness (1.42), and κ4/κ2

2 is the
population analog of kurtosis (1.43), i.e.,

κ3

κ3/2
2

=
E[(X − µ)3]

σ3
and

κ4

κ2
2

=
E[(X − µ)4]

σ4
− 3, (2.104)

where µ = E[X] and σ2 = Var[X]. [Write everything in terms of E[Xk]’s by expanding

the E[(X − µ)k]’s.] (b) For general N, find the second mixed cumulants, i.e.,

∂2

∂ti∂tj
cX(t)

∣∣∣
t=0

, i 6= j. (2.105)

Exercise 2.7.24. Suppose X is 1 × p, Y is 1 × q, A is k × p and B is l × q. Use calcula-
tions as in (2.85) to show that

Cov[XA′, YB′] = ACov[X, Y]B′, (2.106)

where Cov[X, Y] is given in (2.46).

Exercise 2.7.25. A study was conducted on people near Newcastle on Tyne in 1972-
74 [Appleton et al., 1996], and followed up twenty years later. We will focus on 1314
women in the study. The three variables we will consider are Z: age group (three
values); X: whether they smoked or not (in 1974); and Y: whether they were still
alive in 1994. Here are the frequencies:

Age group Young (18 − 34) Middle (35 − 64) Old (65+)
Smoker? Yes No Yes No Yes No

Died 5 6 92 59 42 165
Lived 174 213 262 261 7 28

(2.107)
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(a) Treating proportions in the table as probabilities, find

P[Y = Lived | X = Smoker] and P[Y = Lived | X = Non-smoker]. (2.108)

Who were more likely to live, smokers or non-smokers? (b) Find P[X = Smoker | Z =
z] for z= Young, Middle, and Old. What do you notice? (c) Find

P[Y = Lived | X = Smoker & Z = z] (2.109)

and
P[Y = Lived | X = Non-smoker & Z = z] (2.110)

for z= Young, Middle, and Old. Adjusting for age group, who were more likely to
live, smokers or non-smokers? (d) Conditionally on age, the relationship between
smoking and living is negative for each age group. Is it true that marginally (not
conditioning on age), the relationship between smoking and living is negative? What
is the explanation? (Simpson’s Paradox.)

Exercise 2.7.26. Suppose in a large population, the proportion of people who are
infected with the HIV virus is ǫ = 1/100, 000. People can take a blood test to see
whether they have the virus. The test is 99% accurate: The chance the test is positive
given the person has the virus is 99%, and the chance the test is negative given the
person does not have the virus is also 99%. Suppose a randomly chosen person takes
the test. (a) What is the chance that this person does have the virus given that the test
is positive? Is this close to 99%? (b) What is the chance that this person does have the
virus given that the test is negative? Is this close to 1%? (c) Do the probabilities in (a)
and (b) sum to 1?

Exercise 2.7.27. Suppose Z1, Z2, Z3 are iid with P[Zi = −1] = P[Zi = +1] = 1
2 . Let

X1 = Z1Z2, X2 = Z1Z3, X3 = Z2Z3. (2.111)

(a) Find the conditional distribution of (X1, X2) | Z1 = +1. Are X1 and X2 con-
ditionally independent given Z1 = +1? (b) Find the conditional distribution of
(X1, X2) | Z1 = −1. Are X1 and X2 conditionally independent given Z1 = −1? (c) Is
(X1, X2) independent of Z1? Are X1 and X2 independent (unconditionally)? (d) Are
X1 and X3 independent? Are X2 and X3 independent? Are X1, X2 and X3 mutually
independent? (e) What is the space of (X1, X2, X3)? (f) What is the distribution of
X1X2X3?

Exercise 2.7.28. Yes/no questions: (a) Suppose X1 and X2 are independent, X1 and
X3 are independent, and X2 and X3 are independent. Are X1, X2 and X3 mutually
independent? (b) Suppose X1, X2 and X3 are mutually independent. Are X1 and X2
conditionally independent given X3 = x3?

Exercise 2.7.29. (a) Let U ∼Uniform(0, 1), so that it has space (0, 1) and pdf fU(u) =
1. Find its distribution function (2.1), FU(u). (b) Suppose X is a random variable with
space (a, b) and pdf fX(x), where fX(x) > 0 for x ∈ (a, b). [Either or both of a and

b may be infinite.] Thus the inverse function F−1
X (u) exists for u ∈ (0, 1). (Why?)

Show that the distribution of Y = FX(X) is Uniform(0, 1). [Hint: For y ∈ (0, 1), write

P[Y ≤ y] = P[FX(X) ≤ y] = P[X ≤ F−1
X (y)], then use the definition of FX.] (c)

Suppose U ∼ Uniform(0, 1). For the X in part (b), show that F−1
X (U) has the same

distribution as X. [Note: This fact provides a way of generating random variables X
from random uniforms.]
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Exercise 2.7.30. Suppose Y is 1 × 2 with covariance matrix

Σ =

(
2 1
1 2

)
. (2.112)

Let W = YB′, for

B =

(
1 1
1 c

)
(2.113)

for some c. Find c so that the covariance between the two variables in W is zero.
What are the variances of the resulting two variables?

Exercise 2.7.31. 1. Let Y be a 1 × 4 vector with

Yj = µj + B + Ej,

where the µj are constants, B has mean zero and variance σ2
B, the Ej’s are independent,

each with mean zero and variance σ2
E, and B is independent of the Ej’s. (a) Find the

mean and covariance matrix of

X ≡
(

B E1 E2 E3 E4

)
. (2.114)

(b) Write Y as an affine transformation of X. (c) Find the mean and covariance matrix
of Y. (d) Cov[Y] can be written as

Cov[Y] = aI4 + b141′4. (2.115)

Give a and b in terms of σ2
B and σ2

E. (e) What are the mean and covariance matrix of

Y = (Y1 + · · ·+ Y4)/4?

Exercise 2.7.32. Suppose Y is a 5 × 4 data matrix, and

Yij = µ + Bi + γ + Eij for j = 1, 2, (2.116)

Yij = µ + Bi − γ + Eij for j = 3, 4, (2.117)

where the Bi’s are independent, each with mean zero and variance σ2
B, the Eij are

independent, each with mean zero and variance σ2
E’s, and the Bi’s are independent

of the Eij’s. (Thus each row of Y is distributed as the vector in Extra 2.7.31, for some
particular values of µj’s.) [Note: This model is an example of a randomized block
model, where the rows of Y represent the blocks. For example, a farm might be
broken into 5 blocks, and each block split into four plots, where two of the plots
(Yi1, Yi2) get one fertilizer, and two of the plots (Yi3, Yi4) get another fertilizer.] (a)
E[Y] = xβz′, where β = (µ, γ). Give x and z′. [The x and z contain known constants.]
(b) Are the rows of Y uncorrelated? (c) Find Cov[Y]. (d) Setting which parameter
equal to zero guarantees that all elements of Y have the same mean? (e) Setting
which parameter equal to zero guarantees that all elements of Y are uncorrelated?





Chapter 3

The Multivariate Normal Distribution

3.1 Definition

There are not very many commonly used multivariate distributions to model a data
matrix Y. The multivariate normal is by far the most common, at least for contin-
uous data. Which is not to say that all data are distributed normally, nor that all
techniques assume such. Rather, typically one either assumes normality, or makes
few assumptions at all and relies on asymptotic results.

The multivariate normal arises from the standard normal:

Definition 3.1. The random variable Z is standard normal, written Z ∼ N(0, 1), if it has
space R and pdf

φ(z) =
1√
2π

e−
1
2 z2

. (3.1)

It is not hard to show that if Z ∼ N(0, 1),

E[Z] = 0, Var[Z] = 1, and MZ(t) = e
1
2 t2

. (3.2)

Definition 3.2. The collection of random variables Z = (Z1, . . . , ZM) is a standard normal
collection if the Zi’s are mutually independent standard normal random variables.

Because the variables in a standard normal collection are independent, by (3.2),
(2.61) and (2.59),

E[Z] = 0, Cov[Z] = IM and MZ(t) = e
1
2 (t2

1+···+t2
M) = e

1
2 ‖t‖2

. (3.3)

The mgf is finite for all t.
A general multivariate normal distribution can have any (legitimate) mean and

covariance, achieved through the use of affine transformations. Here is the definition.

Definition 3.3. The collection Y is multivariate normal if it is an affine transformation of
a standard normal collection.

The mean and covariance of a multivariate normal can be calculated from the
coefficients in the affine transformation. In particular, suppose Z is a standard normal
collection represented as an 1 × M row vector, and Y is a 1 × N row vector

Y = µ+ ZB′, (3.4)

55
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where B is N × M and µ is 1 × N. From (3.3), (2.84) and (2.85),

µ = E[Y] and Σ = Cov[Y] = BB′. (3.5)

The mgf is calculated, for 1 × N vector s, as

MY(s) = E[exp(Ys′)]

= E[exp ((µ+ ZB′)s′)]

= exp(µs′)E[exp(Z(sB)′)]

= exp(µs′)MZ(sB)

= exp(µs′) exp(
1

2
‖sB‖2) by (3.3)

= exp(µs′ +
1

2
sBB′s′)

= exp(µs′ +
1

2
sΣs′) (3.6)

The mgf depends on B through only Σ = BB′. Because the mgf determines the
distribution (Theorem 2.1), two different B’s can produce the same distribution. That
is, as long as BB′ = CC′, the distribution of µ + ZB′ and µ + ZC′ are the same.
Which is to say that the distribution of the multivariate normal depends on only the
mean and covariance. Thus it is legitimate to write

Y ∼ NN(µ, Σ), (3.7)

which is read “Y has N-dimensional multivariate normal distribution with mean µ
and covariance Σ.”

For example, consider the two matrices

B =

(
1 2 1
0 3 4

)
and C =

( √
2 2

0 5

)
. (3.8)

It is not hard to show that

BB′ = CC′ =
(

6 10
10 25

)
≡ Σ. (3.9)

Thus if the Zi’s are independent N(0, 1),

(Z1, Z2, Z3)B
′ = (Z1 + 2Z2 + Z3, 3Z2 + 4Z3)

=D (
√

2Z1 + 2Z2, 5Z2)

= (Z1, Z2)C
′, (3.10)

i.e., both vectors are N(0, Σ). Note that the two expressions are based on differing
numbers of standard normals, not just different linear combinations.

Which µ and Σ are legitimate parameters in (3.7)? Any µ ∈ RN is. The covariance
matrix Σ can be BB′ for any N × M matrix B. Any such matrix B is considered a
square root of Σ. Clearly, Σ must be symmetric, but we already knew that. It must
also be nonnegative definite, which we define now.
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Definition 3.4. A symmetric q × q matrix A is nonnegative definite if

bAb′ ≥ 0 for all 1 × q vectors b. (3.11)

Also, A is positive definite if

bAb′
> 0 for all 1 × q vectors b 6= 0. (3.12)

Note that bBB′b′ = ‖bB‖2 ≥ 0, which means that Σ must be nonnegative definite.
But from (2.85),

bΣb′ = Cov[Yb′] = Var[Yb′] ≥ 0, (3.13)

because all variances are nonnegative. That is, any covariance matrix has to be non-
negative definite, not just multivariate normal ones.

So we know that Σ must be symmetric and nonnegative definite. Are there any
other restrictions, or for any symmetric nonnegative definite matrix is there a corre-
sponding B? In fact, there are potentially many square roots of Σ. These follow from
the spectral decomposition theorem, Theorem 1.1. Because Σ is symmetric, we can
write

Σ = ΓΛΓ
′, (3.14)

where Γ is orthogonal, and Λ is diagonal with diagonal elements λ1 ≥ λ2 ≥ · · · ≥
λN . Because Σ is nonnegative definite, the eigenvalues are nonnegative (Exercise
3.7.11), hence they have square roots. Consider

B = ΓΛ
1/2, (3.15)

where Λ
1/2 is the diagonal matrix with diagonal elements the λ1/2

j ’s. Then, indeed,

BB′ = ΓΛ
1/2

Λ
1/2

Γ
′ = ΓΛΓ

′ = Σ. (3.16)

That is, in (3.7), µ is unrestricted, and Σ can be any symmetric nonnegative definite

matrix. Note that C = ΓΛ
1/2

Ψ for any N × N orthogonal matrix Ψ is also a square

root of Σ. If we take Ψ = Γ
′, then we have the symmetric square root, ΓΛ

1/2
Γ
′.

If N = 1, then we have a normal random variable, say Y, and Y ∼ N(µ, σ2)
signifies that it has mean µ and variance σ2. If Y is a multivariate normal collection
represented as an n × q matrix, we write

Y ∼ Nn×q(µ, Σ) ⇔ row(Y) ∼ Nnq(row(µ), Σ). (3.17)

3.2 Some properties of the multivariate normal

Affine transformations of multivariate normals are also multivariate normal, because
any affine transformation of a multivariate normal collection is an affine transfor-
mation of an affine transformation of a standard normal collection, and an affine
transformation of an affine transformation is also an affine transformation. That is,
suppose Y ∼ Nq(µ, Σ), and W = c + YD′ for p × q matrix D and 1× p vector c. Then

we know that for some B with BB′ = Σ, Y = µ+ ZB′, where Z is a standard normal
vector. Hence

W = c + YD′ = c + (µ+ ZB′)D′ = µD′ + c + Z(B′D′), (3.18)
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and as in (3.4),

W ∼ Np(c +µD′, DBB′D′) = Np(c +µD′, DΣD′). (3.19)

Of course, the mean and covariance result we already knew from (2.84) and (2.85).
Because marginals are special cases of affine transformations, marginals of multi-

variate normals are also multivariate normal. One needs just to pick off the appro-
priate means and covariances. So if Y = (Y1, . . . , Y5) is N5(µ, Σ), and W = (Y2, Y5),
then

W ∼ N2

(
(µ2, µ5),

(
σ22 σ25
σ52 σ55

))
. (3.20)

In Section 2.4, we showed that independence of two random variables means that
their covariance is 0, but that a covariance of 0 does not imply independence. But,
with multivariate normals, it does. That is, if X is a multivariate normal collection,
and Cov[Xj, Xk] = 0, then Xj and Xk are independent. The next theorem generalizes
this independence to sets of variables.

Theorem 3.1. If W = (X, Y) is a multivariate normal collection, then Cov[X, Y] = 0 (see
Equation 2.46) implies that X and Y are independent.

Proof. For simplicity, we will assume the mean of W is 0. Let B (p × M1) and C
(q × M2) be matrices such that BB′ = Cov[X] and CC′ = Cov[Y], and Z = (Z1, Z2)
be a standard normal collection of M1 + M2 variables, where Z1 is 1 × M1 and Z2 is
1 × M2. By assumption on the covariances between the Xk’s and Yl’s, and properties
of B and C,

Cov[W] =

(
Cov[X] 0

0 Cov[Y]

)
=

(
BB′ 0

0 CC′

)
= AA′, (3.21)

where

A =

(
B 0
0 C

)
. (3.22)

Which shows that W has distribution given by ZA′. With that representation, we
have that X = Z1B′ and Y = Z2C′. Because the Zi’s are mutually independent, and
the subsets Z1 and Z2 do not overlap, Z1 and Z2 are independent, which means that
X and Y are independent.

The theorem can also be proved using mgf’s or pdf’s. See Exercises 3.7.14 and
8.8.12.

3.3 Multivariate normal data matrix

Here we connect the n × q data matrix Y (1.1) to the multivariate normal. Each row of
Y represents the values of q variables for an individual. Often, the data are modeled
considering the rows of Y as independent observations from a population. Letting Yi

be the ith row of Y, we would say that

Y1, . . . , Yn are independent and identically distributed (iid). (3.23)
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In the iid case, the vectors all have the same mean µ and covariance matrix Σ. Thus
the mean of the entire matrix M = E[Y] is

M =




µ

µ
...
µ


 . (3.24)

For the covariance of the Y, we need to string all the elements out, as in (2.45),
as (Y1, . . . , Yn). By independence, the covariance between variables from different
individuals is 0, that is, Cov[Yij, Ykl] = 0 if i 6= k. Each group of q variables from a

single individual has covariance Σ, so that Cov[Y] is block diagonal:

Ω = Cov[Y] =




Σ 0 · · · 0
0 Σ · · · 0
...

...
. . .

...
0 0 · · · Σ


 . (3.25)

Patterned matrices such as (3.24) and (3.25) can be more efficiently represented as
Kronecker products.

Definition 3.5. If A is a p × q matrix and B is an n × m matrix, then the Kronecker
product is the (np)× (mq) matrix A ⊗ B given by

A ⊗ B =




a11B a12B · · · a1qB
a21B a22B · · · a2qB

...
...

. . .
...

ap1B ap2B · · · apqB


 . (3.26)

Thus the mean in (3.24) and covariance matrix in (3.25) can be written as follows:

M = 1n ⊗µ and Ω = In ⊗ Σ. (3.27)

Recall that 1n is the n × 1 vector of all 1’s, and In is the n × n identity matrix. Now if
the rows of Y are iid multivariate normal, we write

Y ∼ Nn×q(1n ⊗µ, In ⊗ Σ). (3.28)

Often the rows are independent with common covariance Σ, but not necessarily hav-
ing the same means. Then we have

Y ∼ Nn×q(M, In ⊗ Σ). (3.29)

We have already seen examples of linear combinations of elements in the data
matrix. In (1.9) and (1.10), we had combinations of the form CY, where the matrix
multiplied Y on the left. The linear combinations are of the individuals within the
variable, so that each variable is affected in the same way. In (1.23), and for principal
components, the matrix is on the right: YD′. In this case, the linear combinations are
of the variables, with the variables for each individual affected the same way. More
generally, we have affine transformations of the form (2.80),

W = A + CYD′. (3.30)

Because W is an affine transformation of Y, it is also multivariate normal. When
Cov[Y] has the form as in (3.29), then so does W.
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Proposition 3.1. If Y ∼ Nn×q(M, H ⊗ Σ) and W = A + CYD′, where C is m × n, D is
p × q, and A is m × p, then

W ∼ Nm×p(A + CMD′, CHC′ ⊗ DΣD′). (3.31)

The mean part follows directly from the second part of (2.84). For the covari-
ance, we need some facts about Kronecker products, proofs of which are tedious but
straightforward. See Exercises 3.7.16 to 3.7.17.

Proposition 3.2. Presuming the matrix operations make sense and the inverses exist,

(A ⊗ B)′ = A′ ⊗ B′ (3.32a)

(A ⊗ B)(C ⊗ D) = (AC)⊗ (BD) (3.32b)

(A ⊗ B)−1 = A−1 ⊗ B−1 (3.32c)

row(CYD′) = row(Y)(C ⊗ D)′ (3.32d)

trace(A ⊗ B) = trace(A) trace(B) (3.32e)

|A ⊗ B| = |A|b|B|a, (3.32f)

where in the final equation, A is a × a and B is b × b. If Cov[U] = A ⊗ B, then

Var[Uij] = aiibjj, more generally, (3.33a)

Cov[Uij, Ukl ] = aikbjl (3.33b)

Cov[ith row of U] = aii B (3.33c)

Cov[jth column of U] = bjj A. (3.33d)

To prove the covariance result in Proposition 3.1, write

Cov[CYD′] = Cov[row(Y)(C′ ⊗ D′)] by (3.32d)

= (C′ ⊗ D′)′Cov[row(Y)](C′ ⊗ D′) by (2.85)

= (C ⊗ D)(H ⊗ Σ)(C′ ⊗ D′) by (3.32a)

= CHC′ ⊗ DΣD′ by (3.32b), twice. (3.34)

One direct application of the proposition is the sample mean in the iid case (3.28),
so that Y ∼ Nn×q(1n ⊗µ, In ⊗ Σ). Then from (1.9),

Y =
1

n
1′nY, (3.35)

so we can use Proposition 3.1 with C = 1
n 1′n, D′ = Iq, and A = 0. Thus

Y ∼ Nq((
1

n
1′n1n)⊗µ, (

1

n
1′n)In(

1

n
1′n)

′ ⊗ Σ) = Nq(µ,
1

n
Σ), (3.36)

since (1/n)1′n1n = 1, and c ⊗ A = cA if c is a scalar. This result should not be
surprising because it is the analog of the univariate result that Y ∼ N(µ, σ2/n).
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3.4 Conditioning in the multivariate normal

We start here with X being a 1 × p vector and Y being a 1 × q vector, then specialize
to the data matrix case at the end of this section. If (X, Y) is multivariate normal, then
the conditional distributions of Y given X = x are multivariate normal as well. Let

(X, Y) ∼ Np+q

(
(µX ,µY),

(
ΣXX ΣXY
ΣYX ΣYY

))
. (3.37)

Rather than diving in to joint densities, as in (2.23), we start by predicting the vector
Y from X with an affine transformation. That is, we wish to find α, 1 × q, and β,
p × q, so that

Y ≈ α+ Xβ. (3.38)

We use the least squares criterion, which is is to find (α,β) to minimize

q(α,β) = E[‖Y −α− Xβ‖2]. (3.39)

We start by noting that if the 1 × q vector W has finite covariance matrix, then

E[‖W − c‖2] is uniquely minimized over c ∈ Rq by c = E[W]. See Exercise (3.7.20).
Letting W = Y − Xβ, we have that fixing β, q(α,β) is minimized over α by taking

α = E[Y − Xβ] = µY −µXβ. (3.40)

Using that α in (3.39), we now want to minimize

q(µY −µXβ,β) = E[‖Y − (µY −µXβ)− Xβ‖2] = E[‖(Y −µY)− (X −µX)β‖2]
(3.41)

over β. Using the trick that for a row vector z, ‖z‖2 = trace(z′z), and letting X∗ =
X −µX and Y∗ = Y −µY, we can write (3.41) as

E[trace((Y∗ − X∗β)′(Y∗ − X∗β))] = trace(E[(Y∗ − X∗β)′(Y∗ − X∗β))])

= trace(ΣYY − ΣYXβ− β′
ΣXY + β′

ΣXXβ). (3.42)

Now we complete the square. That is, we want to find β∗ so that

ΣYY − ΣYXβ− β′
ΣXY + β′

ΣXXβ = (β− β∗)′ΣXX(β − β∗) + ΣYY − β∗′
ΣXXβ

∗.
(3.43)

Matching, we must have that β′
ΣXXβ

∗ = β′
ΣXY, so that if ΣXX is invertible, we need

that β∗ = Σ
−1
XXΣXY. Then the trace of the expression in (3.43) is minimized by taking

β = β∗, since that sets to 0 the part depending on β, and you can’t do better than
that. Which means that (3.39) is minimized with

β = Σ
−1
XXΣXY, (3.44)

and α in (3.40). The minimum of (3.39) is the trace of

ΣYY − β′
ΣXXβ = ΣYY − ΣYXΣ

−1
XXΣXY. (3.45)

The prediction of Y is then α + Xβ. Define the residual to be the error in the
prediction:

R = Y −α− Xβ. (3.46)
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Next step is to find the joint distribution of (X, R). Because it is an affine transforma-
tion of (X, Y), the joint distribution is multivariate normal, hence we just need to find
the mean and covariance matrix. The mean of X we know is µX , and the mean of R
is 0, from (3.40). The transform is

(
X R

)
=
(

X Y
) ( Ip −β

0 Iq

)
+
(

0 −α
)

, (3.47)

hence

Cov[
(

X R
)
] =

(
Ip 0

−β′ Iq

)(
ΣXX ΣXY
ΣYX ΣYY

)(
Ip −β
0 Iq

)

=

(
ΣXX 0

0 ΣYY·X

)
(3.48)

where
ΣYY·X = ΣYY − ΣYXΣ

−1
XXΣXY, (3.49)

the minimizer in (3.45).
Note the zero in the covariance matrix. Because we have multivariate normality, X

and R are thus independent, and

R ∼ Nq(0, ΣYY·X). (3.50)

Using the plug-in formula with independence, (2.63), so that

Y | X = x = α+ xβ + R, (3.51)

leads to the next result.

Proposition 3.3. If (X, Y) is multivariate normal as in (3.37), and ΣXX invertible, then

Y | X = x ∼ N(α+ xβ, ΣYY·X), (3.52)

where α is given in (3.40), β is given in (3.44), and the conditional covariance matrix is
given in (3.49).

The conditional distribution is particularly nice:

• It is multivariate normal;

• The conditional mean is an affine transformation of x;

• It is homoskedastic, that is, the conditional covariance matrix does not depend on
x.

These properties are the typical assumptions in linear regression.

Conditioning in a multivariate normal data matrix

So far we have looked at just one X/Y vector, whereas data will have a number of
such vectors. Stacking these vectors into a data matrix, we have the distribution as in
(3.29), but with an X matrix as well. That is, let X be n × p and Y be n × q, where

(
X Y

)
∼ Nn×(p+q)

((
MX MY

)
, In ⊗

(
ΣXX ΣXY
ΣYX ΣYY

))
. (3.53)
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The conditional distribution of Y given X = x can be obtained by applying Proposi-
tion 3.3 to (row(X), row(Y)), whose distribution can be written

(
row(X) row(Y)

)
∼ Nnp+nq

((
row(MX) row(MY)

)
,

(
In ⊗ ΣXX In ⊗ ΣXY
In ⊗ ΣYX In ⊗ ΣYY

))
. (3.54)

See Exercise 3.7.22. We again have the same β, but α is a bit expanded (it is n × q):

α = MY − MXβ, β = Σ
−1
XXΣXY. (3.55)

With R = Y −α− Xβ, we obtain that X and R are independent, and

Y | X = x ∼ Nn×q(α+ xβ, In ⊗ ΣYY·X). (3.56)

3.5 The sample covariance matrix: Wishart distribution

Consider the iid case (3.28), Y ∼ Nn×q(1n ⊗µ, In ⊗ Σ). The sample covariance matrix
is given in (1.17) and (1.15),

S =
1

n
W, W = Y′HnY, Hn = In −

1

n
1n1′n. (3.57)

See (1.12) for the centering matrix, Hn. Here we find the joint distribution of the

sample mean Y and W. The marginal distribution of the sample mean is given in
(3.36). Start by looking at the mean and the deviations together:

(
Y

HnY

)
=

(
1
n 1′n
Hn

)
Y. (3.58)

Thus they are jointly normal. The mean of the sample mean is µ, and the mean of
the deviations HnY is Hn1n ⊗ µ = 0. (Recall Exercise 1.9.1.) The covariance is given
by

Cov

[(
Y

HnY

)]
=

(
1
n 1′n
Hn

) (
1
n 1n Hn

)
⊗ Σ

=

(
1
n 0
0 Hn

)
⊗ Σ. (3.59)

The zeroes in the covariance show that Y and HnY are independent (as they are in

the familiar univariate case), implying that Y and W are independent. Also,

U ≡ HnY ∼ N(0, Hn ⊗ Σ). (3.60)

Because Hn is idempotent, W = Y′HnY = U′U. At this point, instead of trying to
figure out the distribution of W, we define it to be what it is. Actually, Wishart [1928]
did this a while ago. Next is the formal definition.
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Definition 3.6 (Wishart distribution). If Z ∼ Nν×p(0, Iν ⊗ Σ), then Z′Z is Wishart on ν
degrees of freedom, with parameter Σ, written

Z′Z ∼ Wishartp(ν, Σ). (3.61)

The difference between the distribution of U and the Z in the definition is the
former has Hn where we would prefer an identity matrix. We can deal with this issue
by rotating the Hn. We need its spectral decomposition. More generally, suppose J is
an n × n symmetric and idempotent matrix, with spectral decomposition (Theorem
1.1) J = ΓΛΓ

′, where Γ is orthogonal and Λ is diagonal with nondecreasing diagonal
elements. Because it is idempotent, JJ = J, hence

ΓΛΓ
′ = ΓΛΓ

′
ΓΛΓ

′ = ΓΛΛΓ
′, (3.62)

so that Λ = Λ
2, or λi = λ2

i for the eigenvalues i = 1, . . . , n. That means that each of
the eigenvalues is either 0 or 1. If matrices A and B have the same dimensions, then

trace(AB′) = trace(B′A). (3.63)

See Exercise 3.7.5. Thus

trace(J) = trace(ΛΓ
′
Γ) = trace(Λ) = λ1 + · · ·+ λn, (3.64)

which is the number of eigenvalues that are 1. Because the eigenvalues are ordered
from largest to smallest, λ1 = · · · = λtrace(J) = 1, and the rest are 0. Hence the

following result.

Lemma 3.1. Suppose J, n × n, is symmetric and idempotent. Then its spectral decomposition
is

J =
(

Γ1 Γ2
) ( Ik 0

0 0

)(
Γ
′
1

Γ
′
2

)
= Γ1Γ

′
1, (3.65)

where k = trace(J), Γ1 is n × k, and Γ2 is n × (n − k).

Now suppose
U ∼ N(0, J ⊗ Σ), (3.66)

for J as in the lemma. Letting Γ = (Γ1, Γ2) in (3.65), we have E[Γ′U] = 0 and

Cov[Γ′U] = Cov

[(
Γ
′
1U

Γ
′
2U

)]
=

(
Ik 0
0 0

)
⊗ Σ. (3.67)

Thus Γ
′
2U has mean and covariance zero, hence it must be zero itself (with probability

one). That is,

U′U = U′
ΓΓ

′U = U′
Γ1Γ

′
1U + U′

Γ2Γ
′
2U = U′

Γ1Γ
′
1U. (3.68)

By (3.66), and since J = Γ1Γ
′
1 in (3.65),

Γ
′
1U ∼ N(0, Γ

′
1Γ1Γ

′
1Γ1 ⊗ Σ) = N(0, Ik ⊗ Σ). (3.69)

Now we can apply the Wishart definition (3.61) to Γ
′
1U, to obtain the next result.

Corollary 3.1. If U ∼ Nn×p(0, J⊗Σ) for idempotent J, then U′U ∼ Wishartp(trace(J), Σ).



3.6. Properties of the Wishart 65

To apply the corollary to W = Y′HnY in (3.57), by (3.60), we need only the trace
of Hn:

trace(Hn) = trace(In)−
1

n
trace(1n1′n) = n − 1

n
(n) = n − 1. (3.70)

Thus

W ∼ Wishartq(n − 1, Σ). (3.71)

3.6 Some properties of the Wishart

In this section we present some useful properties of the Wishart. The density is
derived later in Section 8.7, and a conditional distribution is presented in Section 8.2.

Mean

Letting Z1, . . . , Zν be the rows of Z in Definition 3.6, we have that

Z′Z = Z′
1Z1 + · · ·+ Z′

νZν ∼ Wishartq(ν, Σ). (3.72)

Each Zi ∼ N1×q(0, Σ), so E[Z′
iZi] = Cov[Zi] = Σ. Thus

E[W] = νΣ. (3.73)

In particular, for the S in (3.57), because ν = n − 1, E[S] = ((n − 1)/n)Σ, so that an
unbiased estimator of Σ is

Σ̂ =
1

n − 1
Y′HnY. (3.74)

Sum of independent Wisharts

If

W1 ∼ Wishartq(ν1, Σ) and W2 ∼ Wishartq(ν2, Σ), (3.75)

and W1 and W2 are independent, then W1 + W2 ∼ Wishartq(ν1 + ν2, Σ). This fact
can be easily shown by writing each as in (3.72), then summing.

Chi-squares

If Z1, . . . , Zν are independent N(0, σ2)’s, then

W = Z2
1 + · · ·+ Z2

ν (3.76)

is said to be “chi-squared on ν degrees of freedom with scale σ2,” written W ∼ σ2χ2
ν.

(If σ2 = 1, we call it just “chi-squared on ν degrees of freedom.”) If q = 1 in the

Wishart (3.72), the Zi’s in (3.72) are one-dimensional, i.e., N(0, σ2)’s, hence

Wishart1(ν, σ2) = σ2χ2
ν. (3.77)
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Linear transformations

If Z ∼ Nν×q(0, Iν ⊗ Σ), then for p × q matrix A, ZA′ ∼ Nν×p(0, Iν ⊗ AΣA′). Using
the definition of Wishart (3.61),

AZ′ZA′ ∼ Wishartp(ν, AΣA′), (3.78)

i.e.,
AWA′ ∼ Wishartp(ν, AΣA′). (3.79)

Marginals

Because marginals are special cases of linear transformations, central blocks of a
Wishart are Wishart. E.g., if W11 is the upper-left p × p block of W, then W11 ∼
Wishartp(ν, Σ11), where Σ11 is the upper-left block of Σ. See Exercise 3.7.34. A special

case of such marginal is a diagonal element, Wii, which is Wishart1(ν, σii), i.e., σiiχ
2
ν.

Furthermore, if Σ is diagonal, then the diagonals of W are independent because the
corresponding normals are.

3.7 Exercises

Exercise 3.7.1. Verify the calculations in (3.9).

Exercise 3.7.2. Find the matrix B for which W ≡ (Y2, Y5) = (Y1, . . . , Y5)B, and verify
(3.20).

Exercise 3.7.3. Verify (3.42).

Exercise 3.7.4. Verify the covariance calculation in (3.59).

Exercise 3.7.5. Suppose that A and B are both n × p matrices. Denote the elements
of A by aij, and of B by bij. (a) Give the following in terms of those elements: (AB′)ii

(the ith diagonal element of the matrix AB′); and (B′A)jj (the jth diagonal element of

the matrix B′A). (b) Using the above, show that trace(AB′) = trace(B′A).

Exercise 3.7.6. Show that in (3.69), Γ
′
1Γ1 = Ik.

Exercise 3.7.7. Explicitly write the sum of W1 and W2 as in (3.75) as a sum of Z′
iZi’s

as in (3.72).

Exercise 3.7.8. Suppose W ∼ σ2χ2
ν from (3.76), that is, W = Z2

1 + · · ·+ Z2
ν , where the

Zi’s are independent N(0, σ2)’s. This exercise shows that W has pdf

fW(w | ν, σ2) =
1

Γ( ν
2 )(2σ2)ν/2

w
ν
2 −1e−w/(2σ2), w > 0. (3.80)

It will help to know that U has the Gamma(α, λ) density if α > 0, λ > 0, and

fU(u | α, λ) =
1

Γ(α)λα
xα−1e−λx for x > 0. (3.81)

The Γ function is defined in (2.96). (It is the constant needed to have the pdf integrate
to one.) We’ll use moment generating functions. Working directly with convolutions
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is another possibility. (a) Show that the moment generating function of U in (3.81) is

(1− λt)−α when it is finite. For which t is the mgf finite? (b) Let Z ∼ N(0, σ2), so that

Z2 ∼ σ2χ2
1. Find the moment generating function for Z2. [Hint: Write E[exp(tZ2)] as

an integral using the pdf of Z, then note the exponential term in the integrand looks
like a normal with mean zero and some variance, but without the constant. Thus the
integral over that exponential is the reciprocal of the constant.] (c) Find the moment
generating function for W. (See Exercise 2.7.21.) (d) W has a gamma distribution.
What are the parameters? Does this gamma pdf coincide with (3.80)? (e) [Aside] The

density of Z2 can be derived by writing

P[Z2 ≤ w] =
∫ √

w

−√
w

fZ(z)dz, (3.82)

then taking the derivative. Match the result with the σ2χ2
1 density found above. What

is Γ( 1
2 )?

Exercise 3.7.9. The balanced one-way random effects model in analysis of variance
has

Yij = µ + Ai + eij, i = 1, . . . , g; j = 1, . . . , r, (3.83)

where the Ai’s are iid N(0, σ2
A) and the eij’s are iid N(0, σ2

e ), and the eij’s are inde-
pendent of the Ai’s. Let Y be the g × r matrix of the Yij’s. Show that

Y ∼ Ng×r(M, Ig ⊗ Σ), (3.84)

and give M and Σ in terms of the µ, σ2
A and σ2

e .

Exercise 3.7.10. The double exponential random variable U has density

f (u) =
1

2
e−|u|, u ∈ R. (3.85)

It has mean 0, variance 2, and moment generating function M(t) = 1/(1 − t2) for
|t| < 1. Suppose U and V are independent double exponentials, and let

X1 = 5U, X2 = 4U + 2V. (3.86)

(a) Find the covariance matrix of X = (X1, X2). (b) Find the symmetric positive defi-

nite square root of the covariance matrix. Call it A. Let Y = (Y1, Y2) = (U, V)A/
√

2.
(c) Do X and Y have the same mean? (d) Do X and Y have the same covariance
matrix? (e) Are X and Y both linear combinations of independent double exponen-
tials? (f) Do X and Y have the same distribution? [Look at their moment generating
functions.] (g) [Extra credit] Derive the mgf of the double exponential.

Exercise 3.7.11. Suppose Ω is a q × q symmetric matrix with spectral decomposition
(Theorem 1.1) ΓΛΓ

′. (a) Show that Ω is nonnegative definite if and only if λi ≥ 0 for

all i = 1, . . . , q. [Hint: Suppose it is nonnegative definite. Let γi be the ith column of
Γ, and look at γ ′i Ωγi. What can you say about λi? The other way, suppose all λi ≥ 0.

Consider bΩb′, and let w = bΓ. Write bΩb′ in terms of w and the λi.] (b) Show
that Ω is positive definite if and only if λi > 0 for all i = 1, . . . , q. (c) Show that Ω is
invertible if and only if λi 6= 0 for all i = 1, . . . , q. What is the spectral decomposition

of Ω
−1 if the inverse exists?
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Exercise 3.7.12. Extend Theorem 3.1: Show that if W = (Y1, . . . , Yg) is a multivariate
normal collection, then Cov[Yi, Yj] = 0 for each i 6= j implies that Y1, . . . , Yg are
mutually independent.

Exercise 3.7.13. Given the random vector (X, Y, Z), answer true or false to the fol-
lowing questions: (a) Pairwise independence implies mutual independence. [This
question is the same as Exercise 2.7.28(a).] (b) Pairwise independence and multi-
variate normality implies mutual independence. (c) Conditional independence of X
and Y given Z implies that X and Y are unconditionally independent. (d) (X, Y, Z)
multivariate normal implies (1, X, Y, Z) is multivariate normal.

Exercise 3.7.14. Let X be 1 × p and Y be 1 × q, where

(X, Y) ∼ N1×(p+q)

(
(µX ,µY),

(
ΣXX 0

0 ΣYY

))
, (3.87)

so that Cov(X) = ΣXX, Cov(Y) = ΣYY, and Cov(X, Y) = 0. Using moment generating
functions, show that X and Y are independent.

Exercise 3.7.15. True/false questions: (a) If A and B are identity matrices, then A⊗ B
is an identity matrix. (b) If A and B are orthogonal, then A ⊗ B is orthogonal. (c)
If A is orthogonal and B is not orthogonal, then A ⊗ B is orthogonal. (d) If A and
B are diagonal, then A ⊗ B is diagonal. (e) If A and B are idempotent, then A ⊗ B
is idempotent. (f) If A and B are permutation matrices, then A ⊗ B is a permutation
matrix. (A permutation matrix is a square matrix with exactly one 1 in each row, one
1 in each column, and 0’s elsewhere.) (g) If A and B are upper triangular, then A ⊗ B
is upper triangular. (An upper triangular matrix is a square matrix whose elements
below the diaginal are 0. I.e., if A is upper triangular, then aij = 0 if i > j.) (h) If A is
upper triangular and B is not upper triangular, then A ⊗ B is upper triangular. (i) If
A is not upper triangular and B is upper triangular, then A ⊗ B is upper triangular.
(j) If A and C have the same dimensions, and B and D have the same dimensions,
then A ⊗ B + C ⊗ D = (A + C)⊗ (B + D). (k) If A and C have the same dimensions,
then A ⊗ B + C ⊗ B = (A + C)⊗ B. (l) If B and D have the same dimensions, then
A ⊗ B + A ⊗ D = A ⊗ (B + D).

Exercise 3.7.16. Prove (3.32a), (3.32b) and (3.32c).

Exercise 3.7.17. Take C, Y and D to all be 2 × 2. Show (3.32d) explicitly.

Exercise 3.7.18. Suppose A is a × a and B is b × b. (a) Show that (3.32e) for the
trace of A ⊗ B holds. (b) Show that (3.32f) determinant of A ⊗ B holds. [Hint: Write
A ⊗ B = (A ⊗ Ib)(Ia ⊗ B). You can use the fact that the determinant of a product is
the product of the determinants. For |Ia ⊗ B|, permutate the rows and columns so it
looks like |B ⊗ Ia|.]

Exercise 3.7.19. Suppose the spectral decompositions of A and B are A = GLG′ and
B = HKH′. Is the equation

A ⊗ B = (G ⊗ H)(L ⊗ K)(G ⊗ H)′ (3.88)

the spectral decomposition of A ⊗ B? If not, what is wrong, and how can it be fixed?
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Exercise 3.7.20. Suppose W is a 1 × q vector with finite covariance matrix. Show that

q(c) = ‖W − c‖2 is minimized over c ∈ Rq by c = E[W], and the minimum value is
q(E[W]) = trace(Cov[W]). [Hint: Write

q(c) = E[‖(W − E[W])− (E[W]− c)‖2]

= E[‖W − E[W]‖2] + 2E[(W − E[W])(E[W]− c)] + E[‖E[W]− c‖2] (3.89)

= E[‖W − E[W]‖2] + E[‖E[W]− c‖2]. (3.90)

Show that the middle (cross-product) term in line (3.89) is zero (E[W] and c are
constants), and argue that the second term in line (3.90) is uniquely minimized by
c = E[W]. (No need to take derivatives.)]

Exercise 3.7.21. Verify the matrix multiplication in (3.48).

Exercise 3.7.22. Suppose (X, Y) is as in (3.53). (a) Show that (3.54) follows. [Be
careful about the covariance, since row(X, Y) 6= (row(X), row(Y)) if n > 1.] (b)
Apply Proposition 3.3 to (3.54) to obtain

row(Y) | row(X) = row(x) ∼ Nnq(α
∗ + row(x)β∗, Σ

∗
YY·X), (3.91)

where

α∗ = row(µY)− row(µX)β
∗, β∗ = In ⊗ β, Σ

∗
YY·X = In ⊗ ΣYY·X. (3.92)

What are β and ΣYY·X? (c) Use Proposition 3.2 to derive (3.56) from part (b).

Exercise 3.7.23. Suppose (X, Y, Z) is multivariate normal with covariance matrix

(X, Y, Z) ∼ N


(0, 0, 0),




5 1 2
1 5 2
2 2 3




 (3.93)

(a) What is the correlation of X and Y? Consider the conditional distribution of
(X, Y)|Z = z. (b) Give the conditional covariance matrix, Cov[(X, Y)|Z = z]. (c)
The correlation from that matrix is the condition correlation of X and Y given Z = z,
sometimes called the partial correlation. What is the conditional correlation in this
case? (d) If the conditional correlation between two variables given a third variable is
negative, is the marginal correlation between those two necessarily negative?

Exercise 3.7.24. Now suppose

(X, Y, Z) ∼ N


(0, 0, 0),




5 1 c
1 5 2
c 2 3




 . (3.94)

Find c so that the conditional correlation between X and Y given Z = z is 0 (so that
X and Y are conditionally independent, because of their normality).

Exercise 3.7.25. Let Y | X = x ∼ N(0, x2) and X ∼ N(2, 1). (a) Find E[Y] and Var[Y].
(b) Let Z = Y/X. What is the conditional distribution of Z | X = x? Is Z independent
of X? What is the marginal distribution of Z? (c) What is the conditional distribution
of Y | |X| = r?
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Exercise 3.7.26. Suppose that conditionally, (Y1, Y2) | X = x are iid N(α + βx, 10),
and that marginally, E[X] = Var[X] = 1. (The X is not necessarily normal.) (a) Find
Var[Yi], Cov[Y1, Y2], and the (unconditional) correlation between Y1 and Y2. (b) What
is the conditional distribution of Y1 + Y2 | X = x? Is Y1 + Y2 independent of X? (c)
What is the conditional distribution of Y1 − Y2 | X = x? Is Y1 − Y2 independent of X?

Exercise 3.7.27. This question reverses the conditional distribution in a multivariate
normal, without having to use Bayes’ formula. Suppose conditionally Y |X = x ∼
N(α+ xβ, Σ), and marginally X ∼ N(µX , ΣXX), where Y is 1 × q and X is 1 × p. (a)
Show that (X, Y) is multivariate normal, and find its mean vector, and show that

Cov[(X Y)] =

(
ΣXX ΣXXβ

β′
ΣXX Σ + β′

ΣXXβ

)
. (3.95)

[Hint: Show that X and Y −α− Xβ are independent normals, and find the A so that
(X, Y) = (X, Y −α− Xβ)A.] (b) Show that the conditional distribution X | Y = y is
multivariate normal with mean

E[X |Y = y] = µX + (y −α−µXβ)(Σ + β′
ΣXXβ)

−1β′
ΣXX, (3.96)

and
Cov[X |Y = y] = ΣXX − ΣXX(Σ +β′

ΣXXβ)
−1

ΣXX . (3.97)

(You can assume any covariance that needs to be invertible is invertible.)

Exercise 3.7.28 (Bayesian inference). A Bayesian approach to estimating the normal
mean vector, when the covariance matrix is known, is to set

Y |µ = m ∼ N1×q(m, Σ) and µ ∼ N1×q(µ0, Σ0), (3.98)

where Σ, µ0, and Σ0 are known. That is, the mean vector µ is a random variable,
with a multivariate normal prior. (a) Use Exercise 3.7.27 to show that the posterior
distribution of µ, i.e., µ given Y = y, is multivariate normal with

E[µ | Y = y] = (yΣ
−1 +µ0Σ

−1
0 )(Σ−1 + Σ

−1
0 )−1, (3.99)

and
Cov[µ | Y = y] = (Σ−1 + Σ

−1
0 )−1. (3.100)

Thus the posterior mean is a weighted average of the data y and the prior mean, with
weights inversely proportional to their respective covariance matrices. [Hint: What
are the α and β in this case? It takes some matrix manipulations to get the mean and
covariance in the given form.] (b) Show that the marginal distribution of Y is

Y ∼ N1×q(µ0, Σ + Σ0). (3.101)

[Hint: See (3.95).][Note that the inverse of the posterior covariance is the sum of
the inverses of the conditional covariance of Y and the prior covariance, while the
marginal covariance of the Y is the sum of the conditional covariance of Y and the

prior covariance.] (c) Replace Y with Y, the sample mean of n iid vectors, so that

Y |µ = m ∼ N(m, Σ/n). Keep the same prior on µ. Find the posterior distribution of

µ given the Y = y. (d) For the situation in part (c), consider the posterior distribution

of
√

n(µ − y) given Y = y. What are the posterior mean and covariance matrix,
approximately, when n is large?
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Exercise 3.7.29 (Bayesian inference). Consider a matrix version of Exercise 3.7.28, i.e.,

Y |µ = m ∼ Np×q(m, K−1 ⊗ Σ) and µ ∼ Np×q(µ0, K−1
0 ⊗ Σ), (3.102)

where K, Σ, µ0 and K0 are known, and the covariance matrices are invertible. [So if Y
is a sample mean vector, K would be n, and if Y is β̂ from multivariate regression, K
would be x′x.] Notice that the Σ is the same in the conditional distribution of Y and
in the prior. Show that the posterior distribution of µ is multivariate normal, with

E[µ | Y = y] = (K + K0)
−1(Ky + K0µ0), (3.103)

and
Cov[µ | Y = y] = (K + K0)

−1 ⊗ Σ. (3.104)

[Hint: Use (3.99) and (3.100) on row(Y) and row(µ), then use properties of Kronecker
products, e.g., (3.32d) and Exercise 3.7.15 (l).]

Exercise 3.7.30. Suppose X is n × p, Y is n × q, and

(
X Y

)
∼ N

((
MX MY

)
, In ⊗

(
ΣXX ΣXY
ΣYX ΣYY

))
. (3.105)

Let
R = Y − XC′ − D (3.106)

for some matrices C and D. Instead of using least squares as in Section 3.4, here
we try to find C and D so that the residuals have mean zero and are independent
of X. (a) What are the dimensions of R, C and D? (b) Show that (X, R) is an affine
transformation of (X, Y). That is, find A and B so that

(X, R) = A + (X, Y)B′. (3.107)

(c) Find the distribution of (X, R). (d) What must C be in order for X and R to be
independent? (You can assume ΣXX is invertible.) (e) Using the C found in part (d),
find Cov[R]. (It should be In ⊗ ΣYY·X.) (f) Sticking with the C from parts (d) and (e),
find D so that E[R] = 0. (g) Using the C and D from parts (d), (e), (f), what is the
distribution of R? The distribution of R′R?

Exercise 3.7.31. Let Y ∼ Nn×p(M, In ⊗ Σ). Suppose K is an n × n symmetric idem-

potent matrix with trace(K) = k, and that KM = 0. Show that Y′KY is Wishart, and
give the parameters.

Exercise 3.7.32. Suppose Y ∼ N(xβz′, In ⊗ Σ), where x is n × p, and

z =




1 −1 1
1 0 −2
1 1 1


 . (3.108)

(a) Find C so that E[YC′] = xβ. (b) Assuming that x′x is invertible, what is the dis-

tribution of QxYC′, where Qx = In − x(x′x)−1x′? (Is Qx idempotent? Such matrices
will appear again in equation 5.20.) (c) What is the distribution of CY′QxYC′?



72 Chapter 3. Multivariate Normal

Exercise 3.7.33. Here, W ∼ Wishartp(n, Σ). (a) Is E[trace(W)] = n trace(Σ)? (b)

Are the diagonal elements of W independent? (c) Suppose Σ = σ2Ip. What is the
distribution of trace(W)?

Exercise 3.7.34. Suppose W ∼ Wishartp+q(ν, Σ), where W and Σ are partitioned as

W =

(
W11 W12
W21 W22

)
and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
(3.109)

where W11 and Σ11 are p × p, etc. (a) What matrix A in (3.79) is used to show
that W11 ∼ Wishartp(ν, Σ11)? (b) Argue that if Σ12 = 0, then W11 and W22 are
independent.

Exercise 3.7.35. Suppose Z = (Z1, Z2) ∼ N1×2(0, I2). Let (θ, R) be the polar coordi-
nates, so that

Z1 = R cos(θ) and Z2 = R sin(θ). (3.110)

In order for the transformation to be one-to-one, remove 0 from the space of Z. Then
the space of (θ, R) is [0, 2π) × (0, ∞). The question is to derive the distribution of
(θ, R). (a) Write down the density of Z. (b) Show that the Jacobian of the transforma-
tion is r. (c) Find the density of (θ, R). What is the marginal distribution of θ? What
is the marginal density of R? Are R and θ independent? (d) Find the distribution
function FR(r) for R. (e) Find the inverse function of FR. (f) Argue that if U1 and U2
are independent Uniform(0, 1) random variables, then

√
−2 log(U2)×

(
cos(2πU1) sin(2πU1)

)
∼ N1×2(0, I2). (3.111)

Thus we can generate two random normals from two random uniforms. Equation
(3.111) is called the Box-Muller transformation [Box and Muller, 1958] [Hint: See
Exercise 2.7.29.] (g) Find the pdf of W = R2. What is the distribution of W? Does it
check with (3.80)?



Chapter 4

Linear Models on Both Sides

This chapter presents some basic types of linear model. We start with the usual
linear model, with just one Y-variable. Multivariate regression extends the idea to
several variables, placing the same model on each variable. We then introduce linear
models that model the variables within the observations, basically reversing the roles
of observations and variables. Finally, we introduce the both-sides model, which
simultaneously models the observations and variables. Subsequent chapters present
estimation and hypothesis testing for these models.

4.1 Linear regression

Section 3.4 presented conditional distributions in the multivariate normal. Interest
was in the effect of one set of variables, X, on another set, Y. Conditional on X = x,
the distribution of Y was normal with the mean being a linear function of x, and
the covariance being independent of x. The normal linear regression model does
not assume that the joint distribution of (X, Y) is normal, but only that given x, Y is
multivariate normal. Analysis is carried out considering x to be fixed. In fact, x need
not be a realization of a random variable, but a quantity fixed by the researcher, such
as the dose of a drug or the amount of fertilizer.

The multiple regression model uses the data matrix (x, Y), where x is n × p and is
lower case to emphasize that those values are fixed, and Y is n × 1. That is, there are
p variables in x and a single variable in Y. In Section 4.2, we allow Y to contain more
than one variable.

The model is

Y = xβ+ R, where β is p × 1 and R ∼ Nn×1(0, σ2
RIn). (4.1)

Compare this to (3.51). The variance σ2
R plays the role of σYY·X. The model (4.1)

assumes that the residuals Ri are iid N(0, σ2
R).

Some examples follow. There are thousands of books on linear regression and
linear models. Scheffé [1999] is the classic theoretical reference, and Christensen
[2002] provides a more modern treatment. A fine applied reference is Weisberg [2005].

73
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Simple linear regression

One may wish to assess the relation between height and weight, or between choles-
terol level and percentage of fat in the diet. A linear relation would be cholesterol =
α + β( f at) + residual, so one would typically want both an intercept α and a slope β.
Translating this model to (4.1), we would have p = 2, where the first column contains
all 1’s. That is, if x1, . . . , xn are the values of the explanatory variable (fat), the model
would be 



Y1
Y2
...

Yn


 =




1 x1
1 x2
...

...
1 xn




(
α
β

)
+




R1
R2
...

Rn


 . (4.2)

Multiple regression would add more explanatory variables, e.g., age, blood pres-
sure, amount of exercise, etc., each one being represented by its own column in the x
matrix.

Analysis of variance

In analysis of variance, observations are classified into different groups, and one
wishes to compare the means of the groups. If there are three groups, with two
observations in each group, the model could be




Y1
Y2
Y3
Y4
Y5
Y6




=




1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1







µ1
µ2
µ3


+ R. (4.3)

Other design matrices x yield the same model (See Section 5.6), e.g., we could just as
well write 



Y1
Y2

Y3
Y4
Y5
Y6




=




1 2 −1
1 2 −1
1 −1 2
1 −1 2
1 −1 −1
1 −1 −1







µ
α
β


+ R, (4.4)

where µ is the grand mean, and α and β represent differences among the means.
More complicated models arise when observations are classified in multiple ways,
e.g., sex, age, and ethnicity.

Analysis of covariance

It may be that the main interest is in comparing the means of groups as in analysis
of variance, but there are other variables that potentially affect the Y. For example, in
a study comparing three drugs’ effectiveness in treating leprosy, there were bacterial
measurements before and after treatment. The Y is the “after” measurement, and one
would expect the “before” measurement, in addition to the drugs, to affect the after
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measurement. Letting xi’s represent the before measurements, the model would be




Y1
Y2
Y3
Y4
Y5
Y6




=




1 0 0 x1
1 0 0 x2
0 1 0 x3
0 1 0 x4
0 0 1 x5
0 0 1 x6







µ1
µ2
µ3
β


+ R. (4.5)

The actual experiment had ten observations in each group. See Section 6.4.4.

Polynomial and cyclic models

The “linear” in linear models refers to the linearity of the mean of Y in the parameter
β for fixed values of x. Within the matrix x, there can be arbitrary nonlinear functions
of variables. For example, in growth curves, one may be looking at Yi’s over time

which grow as a quadratic in xi , i.e., E[Yi] = β0 + β1xi + β2x2
i . Such a model is still

considered a linear model because the βj’s come in linearly. The full model would be




Y1
Y2
...

Yn


 =




1 x1 x2
1

1 x2 x2
2

...
...

...
1 xn x2

n







β0
β1
β2


+




R1
R2
...

Rn


 . (4.6)

Higher-order polynomials add on columns of x3
i ’s, x4

i ’s, etc.
Alternatively, the Yi’s might behave cyclically, such as temperature over the course

of a year, or the circadian (daily) rhythms of animals. If the cycle is over 24 hours,
and measurements are made at each hour, the model could be




Y1
Y2
...

Y24


 =




1 cos(2π · 1/24) sin(2π · 1/24)
1 cos(2π · 2/24) sin(2π · 2/24)
...

...
...

1 cos(2π · 24/24) sin(2π · 24/24)







α
γ1
γ2


+




R1
R2
...

R24


 .

(4.7)
Based on the data, typical objectives in linear regression are to estimate β, test

whether certain components of β are 0, or predict future values of Y based on its x’s.
In Chapters 6 and 7, such formal inferences will be handled. In this chapter, we are
concentrating on setting up the models.

4.2 Multivariate regression and analysis of variance

Consider (x, Y) to be a data matrix where x is again n × p, but now Y is n × q. The
linear model analogous to the conditional model in (3.56) is

Y = xβ + R, where β is p × q and R ∼ Nn×q(0, In ⊗ ΣR). (4.8)

This model looks very much like the linear regression model in (4.1), and it is. It is
actually just a concatenation of q linear models, one for each variable (column) of Y.
Note that (4.8) places the same model on each variable, in the sense of using the same
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x’s, but allows different coefficients represented by the different columns of β. That
is, (4.8) implies

Y1 = xβ1 + R1, . . . , Yq = xβq + Rq, (4.9)

where the subscript i indicates the ith column of the matrix.
The x matrix is the same as in the previous section, so rather than repeating

the examples, just imagine them with extra columns of Y and β, and prepend the
word “multivariate” to the models, e.g., multivariate analysis of variance, multivari-
ate polynomial regression, etc.

One might ask what the advantage is of doing all q regressions at once rather
than doing q separate ones. Good question. The main reason is to gather strength
from having several variables. For example, suppose one has an analysis of variance
comparing drugs on a number of health-related variables. It may be that no single
variable shows significant differences between drugs, but the variables together show
strong differences. Using the overall model can also help deal with multiple compar-
isons, e.g., when one has many variables, there is a good chance at least one shows
significance even when there is nothing going on.

These models are more compelling when they are expanded to model dependen-
cies among the means of the variables, which is the subject of Section 4.3.

4.2.1 Examples of multivariate regression

Example: Grades

The data are the grades (in the data set grades), and sex (0=Male, 1=Female), of 107
students, a portion of which is below:

Obs i Gender HW Labs InClass Midterms Final Total
1 0 30.47 0.00 0 60.38 52 43.52
2 1 37.72 20.56 75 69.84 62 59.34
3 1 65.56 77.33 75 68.81 42 63.18
4 0 65.50 75.83 100 58.88 56 64.04
5 1 72.36 65.83 25 74.93 60 65.92
...

...
...

...
...

...
...

...
105 1 93.18 97.78 100 94.75 92 94.64
106 1 97.54 99.17 100 91.23 96 94.69
107 1 94.17 97.50 100 94.64 96 95.67

(4.10)

Consider predicting the midterms and final exam scores from gender, and the
homework, labs, and inclass scores. The model is Y = xβ + R, where Y is 107 × 2
(the Midterms and Finals), x is 107× 5 (with Gender, HW, Labs, InClass, plus the first
column of 1107), and β is 5 × 2:

β =




β0M β0F

βGM βGF
βHM βHF
βLM βLF
βI M βIF


 . (4.11)

Chapter 6 shows how to estimate the βij’s. In this case the estimates are
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Midterms Final
Intercept 56.472 43.002
Gender −3.044 −1.922
HW 0.244 0.305
Labs 0.052 0.005
InClass 0.048 0.076

(4.12)

Note that the largest slopes (not counting the intercepts) are the negative ones for
gender, but to truly assess the sizes of the coefficients, we will need to find their
standard errors, which we will do in Chapter 6.

Mouth sizes

Measurements were made on the size of mouths of 27 children at four ages: 8, 10,
12, and 14. The measurement is the distance from the “center of the pituitary to the

pteryomaxillary fissure”1 in millimeters, These data can be found in Potthoff and
Roy [1964]. There are 11 girls (Sex=1) and 16 boys (Sex=0). See Table 4.1. Figure 4.1
contains a plot of the mouth sizes over time. These curves are generally increasing.
There are some instances where the mouth sizes decrease over time. The measure-
ments are between two defined locations in the mouth, and as people age, the mouth
shape can change, so it is not that people mouths are really getting smaller. Note that
generally the boys have bigger mouths than the girls, as they are generally bigger
overall.

For the linear model, code x where the first column is 1 = girl, 0 = boy, and the
second column is 0 = girl, 1 = boy:

Y = xβ+ R =

(
111 011
016 116

)(
β11 β12 β13 β14
β21 β22 β23 β24

)
+ R. (4.13)

Here, Y and R are 27 × 4. So now the first row of β has the (population) means of the
girls for the four ages, and the second row has the means for the boys. The sample
means are

Age8 Age10 Age12 Age14
Girls 21.18 22.23 23.09 24.09
Boys 22.88 23.81 25.72 27.47

(4.14)

The lower plot in Figure 4.1 shows the sample mean vectors. The boys’ curve is
higher than the girls’, and the two are reasonably parallel, and linear.

Histamine in dogs

Sixteen dogs were treated with drugs to see the effects on their blood histamine
levels. The dogs were split into four groups: Two groups received the drug morphine,
and two received the drug trimethaphan, both given intravenously. For one group
within each pair of drug groups, the dogs had their supply of histamine depleted
before treatment, while the other group had histamine intact. So this was a two-way

1Actually, I believe it is the pterygomaxillary fissure. See Wikipedia [2010] for an illustration and some
references.
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Obs i Age8 Age10 Age12 Age14 Sex
1 21.0 20.0 21.5 23.0 1
2 21.0 21.5 24.0 25.5 1
3 20.5 24.0 24.5 26.0 1
4 23.5 24.5 25.0 26.5 1
5 21.5 23.0 22.5 23.5 1
6 20.0 21.0 21.0 22.5 1
7 21.5 22.5 23.0 25.0 1
8 23.0 23.0 23.5 24.0 1
9 20.0 21.0 22.0 21.5 1
10 16.5 19.0 19.0 19.5 1
11 24.5 25.0 28.0 28.0 1
12 26.0 25.0 29.0 31.0 0
13 21.5 22.5 23.0 26.5 0
14 23.0 22.5 24.0 27.5 0
15 25.5 27.5 26.5 27.0 0
16 20.0 23.5 22.5 26.0 0
17 24.5 25.5 27.0 28.5 0
18 22.0 22.0 24.5 26.5 0
19 24.0 21.5 24.5 25.5 0
20 23.0 20.5 31.0 26.0 0
21 27.5 28.0 31.0 31.5 0
22 23.0 23.0 23.5 25.0 0
23 21.5 23.5 24.0 28.0 0
24 17.0 24.5 26.0 29.5 0
25 22.5 25.5 25.5 26.0 0
26 23.0 24.5 26.0 30.0 0
27 22.0 21.5 23.5 25.0 0

Table 4.1: The mouth size data, from Potthoff and Roy [1964].

analysis of variance model, the factors being “Drug” (Morphine or Trimethaphan)
and “Depletion” (Intact or Depleted). These data are from a study by Morris and
Zeppa [1963], analyzed also in Cole and Grizzle [1966]. See Table 4.2.

Each dog had four measurements: Histamine levels (in micrograms per milliliter
of blood) before the inoculation, and then at 1, 3, and 5 minutes after. (The value
“0.10” marked with an asterisk was actually missing. I filled it in arbitrarily.)

Figure 4.2 has a plot of the 16 dogs’ series of measurements. Most of the data is
close to zero, so it is hard to distinguish many of the individuals.

The model is a two-way multivariate analysis of variance one: Y = xβ + R, where
β contains the mean effect (µ), two main effects (α and β), and interaction effect (γ)
for each time point:

Y =




14 −14 −14 14
14 −14 14 −14
14 14 −14 −14
14 14 14 14







µ0 µ1 µ3 µ5
α0 α1 α3 α5
β0 β1 β3 β5

γ0 γ1 γ3 γ5


+ R. (4.15)
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Figure 4.1: Mouth sizes over time. The boys are indicated by dashed lines, the girls
by solid lines. The top graphs has the individual graphs, the bottom the averages for
the boys and girls.

The estimate of β is

Effect Before After1 After3 After5
Mean 0.077 0.533 0.364 0.260
Drug −0.003 0.212 0.201 0.140
Depletion 0.012 −0.449 −0.276 −0.169
Interaction 0.007 −0.213 −0.202 −0.144

(4.16)

See the second plot in Figure 4.2 for the means of the groups, and Figure 4.3 for
the effects, both plotted over time. Note that the mean and depletion effects are the
largest, particularly at time point 2, After1.
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Obs i Before After1 After3 After5
Morphine 1 0.04 0.20 0.10 0.08
Intact 2 0.02 0.06 0.02 0.02

3 0.07 1.40 0.48 0.24
4 0.17 0.57 0.35 0.24

Morphine 5 0.10 0.09 0.13 0.14
Depleted 6 0.12 0.11 0.10 ∗0.10

7 0.07 0.07 0.07 0.07
8 0.05 0.07 0.06 0.07

Trimethaphan 9 0.03 0.62 0.31 0.22
Intact 10 0.03 1.05 0.73 0.60

11 0.07 0.83 1.07 0.80
12 0.09 3.13 2.06 1.23

Trimethaphan 13 0.10 0.09 0.09 0.08
Depleted 14 0.08 0.09 0.09 0.10

15 0.13 0.10 0.12 0.12
16 0.06 0.05 0.05 0.05

Table 4.2: The data on histamine levels in dogs. The value with the asterisk is missing,
but for illustration purposes I filled it in. The dogs are classified according to the
drug administered (morphine or trimethaphan), and whether the dog’s histamine
was artificially depeleted.
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Figure 4.2: Plots of the dogs over time. The top plot has the individual dogs, the
bottom has the means of the groups. The groups: MI = Morphine, Intact; MD =
Morphine, Depleted; TI = Trimethaphan, Intact; TD = Trimethaphan, Depleted
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Figure 4.3: Plots of the effects in the analysis of variance for the dogs data, over time.
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4.3 Linear models on both sides

The regression and multivariate regression models in the previous sections model
differences between the individuals: The rows of x are different for different indi-
viduals, but the same for each variable. Models on the variables switch the roles of
variable and individual.

4.3.1 One individual

Start with just one individual, so that Y = (Y1, . . . , Yq) is a 1 × q row vector. A linear
model on the variables is

Y = βz′ + R, where β is 1 × l, R ∼ N1×q(0, ΣR), (4.17)

and z is a fixed q × l matrix. The model (4.17) looks like just a transpose of model
(4.1), but (4.17) does not have iid residuals, because the observations are all on the
same individual. Simple repeated measures models and growth curve models are special
cases. (Simple because there is only one individual. Actual models would have more
than one.)

A repeated measure model is used if the yj’s represent replications of the same
measurement. E.g., one may measure blood pressure of the same person several
times, or take a sample of several leaves from the same tree. If no systematic differ-
ences are expected in the measurements, the model would have the same mean µ for
each variable:

Y = µ(1, . . . , 1) + R = µ1′q + R. (4.18)

It is common in this setting to assume ΣR has the intraclass correlation structure, as
in (1.61), i.e., the variances are all equal, and the covariances are all equal.

Growth curve models are used when the measurements are made over time, and
growth (polynomial or otherwise) is expected. A quadratic model turns (4.6) on its
side:

Y = (β0, β1, β2)




1 · · · · · · 1
x1 x2 · · · xq

x2
1 x2

2 · · · x2
q


+ R. (4.19)

Similarly one can transpose cyclic models akin to (4.7).

4.3.2 IID observations

Now suppose we have a sample of n independent individuals, so that the n × q data
matrix is distributed

Y ∼ Nn×q(1n ⊗µ, In ⊗ ΣR), (4.20)

which is the same as (3.28) with slightly different notation. Here, µ is 1 × q, so the
model says that the rows of Y are independent with the same mean µ and covariance
matrix ΣR. A repeated measure model assumes in addition that the elements of µ
are equal to µ, so that the linear model takes the mean in (4.20) and combines it with
the mean in (4.18) to obtain

Y = 1nµ1′q + R, R ∼ Nn×q(0, In ⊗ ΣR). (4.21)
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1 2 3 4 5 6 7 8
Hosp1 13.56 14.39 14.63 14.97 15.13 14.25 14.14 13.71
Hosp2 19.24 18.68 18.89 20.27 20.54 21.38 20.37 19.95
Hosp3 20.52 20.37 20.83 21.14 20.98 21.77 20.66 21.17
Hosp4 21.14 21.14 21.79 22.54 21.66 22.32 22.47 20.88

9 10 11 12 13 14 15 16
Hosp1 14.93 14.21 13.89 13.60 12.81 13.27 13.15 12.29
Hosp2 20.62 20.86 20.15 19.54 19.52 18.89 18.41 17.55
Hosp3 21.21 21.68 20.37 20.49 19.70 18.36 18.87 17.32
Hosp4 22.14 21.86 22.38 20.71 20.54 20.66 20.32 19.36

17 18 19 20 21 22 23 24
Hosp1 12.92 13.64 13.04 13.00 12.77 12.37 13.45 13.53
Hosp2 18.84 17.18 17.20 17.09 18.19 18.41 17.58 18.19
Hosp3 18.79 18.55 18.19 17.38 18.41 19.10 19.49 19.10
Hosp4 20.02 18.84 20.40 18.44 20.83 21.00 19.57 21.35

Table 4.3: The data on average number of births for each hour of the day for four
hospitals.

This model makes sense if one takes a random sample of n individuals, and makes
repeated measurements from each. More generally, a growth curve model as in (4.19),
but with n individuals measured, is

Y = 1n(β0, β1, β2)




1 · · · · · · 1
z1 z2 · · · zq

z2
1 z2

2 · · · z2
q


+ R. (4.22)

Example: Births

The average births for each hour of the day for four different hospitals is given in
Table 4.3. The data matrix Y here is 4 × 24, with the rows representing the hospitals
and the columns the hours. Figure 4.4 plots the curves.

One might wish to fit sine waves (Figure 4.5) to the four hospitals’ data, presuming
one day reflects one complete cycle. The model is

Y = βz′ + R, (4.23)

where

β =




β10 β11 β12
β20 β21 β22
β30 β31 β32

β40 β41 β42


 (4.24)

and

z′ =




1 1 · · · 1
cos(1 · 2π/24) cos(2 · 2π/24) · · · cos(24 · 2π/24)
sin(1 · 2π/24) sin(2 · 2π/24) · · · sin(24 · 2π/24)


 , (4.25)
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Figure 4.4: Plots of the four hospitals’ births’, over twenty-four hours.
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Figure 4.5: Sine and cosine waves, where one cycle spans twenty-four hours.
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Figure 4.6: Plots of the four hospitals’ births, with the fitted sign waves. The thick
line fits one curve to all four hospitals.

the z here being the same as the x in (4.7).
The estimate of β is

Mean Cosine Sine
Hosp1 13.65 0.03 0.93
Hosp2 19.06 −0.69 1.46
Hosp3 19.77 −0.22 1.70
Hosp4 20.93 −0.12 1.29

(4.26)

Then the “fits” are Ŷ = β̂z′, which is also 4 × 24. See Figure 4.6.
Now try the model with same curve for each hospital, Y = xβ∗z′ + R, where

x = 14 (the star on the β∗ is to distinguish it from the previous β):

Y = xβ∗z′ + R =




1
1
1
1



(

β∗0 β∗1 β∗2
)

z′ + R. (4.27)

The estimates of the coefficients are now β̂∗ = (18.35,−0.25, 1.34), which is the aver-

age of the rows of β̂. The fit is graphed as the thick line in Figure 4.6

4.3.3 The both-sides model

Note that the last two models, (4.19) and (4.22) have means with fixed matrices on
both sides of the parameter. Generalizing, we have the model

Y = xβz′ + R, (4.28)
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where x is n × p, β is p × l, and z is q × l. The x models differences between indi-
viduals, and the z models relationships between the variables. This formulation is by
Potthoff and Roy [1964].

For example, consider the mouth size example in Section 4.2. A growth curve
model seems reasonable, but one would not expect the iid model to hold. In particu-
lar, the mouths of the eleven girls would likely be smaller on average than those of the
sixteen boys. An analysis of variance model, with two groups, models the differences
between the individuals, while a growth curve models the relationship among the
four time points. With Y being the 27 × 4 data matrix of measurements, the model is

Y =

(
111 011
016 116

)(
βg0 βg1 βg2

βb0 βb1 βb2

)


1 1 1 1
8 10 12 14
82 102 122 142


+ R. (4.29)

The “0m”’s are m × 1 vectors of 0’s. Thus (βg0, βg1, βg2) contains the coefficients for

the girls’ growth curve, and (βb0, βb1, βb2) the boys’. Some questions which can be
addressed include

• Does the model fit, or are cubic terms necessary?

• Are the quadratic terms necessary (is βg2 = βb2 = 0)?

• Are the girls’ and boys’ curves the same (are βgj = βbj for j = 0, 1, 2)?

• Are the girls’ and boys’ curves parallel (are βg1 = βb1 and βg2 = βb2, but maybe
not βg0 = βb0)?

See also Ware and Bowden [1977] for a circadean application and Zerbe and Jones
[1980] for a time-series context. The model is often called the generalized multivari-
ate analysis of variance, or GMANOVA, model. Extensions are many. For examples,
see Gleser and Olkin [1970], Chinchilli and Elswick [1985], and the book by Kariya
[1985].

4.4 Exercises

Exercise 4.4.1 (Prostaglandin). Below are data from Ware and Bowden [1977] taken at
six four-hour intervals (labelled T1 to T6) over the course of a day for 10 individuals.
The measurements are prostaglandin contents in their urine.

Person T1 T2 T3 T4 T5 T6
1 146 280 285 215 218 161
2 140 265 289 231 188 69
3 288 281 271 227 272 150
4 121 150 101 139 99 103
5 116 132 150 125 100 86
6 143 172 175 222 180 126
7 174 276 317 306 139 120
8 177 313 237 135 257 152
9 294 193 306 204 207 148

10 76 151 333 144 135 99

(4.30)
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(a) Write down the “xβz′" part of the model that fits a separate sine wave to each
person. (You don’t have to calculate the estimates or anything. Just give the x, β and
z matrices.) (b) Do the same but for the model that fits one sine wave to all people.

Exercise 4.4.2 (Skulls). The data concern the sizes of Egyptian skulls over time, from
Thomson and Randall-MacIver [1905]. There are 30 skulls from each of five time
periods, so that n = 150 all together. There are four skull size measurements, all in
millimeters: maximum length, basibregmatic height, basialveolar length, and nasal
height. The model is multivariate regression, where x distinguishes between the time
periods, and we do not use a z. Use polynomials for the time periods (code them as
1, 2, 3, 4, 5), so that x = w ⊗ 130. Find w.

Exercise 4.4.3. Suppose Yb and Ya are n × 1 with n = 4, and consider the model

(Yb Ya) ∼ N(xβ, In ⊗ Σ), (4.31)

where

x =




1 1 1
1 1 −1
1 −1 1
1 −1 −1


 . (4.32)

(a) What are the dimensions of β and Σ? The conditional distribution of Ya given
Yb = (4, 2, 6, 3)′ is

Ya | Yb = (4, 2, 6, 3)′ ∼ N(x∗β∗, In ⊗ Ω) (4.33)

for some fixed matrix x∗, parameter matrix β∗, and covariance matrix Ω. (b) What are
the dimensions of β∗ and Ω? (c) What is x∗? (d) What is the most precise description
of the conditional model?

Exercise 4.4.4 (Caffeine). Henson et al. [1996] conducted an experiment to see whether
caffeine has a negative effect on short-term visual memory. High school students
were randomly chosen: 9 from eighth grade, 10 from tenth grade, and 9 from twelfth
grade. Each person was tested once after having caffeinated Coke, and once after
having decaffeinated Coke. After each drink, the person was given ten seconds to
try to memorize twenty small, common objects, then allowed a minute to write down
as many as could be remembered. The main question of interest is whether people
remembered more objects after the Coke without caffeine than after the Coke with
caffeine. The data are

Grade 8 Grade 10 Grade 12
Without With Without With Without With

5 6 6 3 7 7
9 8 9 11 8 6
6 5 4 4 9 6
8 9 7 6 11 7
7 6 6 8 5 5
6 6 7 6 9 4
8 6 6 8 9 7
6 8 9 8 11 8
6 7 10 7 10 9

10 6

(4.34)
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“Grade" is the grade in school, and the “Without" and “With" entries are the numbers
of items remembered after drinking Coke without or with caffeine. Consider the
model

Y = xβz′ + R, (4.35)

where the Y is 28 × 2, the first column being the scores without caffeine, and the
second being the scores with caffeine. The x is 28 × 3, being a polynomial (quadratic)
matrix in the three grades. (a) The z has two columns. The first column of z represents
the overall mean (of the number of objects a person remembers), and the second
column represents the difference between the number of objects remembered with
caffeine and without caffeine. Find z. (b) What is the dimension of β? (c) What
effects do the βij’s represent? (Choices: overall mean, overall linear effect of grade,
overall quadratic effect of grade, overall difference in mean between caffeinated and
decaffeinated coke, linear effect of grade in the difference between caffeinated and
decaffeinated coke, quadratic effect of grade in the difference between caffeinated
and decaffeinated coke, interaction of linear and quadratic effects of grade.)

Exercise 4.4.5 (Histamine in dogs). In Table 4.2, we have the data for the model,

Y = xβz′ + R, (4.36)

where x (n × 4) describes a balanced two-way analysis of variance, as in (4.15). The
columns represent, respectively, the overall mean, the drug effect, the depletion effect,
and the drug × depletion interaction. For the z, the first column is the effect of the
“before” measurement (at time 0), and the last three columns represent polynomial
effects (constant, linear, and quadratic) for just the three “after” time points (times 1,
3, 5). (a) What is z? (b) Which of the βij’s represents each of the following effects? (i)
Overall drug effect for the after measurements, (ii) overall drug effect for the before
measurement, (iii) average after measurement, (iv) drug × depletion interaction for
the before measurement, (v) linear effect in after time points for the drug effect.

Exercise 4.4.6 (Leprosy). Below are data on leprosy patients found in Snedecor and
Cochran [1989]. There were 30 patients, randomly allocated to three groups of 10.
The first group received drug A, the second drug D, and the third group received a
placebo. Each person had their bacterial count taken before and after receiving the
treatment.

Drug A Drug D Placebo
Before After Before After Before After

11 6 6 0 16 13
8 0 6 2 13 10
5 2 7 3 11 18

14 8 8 1 9 5
19 11 18 18 21 23
6 4 8 4 16 12

10 13 19 14 12 5
6 1 8 9 12 16

11 8 5 1 7 1
3 0 15 9 12 20

(4.37)

(a) Consider the model Y = xβ + R for the multivariate analysis of variance with
three groups and two variables (so that Y is 30 × 2), where R ∼ N30×2(0, I30 ⊗ ΣR).
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The x has vectors for the overall mean, the contrast between the drugs and the
placebo, and the contrast between Drug A and Drug D. Because there are ten people
in each group, x can be written as w ⊗ 110. Find w. (b) Because the before mea-
surements were taken before any treatment, the means for the three groups on that
variable should be the same. Describe that constraint in terms of the β. (c) With
Y = (Yb Ya), find the model for the conditional distribution

Ya | Yb = yb ∼ N(x∗β∗, In ⊗ Ω). (4.38)

Give the x∗ in terms of x and yb, and give Ω in terms of the elements of ΣR. (Hint:
Write down what it would be with E[Y] = (µb µa) using the conditional formula,
then see what you get when µb = xβb and µa = xβa.)

Exercise 4.4.7 (Parity). Johnson and Wichern [2007] present data (in their Exercise
6.17) on an experiment. Each of 32 subjects was given several sets of pairs of integers,
and had to say whether the two numbers had the same parity (i.e., both odd or both
even), or different parities. So (1, 3) have the same parity, while (4, 5) have differ-
ent parity. Some of the integer pairs were given numerically, like (2, 4), and some
were written out, i.e., (Two, Four). The time it took to decide the parity for each pair
was measured. Each person had a little two-way analysis of variance, where the two
factors are Parity, with levels different and same, and Format, with levels word and nu-
meric. The measurements were the median time for each Parity/Format combination
for that person. Person i then had observation vector yi = (yi1, yi2, yi3, yi4), which in
the ANOVA could be arranged as

Format
Parity Word Numeric

Different yi1 yi2
Same yi3 yi4

(4.39)

The model is of the form

Y = xβz′ + R. (4.40)

(a) What are x and z for the model where each person has a possibly different
ANOVA, and each ANOVA has effects for overall mean, parity effect, format effect,
and parity/format interaction? How many, and which, elements of β must be set to
zero to model no-interaction? (b) What are x and z for the model where each person
has the same mean vector, and that vector represents the ANOVA with effects for
overall mean, parity effect, format effect, and parity/format interaction? How many,
and which, elements of β must be set to zero to model no-interaction?

Exercise 4.4.8 (Sine waves). Let θ be an angle running from 0 to 2π, so that a sine/-
cosine wave with one cycle has the form

g(θ) = A + B cos(θ + C) (4.41)

for parameters A, B, and C. Suppose we observe the wave at the q equally-spaced
points

θj =
2π

q
j, j = 1, . . . , q, (4.42)
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plus error, so that the model is

Yj = g(θj) + Rj = A + B cos

(
2π

q
j + C

)
+ Rj, j = 1, . . . , q, (4.43)

where the Rj are the residuals. (a) Is the model linear in the parameters A, B, C? Why
or why not? (b) Show that the model can be rewritten as

Yj = β1 + β2 cos

(
2π

q
j

)
+ β3 sin

(
2π

q
j

)
+ Rj, j = 1, . . . , q, (4.44)

and give the βk’s in terms of A, B, C. [Hint: What is cos(a + b)?] (c) Write this model
as a linear model, Y = βz′ + R, where Y is 1 × q. What is the z? (d) Waves with
m ≥ 1 cycles can be added to the model by including cosine and sine terms with θ
replaced by mθ:

cos

(
2πm

q
j

)
, sin

(
2πm

q
j

)
. (4.45)

If q = 6, then with the constant term, we can fit in the cosine and sign terms for
the wave with m = 1 cycle, and the cosine and sine terms for the wave with m = 2
cycles. The x cannot have more than 6 columns (or else it won’t be invertible). Find
the cosine and sine terms for m = 3. What do you notice? Which one should you put
in the model?





Chapter 5

Linear Models: Least Squares and Projections

In this chapter, we briefly review linear subspaces and projections onto them. Most of
the chapter is abstract, in the sense of not necessarily tied to statistics. The main result
we need for the rest of the book is the least-squares estimate given in Theorem 5.2.
Further results can be found in Chapter 1 of Rao [1973], an excellent compendium of
facts on linear subspaces and matrices.

5.1 Linear subspaces

We start with the space RN . The elements v ∈ RN may be considered row vectors, or
column vectors, or matrices, or any other configuration. We will generically call them
“vectors.” This space could represent vectors for individuals, in which case N = q,
the number of variables, or it could represent vectors for variables, so N = n, the
number of individuals, or it could represent the entire data matrix, so that N = nq.

A linear subspace is a subset of RN closed under addition and multiplication by a
scalar. Because we will deal with Euclidean space, everyone knows what addition
and multiplication mean. Here is the definition.

Definition 5.1. A subset W ⊂ RN is a linear subspace of RN if

u, v ∈ W =⇒ u + v ∈ W , and (5.1)

c ∈ R, u ∈ W =⇒ cu ∈ W . (5.2)

We often shorten “linear subspace” to “subspace,” or even “space.” Note that

RN is itself a linear (sub)space, as is the set {0}. Because c in (5.2) can be 0, any
subspace must contain 0. Any line through 0, or plane through 0, is a subspace.
One convenient representation of subspaces is the set of linear combinations of some
elements:

Definition 5.2. The span of the set of vectors {d1, . . . , dK} ⊂ RN is

span{d1, . . . , dK} = {γ1d1 + · · ·+ γKdK |γ = (γ1, . . . , γK) ∈ RK}. (5.3)

By convention, the span of the empty set is just {0}. It is not hard to show that
any span is a linear subspace. Some examples: For K = 2, span{(1, 1)} is the set

93
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of vectors of the form (a, a), that is, the equiangular line through 0. For K = 3,
span{(1, 0, 0), (0, 1, 0)} is the set of vectors of the form (a, b, 0), which is the x/y
plane, considering the axes to be x, y, z.

We will usually write the span in matrix form. Letting D be the N × K matrix with
columns d1, . . . , dK. We have the following representations of subspace W :

W = span{d1, . . . , dK}
= span{columns of D}
= {Dγ |γ ∈ RK (γ is K × 1)}
= span{rows of D′}
= {γD′ |γ ∈ RK (γ is 1 × K)}. (5.4)

Not only is any span a subspace, but any subspace is a span of some vectors. In

fact, any subspace of RN can be written as a span of at most N vectors, although not
in a unique way. For example, for N = 3,

span{(1, 0, 0), (0, 1, 0)} = span{(1, 0, 0), (0, 1, 0), (1, 1, 0)}
= span{(1, 0, 0), (1, 1, 0)}
= span{(2, 0, 0), (0,−7, 0), (33, 2, 0)}. (5.5)

Any invertible transformation of the vectors yields the same span, as in the next
lemma. See Exercise 5.8.4 for the proof.

Lemma 5.1. Suppose W is the span of the columns of the N × K matrix D as in (5.4), and
A is an invertible K × K matrix. Then W is also the span of the columns of DA, i.e.,

span{columns of D} = span{columns of DA}. (5.6)

Note that the space in (5.5) can be a span of two or three vectors, or a span of any
number more than three as well. It cannot be written as a span of only one vector.
In the two sets of three vectors, there is a redundancy, that is, one of the vectors can
be written as a linear combination of the other two: (1, 1, 0) = (1, 0, 0) + (0, 1, 0) and

(2, 0, 0) = ( 4
33×7 (0,−7, 0) + 2

33 × (33, 2, 0). Such sets are called linearly dependent.
We first define the opposite.

Definition 5.3. The vectors d1, . . . , dK in RN are linearly independent if

γ1d1 + · · ·+ γKdK = 0 =⇒ γ1 = · · · = γK = 0. (5.7)

The vectors are linearly dependent if and only if they are not linearly indepen-
dent. Equivalently, the vectors are linearly dependent if and only if one of them can
be written as a linear combination of the others. That is, they are linearly dependent
iff there is a di and set of coefficients γj such that

di = γ1d1 + · · ·+ γi−1di−1 + γi+1di+1 + . . . + γKdK. (5.8)

In (5.5), the sets with three vectors are linearly dependent, and those with two
vectors are linearly independent. To see that latter fact for {(1, 0, 0), (1, 1, 0)}, suppose
that γ1(1, 0, 0) + γ2(1, 1, 0) = (0, 0, 0). Then

γ1 + γ2 = 0 and γ2 = 0 =⇒ γ1 = γ2 = 0, (5.9)
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which verifies (5.7).
If a set of vectors is linearly dependent, then one can remove one of the redundant

vectors (5.8), and still have the same span. A basis is a set of vectors that has the same
span but no dependencies.

Definition 5.4. The set of vectors {d1, . . . , dK} is a basis for the subspace W if the vectors
are linearly independent and W = span{d1, . . . , dK}.

Although a (nontrivial) subspace has many bases, each basis has the same number
of elements, which is the dimension. See Exercise 5.8.47.

Definition 5.5. The dimension of a subspace is the number of vectors in any of its bases.

5.2 Projections

In linear models, the mean of the data matrix is presumed to lie in a linear subspace,
and an aspect of fitting the model is to find the point in the subspace closest to the
data. This closest point is called the projection. Before we get to the formal definition,
we need to define orthogonality. Recall from Section 1.5 that two column vectors v
and w are orthogonal if v′w = 0 (or vw′ = 0 if they are row vectors).

Definition 5.6. The vector v ∈ RN is orthogonal to the subspace W ⊂ RN if v is orthogonal

to w for all w ∈ W . Also, subspace V ⊂ RN is orthogonal to W if v and w are orthogonal
for all v ∈ V and w ∈ W .

Geometrically, two objects are orthogonal if they are perpendicular. For example,

in R3, the z-axis is orthogonal to the x/y-plane. Exercise 5.8.6 is to prove the next
result.

Lemma 5.2. Suppose W = span{d1, . . . , dK}. Then v is orthogonal to W if and only if v
is orthogonal to each dj.

Definition 5.7. The projection of v onto W is the v̂ that satisfies

v̂ ∈ W and v − v̂ is orthogonal to W . (5.10)

In statistical parlance, the projection v̂ is the fit and v − v̂ is the residual. Because
of the orthogonality, we have the decomposition of squared norms,

‖v‖2 = ‖v̂‖2 + ‖v − v̂‖2, (5.11)

which is Pythagoras’ Theorem. In a regression setting, the left-hand side is the total

sum-of-squares, and the right-hand side is the regression sum-of-squares (‖v̂‖2) plus the
residual sum-of-squares, although usually the sample mean of the vi’s is subtracted
from v and v̂. See Section 7.2.5.

Exercises 5.8.8, 5.8.48 and 5.8.49 prove the following useful result.

Theorem 5.1 (Projection). Suppose v ∈ RK , W is a subspace of RK , and v̂ is the projection
of v onto W . Then

(a) The projection is unique: If v̂1 and v̂2 are both in W , and v − v̂1 and v − v̂2 are both
orthogonal to W , then v̂1 = v̂2.
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(b) If v ∈ W , then v̂ = v.

(c) If v is orthogonal to W , then v̂ = 0.

(d) The projection v̂ uniquely minimizes the Euclidean distance between v and W , that is,

‖v − v̂‖2
< ‖v − w‖2 for all w ∈ W , w 6= v̂. (5.12)

(e) There exists a unique N × N matrix P, called the projection matrix, such that

vP = v̂ for all v ∈ RN . (5.13)

The final equation is assuming v is a row vector. If it is a column vector, then we
have Pv = v̂. We present an explicit formula for the projection matrix in (5.20).

5.3 Least squares

In this section, we explicitly find the projection of v (1 × N) onto W . Suppose
d1, . . . , dK, the columns of the N × K matrix D, form a basis for W , so that the fi-
nal expression in (5.4) holds. Consider the linear model

V = γD′ + R, (5.14)

where γ is 1 × K. Our objective is to find a vector γ̂ so that v ≈ γ̂D′. One approach
is least squares.

Definition 5.8. A least-squares estimate of γ in the equation (5.14) is any γ̂ such that

‖v − γ̂D′‖2 = min
γ∈RK

‖v − γD′‖2. (5.15)

Part (d) of Theorem 5.1 implies that a least squares estimate of γ is any γ̂ for
which γ̂D′ is the projection of v onto the subspace W . Thus v − γ̂D′ is orthogonal
to W , and by Lemma 5.2, is orthogonal to each dj. These orthogonality conditions
result in the normal equations:

(v − γ̂D′)dj = 0 for each j = 1, . . . , K. (5.16)

We then have

(5.16) =⇒ (v − γ̂D′)D = 0

=⇒ γ̂D′D = vD (5.17)

=⇒ γ̂ = vD(D′D)−1, (5.18)

where the final equation holds if D′D is invertible, which occurs if and only if the
columns of D constitute a basis of W . See Exercise 5.8.46. Summarizing:

Theorem 5.2 (Least squares). Any solution γ̂ to the least-squares equation (5.15) satisfies
the normal equations (5.17). The solution is unique if and only if D′D is invertible, in which
case (5.18) holds.
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If D′D is invertible, the projection of v onto W can be written

v̂ = γ̂D′ = vD(D′D)−1D′ ≡ vPD, (5.19)

where
PD = D(D′D)−1D′ (5.20)

is the projection matrix for W as in part (e) of Theorem 5.1. The residual vector is
then

v − v̂ = v − vPD = v(IN − PD) = vQD, (5.21)

where
QD = IN − PD. (5.22)

The minimum value in (5.15) can be written

‖v − v̂‖2 = vQDv′. (5.23)

Exercises 5.8.12 to 5.8.14 prove the following properties of projection matrices.

Proposition 5.1 (Projection matrices). Suppose PD is defined as in (5.20), where D′D is
invertible. Then the following hold.

(a) PD is symmetric and idempotent, with trace(PD) = K, the dimension of W ;

(b) Any symmetric idempotent matrix is a projection matrix for some subspace W ;

(c) QD = IN − PD is also a projection matrix, and is orthogonal to PD in the sense that
PDQD = QDPD = 0;

(d) PDD = D and QDD = 0.

The matrix QD is the projection matrix onto the orthogonal complement of W ,

where the orthogonal complement contains all vectors in RN that are orthogonal to
W .

5.4 Best linear unbiased estimators

To the model in (5.14) we add distributional assumptions on R:

V = γD′ + R, where E[R] = 0 and Cov[R] = Ω. (5.24)

We also assume that D′D is invertible. The goal in this section is to find the “best
linear unbiased estimator” of γ.

An estimator γ̂ is linear in v if
γ̂ = vL (5.25)

for some N × K constant matrix L. Because (5.24) implies that E[V] = γD′, the
estimator (5.25) is unbiased if and only if

E[γ̂] = γD′L = γ for all γ ∈ RK ⇔ D′L = IK. (5.26)

(See Exercise 5.8.17.) From (5.18), the least squares estimator is linear,

γ̂LS = vLLS with LLS = D(D′D)−1, (5.27)
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and because D′LLS = D′D(D′D)−1 = IK as in (5.26), the estimator is unbiased.
We are interested in finding the linear unbiased estimator with the smallest co-

variance matrix. In general, Cov[VL] = L′
ΩL, but we will initially assume that Ω is

the identity matrix, so that

Ω = IN ⇒ Cov[VL] = L′L and Cov[VLLS] = L′
LSLLS = (D′D)−1. (5.28)

The main result is next.

Theorem 5.3. Gauss-Markov Theorem. In model (5.24) with Ω = IN , the least-squares
estimator γ̂LS is the best linear unbiased estimator (BLUE) of γ in the sense that it is
linear and unbiased, and for any other linear unbiased estimator γ̂ = vL,

Cov[γ̂]− Cov[γ̂LS] is nonnegative definite. (5.29)

Proof. Let M = L − LLS. Then by (5.26) and assumption of unbiasedness,

IK = D′L = D′(LLS + M) = D′LLS + D′M = IK + D′M, (5.30)

hence D′M = 0. Then

Cov[VL] = (LLS + M)′(LLS + M)

= L′
LSLLS + M′M + L′

LSM + M′LLS

= Cov[VLLS] + M′M, (5.31)

since
L′

LSM = (D′D)−1D′M = 0. (5.32)

The matrix M′M is nonnegative definite, hence we have (5.29). ✷

The conclusion in the theorem means that for any linear combination γa, where a
is K × 1,

Var[γ̂a] ≥ Var[γ̂LSa], (5.33)

so that the least squares estimate has the lowest variance of any linear unbiased
estimator. In particular, it is best for each component of γi.

Theorem 5.3 holds also if Cov[R] = σ2IN for scalar σ2
> 0 in (5.24), but not

necessarily for Cov[R] = Ω for arbitrary positive definite Ω. But it is easy to rewrite
the model to find the BLUE. Let

V∗ = VΩ
- ½, D∗ = Ω

- ½D, R∗ = RΩ
- ½. (5.34)

Then we have the situation in (5.24), where V∗ = γD∗′ + R∗ and Cov[R∗] = IN . Thus
the least-squares estimate in this new model is BLUE, where here

γ̂WLS = v∗D∗(D∗′D∗)−1

= vΩ
−1D(D′

Ω
−1D)−1. (5.35)

The “WLS” in the subscript of the estimator stands for “weighted least squares,”
because this estimator minimizes the weighted objective function

(v − γD′)Ω−1(v − γD′)′. (5.36)

See Exercise 5.8.18. The covariance matrix for the BLUE in (5.35) is by (5.28)

Cov[γ̂WLS] = (D∗′D∗)−1

= (D′
Ω

−1D)−1. (5.37)
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5.5 Least squares in the both-sides model

We now specialize to the both-sides model as defined in (4.28), i.e.,

Y = xβz′ + R, R ∼ N(0, In ⊗ ΣR), (5.38)

where Y is n × q, x is n × p, β is p × l, and z is q × l. We assume x′x, z′z, and ΣR

are invertible. In order to find the best linear unbiased estimator of β, we make the
following identifications between (5.24) and (5.38):

V = row(Y), γ = row(β), D = x ⊗ z, Ω = In ⊗ ΣR. (5.39)

Also, in (5.24), R is 1 × N, while in (5.38), it is n × q.
Theorem 5.3 shows that the BLUE of β, assuming ΣR is known, is the weighted

least squares estimate in (5.35). Using Proposition 3.2, we translate the formula to

̂row(β)WLS = vΩ
−1D(D′

Ω
−1D)−1

= row(y)(In ⊗ ΣR)
−1(x ⊗ z)((x ⊗ z)′(In ⊗ ΣR)

−1(x ⊗ z))−1

= row(y)(x ⊗ Σ
−1
R z)(x′x ⊗ z′Σ−1

R z)−1

= row(y)(x(x′x)−1 ⊗ Σ
−1
R z(z′Σ−1

R z)−1). (5.40)

Thus, unrowwing,

β̂WLS = (x′x)−1x′yΣ
−1
R z(z′Σ−1

R z)−1. (5.41)

By (5.37),

Cov[β̂WLS] = ((x ⊗ z)′(In ⊗ ΣR)
−1(x ⊗ z))−1

= (x′x)−1 ⊗ (z′Σ−1
R z)−1. (5.42)

Because ΣR is typically not known, its presence in the estimator of β can be prob-
lematic. Thus we often instead use the unweighted least squares estimator, which is
as in (5.41) but with Iq instead of ΣR:

β̂LS = (x′x)−1x′Yz(z′z)−1. (5.43)

This estimator is not necessarily BLUE. By (3.34), its covariance is

Cov[β̂LS] = (D′D)−1D′
ΩD(D′D)−1

= ((x′x)−1x′)((x′x)−1x′)′ ⊗ (z(z′z)−1)′ΣRz(z′z)−1

= Cx ⊗ Σz, (5.44)

where we define

Cx = (x′x)−1and Σz = (z′z)−1z′ΣRz(z′z)−1. (5.45)

But in the multivariate regression case (4.8), where z = Iq, or in fact whenever z

is square (hence invertible, since z′z is assumed invertible), the dependence on ΣR
disappears:

z is q × q =⇒ β̂WLS = (x′x)−1x′yΣ
−1
R z(Σ−1

R z)−1(z′)−1

= (x′x)−1x′y(z′)−1

= β̂LS. (5.46)
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Chapter 6 treats estimation of ΣR and standard errors of the β̂ij’s for the least
squares estimator. Consideration of the weighted least squares estimator appear in
Section 9.3.1 on maximum likelihood estimates.

5.6 What is a linear model?

We have been working with linear models for a while, so perhaps it is time to formally
define them. Basically, a linear model for Y is one for which the mean of Y lies in a
given linear subspace. A model itself is a set of distributions. The linear model does
not describe the entire distribution, thus the actual distribution, e.g., multivariate
normal with a particular covariance structure, needs to be specified as well. In the
both-sides model (6.1), with the identifications in (5.39), we have

E[row(Y)] = row(β)(x ⊗ z)′. (5.47)

Letting β range over all the p × l matrices, we have the restriction

E[row(Y)] ∈ W ≡ {row(β)(x ⊗ z)′ | row(β) ∈ Rpl}. (5.48)

Is W a linear subspace? Indeed, as in Definition 5.2, it is the span of the columns
of x ⊗ z, the columns being xi ⊗ zj, where xi and zj are the columns of x and z,
respectively. That is,

row(β)(x ⊗ z)′ =
p

∑
i=1

l

∑
j=1

βij(xi ⊗ zj)
′. (5.49)

The linear model is then the set of distributions

M = {N(M, In ⊗ ΣR) | M ∈ W and ΣR ∈ S+
q }, (5.50)

denoting

S+
q = The set of q × q positive definite symmetric matrices. (5.51)

Other linear models can have different distributional assumptions, e.g., covariance
restrictions, but do have to have the mean lie in a linear subspace.

There are many different parametrizations of a given linear model, for the same
reason that there are many different bases for the mean space W . For example, it
may not be obvious, but

x =

(
1 0
0 1

)
, z =




1 1 1
1 2 4
1 3 9


 (5.52)

and

x∗ =

(
1 −1
1 1

)
, z∗ =




1 −1 1
1 0 −2
1 1 1


 (5.53)

lead to exactly the same model, though different interpretations of the parameters.
In fact, with x being n × p and z being q × l,

x∗ = xA and z∗ = zB, (5.54)
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yields the same model as long as A (p × p) and B (l × l) are invertible:

xβz′ = x∗β∗z∗′ with β∗ = A−1β(B′)−1. (5.55)

The representation in (5.53) has the advantage that the columns of the x∗ ⊗ z∗ are
orthogonal, which makes it easy to find the least squares estimates as the D′D matrix
is diagonal, hence easy to invert. Note the z is the matrix for a quadratic. The z∗ is
the corresponding set of orthogonal polynomials, as discussed in Section 5.7.2.

5.7 Gram-Schmidt orthogonalization

We have seen polynomial models in (4.6), (4.22) and (4.29). Note that, especially in the
latter case, one can have a design matrix (x or z) whose entries have widely varying
magnitudes, as well as highly correlated column vectors, which can lead to numerical
difficulties in calculation. Orthogonalizing the vectors, without changing their span,
can help both numerically and for interpretation. Gram-Schmidt orthogonalization
is a well-known constructive approach. It is based on the following lemma.

Lemma 5.3. Suppose (D1, D2) is N × K, where D1 is N × K1, D2 is N × K2, and W is
the span of the combined columns:

W = span{columns of (D1 D2)}. (5.56)

Suppose D′
1D1 is invertible, and let

D2·1 = QD1
D2, (5.57)

for QD1
defined in (5.22) and (5.20). Then the columns of D1 and D2·1 are orthogonal,

D′
2·1D1 = 0, (5.58)

and
W = span{columns of (D1 D2·1)}. (5.59)

Proof. D2·1 is the residual matrix for the least-squares model D2 = D1β+ R, i.e., D1
is the x and D2 is the Y in the multivariate regression model (4.8). Equation (5.58)
then follows from part (d) of Proposition 5.1: D′

2·1D1 = D′
2QD1

D1 = 0. For (5.59),

(
D1 D2·1

)
=
(

D1 D2

) ( IK1
−(D′

1D1)
−1D′

1D2
0 IK2

)
. (5.60)

The final matrix is invertible, hence by Lemma 5.1, the spans of the columns of
(D1, D2) and (D1, D2·1) are the same.

Now let d1, . . . dK be the columns of the N × K matrix D, and W their span.
The Gram-Schmidt process starts by applying Lemma 5.3 with D1 = d1 and D2 =
(d2, . . . , dK). Write the resulting columns of D2·1 as the vectors

d2·1, · · · , dK·1, where dj·1 = dj −
d′

jd1

‖d1‖2
d1. (5.61)

In other words, dj·1 is the residual of the projection of dj onto span{d1}. Thus d1 is

orthogonal to all the dj·1’s in (5.61), and W = span{d1, d2·1, . . . , dK·1} by (5.59).
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Second step is to apply the lemma again, this time with D1 = d2·1, and D2 =
(d3·1, . . . , dK·1), leaving aside the d1 for the time being. Now write the columns of
the new D2·1 dotting out the “1” and “2”:

d3·12, · · · , dK·12, where dj·12 = dj·1 −
d′

j·1d2·1
‖d2·1‖2

d2·1. (5.62)

Now d2·1, as well as d1, are orthogonal to the vectors in (5.62), and

W = span{d1, d2·1, d3·12, . . . , dK·12}. (5.63)

We continue until we have the set of vectors

d1, d2·1, d3·12, . . . , dK·{1:(K−1)}, (5.64)

which are mutually orthogonal and span W . Here, we are using the R-based notation

{a : b} = {a, a + 1, . . . , b} for integers a < b. (5.65)

It is possible that one or more of the vectors we use for D1 will be zero. In such
cases, we just leave the vectors in D2 alone, i.e., D2·1 = D2, because the projection
of any vector on the space {0} is 0, hence the residual equals the original vector.
We can describe the entire resulting process iteratively, for i = 1, . . . , K − 1 and j =
i + 1, . . . , K, as setting

dj·{1:i} =

{
dj·{1:(i−1)}− γij di·{1:(i−1)} if di·{1:(i−1)} 6= 0

dj·{1:(i−1)} if di·{1:(i−1)} = 0,
(5.66)

where

γij =
d′

j·{1:(i−1)}di·{1:(i−1)}
‖di·{1:(i−1)}‖2

(5.67)

if its denominator is nonzero. Otherwise, set γij = 0, although any value will do.
Optionally, one can multiply any of these vectors by a nonzero constant, e.g., so

that it has a norm of one, or for esthetics, so that the entries are small integers. Any
zero vectors left in the set can be eliminated without affecting the span.

Note that by the stepwise nature of the algorithm, we have that the spans of the
first k vectors from each set are equal, that is,

span{d1, d2} = span{d1, d2·1}
span{d1, d2, d3} = span{d1, d2·1, d3·12}

...

span{d1, d2, . . . , dK} = span{d1, d2·1, d3·12, . . . , dK·{1:(K−1)}}. (5.68)

The next section derives some important matrix decompositions based on the
Gram-Schmidt orthogonalization. Section 5.7.2 applies the orthogonalization to poly-
nomials.
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5.7.1 The QR and Cholesky decompositions

We can write the Gram-Schmidt process in matrix form. The first step is

(
d1 d2·1 · · · dK·1

)
= D




1 −γ12 · · · −γ1K
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 , (5.69)

The γij’s are defined in (5.67). Next,

(
d1 d2·1 d3·12 · · · dK·12

)

=
(

d1 d2·1 · · · dK·1
)




1 0 0 · · · 0
0 1 −γ23 · · · −γ2K
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




. (5.70)

We continue, so that the final result is

D∗ ≡
(

d1 d2·1 d3·12 · · · dK·{1:(K−1)}
)
= DB(1)B(2) · · · B(K−1), (5.71)

where B(k) is the identity except for the elements kj, j > k:

B
(k)
ij =





1 if i = j

−γkj if j > k = i

0 otherwise.

(5.72)

These matrices are upper unitriangular, meaning they are upper triangular (i.e.,
all elements below the diagonal are zero), and all diagonal elements are one. We will
use the notation

T 1
q = {T | T is q × q, tii = 1 for all i, tij = 0 for i > j}. (5.73)

Such matrices form an algebraic group. A group of matrices is a set G of N × N
invertible matrices g that is closed under multiplication and inverse:

g1, g2 ∈ G ⇒ g1g2 ∈ G , (5.74)

g ∈ G ⇒ g−1 ∈ G . (5.75)

Thus we can write

D = D∗B−1, where B = B(1) · · · B(K−1). (5.76)

Exercise 5.8.30 shows that

B−1 =




1 γ12 γ13 · · · γ1K
0 1 γ23 · · · γ2K
0 0 1 · · · γ3K
...

...
...

. . .
...

0 0 0 · · · 1




. (5.77)
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Now suppose the columns of D are linearly independent, which means that all the
columns of D∗ are nonzero (See Exercise 5.8.32.) Then we can divide each column of
D∗ by its norm, so that the resulting vectors are orthonormal:

qi =
di·{1:(i−1)}

‖di·{1:(i−1)}‖
, Q =

(
q1 · · · qK

)
= D∗

∆
−1, (5.78)

where ∆ is the diagonal matrix with the norms on the diagonal. Letting R = ∆B−1,
we have that

D = QR, (5.79)

where R is upper triangular with positive diagonal elements, the ∆ii’s. The set of
such matrices R is also group, denoted by

T +
q = {T | T is q × q, tii > 0 for all i, tij = 0 for i > j}. (5.80)

Hence we have the next result. The uniqueness for N = K is shown in Exercise 5.8.37.

Theorem 5.4 (QR-decomposition). Suppose the N × K matrix D has linearly independent
columns (hence K ≤ N). Then there is a unique decomposition D = QR, where Q, N × K,
has orthonormal columns and R ∈ T +

K .

Gram-Schmidt also has useful implications for the matrix S = D′D. From (5.60)
we have

S =

(
IK1

0

D′
2D1(D

′
1D1)

−1 IK2

)(
D′

1D1 0
0 D′

2·1D2·1

)(
IK1

(D′
1D1)

−1D′
1D2

0 IK2

)

=

(
IK1

0

S21S−1
11 IK2

)(
S11 0
0 S22·1

)(
IK1

S−1
11 S12

0 IK2

)
, (5.81)

where S22·1 = S22 − S21S−1
11 S12 as in (3.49). See Exercise 5.8.38. Then using steps as

in Gram-Schmidt, we have

S = (B−1)′




S11 0 0 · · · 0
0 S22·1 0 · · · 0
0 0 S33·12 · · · 0
...

...
...

. . .
...

0 0 0 · · · SKK·{1:(K−1)}




B−1

= R′R, (5.82)

because the inner matrix is ∆
2. Also, note that

γij = Sij·{1:(i−1)}/Sii·{1:(i−1)} for j > i, (5.83)

and R is given by

Rij =





√
Sii·{1··· i−1} if j = i,

Sij·{1··· i−1}/
√

Sii·{1··· i−1} if j > i,

0 if j < i.

(5.84)

Exercise 5.8.43 shows this decomposition works for any positive definite symmetric
matrix. It is then called the Cholesky decomposition:
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Theorem 5.5 (Cholesky decomposition). If S ∈ S+
q (5.51), then there exists a unique

R ∈ T +
q such that S = R′R.

Note that this decomposition yields another square root of S.

5.7.2 Orthogonal polynomials

Turn to polynomials. We will illustrate with the example on mouth sizes in (4.29).
Here K = 4, and we will consider the cubic model, so that the vectors are

(
d1 d2 d3 d4

)
=




1 8 82 83

1 10 102 103

1 12 122 123

1 14 142 143


 . (5.85)

Note that the ages (values 8, 10, 12, 14) are equally spaced. Thus we can just as well
code the ages as (0,1,2,3), so that we actually start with

(
d1 d2 d3 d4

)
=




1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27


 . (5.86)

Dotting d1 out of vector w is equivalent to subtracting the mean of the elements
of w for each element. Hence

d2·1 =




−3/2
−1/2

1/2
3/2


→




−3
−1

1
3


 , d3·1 =




−7/2
−5/2

1/2
11/2


→




−7
−5

1
11


 , d4·1 =




−9
−8
−1
18


 .

(5.87)
We multiplied the first two vectors in (5.87) by 2 for simplicity. Next, we dot d2·1 out
of the last two vectors. So for d3·1, we have

d3·12 =




−7
−5

1
11


− (−7,−5, 1, 11)(−3,−1, 1, 3)′

‖(−3,−1, 1, 3)‖2




−3
−1

1
3


 =




2
−2
−2

2


→




1
−1
−1

1


 ,

(5.88)
and, similarly, d4·12 = (4.2,−3.6,−5.4, 4.8)′ → (7,−6,−9, 8)′. Finally, we dot d3·12
out of d4·12 to obtain d4·123 = (−1, 3,−3, 1)′. Then our final orthogonal polynomial
matrix is the very nice

(
d1 d2·1 d3·12 d4·123

)
=




1 −3 1 −1
1 −1 −1 3
1 1 −1 −3
1 3 1 1


 . (5.89)

Some older statistics books (e.g., Snedecor and Cochran [1989]) contain tables of or-
thogonal polynomials for small K, and statistical packages will calculate them for
you. In R, the function is poly.
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A key advantage to using orthogonal polynomials over the original polynomial
vectors is that, by virtue of the sequence in (5.68), one can estimate the parameters
for models of all degrees at once. For example, consider the mean of the girls’ mouth
sizes in (4.14) as the V, and the matrix in (5.89) as the D, in the model (5.24):

(21.18, 22.23, 23.09, 24.09) ≈ (γ1, γ2, γ3, γ4)




1 1 1 1
−3 −1 1 3

1 −1 −1 1
−1 3 −3 1


 . (5.90)

Because D′D is diagonal, the least-squares estimates of the coefficients are found via

γ̂j =
vdj·{1:(j−1)}
‖dj·{1:(j−1)}‖2

, (5.91)

which here yields
γ̂ = (22.6475, 0.4795, −0.0125, 0.0165). (5.92)

These are the coefficients for the cubic model. The coefficients for the quadratic model
set γ̂4 = 0, but the other three are as for the cubic. Likewise, the linear model has γ̂
equalling (22.6475, 0.4795, 0, 0), and the constant model has (22.6475, 0, 0, 0).

In contrast, if one uses the original vectors in either (5.85) or (5.86), one has to recal-
culate the coefficients separately for each model. Using (5.86), we have the following
estimates:

Model γ̂∗
1 γ̂∗

2 γ̂∗
3 γ̂∗

4
Cubic 21.1800 1.2550 −0.2600 0.0550
Quadratic 21.1965 0.9965 −0.0125 0
Linear 21.2090 0.9590 0 0
Constant 22.6475 0 0 0

(5.93)

Note that the non-zero values in each column are not equal.

5.8 Exercises

Exercise 5.8.1. Show that the span in (5.3) is indeed a linear subspace.

Exercise 5.8.2. Verify that the four spans given in (5.5) are the same.

Exercise 5.8.3. Show that for matrices C (N × J) and D (N × K),

span{columns of D} ⊂ span{columns of C} ⇒ D = CA, (5.94)

for some J × K matrix A. [Hint: Each column of D must be a linear combination of
the columns of C.]

Exercise 5.8.4. Here, D is an N × K matrix, and A is K × L. (a) Show that

span{columns of DA} ⊂ span{columns of D}. (5.95)

[Hint: Any vector in the left-hand space equals DAγ for some L × 1 vector γ. For
what vector γ∗ is DAγ = Dγ∗?] (b) Prove Lemma 5.1. [Use part (a) twice, once for

A and once for A−1.] (c) Show that if the columns of D are linearly independent,
and A is K × K and invertible, then the columns of DA are linearly independent.
[Hint: Suppose the columns of DA are linearly dependent, so that for some γ 6= 0,
DAγ = 0. Then there is a γ∗ 6= 0 with Dγ∗ = 0. What is it?]
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Exercise 5.8.5. Let d1, . . . , dK be vectors in RN . (a) Suppose (5.8) holds. Show that
the vectors are linearly dependent. [That is, find γj’s, not all zero, so that ∑ γidi = 0.]
(b) Suppose the vectors are linearly dependent. Find an index i and constants γj so
that (5.8) holds.

Exercise 5.8.6. Prove Lemma 5.2.

Exercise 5.8.7. Suppose the set of M × 1 vectors g1, . . . , gK are nonzero and mutually
orthogonal. Show that they are linearly independent. [Hint: Suppose they are linearly
dependent, and let gi be the vector on the left-hand side in (5.8). Then take g′

i times
each side of the equation, to arrive at a contradiction.]

Exercise 5.8.8. Prove part (a) of Theorem 5.1. [Hint: Show that the difference of v− v̂1
and v − v̂2 is orthogonal to W , as well as in W . Then show that such a vector must be
zero.] (b) Prove part (b) of Theorem 5.1. (c) Prove part (c) of Theorem 5.1. (d) Prove

part (d) of Theorem 5.1. [Hint: Start by writing ‖v − w‖2 = ‖(v − v̂)− (w − v̂)‖2,
then expand. Explain why v − v̂ and w − v̂ are orthogonal.]

Exercise 5.8.9. Suppose D1 is N × K1 and D2 is N × K2, and and D′
1D2 = 0. Let

Vi = span{columns of Di} for i = 1, 2. (a) Show that V1 and V2 are orthogonal
spaces. (b) Define W = span{columns of (D1, D2)}. (The subspace W is called the
direct sum of the subspaces V1 and V2.) Show that u is orthogonal to V1 and V2 if

and only if it is orthogonal to W . (c) For v ∈ RN , let v̂i be the projection onto Vi,
i = 1, 2. Show that v̂1 + v̂2 is the projection of v onto W . [Hint: Show that v − v̂1 − v̂2

is orthogonal to V1 and V2, then use part (b).]

Exercise 5.8.10. Derive the normal equations (5.16) by differentiating ‖v − γD′‖2

with respect to the γi’s.

Exercise 5.8.11. Suppose A and B are both n × q matrices. Exercise 3.7.5 showed that
trace(AB′) = trace(B′A). Show further that

trace(AB′) = trace(B′A) = row(A) row(B)′. (5.96)

Exercise 5.8.12. This Exercise proves part (a) of Proposition 5.1. Suppose W =
span{columns of D}, where D is N × K and D′D is invertible. (a) Show that the

projection matrix PD = D(D′D)−1D′ as in (5.20) is symmetric and idempotent. (b)
Show that trace(PD) = K. [Use Exercise 5.8.11.]

Exercise 5.8.13. This Exercise proves part (b) of Proposition 5.1. Suppose P is a
symmetric and idempotent N × N matrix. Find a set of linearly independent vectors
d1, . . . , dK, where K = trace(P), so that P is the projection matrix for span{d1, . . . , dK}.
[Hint: Write P = Γ1Γ

′
1 where Γ1 has orthonormal columns, as in Lemma 3.1. Show

that P is the projection matrix onto the span of the columns of the Γ1, and use Exercise
5.8.7 to show that those columns are a basis. What is D, then?]

Exercise 5.8.14. (a) Prove part (c) of Proposition 5.1. (b) Prove part (d) of Proposition
5.1. (c) Prove (5.23).

Exercise 5.8.15. Consider the projection of v ∈ RN onto span{1′N}. (a) Find the
projection. (b) Find the residual. What does it contain? (c) Find the projection matrix
P. What is Q = IN − P? Have we seen it before?
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Exercise 5.8.16. Suppose D is N × K and D∗ is N × L, where span{columns of D} ⊂
span{columns of D∗}. (a) Show that PDPD∗ = PD∗PD = PD. [Hint: What is PD∗D?]
(b) Show that QDQD∗ = QD∗QD = QD∗ .

Exercise 5.8.17. Suppose A is a K × K matrix such that γA = γ for all 1 × K vectors
γ. Show that A = IK.

Exercise 5.8.18. Show that the quadratic form in (5.36) equals ‖v∗−γD∗′‖ for v∗ and
D∗ in (5.34). Conclude that the weighted least squares estimator (5.35) does minimize
(5.34).

Exercise 5.8.19. Show that the weighted least squares estimate (5.35) is the same as

the regular least squares estimate (5.18) when in (5.24) the covariance Ω = σ2IN for

some σ2
> 0.

Exercise 5.8.20. Verify the steps in (5.40), (5.41) and (5.42), detailing which parts of
Proposition 3.2 are used at each step.

Exercise 5.8.21. Verify (5.44).

Exercise 5.8.22. Verify (5.60).

Exercise 5.8.23. Show that for any K1 × K2 matrix A,

(
IK1

A
0 IK2

)−1

=

(
IK1

−A
0 IK2

)
. (5.97)

Exercise 5.8.24. Suppose D = (D1, D2), where D1 is N × K1, D2 is N × K2, and
D′

1D2 = 0. Use Exercise 5.8.9 to show that PD = PD1
+ PD2

.

Exercise 5.8.25. Suppose D = (D1, D2), where D1 is N × K1, D2 is N × K2 (but
D′

1D2 6= 0, maybe.) (a) Argue that span{columns of D} = span{columns of (D1, D2·1)},
where D2·1 = QD1

D2 as in (5.57). (b) Use Exercise 5.8.24 to show that PD =
PD1

+ PD2·1 . (c) Show that QD1
= QD + PD2·1 .

Exercise 5.8.26. Show that the equation for dj·1 in (5.61) does follow from the deriva-
tion of D2·1.

Exercise 5.8.27. Give an argument for why the set of equations in (5.68) follows from
the Gram-Schmidt algorithm.

Exercise 5.8.28. Given that a subspace is a span of a set of vectors, explain how one
would obtain an orthogonal basis for the space.

Exercise 5.8.29. Let Z1 be a N × K matrix with linearly independent columns. (a)
How would you find a N × (N − K) matrix Z2 so that (Z1, Z2) is an invertible N × N
matrix, and Z′

1Z2 = 0 (i.e., the columns of Z1 are orthogonal to those of Z2). [Hint:
Start by using Lemma 5.3 with D1 = Z1 and D2 = IN . (What is the span of the
columns of (Z1, IN)?) Then use either Gram-Schmidt or Exercise 5.8.13 on D2·1 to
find a set of vectors to use as the Z2. Do you recognize D2·1?] (b) Suppose the
columns of Z1 are orthonormal. How would you modify the Z2 obtained in part (a)
so that (Z1, Z2) is an orthogonal matrix?
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Exercise 5.8.30. Consider the matrix B(k) defined in (5.72). (a) Show that the inverse

of B(k) is of the same form, but with the −bkj’s changed to bkj’s. That is, the inverse

is the K × K matrix C(k), where

C
(k)
ij =





1 if i = j

bkj if j > k = i

0 otherwise.

(5.98)

Thus C is the inverse of the B in (5.76), where C = C(K−1) · · · C(1). (b) Show that
C is unitriangular, where the bij’s are in the upper triangular part, i.e, Cij = bij for
j > i, as in (5.77). (c) The R in (5.79) is then ∆C, where ∆ is the diagonal matrix with
diagonal elements being the norms of the columns of D∗. Show that R is given by

Rij =





‖di·{1:(i−1)}‖ if j = i

d′
j·{1:(i−1)}di·{1:(i−1)}/‖di·{1:(i−1)}‖ if j > i

0 if j < i.

(5.99)

Exercise 5.8.31. Verify (5.83).

Exercise 5.8.32. Suppose d1, . . . , dK are vectors in RN , and d∗
1 , . . . , d∗

K are the corre-
sponding orthogonal vectors resulting from the Gram-Schmidt algorithm, i.e., d∗

1 =
d1, and for i > 1, d∗

i = di·{1:(i−1)} in (5.66). (a) Show that the d∗
1 , . . . , d∗

K are linearly

independent if and only if they are all nonzero. Why? [Hint: Recall Exercise 5.8.7.]
(b) Show that d1, . . . , dK are linearly independent if and only if all the d∗

j are nonzero.

Exercise 5.8.33. Suppose D is N × K, with linearly independent columns, and D =
QR is its QR decomposition. Show that span{columns of D} = span{columns of Q}.

Exercise 5.8.34. Suppose D is an N × N matrix whose columns are linearly indepen-
dent. Show that D is invertible. [Hint: Use the QR decomposition in Theorem 5.4.
What kind of a matrix is the Q here? Is it invertible?]

Exercise 5.8.35. (a) Show that span{columns of Q} = RN if Q is an N × N orthogonal
matrix. (b) Suppose the N × 1 vectors d1, . . . , dN are linearly independent, and W =
span{d1, . . . , dN}. Show that W = RN . [Hint: Use Theorem 5.4, Lemma 5.1, and part
(a).]

Exercise 5.8.36. Show that if d1, . . . , dK are vectors in RN with K > N, that the di’s
are linearly dependent. (This fact should make sense, since there cannot be more axes
than there are dimensions in Euclidean space.) [Hint: Use Exercise 5.8.35 on the first
N vectors, then show how dN+1 is a linear combination of them.]

Exercise 5.8.37. Show that the QR decomposition in Theorem 5.4 is unique when
N = K. That is, suppose Q1 and Q2 are K × K orthogonal matrices, and R1 and
R2 are K × K upper triangular matrices with positive diagonals, and Q1R1 = Q2R2.

Show that Q1 = Q2 and R1 = R2. [Hint: Show that Q ≡ Q′
2Q1 = R2R−1

1 ≡ R,
so that the orthogonal matrix Q equals the upper triangular matrix R with positive
diagonals. Show that therefore Q = R = IK .] [Extra credit: Show the uniqueness
when M > K.]
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Exercise 5.8.38. Verify (5.81). (Exercise 5.8.23 helps.) In particular: (a) Argue that
the 0s in the middle matrix on the left-hand side of (5.81) are correct. (b) Show
S22·1 = D′

2·1D2·1.

Exercise 5.8.39. Suppose

S =

(
S11 S12
S21 S22

)
, (5.100)

where S11 is K1 × K1 and S22 is K2 × K2, and S11 is invertible. (a) Show that

|S| = |S11| |S22·1|. (5.101)

[Hint: Use (5.81).] (b) Show that

S−1 =




S−1
11 + S−1

11 S12S−1
22·1S21S−1

11 −S−1
11 S12S−1

22·1

−S−1
22·1S21S−1

11 S−1
22·1


 . (5.102)

[Hint: Use (5.81) and (5.97).] (c) Use part (b) to show that

[S−1]22 = S−1
22·1, (5.103)

where [S−1]22 is the lower-right K2 × K2 block of S−1. Under what condition on the

Sij’s is [S−1]22 = S−1
22 ?

Exercise 5.8.40. For S ∈ S+
K , show that

|S| = S11S22·1S33·12 · · · SKK·{1···K−1}. (5.104)

[Hint: Use (5.82)). What is the determinant of a unitriangular matrix?]

Exercise 5.8.41. Consider the multivariate regression model, as in (5.38) with z = Iq.
Partition x and β:

Y = xβ + R = (x1 x2)

(
β1
β2

)
+ R, (5.105)

where x1 is n × p1 and x2 is n × p2. Let x2·1 = Qx1 x2. (a) Show that

[Cx]22 = (x′2·1x2·1)
−1, (5.106)

where [Cx]22 is the lower-right p2 × p2 part of Cx in (5.45). (See 5.103.) (b) Show that

β̂LS2, the lower p2 × q part of β̂LS in (5.43), satisfies

β̂LS = (x′2·1x2·1)
−1x′2·1Y. (5.107)

Exercise 5.8.42. Consider the model (5.38) where z is the q × l matrix

z =

(
Il
0

)
, (5.108)

with l < q, and partition ΣR as

ΣR =

(
Σ11 Σ12
Σ21 Σ22

)
, Σ11 is l × l, Σ22 is (q − l)× (q − l). (5.109)
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Show that in (5.45), Σz = Σ11, and use (5.103) to show that in (5.42),

(z′Σ−1
R z)−1 = Σ11·2. (5.110)

Then find an explicit equation for Cov[β̂LS]−Cov[β̂WLS] from(5.42) and (5.44). Which
estimator has a better covariance? [We already know that Gauss-Markov answers this
last question.]

Exercise 5.8.43. Suppose S ∈ S+
K . Prove Theorem 5.5, i.e., show that we can write

S = R′R, where R is upper triangular with positive diagonal elements. [Hint: Use

the spectral decomposition S = GLG′ from (1.33). Then let D = L1/2G′ in (5.79).
Are the columns of this D linearly independent?]

Exercise 5.8.44. Show that if W = R′R is the Cholesky decomposition of W (K × K),
then

|W| =
K

∏
j=1

r2
jj. (5.111)

Exercise 5.8.45. Show that the Cholesky decomposition in Theorem 5.5 is unique.
That is, if R1 and R2 are K × K upper triangular matrices with positive diagonals,

that R′
1R1 = R′

2R2 implies that R1 = R2. [Hint: Let R = R1R−1
2 , and show that

R′R = IK. Then show that this R must be IK, just as in Exercise 5.8.37.]

Exercise 5.8.46. Show that the N × K matrix D has linearly independent columns if
and only if D′D is invertible. [Hint: If D has linearly independent columns, then
D′D = R′R as Theorem 5.5, and R is invertible. If the columns are linearly depen-
dent, there is a γ 6= 0 with D′Dγ = 0. Why does that equation imply D′D has no
inverse?]

Exercise 5.8.47. Suppose D is N × K and C is N × J, K > J, and both matrices have
linearly independent columns. Furthermore, suppose

span{columns of D} = span{columns of C}. (5.112)

Thus this space has two bases with differing numbers of elements. (a) Let A be the
J × K matrix such that D = CA, guaranteed by Exercise 5.8.3. Show that the columns
of A are linearly independent. [Hint: Note that Dγ 6= 0 for any K × 1 vector γ 6= 0.
Hence Aγ 6= 0 for any γ 6= 0.] (b) Use Exercise 5.8.36 to show that such an A cannot
exist. (c) What do you conclude?

Exercise 5.8.48. This exercise is to show that any linear subspace W in RN has a basis.
If W = {0}, the basis is the empty set. So you can assume W has more than just the

zero vector. (a) Suppose d1, . . . , dJ are linearly independent vectors in RN . Show that

d ∈ RN but d 6∈ span{d1, . . . , dJ} implies that d1, . . . , dJ , d are linearly independent.
[Hint: If they are not linearly independent, then some linear combination of them
equals zero. The coefficient of d in that linear combination must be nonzero. (Why?)
Thus d must be in the span of the others.] (b) Take d1 ∈ W , d1 6= 0. [I guess we are
assuming the Axiom of Choice.] If span{d1} = W , then we have the basis. If not,
there must be a d2 ∈ W − span{d1}. If span{d1, d2} = W , we are done. Explain
how to continue. (Also, explain why part (a) is important here.) How do you know
this process stops? (c) Argue that any linear subspace has a corresponding projection
matrix.
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Exercise 5.8.49. Suppose P and P∗ are projection matrices for the linear subspace

W ⊂ RN . Show that P = P∗, i.e., the projection matrix is unique to the subspace.
[Hint: Because the projection of any vector is unique, Pv = P∗v for all v. Consider v
being each of the columns of IN .]

Exercise 5.8.50. Find the orthogonal polynomial matrix (up to cubic) for the four time
points 1, 2, 4, 5.

Exercise 5.8.51 (Skulls). For the model on skull measurements described in Exercise
4.4.2, replace the polynomial matrix w with that for orthogonal polynomials.

Exercise 5.8.52 (Caffeine). In Exercise 4.4.4, the x is a quadratic polynomial matrix
in grade (8, 10, 12). Replace it with the orthogonal polynomial matrix (also 28 × 3),
where the first column is all ones, the second is is the linear vector (−1′9, 0′10, 1′9)

′, and
third is the quadratic vector is (1′9,−c1′10, 1′9)

′ for some c. Find c.

Exercise 5.8.53 (Leprosy). Consider again the model for the leprosy data in Exercise
4.4.6. An alternate expression for x is w∗ ⊗ 110, where the first column of w∗ rep-
resents the overall mean, the second tells whether the treatment is one of the drugs,
and the third whether the treatment is Drug A, so that

w∗ =




1 1 1
1 1 0
1 0 0


 . (5.113)

Use Gram-Schmidt to orthogonalize the columns of w∗. How does this matrix differ
from w? How does the model using w∗ differ from that using w?



Chapter 6

Both-Sides Models: Distribution of the Least

Squares Estimator

6.1 Distribution of β̂

The both-sides model as defined in (4.28) is

Y = xβz′ + R, R ∼ N(0, In ⊗ ΣR), (6.1)

where Y is n × q, x is n × p, β is p × l, and z is q × l. Assuming that x′x and z′z are
invertible, the least-squares estimate of β is given in (5.43) to be

β̂ = (x′x)−1x′Yz(z′z)−1. (6.2)

From (5.27) we have seen that β̂ is unbiased, and (5.44) gives the covariance ma-

trix. Because in (6.1), Y is multivariate normal, and β̂ is a linear function of Y, β̂ is
multivariate normal. Thus we have that its distribution is

β̂ ∼ Np×l(β, Cx ⊗ Σz), (6.3)

where from (5.45),

Cx = (x′x)−1 and Σz = (z′z)−1z′ΣRz(z′z)−1. (6.4)

In order to find confidence intervals and hypothesis tests for the coefficients, we
need to estimate Σz.

6.2 Estimating the covariance

6.2.1 Multivariate regression

We start with the multivariate regression model, i.e., z = Iq:

Y = xβ + R, R ∼ N(0, In ⊗ ΣR). (6.5)

113
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As in (5.19), the fit of the model to the data is given by

Ŷ = xβ̂ = x(x′x)−1x′Y = PxY, (6.6)

where Px = x(x′x)−1x′, the projection matrix on the span of the columns of x, as in
(5.20). The residual vector is then

R̂ = Y − Ŷ = Y − PxY = QxY, (6.7)

where Qx = In − Px as in (5.22).

The joint distribution of Ŷ and R̂ is multivariate normal because the collection is a
linear transformation of Y. The means are straightforward:

E[Ŷ] = xE[β̂] = xβ (6.8)

because β̂ is unbiased from (6.3), hence

E[R̂] = E[Y]− E[Ŷ] = xβ− xβ = 0. (6.9)

For the joint covariance of the fit and residual, write
(

Ŷ

R̂

)
=

(
Px

Qx

)
Y. (6.10)

Using Proposition 3.1 on the covariance in (6.1), we have

Cov

[(
Ŷ

R̂

)]
=

(
PxP′

x PxQ′
x

QxP′
x QxQ′

x

)
⊗ ΣR

=

(
Px 0
0 Qx

)
⊗ ΣR, (6.11)

where we use Proposition 5.1, parts (a) and (c), on the projection matrices. Note
that the fit and residual are independent because they are uncorrelated and jointly

multivariate normal. Furthermore, we can write β̂ as a function of the fit,

β̂ = (x′x)−1x′Y = (x′x)−1x′PxY = (x′x)−1x′Ŷ, (6.12)

because x′Px = x′. Thus β̂ and R̂ are independent.
From (6.9) and (6.11), we have that

R̂ = QxY ∼ N(0, Qx ⊗ ΣR). (6.13)

Because Qx is idempotent, Corollary 3.1 shows that

R̂′R̂ = Y′QxY ∼ Wishartq(n − p, ΣR), (6.14)

where by Proposition 5.1 (a), trace(Qx) = trace(In − Px) = n − p. We collect these
results.

Theorem 6.1. In the model (6.5), β̂ in (6.12) and Y′QxY are independent, with distributions
given in (6.3) and (6.14), respectively.

The Wishart result in (6.14) implies that an unbiased estimate of ΣR is

Σ̂R =
1

n − p
Y′QxY. (6.15)
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6.2.2 Both-sides model

Now consider the general both-sided model (6.1). We start by using just the z part of
the estimate (6.2), that is, define the n × l matrix

Yz = Yz(z′z)−1. (6.16)

Exercise 6.6.2 shows that

Yz = xβ+ Rz, Rz ∼ N(0, In ⊗ Σz) (6.17)

for Σz in (6.4). Notice that Yz follows a multivariate regression model (6.5). Theorem

6.1 can be applied to show that β̂ and Y′
zQxYz are independent, with

Y′
zQxYz ∼ Wishartl(n − p, Σz). (6.18)

Also, as in (6.15),

Σ̂z =
1

n − p
Y′

zQxYz (6.19)

is an unbiased estimator of Σz. Thus an unbiased estimator of the covariance of β̂ is

Ĉov[β̂] = Cx ⊗ Σ̂z. (6.20)

6.3 Standard errors and t-statistics

In order to find confidence intervals and perform hypothesis tests of the individual
βij’s, we need to find the standard errors of the estimates. From (6.3), the individual
coefficients satisfy

β̂ij ∼ N(βij, Cxiiσzjj), (6.21)

where Cxii is the ith diagonal element of Cx, and σzjj is the jth diagonal element of

Σz. Let σ̂zjj be the jth diagonal of Σ̂z, and define the (estimated) standard error by

se(β̂ij) =
√

Cxiiσ̂zjj. (6.22)

Inference is based on the t-statistic

T =
β̂ij − βij

se(β̂ij)
. (6.23)

We now need the Student’s t distribution:

Definition 6.1. If Z ∼ N(0, 1) and U ∼ χ2
ν, and Z and U are independent, then

T ≡ Z√
U/ν

(6.24)

has the Student’s t distribution on ν degrees of freedom, written T ∼ tν.
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To see that T in (6.23) has a Student’s t distribution, note that since (n − p)Σ̂z is
Wishart as in (6.18), by the marginals discussion in Section 3.6,

U ≡ (n − p)σ̂zjj/σzjj ∼ χ2
n−p. (6.25)

Also, from (6.21),

Z = (β̂ij − βij)/
√

Cxiiσzjj ∼ N(0, 1). (6.26)

Theorem 6.1 guarantees that T and Z are independent, hence Definition 6.1 can be
used to show that T in (6.23) has the distribution of that in (6.24) with ν = n − p. See
Exercise 6.6.3.

Thus a 100 × (1 − α)% confidence interval for βij is

β̂ij ± tn−p,α/2 se(β̂ij), (6.27)

where tn−p,α/2 is the cutoff point for which P[|T| > tn−p,α/2] = α for T ∼ tn−p. A
level α test of the null hypothesis H0 : βij = 0 rejects the null if

|β̂ij|
se(β̂ij)

> tn−p,α/2. (6.28)

6.4 Examples

6.4.1 Mouth sizes

Section 4.2.1 contains data on the size of mouths of 11 girls (Sex=1) and 16 boys
(Sex=0) at four ages, so n = 27 and q = 4. The model where the x matrix compares
the boys and girls, and the z matrix specifies orthogonal polynomial growth curves
(Section 5.7.2), is

Y = xβz′ + R

=

(
111 111
116 016

)(
β0 β1 β2 β3
δ0 δ1 δ2 δ3

)



1 1 1 1
−3 −1 1 3

1 −1 −1 1
−1 3 −3 1


+ R, (6.29)

Compare this model to that in (4.13). Here the βj’s are the boys’ coefficients, and the

(βj + δj)’s are the girls’ coefficients, hence the δj’s are the girls’ minus the boys’.
In this case, z is square, hence invertible, so that we have

z is q × q =⇒ z(z′z)−1 = (z′)−1

=⇒ Yz = Yz(z′z)−1 = Y(z′)−1 (6.30)

for Yz from (6.16). The rows of the Y contain the individuals’ original mouth-size
measurements over time. By contrast, the rows of Yz contain the coefficients for the
individuals’ growth curves. The following table exhibits a few of the rows of Yz:
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Observation Constant Linear Quadratic Cubic
1 21.375 0.375 0.625 −0.125

Yz : 2 23.000 0.800 0.250 −0.150
· · ·

27 23.000 0.550 0.500 −0.150

(6.31)

The first element “21.375” of Yz contains the average mouth size for the first obser-
vation (a girl), the next element “0.375” is the linear coefficient for her growth curve,
and the next two elements are her quadratic and cubic terms, respectively.

The data are in the 27 × 5 R matrix mouths, where the first four columns contain
the mouth size measurements, and the fifth is the indicator for sex. We first create
the x, y, and z matrices, then find β̂:

x <− cbind(1,mouths[,5])
y <− mouths[,1:4]
z <− cbind(c(1,1,1,1),c(−3,−1,1,3),c(1,−1,−1,1),c(−1,3,−3,1))
yz <− y%∗%solve(t(z))
cx <− solve(t(x)%∗%x)
beta <− cx%∗%t(x)%∗%yz

In R, solve(a) finds the inverse of the matrix a, and the symbol for matrix multiplica-
tion is “%∗%.” Note that if z is not square, then the Yz is calculated via

yz <− y%∗%z%∗%solve(t(z)%∗%z)

The estimate β̂ is

Intercept Linear Quadratic Cubic
Boys 24.969 0.784 0.203 −0.056
Girls− Boys −2.321 −0.305 −0.214 0.072

(6.32)

Next we find the estimated covariance Σ̂z in (6.19):

resid <− yz−x%∗%beta
sigmaz <− t(resid)%∗%resid/(27−2) # n=27, p=2

We now have

Cx =

(
0.0625 −0.0625

−0.0625 0.1534

)
, (6.33)

and

Σ̂z =




3.7791 0.0681 −0.0421 −0.1555
0.0681 0.1183 −0.0502 0.0091

−0.0421 −0.0502 0.2604 −0.0057
−0.1555 0.0091 −0.0057 0.1258


 . (6.34)

By (6.22), the standard errors of the β̂ij’s are estimated by multiplying the ith

diagonal of Cx and jth diagonal of Σ̂z, then taking the square root. We can obtain the
matrix of standard errors using the command

se <− sqrt(outer(diag(cx),diag(sigmaz),"∗"))
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The t-statistics then divide the estimates by their standard errors, betahat/se:

Standard Errors
Intercept Linear Quadratic Cubic

Boys 0.4860 0.0860 0.1276 0.0887
Girls−Boys 0.7614 0.1347 0.1999 0.1389

t-statistics
Intercept Linear Quadratic Cubic

Boys 51.376 9.121 1.592 −0.634
Girls−Boys −3.048 −2.262 −1.073 0.519

(6.35)

It looks like the quadratic and cubic terms are unnecessary, so that straight lines
for each sex fit well. It is clear that the linear term for boys is necessary, and the
intercepts for the boys and girls are different (the p-value for t = 3.048 with 25 df is
0.005). The p-value for the Girls−Boys slope is 0.033, which is borderline significant.

The function bothsidesmodel in Section A.2.1 organizes these calculations, which
can be invoked using bothsidesmodel(x,y,z), or simply bothsidesmodel(x,y) for the
multivariate regression model.

6.4.2 Using linear regression routines

In the previous section, we used explicit matrix calculations. It turns out that the
estimates and standard errors can be found using any software that will perform
multiple linear regression. In R, the lm function will accept matrices Y and x, and
calculate one multiple regression for each column of Y, each time using the same x,
invoked by lm(y∼x−1). The function by default adds the 1n vector to the model, but
that addition can be prevented by using the “−1” after the x.

For the both-sides model, we need two steps. The first finds the Yz = Yz(z′z)−1.
Note that this matrix looks like the estimate of β in the multivariate regression model
in (6.6), but with z in place of x, and the z parts on the wrong side. Thus we need to
transpose the Y, using lm(t(y)∼z−1). The Yz is then in the coefficients component of
the regression, again transposed. So to find Yz, we use

yz <− t(lm(t(y)∼z−1)$coef)

Step two is to put the Yz into the function for the regression (6.17):

regr <− lm(yz∼x−1)
summary(regr)

The summary function prints out the estimates, standard errors, and t-statistics, among
other quantities, though not in a very compact form. The covariance matrix of the

β̂ is found using the vcov function, though it gives Σ̂z ⊗ Cx rather than the Cx ⊗ Σ̂z

in (6.20). The function reverse.kronecker in Section A.2.2 will turn the former into the
latter:

covbeta <− reverse.kronecker(vcov(regr),l,l)

The function takes the Kronecker product, as well as the dimensions of the left-hand
matrix, which in this case is l × l.
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6.4.3 Leprosy data

Recall the Leprosy example described in Exercise 4.4.6. There are three groups of
ten observations each, corresponding to the three treatments of Drug A, Drug D, and
Placebo. The people were randomly assigned to the treatments. Each observation
consists of a bacterial count before treatment, and another bacterial count after treat-
ment. The x matrix has columns representing the overall mean, the Drug vs. Placebo
effect, and the Drug A vs. Drug D effect. Thus the multivariate analysis of variance
model, with the before and after counts as the two Y variables, is

Y =
(

Yb Ya
)
= xβ + R

=






1 1 1
1 1 −1
1 −2 0


⊗ 110






µb µa

αb αa

βb βa


+ R, (6.36)

where

Cov(R) = I30 ⊗ ΣR = I30 ⊗
(

σbb σba
σab σaa

)
. (6.37)

The R matrix leprosy is 30 × 3, with the first two columns consisting of the before
and after bacterial counts, and the final column indicating the group. Because this is
a multivariate regression problem, i.e., z = Iq, we need to use the linear regression
function in Section 6.4.2 just once:

y <− leprosy[,1:2]
x <− kronecker(cbind(1,c(1,1,−2),c(1,−1,0)),rep(1,10))
summary(lm(y∼x−1))

The results for β̂:

Estimates Standard errors t-statistics
Before After Before After Before After

Mean 10.733 7.900 0.856 1.108 12.544 7.127
Drug effect −1.083 −2.200 0.605 0.784 −1.791 −2.807
Drugs A vs. D −0.350 −0.400 1.048 1.357 −0.334 −0.295

(6.38)
The degrees of freedom for the t-statistics are n − p = 30 − 3 = 27. The main

interest is the effect of the treatments on the after-treatment bacterial counts. The
t for the Drug effect on the after counts (αa) is −2.807, which yields a p-value of
0.009, suggesting that indeed the drugs are effective. The t for the Drug A vs. Drug
D after-effect (βa) is only about −.3, which is not significant at all. Interestingly,
the before counts for the Drug effect (Drugs versus Placebo) show a p-value of 0.08,
which is almost significant. What this means is that the randomization, by chance,
assigned less healthy people to the placebo group than to the drug groups. Thus one
may wonder whether the positive effect we see for the drugs is due to the favorable
randomization. This question we take up in the next section.

6.4.4 Covariates: Leprosy data

A covariate is a variable that is of (possibly) secondary importance, but is recorded be-
cause it might help adjust some estimates in order to make them more precise. In the
leprosy example above, the before-treatment bacterial counts constitute the covariate.
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These measurements are indications of health of the subjects before treatment, the
higher the less healthy.

Note that the before counts should not be affected by the treatments, because
they were measured before the treatment, and the people were randomly assigned
to treatments. The implication for the model (6.37) is that the before parameters
indicating drug effects, αb and βb, are zero in the population. That is,

β =




µb µa

0 αa

0 βa


 . (6.39)

To take into account the before counts, we condition on them, that is, consider the
conditional distribution of the after counts (Ya) given the before counts (Yb). Using
equation 3.56 (with Y there being Ya here, and X there being Yb here), we obtain

Ya | Yb = yb ∼ N30×1(α+ ybη, I30 × σaa·b), (6.40)

where η = σab/σbb, and recalling (3.40),

α+ ybη = E[Ya]− E[Yb]η + ybη

= x




µa

αa

βa


− x




µb
0
0


 η + ybη

= x




µ∗

αa

βa


+ ybη

= (x yb)




µ∗

αa

βa

η


 , (6.41)

where µ∗ = µa − µbη. Thus conditionally we have another linear model, this one
with one Y vector and four X variables, instead of two Y’s and three X’s:

Ya = (x yb)




µ∗

αa

βa

η


+ R∗, where R∗ | Yb = yb ∼ N(0, In ⊗ σaa·b). (6.42)

A key point here is that the parameters of interest, αa and βa, are still estimable in
this model. The µa and µb are not estimable in this conditional model, though if we
estimate µb by yb, we can estimate µa by µ̂∗ + yb η̂.

The calculations proceed as for any (multivariate) regression model, as in Theorem
6.1 but with (x, yb) in place of x, and ya in place of y. The first column of leprosy has
the before bacterial counts (yb), and the second column has the after counts (ya). The
following code finds the estimates:

ya <− leprosy[,2]
xyb <− cbind(x,leprosy[,1])
summary(lm(ya∼xyb−1))



6.4. Examples 121

Note that we have lost a degree of freedom, because there are now 4 columns in
(x, yb).

The next tables have the comparisons of the original estimates and the covariate-
adjusted estimates for αa and βa:

Original
Estimate se t

αa −2.200 0.784 −2.807
βa −0.400 1.357 −0.295

Covariate-adjusted
Estimate se t

αa −1.131 0.547 −2.067
βa −0.054 0.898 −0.061

(6.43)

The covariates helped the precision of the estimates, lowering the standard errors
by about 30%. Also, the p-value for the after-treatment Drug effect is 0.049, still
significant, but just barely. Thus using the covariate presented a more defensible,
though not necessarily more publishable, result.

6.4.5 Histamine in dogs

Turn to the example in Section 4.2.1 where sixteen dogs were split into four groups,
and each had four histamine levels measured over the course of time.

In the model (4.15), the x part of the model is for a 2 × 2 ANOVA with interaction.
We add a matrix z to obtain a both-sides model. The z we will take has a separate
mean for the “before” measurements, because these are taken before any treatment,
and a quadratic model for the three “after” time points:

Y = xβz′ + R

=







1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 1 1 1


⊗ 14







µb µ0 µ1 µ2
αb α0 α1 α2
βb β0 β1 β2

γb γ0 γ1 γ2




×




1 0 0 0
0 1 1 1
0 −1 0 1
0 1 −2 1


+ R. (6.44)

The µ’s are for the overall mean of the groups, the α’s for the drug effects, the β’s
for the depletion effect, and the γ’s for the interactions. The “b” subscript indicates
the before means, and the 0, 1 and 2 subscripts indicate the constant, linear, and
quadratic terms of the growth curves. We first set up the design matrices, then use
the two steps from Section 6.4.2, where the Y is the R matrix histamine.

x <− kronecker(cbind(1,c(−1,−1,1,1),c(−1,1,−1,1),c(1,−1,−1,1)),rep(1,4))
z <− cbind(c(1,0,0,0),c(0,1,1,1),c(0,−1,0,1),c(0,1,−2,1))
yz <− t(lm(t(histamine)∼z−1)$coef)
summary(lm(yz∼x−1))
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The coefficients’ estimates, standard errors, and t-statistics are below.

Estimates
Before Intercept Linear Quadratic

Mean 0.0769 0.3858 −0.1366 0.0107
Drug −0.0031 0.1842 −0.0359 −0.0082
Depletion 0.0119 −0.2979 0.1403 −0.0111
Interaction 0.0069 −0.1863 0.0347 0.0078

Standard Errors
Before Intercept Linear Quadratic

Mean 0.0106 0.1020 0.0607 0.0099
Drug 0.0106 0.1020 0.0607 0.0099
Depletion 0.0106 0.1020 0.0607 0.0099
Interaction 0.0106 0.1020 0.0607 0.0099

t-statistics
Before Intercept Linear Quadratic

Mean 7.252 3.156 −2.248 1.086
Drug −0.295 1.805 −0.592 −0.833
Depletion 1.120 −2.920 2.310 −1.128
Interaction 0.649 −1.826 0.571 0.791

(6.45)

Here n = 16 and p = 4, so the degrees of freedom in the t-statistics are 12. It
looks like the quadratic terms are not needed, and that the basic assumption that the
treatment effects for the before measurements is 0 is reasonable. The statistically sig-
nificant effects are the intercept and linear effects for the mean and depletion effects,
as well as possibly the intercept terms for the drug and interaction effects, with p-
values of 0.08 and 0.07, respectively. See Figure 4.3 for a plot of these effects. Chapter
7 deals with testing blocks of βij’s equal to zero, which may be more appropriate for
these data. Exercise 6.6.13 considers using the before measurements as covariates.

6.5 Submodels of the both-sides model

As with any linear regression, we often wish to consider submodels of the main
model, that is, set some of the βij’s to zero. For example, in the model (6.29) for the
mouth sizes, the quadratic and cubic parts of the growth curves appear unnecessary,
hence we could imagine setting β2 = β3 = δ2 = δ3 = 0. The model can then be
written

Y =

(
111 111
116 016

)(
β0 β1
δ0 δ1

)(
1 1 1 1

−3 −1 1 3

)
+ R. (6.46)

This is again a both-sides model. The x is the same as before, but the last two columns
of the original z have been dropped, as well as the corresponding last two columns
of β. The calculations proceed as before. (In this case, because the columns of z are
orthogonal, redoing the calculations is unnecessary, because they yield the same ones
we saw in (6.32) through (6.35), dropping the quadratic and cubic quantities.)

In the histamine in dogs example of Section 6.4.5, it would be reasonable to try the
model without the drug and interaction effects, which involves dropping the second
and fourth columns of the x, and the second and fourth rows of the β. Furthermore,
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we might wish to drop the quadratic terms from the z. In either case, we are left with
a straightforward both-sides model.

In the above submodels, the non-zero βij’s formed a rectangle. Other submodels
do not leave a rectangle, hence the model cannot be defined simply by dropping
columns from the x and or z. For example, in the mouth size data, consider the
model where the two growth curves are parallel straight lines. Then δ1 = 0 in (6.46),
so that

β =

(
β0 β1
δ0 0

)
. (6.47)

The usual formula (6.2) will not give us the least squares estimate of β, even if we set

the δ̂1 = 0. Instead, we first find Yz = Yz(z′z)−1 as in (6.16) and (6.17), then calculate
a separate regression for each column, where for the second column we only use the
first column of x, so that

Yz1 =

(
111 111
116 016

)(
β0
δ0

)
+ Rz1 and Yz2 =

(
111
116

)
β1 + Rz2. (6.48)

Then to find the estimates, use the x,y from Section 6.4.1, and

z <− cbind(1,c(−3,−1,1,3))
yz <− t(lm(t(y)∼z−1)$coef)
regr1 <− lm(yz[,1]∼x−1)
regr2 <− lm(yz[,2]∼x[,1]−1) # or lm(yz[,2]∼1)
beta <− matrix(0,ncol=2,nrow=2) # blank beta
beta[,1] <− regr1$coef # fill in the first column
beta[1,2] <− regr2$coef #fill in the second column, first row

The result is

β̂ =

(
24.969 0.660
−2.321 0

)
. (6.49)

The standard errors can also be found in the regression structures, using the vcov
function, which extracts the covariance matrix of the coefficients. We just need to take
the square roots of the diagonals, then find the t-statistics:

tt <− se <− matrix(0,ncol=2,nrow=2)
se[,1] <− sqrt(diag(vcov(regr1)))
se[1,2] <− sqrt(diag(vcov(regr2)))
tt[,1] <− beta[,1]/se[,1]
tt[1,2] <− beta[1,2]/se[1,2]

The answers are

Standard errors t-statistics
Constant Linear Constant Linear

Boys 0.4860 0.0713 51.38 9.27
Girls−Boys 0.7614 −3.05

(6.50)

The results for the first column of coefficients are the same as in (6.35), but the
estimate and standard error of β1 have changed slightly. In either case, the t is
strongly significant, which just means that the slopes are not zero. Note that the
degrees of freedom for the t are different for the two columns. For the first column
of coefficients they are n − 2 = 25, and for the second column they are n − 1 = 26.
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In general, we consider submodels of the both-sides model which set a subset
of the βij’s to zero. To specify such restrictions on the p × l matrix β, we define a
“pattern” P, which is also a p× l matrix, but with just 0’s and 1’s as entries indicating
which elements are allowed to be nonzero. That is, for given pattern P, the set of such
β’s is defined to be

B(P) = {β ∈ Rp×l | βij = 0 if pij = 0, βij ∈ R if pij = 1}. (6.51)

Then given the pattern P, the model is

Y = xβz′ + R, β ∈ B(P), (6.52)

where R ∼ N(0, In ⊗ ΣR) as usual. For example, the model (6.46) can be obtained
from the big model in (6.29) with

P =

(
1 1 0 0
1 1 0 0

)
. (6.53)

Other examples, paralleling the β’s in (6.41) and (6.47), respectively, are

P =




1 1
0 1
0 1


 and P =

(
1 1
1 0

)
. (6.54)

The model (6.52) can be fit as above, where each column of Yz is fit using some

submatrix of x. The jth column uses

lm(yz[,j]∼x[,pattern[,j]==1]−1)

where here pattern has the pattern. This approach is fine for obtaining the coeffi-
cients’ estimates and standard errors, but it takes some extra work to find an unbi-
ased estimator of Σz and the entire Cov[β̂]. See Exercises 6.6.7 and 6.6.8. Or, just
use the bothsidesmodel function in Section A.2.1, including the pattern in the list of
arguments. So the model in (6.47) can be fit using

pattern <− cbind(c(1,1),c(1,0))
bothsidesmodel(x,y,z,pattern)

6.6 Exercises

Exercise 6.6.1. Verify the calculations in (6.11).

Exercise 6.6.2. Show (6.17).

Exercise 6.6.3. Use (6.25) and (6.26) in (6.24) to show that the T in (6.23) has the
Student’s t distribution..

Exercise 6.6.4. Prove (6.30).

Exercise 6.6.5. Verify the equations in (6.41).
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Exercise 6.6.6 (Bayesian inference). This exercise extends the Bayesian results in Exer-
cises 3.7.28 and 3.7.29 to the β in multivariate regression. We start with the estimator

β̂ in (6.3), where the z = Iq, hence Σz = ΣR. The model is then

β̂ |β = b ∼ Np×q(b, (x′x)−1 ⊗ ΣR) and β ∼ Np×q(β0, K−1
0 ⊗ ΣR), (6.55)

where ΣR, β0, and K0 are known. Note that the ΣR matrix appears in the prior,
which makes the posterior tractable. (a) Show that the posterior distribution of β is
multivariate normal, with

E[β | β̂ = b̂] = (x′x + K0)
−1((x′x)b̂ + K0β0), (6.56)

and
Cov[β | β̂ = b̂] = (x′x + K0)

−1 ⊗ ΣR. (6.57)

[Hint: Same hint as in Exercise 3.7.29.] (b) Set the prior parameters β0 = 0 and
K0 = k0Ip for some k0 > 0. Show that

E[β | β̂ = b̂] = (x′x + k0Ip)
−1x′y. (6.58)

This conditional mean is the ridge regression estimator of β. See Hoerl and Kennard
[1970]. This estimator can be better than the least squares estimator (a little biased, but
much less variable) when x′x is nearly singular, that is, one or more of its eigenvalues
are close to zero.

Exercise 6.6.7. Consider the submodel (6.52) in the multivariate regression case, i.e.,

z = Iq. Write the model for the jth column of Y as Yj = x(j)βj + Rj, where βj contains

just the nonzero coefficients in the jth column of β, and x(j) has the corresponding

columns of x. For example, suppose β is 4 × 3,

P =




1 1 0
1 0 1
1 0 1
0 1 0


 and x = (x1 x2 x3 x4). (6.59)

Then

x(1) = (x1 x2 x3) and β1 =




β11
β21
β31


 ;

x(2) = (x1 x4) and β2 =

(
β12
β42

)
;

x(3) = (x2 x3) and β3 =

(
β23
β33

)
. (6.60)

With β̂j = (x′(j)x(j))
−1x′(j)yj, show that

Cov[β̂j, β̂k] = σjk (x
′
(j)x(j))

−1x′(j)x(k)(x
′
(k)x(k))

−1, (6.61)

where σjk is the (jk)th element of ΣR. [Hint: Recall (2.106).]
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Exercise 6.6.8. Continue with the setup in Exercise 6.6.7. The residual for the jth

column of yj is R̂j = Qx(j)
yj as in (6.6) and (6.7). (a) Show that

Cov[R̂j, R̂k] = σjk Qx(j)
Qx(k)

. (6.62)

(b) Show that consequently

E[R̂′
jR̂k] = σjk trace(Qx(j)

Qx(k)
). (6.63)

(c) What does the (jk)th element of the matrix R̂′R̂ have to be divided by in order to
obtain an unbiased estimator of ΣR? (d) Let pj be the number of components of βj.
Show that

trace(Qx(j)
Qx(k)

) = n − pj − pk + trace((x′(j)x(j))
−1x′(j)x(k)(x

′
(k)x(k))

−1x′(k)x(j)). (6.64)

[Hint: Write the Q’s as In − P’s, then multiply out the matrices.]

Exercise 6.6.9 (Prostaglandin). Continue with the data described in Exercise 4.4.1.
The data are in the R matrix prostaglandin. Consider the both-sides model (6.1),
where the ten people have the same mean, so that x = 110, and z contains the cosine
and sine vectors for m = 1, 2 and 3, as in Exercise 4.4.8. (Thus z is 6 × 6.) (a) What is
z? (b) Are the columns of z orthogonal? What are the squared norms of the columns?

(c) Find β̂. (d) Find Σ̂z. (e) Find the (estimated) standard errors of the β̂j’s. (f) Find
the t-statistics for the βj’s. (g) Based on the t-statistics, which model appears most
appropriate? Choose from the constant model; the one-cycle model (just m=1); the
model with one cycle and two cycles; the model with one, two and three cycles.

Exercise 6.6.10 (Skulls). This question continues with the data described in Exercise
4.4.2. The data are in the R matrix skulls, obtained from http://lib.stat.cmu.

edu/DASL/Datafiles/EgyptianSkulls.html at DASL Project [1996]. The Y ∼
N(xβ, Im ⊗ΣR), where the x represents the orthogonal polynomials over time periods

(from Exercise 5.8.51). (a) Find β̂. (b) Find (x′x)−1. (c) Find Σ̂R. What are the degrees

of freedom? (d) Find the standard errors of the β̂ij’s. (e) Which of the β̂ij’s have
t-statistic larger than 2 in absolute value? (Ignore the first row, since those are the
overall means.) (f) Explain what the parameters with |t| > 2 are measuring. (g)
There is a significant linear trend for which measurements? (h) There is a significant
quadratic trend for which measurements?

Exercise 6.6.11 (Caffeine). This question uses the caffeine data (in the R matrix caffeine)
and the model from Exercise 5.8.52. (a) Fit the model, and find the relevant estimates.

(b) Find the t-statistics for the β̂ij’s. (c) What do you conclude? (Choose as many
conclusions as appropriate from the following: On average the students do about the
same with or without caffeine; on average the students do significantly better with-
out caffeine; on average the students do significantly better with caffeine; the older
students do about the same as the younger ones on average; the older students do
significantly better than the younger ones on average; the older students do signifi-
cantly worse than the younger ones on average; the deleterious effects of caffeine are
not significantly different for the older students than for the younger; the deleterious
effects of caffeine are significantly greater for the older students than for the younger;
the deleterious effects of caffeine are significantly greater for the younger students
than for the older; the quadratic effects are not significant.)
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Exercise 6.6.12 (Grades). Consider the grades data in (4.10). Let Y be the 107 × 5
matrix consisting of the variables homework, labs, inclass, midterms, and final. The
x matrix indicates gender. Let the first column of x be 1n. There are 70 women and
37 men in the class, so let the second column have 0.37 for the women and −0.70
for the men. (That way, the columns of x are orthogonal.) For the z, we want the
overall mean score; a contrast between the exams (midterms and final) and other
scores (homework, labs, inclass); a contrast between (homework, labs) and inclass; a
contrast between homework and labs; and a contrast between midterms and final.
Thus

z′ =




1 1 1 1 1
2 2 2 −3 −3
1 1 −2 0 0
1 −1 0 0 0
0 0 0 1 −1


 . (6.65)

Let

β =

(
β1 β2 β3 β4 β5

δ1 δ2 δ3 δ4 δ5

)
. (6.66)

(a) Briefly describe what each of the parameters represents. (b) Find β̂. (c) Find the

standard errors of the β̂ij’s. (d) Which of the parameters have |t-statistic| over 2? (e)
Based on the results in part (d), discuss whether there is any difference between the
grade profiles of the men and women.

Exercise 6.6.13 (Histamine). Continue with the histamine in dogs example in Section
6.4.5. Redo the analysis, but using the before measurements (the first column of Y) as
a covariate. (a) Find the standard errors of the (αi, βi , γi), i = 0, 1, 2, in the covariate
model, and compare them to the corresponding standard errors in (6.45). (b) Which
of those effects are statistically significant? Is the overall conclusion different than in
Section 6.4.5?





Chapter 7

Both-Sides Models: Hypothesis Tests on β

Once again the model for this section is the both-sides model, Y = xβz′ + R, which
we transform to a multivariate regression by shifting the z to the Y as in (6.16) and

(6.17). That is, Yz = Yz(z′z)−1, and

Yz = xβ + Rz, Rz ∼ N(0, In ⊗ Σz), (7.1)

where Yz is n × l, x is n×, p, and β is p × l.
Testing a single βij = 0 is easy using the t-test as in Section 6.3. It is often informa-

tive to test a set of βij’s is 0, e.g., a row from β, or a column, or a block, or some other

configuration. In Section 7.1, we present a general test statistic and its χ2 approxima-
tion for testing any set of parameters equals zero. Section 7.2 refines the test statistic
when the set of βij’s of interest is a block. Likelihood ratio tests are covered in Section
9.4. Section 7.5 covers Mallows’ Cp statistic, which yields an approach to choosing
among several models, rather than just two models as in traditional hypothesis tests.

7.1 Approximate χ2 test

Start by placing the parameters of interest in the 1 × K vector θ. We assume we have

a vector of estimates θ̂ such that

θ̂ ∼ N(θ, Ω), (7.2)

and we wish to test

H0 : θ = 0. (7.3)

We could test whether the vector equals a fixed non-zero vector, but then we can
subtract that hypothesized value from θ and return to the case (7.3). Assuming Ω is
invertible, we have that under H0,

θ̂Ω
−1/2 ∼ N(0, IK), (7.4)

hence

θ̂Ω
−1θ̂′ ∼ χ2

K . (7.5)

129
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Typically, Ω will have to be estimated, in which case we use

T2 ≡ θ̂Ω̂
−1
θ̂′, (7.6)

where under appropriate conditions (e.g., large sample size relative to K), under H0,

T2 ≈ χ2
K. (7.7)

7.1.1 Example: Mouth sizes

In the mouth size example in Section 6.4.1, consider testing the fit of the model spec-
ifying parallel straight lines for the boys and girls, with possibly differing intercepts.
Then in the model (6.29), only β0, β1, and δ0 would be nonzero, so we would be
testing whether the other five are zero. Place those in the vector θ:

θ = (β2, β3, δ1, δ2, δ3). (7.8)

The estimate is

θ̂ = (0.203,−0.056,−0.305,−0.214, 0.072). (7.9)

To find the estimated covariance matrix Ω̂, we need to pick off the relevant elements

of the matrix Cx ⊗ Σ̂z using the values in (6.34). In terms of row(β), we are interested
in elements 3, 4, 6, 7, and 8. Continuing the R work from Section 6.4.1, we have

omegahat <− kronecker(cx,sigmazhat)[c(3,4,6,7,8),c(3,4,6,7,8)]

so that

Ω̂ =




0.01628 −0.00036 0.00314 −0.01628 0.00036
−0.00036 0.00786 −0.00057 0.00036 −0.00786

0.00314 −0.00057 0.01815 −0.00770 0.00139
−0.01628 0.00036 −0.00770 0.03995 −0.00088

0.00036 −0.00786 0.00139 −0.00088 0.01930


 . (7.10)

The statistic (7.7) is

T2 = θ̂Ω̂
−1
θ̂′ = 10.305. (7.11)

The degrees of freedom K = 5, which yields an approximate p-value of 0.067, border-

line significant. Judging from the individual t-statistics, the β̂22 element, indicating a
difference in slopes, may be the reason for the almost-significance.

7.2 Testing blocks of β are zero

In this section, we focus on blocks in the both-sides model, for which we can find a
better approximation to the distribution of T2, or in some cases the exact distribution.
A block β∗ of the p × l matrix β is a p∗ × l∗ rectangular (though not necessarily
contiguous) submatrix of β. For example, if β is 5× 4, we might have β∗ be the 3 × 2
submatrix

β∗ =




β11 β13
β41 β43
β51 β53


 , (7.12)
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which uses the rows 1, 4, and 5, and the columns 1 and 3. Formally, a block is defined
using a subset of the row indices for β, I ⊂ {1, 2, . . . , p}, and a subset of the column
indices, J ⊂ {1, 2, . . . , l}. Then β∗ is the #I × #J matrix containing elements βij, for
i ∈ I , j ∈ J .

Consider testing the hypothesis

H0 : β∗ = 0. (7.13)

Using (6.20) for the covariance, the corresponding estimate of β∗ has distribution

β̂∗ ∼ Np∗×l∗(β
∗, C∗

x ⊗ Σ
∗
z), (7.14)

where C∗
x and Σ

∗
z are the appropriate p∗ × p∗ and l∗ × l∗ submatrices of, respectively,

Cx and Σz. In the example (7.12),

C∗
x =




Cx11 Cx14 Cx15
Cx41 Cx44 Cx45
Cx51 Cx54 Cx55


 , and Σ

∗
z =

(
σz11 σz13
σz31 σz33

)
. (7.15)

Also, letting Σ̂
∗
z be the corresponding submatrix of (6.19), we have

W ≡ ν Σ̂
∗
z ∼ Wishartl∗ (ν, Σ

∗
z), ν = n − p. (7.16)

We take
θ = row(β∗) and Ω = C∗

x ⊗ Σ
∗
z, (7.17)

and θ̂, Ω̂ as the obvious estimates. Then using (3.32c) and (3.32d), we have that

T2 = row(β̂∗)(C∗
x ⊗ Σ̂

∗
z)

−1 row(β̂∗)′

= row(β̂∗)(C∗
x
−1 ⊗ Σ̂

∗
z
−1) row(β̂∗)′

= row(C∗
x
−1
β̂∗

Σ̂
∗
z
−1) row(β̂∗)′

= trace(C∗
x
−1
β̂∗

Σ̂
∗
z
−1β̂∗′), (7.18)

where the final equation uses (5.96).
To clean up the notation a bit, we write

T2 = ν trace(W−1B), (7.19)

where W is given in (7.16), and

B = β̂∗′C∗
x
−1
β̂∗. (7.20)

Thus by Theorem 6.1, B and W are independent, and by (7.14) and (7.16), under H0,

B ∼ Wishartl∗(p∗ , Σ
∗
z) and W ∼ Wishartl∗(ν, Σ

∗
z). (7.21)

In multivariate analysis of variance, we usually call B the “between-group” sum of
squares and cross-products matrix, and W the “within-group” matrix. See Section

7.2.5. The test based on T2 in (7.19) is called the Lawley-Hotelling trace test, where
the statistic is usually defined to be T2/ν.
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We could use the chi-squared approximation (7.7) with K = p∗l∗, but we do a little
better with the approximation

F ≡ ν − l∗ + 1

νp∗l∗
T2 ≈ Fp∗l∗ ,ν−l∗+1. (7.22)

Recall the following definition of Fµ,ν.

Definition 7.1. If B ∼ χ2
µ and W ∼ χ2

ν, and B and W are independent, then

F =
ν

µ

B

W
, (7.23)

an F distribution with degrees of freedom µ and ν.

When p∗ = 1 or l∗ = 1, so that we are testing elements within a single row or
column, the distribution in (7.22) is exact. In fact, when we are testing just one βij

(p∗ = l∗ = 1), the T2 is the square of the usual t-statistic, hence distributed F1,ν. In
other cases, at least the mean of the test statistic matches that of the F. The rest of
this section verifies these statements.

7.2.1 Just one column – F test

Suppose l∗ = 1, so that B and W are independent scalars, and from (7.21),

B ∼ σ∗2
z χ2

p∗ and W ∼ σ∗2
z χ2

ν. (7.24)

Then in (7.22), the constant multiplying T2 is simply 1/p∗ , so that

F =
ν

p∗
B

W
∼ Fp∗,ν. (7.25)

This is the classical problem in multiple (univariate) regression, and this test is the
regular F test.

7.2.2 Just one row – Hotelling’s T 2

Now p∗ = 1, so that β̂∗ is 1 × l∗ and C∗
x is a scalar. Thus we can write

B = Z′Z, Z ∼ N1×l∗(0, Σ
∗
z ), (7.26)

where
Z = β̂∗/

√
C∗

x . (7.27)

From (7.19), T2 can be variously written

T2 = ν trace(W−1Z′Z) = ν ZW−1Z′ =
β̂∗

Σ
∗−1
z β̂∗′

C∗
x

. (7.28)

In this situation, the statistic is called Hotelling’s T2. The next proposition shows that

the distribution of the F version of Hotelling’s T2 in (7.22) is exact, setting p∗ = 1.
The proof of the proposition is in Section 8.4.
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Proposition 7.1. Suppose W and Z are independent, W ∼ Wishartl∗(ν, Σ) and Z ∼
N1×l∗(0, Σ), where ν ≥ l∗ and Σ is invertible. Then

ν − l∗ + 1

l∗
ZW−1Z′ ∼ Fl∗,ν−l∗+1. (7.29)

7.2.3 General blocks

In this section we verify that the expected values of the two sides of (7.22) are the

same. It is not hard to show that E[χ2
µ] = µ and E[1/χ2

ν] = 1/(ν − 2) if ν > 2. Thus

by the definition of F in (7.23), independence yields

E[Fµ,ν] =
ν

ν − 2
(7.30)

if ν > 2. Otherwise, the expected value is +∞. For T2 in (7.19) and (7.21), again by
independence of B and W,

E[T2] = ν trace(E[W−1] E[B]) = νp∗ trace(E[W−1] Σ
∗
z), (7.31)

because E[B] = p∗Σ
∗
z by (3.73). To finish, we need the following lemma, which

extends the results on E[1/χ2
ν].

Lemma 7.1. If W ∼ Wishartl∗ (ν, Σ), ν > l∗ + 1, and Σ is invertible,

E[W−1] =
1

ν − l∗ − 1
Σ
−1. (7.32)

The proof in in Section 8.3. Continuing from (7.31),

E[T2] =
νp∗

ν − l∗ − 1
trace(Σ∗−1

z Σ
∗
z) =

νp∗ l∗

ν − l∗ − 1
. (7.33)

Using (7.33) and (7.30) on (7.22), we have

ν − l∗ + 1

νp∗l∗
E[T2] =

ν − l∗ + 1

ν − l∗ − 1
= E[Fp∗l∗,ν−l∗+1]. (7.34)

7.2.4 Additional test statistics

In addition to the Lawley-Hotelling trace statistic T2 (7.19), other popular test statis-
tics for testing blocks based on W and B in (7.19) include the following.

Wilks’ Λ

The statistic is based on the likelihood ratio statistic (see Section 9.4.1), and is defined
as

Λ =
|W|

|W + B| . (7.35)

Its distribution under the null hypothesis has the Wilk’s Λ distribution, which is a
generalization of the beta distribution.
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Definition 7.2 (Wilks’ Λ). Suppose W and B are independent Wishart’s, with distributions
as in (7.21). Then Λ has the Wilks’ Λ distribution with dimension l∗ and degrees of freedom
(p∗, ν), written

Λ ∼ Wilksl∗(p∗, ν). (7.36)

Bartlett [1954] has a number of approximations for multivariate statistics, includ-
ing one for Wilk’s Λ:

−
(

ν − l∗ − p∗ + 1

2

)
log(Λ) ≈ χ2

p∗l∗ . (7.37)

Pillai trace

This one is the locally most powerful invariant test. (Don’t worry about what that
means exactly, but it has relatively good power if in the alternative the β∗ is not far
from 0.) The statistic is

trace((W + B)−1B). (7.38)

Asymptotically, as ν → ∞,

ν trace((W + B)−1B) → χ2
l∗p∗ , (7.39)

which is the same limit as for the Lawley-Hotelling T2.

Roy’s maximum root

This test is based on the largest root, i.e., largest eigenvalue of (W + B)−1B.

If p∗ = 1 or l∗ = 1, these statistics are all equivalent to T2. In general, Lawley-
Hotelling, Pillai, and Wilks’ have similar operating characteristics. Each of these four
tests is admissible in the sense that there is no other test of the same level that always
has better power. See Anderson [2003] for discussions of these statistics, including
some asymptotic approximations and tables.

7.2.5 The between and within matrices

In this section, we explain the “between” and “within” appellations given to the ma-
trices B and W, respectively. To keep the notation clean, we consider the multivariate
regression setup (z = Iq) in Exercise 5.8.41, i.e.,

Y = xβ + R = (x1 x2)

(
β1
β2

)
+ R, (7.40)

where xi is n × pi and βi is pi × q, i = 1, 2. We wish to test

H0 : β2 = 0 versus HA : β2 6= 0. (7.41)

Thus β2 is playing the role of β∗ in (7.13). The W in (7.16) can be written

W = Y′Q(x1,x2)Y, (7.42)
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the residual sum of squares and crossproduct matrix (residual SSCP). From (5.106)
and (5.107), where x2·1 = Qx1 x2, we have that

β̂∗ = β̂2 = (x′2·1x2·1)
−1x′2·1Y and C∗

x = (x′2·1x2·1)
−1. (7.43)

Thus for B in (7.20), we find that

B = Y′x2·1(x
′
2·1x2·1)

−1x′2·1Y

= Y′Px2·1Y. (7.44)

By Exercise 5.8.25, Qx1 = Q(x1,x2) + Px2·1, hence

W + B = Y′Qx1 Y, (7.45)

which is the residual SSCP for the smaller model Y = x1β1 + R. This sum is called
the total SSCP.

Now specialize to the one-way multivariate analysis of variance with K groups.
Suppose there are nk observations in group k, and the rows of Y are arranged so
that those in group 1 come first, then group 2, etc. We wish to test whether the
groups all have the same mean. Here, x1 = 1n, and x2 is any n × (K − 1) matrix that
distinguishes the groups. E.g.,

x2 =




1n1 0 · · · 0
0 1n2 · · · 0

...
0 0 · · · 1nK−1


 (7.46)

Since the big model fits a separate mean to each group, the residual SSCP sums the
sample SSCP’s within each group, i.e,

W =
K

∑
k=1

∑
i∈Group k

(Yi − Yk)(Yi − Yk)
′, (7.47)

where Yi is the ith row of Y, and Yk is the average of the observations in group k. The
total SSCP is the residual SSCP for the model with just the 1n vector as the x, hence
is the usual deviation SSCP:

B + W =
n

∑
i=1

(Yi − Y)(Yi − Y)′, (7.48)

where Y is the overall average of the Yi’s. It can be shown (Exercise 7.6.6) that

B =
K

∑
k=1

∑
i∈Group k

(Yk − Y)(Yk − Y)′

=
K

∑
k=1

nk(Yk − Y)(Yk − Y)′. (7.49)

The final summation measures the differences between the group means. Thus

Total SSCP = Between SSCP + Within SSCP. (7.50)
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7.3 Examples

In this section we further analyze the mouth size and histamine data. The book Hand
and Taylor [1987] contains a number of other nice examples.

7.3.1 Mouth sizes

We will use the model from (6.29) with orthogonal polynomials for the four age
variables and the second row of the β representing the differences between the girls
and boys:

Y = xβz′ + R

=

(
111 111
116 016

)(
β0 β1 β2 β3
δ0 δ1 δ2 δ3

)



1 1 1 1
−3 −1 1 3

1 −1 −1 1
−1 3 −3 1


+ R.

(7.51)

See Section 6.4.1 for calculation of estimates of the parameters.
We start by testing equality of the boys’ and girls’ curves. Consider the last row of

β:

H0 : (δ0, δ1, δ2, δ3) = (0, 0, 0, 0). (7.52)

The estimate is

(δ̂0, δ̂1, δ̂2, δ̂3) = (−2.321,−0.305,−0.214, 0.072). (7.53)

Because p∗ = 1, the T2 is Hotelling’s T2 from Section 7.2.2, where l∗ = l = 4 and

ν = n − p = 27 − 2 = 25. Here C∗
x = Cx22 = 0.1534 and Σ̂

∗
z = Σ̂z from (6.34). We

calculate T2 = 16.5075, using

t2 <− betahat[2,]%∗%solve(sigmazhat,betahat[2,])/cx[2,2]

By (7.22), under the null,

ν − l∗ + 1

νl∗
T2 ∼ Fl∗,ν−l∗+1;

22

100
16.5075 = 3.632, (7.54)

which, compared to a F4,22, has p-value 0.02. So we reject H0, showing there is a
difference in the sexes.

Next, consider testing that the two curves are actually linear, that is, the quadratic
and cubic terms are 0 for both curves:

H0 :

(
β2 β3
δ2 δ3

)
= 0. (7.55)

Now p∗ = l∗ = 2, C∗
x = Cx, and Σ̂

∗
z is the lower right 2 × 2 submatrix of Σ̂z. Calcu-

lating:
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sigmazstar <− sigmazhat[3:4,3:4]
betastar <− betahat[,3:4]
b <− t(betastar)%∗%solve(cx)%∗%betastar % Note that solve(cx) = t(x)%∗%x
t2 <− tr(solve(sigmazstar)%∗%b)

The function tr is a simple function that finds the trace of a square matrix defined by

tr <− function(x) sum(diag(x))

This T2 = 2.9032, and the F form in (7.22) is (24/100) × T2 = 0.697, which is not
at all significant for an F4,24.

The other tests in Section 7.2.4 are also easy to implement, where here W = 25 Σ̂
∗
z .

Wilk’s Λ (7.35) is

w <− 25∗sigmazstar
lambda <− det(w)/det(b+w)

The Λ = 0.8959. For the large-sample approximation (7.37), the factor is 24.5, and the

statistic is −24.5 log(Λ) = 2.693, which is not significant for a χ2
4. Pillai’s trace test

statistic (7.38) is

tr(solve(b+w)%∗%b)

which equals 0.1041, and the statistic (7.39 ) is 2.604, similar to Wilk’s Λ. The final
one is Roy’s maximum root test. The eigenvalues are found using

eigen(solve(b+u)%∗%b)$values

being 0.1036 and 0.0005. Thus the statistic here is 0.1036. Anderson [2003] has tables
and other information about these tests. For this situation, (ν + p∗)/p∗ times the
statistic, which is (27/2) × 0.1036 = 1.40, has 0.05 cutoff point of 5.75. The function

bothsidesmodel.hotelling in Section A.2.5 will perform the T2 and Wilk’s tests.
The conclusion is that we need not worry about the quadratic or cubic terms. Just

for fun, go back to the original model, and test the equality of the boys’ and girls’
curves presuming the quadratic and cubic terms are 0. The β∗ = (δ0, δ1), so that

p∗ = 1 and l∗ = 2. Then β̂∗ = (−2.321,−0.305), Hotelling’s T2 = 13.1417, and the
F = [(25 − 2 + 1)/(25 × 2)]× 13.1417 = 6.308. Compared to an F2,24, the p-value is
0.006. Note that this is quite a bit smaller than the p-value before (0.02), since we
have narrowed the focus by eliminating insignificant terms from the statistic.

Our conclusion that the boys’ and girls’ curves are linear but different appears
reasonable given the Figure 4.1.

7.3.2 Histamine in dogs

Consider again the two-way multivariate analysis of variance model Y = xβ + R
from (4.15), where

β =




µb µ0 µ1 µ2
αb α1 α2 α3

βb β1 β2 β3
γb γ1 γ2 γ3


 . (7.56)

Recall that the µ’s are for the overall mean of the groups, the α’s for the drug effects,
the β’s for the depletion effect, and the γ’s for the interactions. The “b” subscript
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indicates the before means, and the 1, 2, 3’s represent the means for the three after
time points.

We do an overall test of equality of the four groups based on the three after time
points. Thus

H0 :




α1 α2 α3
β1 β2 β3
γ1 γ2 γ3


 = 0. (7.57)

Section 6.4.5 contains the initial calculations. Here we will use the both-sides
model Hotelling T2 function:

x <− kronecker(cbind(1,c(−1,−1,1,1),c(−1,1,−1,1),c(1,−1,−1,1)),rep(1,4))
z <− cbind(c(1,0,0,0),c(0,1,1,1),c(0,−1,0,1),c(0,1,−2,1))
bothsidesmodel.hotelling(x,histamine,z,2:4,2:4)

The last two arguments to the bothsidesmodel.hotelling function give the indices of
the rows and columns that define the block set to zero. In this case, both are (2, 3, 4).
We find that T2 = 41.5661 and F = 3.849, which has degrees of freedom (9,10). The
p-value is 0.024, which does indicate a difference in groups.

7.4 Testing linear restrictions

Instead of testing that some of the βij’s are 0, one often wishes to test equalities among
them, or other linear restrictions. For example, consider the one-way multivariate
analysis of variance with three groups, with nk observations in group k, and q = 2
variables (such as the leprosy data below), written as

Y =




1n1 0 0
0 1n2 0
0 0 1n3






µ11 µ12
µ21 µ22
µ31 µ32


+ R. (7.58)

The hypothesis that the groups have the same means is

H0 : µ11 = µ21 = µ31 and µ12 = µ22 = µ32. (7.59)

That hypothesis can be expressed in matrix form as

(
1 −1 0
1 0 −1

)


µ11 µ12
µ21 µ22

µ31 µ32


 =

(
0 0
0 0

)
. (7.60)

Or, if only the second column of Y is of interest, then one might wish to test

H0 : µ12 = µ22 = µ32, (7.61)

which in matrix form can be expressed as

(
1 −1 0
1 0 −1

)


µ11 µ12
µ21 µ22
µ31 µ32



(

0
1

)
=

(
0
0

)
. (7.62)

Turning to the both-sides model, such hypotheses can be written as

H0 : CβD′ = 0, (7.63)
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where C (p∗× p) and D (l∗× l) are fixed matrices that express the desired restrictions.
To test the hypothesis, we use

Cβ̂D′ ∼ N(CβD′, CCxC′ ⊗ DΣzD′), (7.64)

and

DΣ̂zD′ ∼ 1

n − p
Wishart(n − p, DΣzD′). (7.65)

Then, assuming the appropriate matrices are invertible, we set

B = Dβ̂′C′(CCxC′)−1Cβ̂D′, ν = n − p, W = νDΣ̂zD′, (7.66)

which puts us back at the distributions in (7.21). Thus T2 or any of the other test
statistics can be used as above. In fact, the hypothesis β∗ in (7.13) and (7.12) can be
written as β∗ = CβD′ for C and D with 0’s and 1’s in the right places.

7.5 Model selection: Mallows’ Cp

Hypothesis testing is a popular method for deciding between two nested models,
but often in linear models, and in any statistical analysis, there are many models
up for consideration. For example, in a linear model with a p × l matrix β of pa-

rameters, there are 2pl models attainable by setting subsets of the βij’s to 0. There
is also an infinite number of submodels obtained by setting linear (and nonlinear)
restrictions among the parameters. One approach to choosing among many models
is to minimize some criterion that measures the efficacy of a model. In linear models,
some function of the residual sum of squares and cross products matrix is an obvious
choice. The drawback is that, typically, the more parameters in the model, the lower
the residual sum of squares, hence the best model always ends up being the one
with all the parameters, i.e., the entire β in the multivariate linear model. Thus one
often assesses a penalty depending on the number of parameters in the model, the
larger the number of parameters, the higher the penalty, so that there is some balance
between the residual sum of squares and number of parameters.

In this section we present Mallows’ Cp criterion, [Mallows, 1973]. Section 9.5
exhibits the Bayes information criterion (BIC) and Akaike information criteria (AIC),
which are based on the likelihood. Mallows’ Cp is motivated by prediction. We
develop this idea first for the multivariate regression model,

Y = xβ + R, where R ∼ Nn×q(0, In ⊗ ΣR) (7.67)

β is p× q, then use the technique in Section 6.2.2 to extend it to the general both-sides
model.

The observed Y is dependent on the value of other variables represented by x.

Imagine using the observed data to predict a new variable YNew based on its xNew.
For example, an insurance company may have data on Y, the payouts the company
has made to a number of people, and x, the basic data (age, sex, overall health, etc.)
on these same people. But the company is really wondering whether to insure new

people, whose xNew they know, but YNew they cannot observe yet but wish to predict.

The prediction, Ŷ∗, is a function of xNew and the observed Y. A good predictor has

Ŷ∗ close to YNew.
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We act as if we wish to predict observations YNew that have the same explanatory
x as the data, so that

YNew = xβ+ RNew, (7.68)

where RNew has the same distribution as R, and YNew and Y are independent. It is

perfectly reasonable to want to predict YNew’s for different x than in the data, but the
analysis is a little easier if they are the same, plus it is a good starting point.

We consider the submodels of (7.67) from Section 6.5, which are defined by pat-
terns P of 0’s and 1’s as in (6.51). The P has the same dimensions as the β, where a "0"
in the P indicates that the corresponding element in β is set to 0, and a "1" indicates
the corresponding element is unrestricted. Then the submodel is given by restricting
β to the set B(P) as in (6.52). The idea is to use the fit from the submodel to predict

YNew. Hasegawa [1986] and Gupta and Kabe [2000] study this criterion, for a slightly
different set of submodels.

If we let β̂∗ denote the least squares estimate of β for the submodel, then the
predictor using this submodel is

Ŷ∗ = xβ̂∗. (7.69)

We assess the predictor using a scaled version of the expected sum of squares, specif-
ically

EPredSS∗ = E[trace(Σ−1
R (YNew − Ŷ∗)′(YNew − Ŷ∗))]. (7.70)

The covariance is there to scale the variables, so that, for example, the criterion will
not be dependent upon the units in which the Y’s are recorded. We take the expected

value because the YNew is not observed. A natural first try at estimating the EPredSS∗

would be to substitute Σ̂R for ΣR, and the observed Y for YNew, though the resulting

estimator would likely be an underestimate, because the fit Ŷ∗ is tailored to the Y.
There are two steps to deriving an estimate of the prediction error. Step 1 finds

the bias in the residual sum of squares. Specifically, we show that

EPredSS∗ − EResidSS∗ = 2 #{β∗ij 6= 0} = 2 ∑
i,j

pij, (7.71)

where

EResidSS∗ = E[trace(Σ−1
R (Y − Ŷ∗)′(Y − Ŷ∗))]. (7.72)

Step 2 finds an unbiased estimator of EResidSS∗, which is

̂EResidSS
∗
=

n − p − q − 1

n − p
trace(Σ̂

−1
R (Y − Ŷ∗)′(Y − Ŷ∗)) + q(q + 1), (7.73)

where

Σ̂R =
1

n − p
Y′QxY, (7.74)

the estimated covariance under the model (7.68) with no restrictions. Thus an unbi-
ased estimator of EPredSS∗ adds the results in (7.71) and (7.73), which yields Mal-
low’s Cp,

C∗
p =

n − p − q − 1

n − p
trace(Σ̂

−1
R (Y − Ŷ∗)′(Y − Ŷ∗)) + 2 d∗, (7.75)
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where d∗ is the number of free parameters in the submodel, which paremeters include
the nonzero β∗ij’s and the q(q + 1)/2 parameters in the ΣR:

d∗ = #{β∗ij 6= 0}+ q(q + 1)

2
. (7.76)

It is perfectly fine to drop the q(q + 1)/2 part from the d∗, since it will be the same
for all submodels. The verification of these results is in Section 7.5.2.

For the both-sides model, we find Yz = Yz(z′z)−1 as in Section 6.2.2, so that the
model is

Yz = xβ + Rz, where Rz ∼ Nn×l(0, In ⊗ Σz), (7.77)

where now β is p × l. Mallow’s Cp in this case adds a few z’s in the subscripts, and
substitutes l for q:

C∗
p =

n − p − l − 1

n − p
Σ̂
−1
z (Yz − Ŷ∗

z)
′(Yz − Ŷ∗

z) + 2 d∗, (7.78)

where d∗ = #{non-zero β∗ij’s}+ l(l + 1)/2.

7.5.1 Example: Mouth sizes

Return to the both-sides models (6.29) for the mouth size data. Here, the coefficient
matrix is

β =




Constant Linear Quadratic Cubic
Boys β0 β1 β2 β3

Girls−Boys δ0 δ1 δ2 δ3


 . (7.79)

We are interested in finding a good submodel. There are eight βij’s, so in principle

there are 28 possible submodels obtained by setting a subset of parameters to zero.
But there are certain monotonicities that should not be violated without good reason.
First, if a difference parameter (δj) is in the model, so is the corresponding overall
Boys parameter (βj). Next, if a monomial parameter of degree j is in the model, so
are the monomials of lesser degree. That is, if δ2, the quadratic parameter for the
difference, is in, so are δ0 and δ1, the constant and linear parameters. There are 15
such models. We describe the models with the pair of integers (b, d), indicating the
number of nonzero parameters for the Boys’ and Girls’−Boys’ effects, respectively.
Thus the degree of the Boys’ polynomial is b + 1 if b > 0. The monotonicities require
that

0 ≤ d ≤ b ≤ 4, (7.80)

and the models are

Mbd ⇒ βj = 0 if j ≥ b, δj = 0 if j ≥ d. (7.81)
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Some examples:

Model Pattern

M10

(
1000
0000

)

M21

(
1100
1000

)

M22

(
1100
1100

)

Model Pattern

M32

(
1110
1100

)

M40

(
1111
0000

)

M44

(
1111
1111

)

(7.82)

We use the x, y, z from Section 6.4.1, and the function bothsidesmodel discussed in
Section 6.5. For example, to find the Cp for model M21, we use the pattern given in
(7.82), then call the function:

pattern <− rbind(c(1,1,0,0),c(1,0,0,0))
bothsidesmodel(x,y,z,pattern)

The function returns, among other quantities, the components ResidSS, Dim and Cp,
which for this model are 88.47, 13, and 114.47, respectively.

To find the Cp’s for all fifteen models, we loop over b and d:

cps <− NULL
for(b in (0:4)) for(d in (0:i)) {

pattern <− matrix(0,ncol=4,nrow=2)
if(b>0) pattern[1,1:b] <− 1
if(d>0) pattern[2,1:d] <− 1
bsm <− bothsidesmodel(x,y,z,pattern)
b0 <− c(b,d,bsm$ResidSS,bsm$Dim,bsm$Cp)
cps <− rbind(cps,b0)

}

Here are the results:

b d ResidSS∗ d∗ C∗
p

0 0 3584.72 10 3604.72
1 0 189.12 11 211.12
1 1 183.06 12 207.06
2 0 94.54 12 118.54
2 1 88.47 13 114.47
2 2 82.55 14 ∗110.55
3 0 93.34 13 119.34
3 1 87.28 14 115.28
3 2 81.35 15 111.35
3 3 80.36 16 112.36
4 0 93.21 14 121.21
4 1 87.14 15 117.14
4 2 81.22 16 113.22
4 3 80.23 17 114.23
4 4 80.00 18 116.00

(7.83)

Note that in general, the larger the model (in terms of d∗, the number of free
parameters), the smaller the ResidSS∗ but the larger the penalty. The Cp statistic aims
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to balance the fit and complexity. The model with the lowest Cp is the (2, 2) model,
which fits separate linear growth curves to the boys and girls. We arrived at this
model in Section 7.3.1 as well. The (3, 2) model is essentially as good, but is a little
more complicated, allowing the intercepts and slopes to differ for the two groups,
but adding a common quadratic term. Generally, one looks for the model with the
smallest Cp, but if several models have approximately the same low Cp, one might
choose the simplest.

7.5.2 Mallows’ Cp verification

In this section we show that Mallows’ Cp in (7.75) is an unbiased estimator of EPredSS∗

in (7.70) for a given submodel of the multivariate regression model (7.67) specified by

the pattern matrix P. In both EPredSS∗ and EResidSS∗ of (7.72), the fit Ŷ∗ to the sub-
model appears. To prove their difference is as in (7.71), it is easier to use the rowwed
version of the models as in Section 6.5. Since z = Iq, the big model can be written

V = γD′ + row(R), (7.84)

where

V = row(Y), γ = row(β), D = x ⊗ Iq, and Cov[V] = Ω = In ⊗ ΣR. (7.85)

Similarly, VNew = row(YNew), which has the same distribution as V, and is indepen-
dent of V. The submodel we write as

V∗ = γ∗D∗′ + row(R), (7.86)

where γ∗ contains the non-zero elements of γ as indicated by row(P). D∗ then is D

with just the corresponding columns. The prediction of VNew given by the submodel
is then

row(Ŷ∗) = V̂∗ = VPD∗ , (7.87)

where PD∗ is the projection matrix for D∗. The quantities of interest are now given
by

EPredSS∗ = trace(Ω−1E[(VNew − V̂∗)′(VNew − V̂∗)]), and

EResidSS∗ = trace(Ω−1E[(V − V̂∗)′(V − V̂∗)]). (7.88)

For any row vector U,
E[U′U] = E[U]′E[U] + Cov[U]. (7.89)

Apply this formula to U = VNew − V̂∗ and U = V − V̂∗. Note that since V and VNew

have the same distributions, they have the same means, hence the terms based on the
E[U]’s cancel when we subtract. Thus,

EPredSS∗ − EResidSS∗ = trace(Ω−1(Cov[VNew − V̂∗]− Cov[V − V̂∗])). (7.90)

Because VNew and V̂∗ are independent, their covariances sum:

Cov[VNew − V̂∗] = Cov[VNew] + Cov[V̂∗]
= Ω + Cov[VPD∗ ]

= Ω + PD∗ΩPD∗ . (7.91)
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The second covariance is that of the residual, i.e.,

Cov[V − V̂∗] = Cov[V(Inq − PD∗)]

= (Inq − PD∗)Ω(Inq − PD∗ )

= Ω − PD∗Ω − ΩPD∗ + PD∗ΩPD∗ . (7.92)

Thus the difference is

EPredSS∗ − EResidSS∗ = trace(Ω−1(PD∗Ω + ΩPD∗ ))

= 2 trace(PD∗)

= 2 #{columns in D∗} = 2d∗ (7.93)

for d∗ in (7.76).
To show the estimator in (7.73) is unbiased for EResidSS∗, we first write

Y − Ŷ∗ = QxY + PxY − xβ̂∗z′

= QxY + xβ̂ − xβ̂∗ , (7.94)

where we emphasize that β̂ is the estimator from the big model, and β̂∗ is the esti-
mator from the submodel. Because Qxx = 0,

(Y − Ŷ∗)′(Y − Ŷ∗) = W + B∗, (7.95)

where
W = Y′QxY and B∗ = (β̂− β̂∗)′x′x(β̂ − β̂∗). (7.96)

Recalling that this W ∼ Wishartq(n − p, ΣR), we have

EResidSS∗ = trace(Σ−1
R E[W + B])

= trace(Σ−1
R ((n − p)ΣR + E[B∗]))

= (n − p)q + trace(Σ−1
R E[B∗]). (7.97)

For the estimator (7.73), where (7.74) shows that Σ̂R = W/(n − p), we use (7.95)
again, so that

̂EResidSS
∗
=

n − p − q − 1

n − p
trace((W/(n − p))−1 (W + B∗)) + q(q + 1)

= (n − p − q − 1)(q + trace(W−1B∗)) + q(q + 1). (7.98)

To find the expected value of ̂EResidSS
∗
, we note that W and B∗ are independent,

because they depend on the residual and fit, respectively. Also, Lemma 7.1 shows

that E[W−1] = Σ
−1
R /(n − p − q − 1), hence

E[ ̂EResidSS
∗
] = (n − p − q − 1)(q + trace(E[W−1]E[B∗])) + q(q + 1)

= (n − p − q − 1)(q + trace(Σ−1
R E[B∗]/(n − p − q − 1))) + q(q + 1)

= (n − p)q + trace(Σ−1
R E[B∗])

= EResidSS∗ (7.99)

as in (7.97).
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7.6 Exercises

Exercise 7.6.1. Verify the equations (7.4) and (7.5).

Exercise 7.6.2. Show that when p∗ = l∗ = 1, the T2 in (7.18) equals the square of the
t-statistic in (6.23), assuming βij = 0 there.

Exercise 7.6.3. Verify the Wishart distribution result for B given in (7.21) when β∗ =
0.

Exercise 7.6.4. Verify the equalities in (7.28).

Exercise 7.6.5. Verify the first equality in (7.44).

Exercise 7.6.6. Verify the two equalities in (7.49).

Exercise 7.6.7. If A ∼ Gamma(α, λ) and B ∼ Gamma(β, λ), and A and B are indepen-
dent, then U = A/(A+ B) is distributed Beta(α, β). Show that when l∗ = 1, Wilks’ Λ

(Definition 7.2) is Beta(α, β), and give the parameters in terms of p∗ and ν. [Hint: See
Exercise 3.7.8 for the Gamma distribution, whose pdf is given in (3.81). Also, the Beta
pdf is found in Exercise 2.7.13, in equation (2.95), though you do not need it here.]

Exercise 7.6.8. Suppose V ∼ Fµ,ν as in Definition 7.1. Show that U = ν/(µF + ν) is
Beta(α, β) from Exercise 7.6.7, and give the parameters in terms of µ and ν.

Exercise 7.6.9. Show that E[1/χ2
ν] = 1/(ν − 2) if ν ≥ 2, as used in (7.30). The pdf of

the chi-square is given in (3.80).

Exercise 7.6.10. Verify the distribution results in (7.64) and (7.65).

Exercise 7.6.11. Find the matrices C and D so that the hypothesis in (7.63) is the same
as that in (7.13), where β is 5 × 4.

Exercise 7.6.12. Verify the steps in (7.93).

Exercise 7.6.13. Verify (7.95).

Exercise 7.6.14 (Mouth sizes). In the mouth size data in Section 7.1.1, there are nG =
11 girls and nB = 16 boys, and q = 4 measurements on each. Thus Y is 27 × 4.
Assume that

Y ∼ N(xβ, In ⊗ ΣR), (7.100)

where this time

x =

(
111 011
016 116

)
, (7.101)

and

β =

(
µG
µB

)
=

(
µG1 µG2 µG3 µG4
µB1 µB2 µB3 µB4

)
. (7.102)

The sample means for the two groups are µ̂G and µ̂B. Consider testing

H0 : µG = µB. (7.103)
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(a) What is the constant c so that

Z =
µ̂G − µ̂B

c
∼ N(0, ΣR)? (7.104)

(b) The unbiased estimate of ΣR is Σ̂R. Then

W = ν Σ̂R ∼ Wishart(ν, ΣR). (7.105)

What is ν? (c) What is the value of Hotelling’s T2? (d) Find the constant d and the

degrees of freedom a, b so that F = d T2 ∼ Fa,b. (e) What is the value of F? What is
the resulting p-value? (f) What do you conclude? (g) Compare these results to those
in Section 7.3.1, equations (7.54) and below.

Exercise 7.6.15 (Skulls). This question continues Exercise 6.6.10 on Egyptian skulls.
(a) Consider testing that there is no difference among the five time periods for all four

measurements at once. What are p∗, l∗, ν and T2 in (7.22) for this hypothesis? What
is the F and its degrees of freedom? What is the p-value? What do you conclude? (b)
Now consider testing whether there is a non-linear effect on skull size over time, that
is, test whether the last three rows of the β matrix are all zero. What are l∗, ν, the
F-statistic obtained from T2, the degrees of freedom, and the p-value? What do you
conclude? (c) Finally, consider testing whether there is a linear effect on skull size
over time assuming there is no non-linear effect. Find the F-statistic obtained from

T2. What do you conclude?

Exercise 7.6.16 (Prostaglandin). This question continues Exercise 6.6.9 on prostaglan-

din levels over time. The model is Y = 110βz′ + R, where β is 1 × 6, and the ith row
of z is

(1, cos(θi), sin(θi), cos(2θi), sin(2θi), cos(3θi)) (7.106)

for θi = 2πi/6, i = 1, . . . , 6. (a) In Exercise 4.4.8, the one-cycle wave is given by the
equation A + B cos(θ + C). The null hypothesis that the model does not include that
wave is expressed by setting B = 0. What does this hypothesis translate to in terms
of the βij’s? (b) Test whether the one-cycle wave is in the model. What is p∗? [It is
the same for all these tests.] What is l∗? (c) Test whether the two-cycle wave is in the
model. What is l∗? (d) Test whether the three-cycle wave is in the model. What is l∗?
(e) Test whether just the one-cycle wave needs to be in the model. (I.e., test whether
the two- and three-cycle waves have zero coefficients.) (f) Using the results from parts
(b) through (e), choose the best model among the models with (1) No waves; (2) Just
the one-cycle wave; (3) Just the one- and two-cycle waves; (4) The one-, two-, and
three-cycle waves. (g) Use Mallows’ Cp to choose among the four models listed in
part (f).

Exercise 7.6.17 (Histamine in dogs). Consider the model for the histamine in dogs
example in (4.15), i.e.,

Y = xβ+ R =







1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 1 1 1


⊗ 14







µ0 µ1 µ2 µ3
α0 α1 α2 α3
β0 β1 β2 β3

γ0 γ1 γ2 γ3


+ R.

(7.107)
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For the two null hypotheses described in parts (a) and (b) below, specify which pa-

rameters are set to zero, then find p∗, l∗, ν, the T2 and its F version, the degrees of
freedom for the F, the p-value, and whether you accept or reject. Interpret the finding
in terms of the groups and variables. (a) The four groups have equal means (for all
four time points). Compare the results to that for the hypothesis in (7.57). (b) The
four groups have equal before means. (c) Now consider testing the null hypothesis
that the after means are equal, but using the before measurements as a covariate. (So
we assume that αb = βb = γb = 0.) What are the dimensions of the resulting Ya and
the x matrix augmented with the covariate? What are p∗, l∗, ν, and the degrees of

freedom in the F for testing the null hypothesis? (d) Find the T2, the F statistic, and
the p-value for testing the hypothesis using the covariate. What do you conclude?
How does this result compare to that without the covariates?

Exercise 7.6.18 (Histamine, cont.). Continue the previous question, using as a starting
point the model with the before measurements as the covariate, so that

Y∗ = x∗




µ∗
1 µ∗

2 µ∗
3

α1 α2 α3

β1 β2 β3
γ1 γ2 γ3
δ1 δ2 δ3


 z′ + R∗, (7.108)

where Y∗ has just the after measurements, x∗ is the x in (7.107) augmented with
the before measurements, and z represents orthogonal polynomials for the after time
points,

z =




1 −1 1
1 0 −2
1 1 1


 . (7.109)

Now consider the equivalent model resulting from multiplying both sides of the

equation on the right by (z′)−1. (a) Find the estimates and standard errors for
the quadratic terms, (µ∗

3 , α3, β3, γ3). Test the null hypothesis that (µ∗
3 , α3, β3, γ3) =

(0, 0, 0, 0). What is ν? What is the p-value? Do you reject this null? (The answer
should be no.) (b) Now starting with the null model from part (a) (i.e., the quadratic
terms are zero), use the vector of quadratic terms as the covariate. Find the estimates
and standard errors of the relevant parameters, i.e.,




µ∗
1 µ∗

2
α1 α2
β1 β2

γ1 γ2


 . (7.110)

(c) Use Hotelling’s T2 to test the interaction terms are zero, i.e., that (γ1, γ2) = (0, 0).
(What are l∗ and ν?) Also, do the t-tests for the individual parameters. What do you
conclude?

Exercise 7.6.19 (Caffeine). This question uses the data on the effects of caffeine on
memory described in Exercise 4.4.4. The model is as in (4.35), with x as described
there, and

z =

(
1 −1
1 1

)
. (7.111)
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The goal of this problem is to use Mallows’ Cp to find a good model, choosing among
the constant, linear and quadratic models for x, and the “overall mean" and “overall
mean + difference models" for the scores. Thus there are six models. (a) For each
of the 6 models, find the p∗, l∗, residual sum of squares, penalty, and Cp values. (b)
Which model is best in terms of Cp? (c) Find the estimate of β∗ for the best model.
(d) What do you conclude?

Exercise 7.6.20 (Skulls). Continue with the skulls data from Exercise 7.6.15. Find
Mallows’ Cp for the 24 models wherein each measurement (column of Y) has either a
constant model or a linear model.



Chapter 8

Some Technical Results

This chapter contains a number of results useful for linear models and other models,
including the densities of the multivariate normal and Wishart. We collect them here
so as not to interrupt the flow of the narrative.

8.1 The Cauchy-Schwarz inequality

Lemma 8.1. Cauchy-Schwarz inequality. Suppose y and d are 1 × K vectors. Then

(yd′)2 ≤ ‖y‖2‖d‖2, (8.1)

with equality if and only if d is zero, or

y = γ̂d (8.2)

for some constant γ̂.

Proof. If d is zero, the result is immediate. Suppose d 6= 0, and let ŷ be the projection
of y onto span{d}. (See Definitions 5.2 and 5.7.) Then by least-squares, Theorem 5.2

(with D = d′), ŷ = γ̂d, where here γ̂ = yd′/‖d‖2. The sum-of-squares decomposi-
tion in (5.11) implies that

‖y‖2 − ‖ŷ‖2 = ‖y − ŷ‖2 ≥ 0, (8.3)

which yields

‖y‖2 ≥ ‖ŷ‖2 =
(yd′)2

‖d‖2
, (8.4)

from which (8.1) follows. Equality in (8.1) holds if and only if y = ŷ, which holds if
and only if (8.2).

If U and V are random variables, with E[|UV|] < ∞, then the Cauchy-Schwarz
inequality becomes

E[UV]2 ≤ E[U2]E[V2], (8.5)

149
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with equality if and only if V is zero with probability one, or

U = bV (8.6)

for constant b = E[UV]/E[V2]. See Exercise 8.8.2. The next result is well-known in
statistics.

Corollary 8.1 (Correlation inequality). Suppose Y and X are random variables with finite
positive variances. Then

−1 ≤ Corr[Y, X] ≤ 1, (8.7)

with equality if and only if, for some constants a and b,

Y = a + bX. (8.8)

Proof. Apply (8.5) with U = Y − E[Y] and V = X − E[X] to obtain

Cov[Y, X]2 ≤ Var[Y]Var[X], (8.9)

from which (8.7) follows. Then (8.8) follows from (8.6), with b = Cov[Y, X]/Var[X]
and a = E[Y]− bE[X], so that (8.8) is the least squares fit of X to Y.

This inequality for the sample correlation coefficient of n × 1 vectors x and y fol-
lows either by using Lemma 8.1 on Hny and Hnx, where Hn is the centering matrix
(1.12), or by using Corollary 8.1 with X and Y having the empirical distributions
given by x and y, respectively, i.e.,

P[X = x] =
1

n
#{xi = x} and P[Y = y] =

1

n
#{yi = y}. (8.10)

The next result also follows from Cauchy-Schwarz. It will be useful for Hotelling’s

T2 in Section 8.4.1, and for canonical correlations in Section 13.3.

Corollary 8.2. Suppose y and d are 1 × K vectors, and ‖y‖ = 1. Then

(yd′)2 ≤ ‖d‖2, (8.11)

with equality if and only if d is zero, or d is nonzero and

y = ± d

‖d‖ . (8.12)

8.2 Conditioning in a Wishart

We start with W ∼ Wishartp+q(ν, Σ) as in Definition 3.6, where Σ is partitioned

Σ =

(
ΣXX ΣXY
ΣYX ΣYY

)
, (8.13)

ΣXX is p × p, ΣYY is q × q, and W is partitioned similarly. We are mainly interested
in the distribution of

WYY·X = WYY − WYXW−1
XXWXY (8.14)

(see Equation 3.49), but some additional results will easily come along for the ride.
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Proposition 8.1. Consider the situation above, where ΣXX is invertible and ν ≥ p. Then

(WXX, WXY) is independent of WYY·X, (8.15)

WYY·X ∼ Wishartq(ν − p, ΣYY·X), (8.16)

and

WXY | WXX = wxx ∼ N(wxxΣ
−1
XXΣXY, wxx ⊗ ΣYY·X), (8.17)

WXX ∼ Wishartp(ν, ΣXX). (8.18)

Proof. The final equation is just the marginal of a Wishart, as in Section 3.6. By
Definition 3.6 of the Wishart,

W =D (X Y)′(X Y), (X Y) ∼ N(0, In ⊗ Σ), (8.19)

where X is n × p and Y is n × q. Conditioning as in (3.56), we have

Y | X = x ∼ Nn×q(xβ, In ⊗ ΣYY·X), β = Σ
−1
XXΣXY. (8.20)

(The α = 0 because the means of X and Y are zero.) Note that (8.20) is the both-
sides model (6.1), with z = Iq and ΣR = ΣYY·X. Thus by Theorem 6.1 and the

plug-in property (2.62) of conditional distributions, β̂ = (X′X)−1X′Y and Y′QXY are
conditionally independent given X = x,

β̂ | X = x ∼ N(β, (x′x)−1 ⊗ ΣYY·X), (8.21)

and
Y′QXY | X = x ∼ Wishartq(n − p, ΣYY·X). (8.22)

The conditional distribution in (8.22) does not depend on x, hence Y′QXY is (uncon-

ditionally) independent of the pair (X, β̂), as in (2.65) and therebelow, hence

Y′QXY is independent of (X′X, X′Y). (8.23)

Property (2.66) implies that

β̂ | X′X = x′x ∼ N(β, (x′x)−1 ⊗ ΣYY·X), (8.24)

hence
X′Y = (X′X)β̂ | X′X = x′x ∼ N(x′x)β, (x′x)⊗ ΣYY·X). (8.25)

Translating to W using (8.19), noting that Y′QXY = WYY·X, we have that (8.23) is
(8.15), (8.22) is (8.16), and (8.25) is (8.17).

8.3 Expectation of inverse Wishart

We first prove Lemma 7.1 for

U ∼ Wishartl∗(ν, Il∗). (8.26)
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For any q × q orthogonal matrix Γ, ΓUΓ
′ has the same distribution as U, hence in

particular

E[U−1] = E[(ΓUΓ
′)−1] = ΓE[U−1]Γ′. (8.27)

Exercise 8.8.6 shows that any symmetric q × q matrix A for which A = ΓAΓ
′ for all

orthogonal Γ must be of the form a11Iq. Thus

E[U−1] = E[(U−1)11] Il∗ . (8.28)

Using (5.103),

E[(U−1)11] = E

[
1

U11·{2:q}

]
= E

[
1

χ2
ν−l∗+1

]
=

1

ν − l∗ − 1
. (8.29)

Equations (8.28) and (8.29) show that

E[U−1] =
1

ν − l∗ − 1
Il∗ . (8.30)

Next take W ∼ Wishartq(ν, Σ), with Σ invertible. Then, W =D
Σ

1/2UΣ
1/2, and

E[W−1] = E[(Σ1/2UΣ
1/2)−1]

= Σ
−1/2 1

ν − l∗ − 1
Il∗ Σ

−1/2

=
1

ν − l∗ − 1
Σ
−1, (8.31)

verifying (7.32).

8.4 Distribution of Hotelling’s T2

Here we prove Proposition 7.1. Exercise 8.8.5 shows that we can assume Σ = Il∗ in

the proof, which we do. Divide and multiply the ZW−1Z′ by ‖Z‖2:

ZW−1W′ =
ZW−1Z′

‖Z‖2
‖Z‖2. (8.32)

Because Z is a vector of l∗ independent standard normals,

‖Z‖2 ∼ χ2
l∗ . (8.33)

Consider the distribution of the ratio conditional on Z = z:

ZW−1Z′

‖Z‖2
| Z = z. (8.34)

Because Z and W are independent, we can use the plugin formula (2.63), so that

[
ZW−1Z′

‖Z‖2
| Z = z

]
=D zW−1z′

‖z‖2
= g1W−1g′

1, (8.35)
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where g1 = z/‖z‖. Note that on the right-hand side we have the unconditional
distribution for W. Let G be any l∗ × l∗ orthogonal matrix with g1 as its first row.
(Exercise 5.8.29 guarantees there is one.) Then

g1W−1g′
1 = e1GW−1G′e′1, e1 = (1, 0, . . . , 0). (8.36)

Because the covariance parameter in the Wishart distribution for W is Il∗ , U ≡
GWG′ ∼ Wishartl∗(ν, Il∗ ). But

e1GW−1G′e′1 = e1U−1e′1 = [U−1]11 = U−1
11·{2:l∗} (8.37)

by (5.103).

Note that the distribution of U, hence [U−1]11, does not depend on z, which means
that

ZW−1Z′

‖Z‖2
is independent of Z. (8.38)

Furthermore, by (8.16), where p = l∗ − 1 and q = 1,

U11·2 ∼ Wishart1(ν − l∗ + 1, 1) ≡ χ2
ν−l∗+1. (8.39)

Now (8.32) can be expressed as

ZW−1Z′ =
‖Z‖2

U11·{2:l∗}
=D χ2

l∗

χ2
ν−l∗+1

, (8.40)

where the two χ2’s are independent. Then (7.29) follows from Definition 7.1 for the
F.

8.4.1 A motivation for Hotelling’s T2

Hotelling’s T2 test can be motivated using the projection pursuit idea. Let a 6= 0 be
an 1 × l∗ vector of constants, and look at

Za′ ∼ N(0, aΣa′) and aWa′ ∼ Wishart1(ν, aΣa′) = (aΣa′) χ2
ν. (8.41)

Now we are basically in the univariate t (6.23) case, i.e.,

Ta =
Za′√

aWa′/ν
∼ tν, (8.42)

or, since t2
ν = F1,ν,

T2
a =

(Za′)2

aWa′/ν
∼ F1,ν. (8.43)

For any a, we can do a regular F test. The projection pursuit approach is to find the
a that gives the most significant result. That is, we wish to find

T2 = max
a 6=0

T2
a . (8.44)

To find the best a, first simplify the denominator by setting

b = aW1/2, so that a = bW−1/2. (8.45)
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Then

T2 = max
b 6=0

ν
(Vb′)2

bb′ , where V = ZW−1/2. (8.46)

Letting g = b/‖b‖, so that ‖g‖ = 1, Corollary 8.2 of Cauchy-Schwarz shows that
(see Exercise 8.8.9)

T2 = ν max
g | ‖g‖=1

(Vg′)2 = νVV′ = νZW−1Z′, (8.47)

which is indeed Hotelling’s T2 of (7.28), a multivariate generalization of Student’s

t2. Even though T2
a has an F1,ν distribution, the T2 does not have that distribution,

because it maximizes over many F1,ν’s.

8.5 Density of the multivariate normal

Except for when using likelihood methods in Chapter 9, we do not need the density
of the multivariate normal, nor of the Wishart, for our main purposes, but present
them here because of their intrinsic interest. We start with the multivariate normal,
with positive definite covariance matrix.

Lemma 8.2. Suppose Y ∼ N1×N(µ, Ω), where Ω is positive definite. Then the pdf of Y is

f (y |µ, Ω) =
1

(2π)N/2

1

|Ω|1/2
e−

1
2 (y−µ)Ω

−1(y−µ)′ . (8.48)

Proof. Recall that a multivariate normal vector is an affine transform of a vector of
independent standard normals,

Y = ZA′ + µ, Z ∼ N1×N(0, IN), AA′ = Ω. (8.49)

We will take A to be N × N, so that Ω being positive definite implies that A is
invertible. Then

Z = (Y −µ)(A′)−1, (8.50)

and the Jacobian is

| ∂z

∂y
| ≡

∣∣∣∣∣∣∣∣∣




∂z1/∂y1 ∂z1/∂y2 · · · ∂z1/∂yN
∂z2/∂y1 ∂z2/∂y2 · · · ∂z2/∂yN

...
...

. . .
...

∂zN/∂y1 ∂zN/∂y2 · · · ∂zN/∂yN




∣∣∣∣∣∣∣∣∣
= |(A′)−1|. (8.51)

The density of Z is

f (z | 0, IN) =
1

(2π)N/2
e−

1
2 z2

1+···z2
N =

1

(2π)N/2
e−

1
2 zz′

, (8.52)

so that

f (y |µ, Ω) =
1

(2π)N/2
abs|(A′)−1| e−

1
2 (y−µ)(A′)−1A−1(y−µ)′

=
1

(2π)N/2
|AA′|−1/2 e−

1
2 (y−µ)(AA′)−1(y−µ)′, (8.53)

from which (8.48) follows.
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When Y can be written as a matrix with a Kronecker product for its covariance
matrix, as is often the case for us, the pdf can be compactified.

Corollary 8.3. Suppose Y ∼ Nn×q(M, C ⊗ Σ), where C (n × n) and Σ (q × q) are positive
definite. Then

f (y | M, C, Σ) =
1

(2π)nq/2

1

|C|q/2|Σ|n/2
e−

1
2 trace(C−1(y−M)Σ

−1(y−M)′). (8.54)

See Exercise 8.8.15 for the proof.

8.6 The QR decomposition for the multivariate normal

Here we discuss the distributions of the Q and R matrices in the QR decomposition
of a multivariate normal matrix. From the distribution of the upper triangular R
we obtain Bartlett’s decomposition [Bartlett, 1939], useful for randomly generating
Wisharts, as well as derive the Wishart density in Section 8.7. Also, we see that Q
has a certain uniform distribution, which provides a method for generating random
orthogonal matrices from random normals. The results are found in Olkin and Roy
[1954], and this presentation is close to that of Kshirsagar [1959]. (Old school, indeed!)

We start with the data matrix

Z ∼ Nν×q(0, Iν ⊗ Iq), (8.55)

a matrix of independent N(0, 1)’s, where ν ≥ q, and consider the QR decomposition
(Theorem 5.4)

Z = QR. (8.56)

We find the distribution of the R. Let

S ≡ Z′Z = R′R ∼ Wishartq(ν, Iq). (8.57)

Apply Proposition 8.1 with SXX being the single element S11. Because Σ = Iq,
(S11, S1{2:q}) is independent of S{2:q}{2:q}·1,

S11 ∼ Wishart1(ν, I1) = χ2
ν,

S1{2:q} | S11 = s11 ∼ N1×(q−1)(0, s11Iq−1),

and S{2:q}{2:q}·1 ∼ Wishartq−1(ν − 1, Iq−1). (8.58)

Note that S1{2:q}/
√

S11, conditional on S11, is N(0, Iq−1), in particular, is independent

of S11. Thus the three quantities S11, S1{2:q}/
√

S11, and S{2:q}{2:q}·1 are mutually

independent. Equation (5.84) shows that

R11 =
√

S11 ∼
√

χ2
ν

and
(

R12 · · · R1q
)
= S1{2:q}/

√
S11 ∼ N1×(q−1)(0, Iq−1). (8.59)

Next, work on the first component of S22·1 of S{2:q}{2:q}·1. We find that

R22 =
√

S22·1 ∼
√

χ2
ν−1

and
(

R23 · · · R2q
)
= S2{3:q}·1/

√
S22·1 ∼ N1×(q−2)(0, Iq−2), (8.60)
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both independent of each other, and of S{3:q}{3:q}·12. We continue, obtaining the

following result.

Lemma 8.3 (Bartlett’s decomposition). Suppose S ∼ Wishartq(ν, Iq), where ν ≥ q, and

let its Cholesky decomposition be S = R′R. Then the elements of R are mutually independent,
where

R2
ii ∼ χ2

ν−i+1, i = 1, . . . , q, and Rij ∼ N(0, 1), 1 ≤ i < j ≤ q. (8.61)

Next, suppose Y ∼ Nν×q(0, Iν ⊗ Σ), where Σ is invertible. Let A be the matrix
such that

Σ = A′A, where A ∈ T +
q of (5.80), (8.62)

i.e., A′A is the Cholesky decomposition of Σ. Thus we can take Y = ZA. Now
Y = QV, where V ≡ RA is also in T +

q , and Q still has orthonormal columns. By the

uniqueness of the QR decomposition, QV is the QR decomposition for Y. Then

Y′Y = V′V ∼ Wishart(0, Σ). (8.63)

We call the distribution of V the Half-Wishartq(ν, A).
To generate a random W ∼ Wishartq(ν, Σ) matrix, one can first generate q(q− 1)/2

N(0, 1)’s, and q χ2’s, all independently, then set the Rij’s as in (8.61), then calculate

V = RA, and W = V′V. If ν is large, this process is more efficient than generating
the νq normals in Z or Y. The next section derives the density of the Half-Wishart,
then that of the Wishart itself.

We end this section by completing description of the joint distribution of (Q, V).
Exercise 3.7.35 handled the case Z ∼ N2×1(0, I2).

Lemma 8.4. Suppose Y = QV as above. Then

(i) Q and V are independent;

(ii) The distribution of Q does not depend on Σ;

(iii) The distribution of Q is invariant under orthogonal transforms: If Γ ∈ On, the group
of n × n orthogonal matrices (see (5.75)), then

Q =D
ΓQ. (8.64)

Proof. From above, we see that Z and Y = ZA have the same Q. The distribution of Z
does not depend on Σ, hence neither does the distribution of Q, proving part (ii). For
part (iii), consider ΓY, which has the same distribution as Y. We have ΓY = (ΓQ)V.
Since ΓQ also has orthonormal columns, the uniqueness of the QR decomposition
implies that ΓQ is the “Q” for ΓY. Thus Q and ΓQ have the same distribution.

Proving the independence result of part (i) takes some extra machinery from math-
ematical statistics. See, e.g., Lehmann and Casella [1998]. Rather than providing all
the details, we outline how one can go about the proof. First, V can be shown to be a
complete sufficient statistic for the model Y ∼ N(0, Iν ⊗ Σ). Basu’s Lemma says that
any statistic whose distribution does not depend on the parameter, in this case Σ, is
independent of the complete sufficient statistic. Thus by part (ii), Q is independent
of V.
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If n = q, the Q is an orthogonal matrix, and its distribution has the Haar probabil-
ity measure, or uniform distribution, over Oν. It is the only probability distribution
that does have the above invariance property, although proving the fact is beyond
this book. See Halmos [1950]. Thus one can generate a random q × q orthogonal
matrix by first generating an q × q matrix of independent N(0, 1)’s, then performing
Gram-Schmidt orthogonalization on the columns, normalizing the results so that the
columns have norm 1.

8.7 Density of the Wishart

We derive the density of the Half-Wishart, then the Wishart. We need to be careful
with constants, and find two Jacobians. Some details are found in Exercises 8.8.16 to
8.8.21.

We start by writing down the density of R ∼ Half-Wishartq(ν, Iq), assuming n ≥ q,

as in (8.61), The density of U (> 0), where U2 ∼ χ2
k , is

fk(u) =
1

Γ(k/2)2(k/2)−1
uk−1 e−

1
2 u2

. (8.65)

Thus that for R is

fR(r) =
1

c(ν, q)
rν−1

11 rν−2
22 · · · r

n−q
qq e−

1
2 trace(r′r), (8.66)

where

c(ν, q) = πq(q−1)/4 2(νq/2)−q
q

∏
j=1

Γ

(
ν − j + 1

2

)
. (8.67)

For V ∼ Half-Wishartq(ν, Σ), where Σ is invertible, we set V = RA, where A′A is
the Cholesky decomposition of Σ in (8.62). The Jacobian J is given by

1

J
=

∣∣∣∣
∂v

∂r

∣∣∣∣ = a11a2
22 · · · a

q
qq. (8.68)

Thus, since vjj = ajjrjj, the density of V is

fV(v | Σ) =
1

c(ν, q)

vν−1
11 vν−2

22 · · · v
ν−q
qq

aν−1
11 aν−2

22 · · · a
ν−q
qq

e−
1
2 trace((A′)−1v′vA−1) 1

a11a2
22 · · · a

q
qq

=
1

c(ν, q)

1

|Σ|ν/2
vν−1

11 vν−2
22 · · · v

ν−q
qq e−

1
2 trace(Σ

−1v′v), (8.69)

since |Σ| = ∏ a2
ii. See Exercise 5.8.44.

Finally, suppose W ∼ Wishartq(ν, Σ), so that we can take W = V′V. The Jacobian
is

1

J∗
=

∣∣∣∣
∂w

∂v

∣∣∣∣ = 2qv
q
11v

q−1
22 · · · vqq. (8.70)
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Thus from (8.69),

fW(w | Σ) =
1

2q

1

c(ν, q)

1

|Σ|ν/2

vν−1
11 vν−2

22 · · · v
ν−q
qq

v
q
11v

q−1
22 · · · vqq

e−
1
2 trace(Σ

−1w)

=
1

d(ν, q)

1

|Σ|ν/2
|w|(ν−q−1)/2 e−

1
2 trace(Σ

−1w), (8.71)

where

d(ν, q) = πq(q−1)/4 2νq/2
q

∏
j=1

Γ

(
ν − j + 1

2

)
. (8.72)

8.8 Exercises

Exercise 8.8.1. Suppose y is 1 × K, D is N × K, and D′D is invertible. Let ŷ be
the projection of y onto the span of the rows of D′, so that ŷ = γ̂D′, where γ̂ =
yD(D′D)−1 is the least-squares estimate as in (5.18). Show that

‖ŷ‖2 = yD(D′D)−1D′y′. (8.73)

(Notice the projection matrix, from (5.20).) Show that in the case D = d′, i.e., N = 1,
(8.73) yields the equality in (8.4).

Exercise 8.8.2. Prove the Cauchy-Schwarz inequality for random variables U and V
given in (8.5) and (8.6), assuming that V is not zero with probability one. [Hint: Use

least squares, by finding b to minimize E[(U − bV)2].]

Exercise 8.8.3. Prove Corollary 8.2. [Hint: Show that (8.11) follows from (8.1), and
that (8.2) implies that γ̂ = ±1/‖d‖, using the fact that ‖y‖ = 1.]

Exercise 8.8.4. For W in (8.19), verify that X′X = WXX, X′Y = WXY, and Y′QXY =
WYY·X, where QX = In − X(X′X)−1X′.

Exercise 8.8.5. Suppose Z ∼ N1×l∗(0, Σ) and W ∼ Wishartl∗ (ν, Σ) are as in Proposi-
tion 7.1. (a) Show that for any l∗ × l∗ invertible matrix A,

ZW−1Z′ = (ZA)(A′WA)−1(ZA)′. (8.74)

(b) For what A do we have ZA ∼ N1×l∗(0, Il∗) and A′WA ∼ Wishartl∗(ν, Il∗)?

Exercise 8.8.6. Let A be a q × q symmetric matrix, and for q × q orthogonal matrix Γ,
contemplate the equality

A = ΓAΓ
′. (8.75)

(a) Suppose (8.75) holds for all permutation matrices (matrices with one “1” in each
row, and one “1” in each column, and zeroes elsewhere). Show that all the diagonals
of A must be equal (i.e., a11 = a22 = · · · = aqq), and that all off-diagonals must be
equal (i.e., aij = akl if i 6= j and k 6= l). [Hint: You can use the permutation matrix
that switches the first two rows and first two columns,

Γ =




0 1 0
1 0 0
0 0 Iq−2


 , (8.76)
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to show that a11 = a22 and a1i = a2i for i = 3, . . . , q. Similar equalities can be obtained
by switching other pairs of rows and columns.] (b) Suppose (8.75) holds for all Γ that
are diagonal, with each diagonal element being either +1 or −1. (They needn’t all be
the same sign.) Show that all off-diagonals must be 0. (c) Suppose (8.75) holds for all
orthogonal Γ. Show that A must be of the form a11Iq. [Hint: Use parts (a) and (b).]

Exercise 8.8.7. Verify the three equalities in (8.37).

Exercise 8.8.8. Show that t2
ν = F1,ν.

Exercise 8.8.9. Find the g in (8.47) that maximizes (Vg′)2, and show that the maxi-
mum is indeed VV′. (Use Corollary 8.2.) What is a maximizing a in (8.44)?

Exercise 8.8.10. Suppose that z = yB, where z and y are 1 × N, and B is N × N and
invertible. Show that |∂z/∂y| = |B|. (Recall (8.51)).

Exercise 8.8.11. Show that for N × N matrix A, abs|(A′)−1| = |AA′|−1/2.

Exercise 8.8.12. Let

(X, Y) ∼ Np+q

(
(0, 0),

(
ΣXX 0

0 ΣYY

))
. (8.77)

where X is 1 × p, Y is 1 × q, Cov[X] = ΣXX , and Cov[Y] = ΣYY. By writing out the
density of (X, Y), show that X and Y are independent. (Assume the covariances are
invertible.)

Exercise 8.8.13. Take (X, Y) as in (8.77). Show that X and Y are independent by using
moment generating functions. Do you need that the covariances are invertible?

Exercise 8.8.14. With

(X, Y) ∼ N1×2

(
(µX, µY),

(
σXX σXY
σYX σYY

))
, (8.78)

derive the conditional distribution Y | X = x explicitly using densities, assuming
σXX > 0. That is, show that fY|X(y|x) = f (x, y)/ fX(x).

Exercise 8.8.15. Prove Corollary 8.3. [Hint: Make the identifications y → row(y),
µ → row(M), and Ω → C ⊗ Σ in (8.48). Use (3.32f) for the determinant term in the
density. For the term in the exponent, use (3.32d) to help show that

(row(y)− row(M))(C−1 ⊗ Σ
−1)(row(y)− row(M))′

= trace(C−1(y − M)Σ−1(y − M)′).] (8.79)

Exercise 8.8.16. Show that U =
√

X, where X ∼ χ2
k , has density as in (8.65).

Exercise 8.8.17. Verify (8.66) and (8.67). [Hint: Collect the constants as in (8.65),
along with the constants from the normals (the Rij’s, j > i). The trace in the exponent

collects all the r2
ij.]

Exercise 8.8.18. Verify (8.68). [Hint: Vectorize the matrices by row, leaving out the
structural zeroes, i.e., for q = 3, v → (v11, v12, v13, v22, v23, v33). Then the matrix of
derivatives will be lower triangular.]



160 Chapter 8. Technical Results

Exercise 8.8.19. Verify (8.69). In particular, show that

trace((A′)−1v′vA−1) = trace(Σ−1v′v) (8.80)

and ∏ ajj = |Σ|1/2. [Recall (5.111).]

Exercise 8.8.20. Verify (8.70). [Hint: Vectorize the matrices as in Exercise 8.8.18, where
for w just take the elements in the upper triangular part.]

Exercise 8.8.21. Verify (8.71) and (8.72).

Exercise 8.8.22. Suppose V ∼ Half-Wishartq(ν, Σ) as in (8.63), where Σ is positive
definite and ν ≥ p. Show that the diagonals Vjj are independent, and

V2
ii ∼ σjj·{1:(j−1)} χ2

ν−j+1. (8.81)

[Hint: Show that with V = RA as in (8.61) and (8.62), Vjj = ajjRjj. Apply (5.84) to
the A and Σ.]

Exercise 8.8.23. For a covariance matrix Σ, |Σ| is called the population generalized
variance. It is an overall measure of spread. Suppose W ∼ Wishartq(ν, Σ), where Σ

is positive definite and ν ≥ q. Show that

|̂Σ| = 1

ν(ν − 1) · · · (ν − q + 1)
|W| (8.82)

is an unbiased estimate of the generalized variance. [Hint: Find the Cholesky decom-
position W = V′V, then use (8.81) and (5.104).]

Exercise 8.8.24 (Bayesian inference). Consider Bayesian inference for the covariance
matrix. It turns out that the conjugate prior is an inverse Wishart on the covariance

matrix, which means Σ
−1 has a Wishart prior. Specifically, let

Ψ = Σ
−1 and ν0Ψ0 = Σ

−1
0 , (8.83)

where Σ0 is the prior guess of Σ, and ν0 is the “prior sample size.” (The larger the ν0,
the more weight is placed on the prior vs. the data.) Then the model in terms of the
inverse covariance parameter matrices is

W | Ψ = ψ ∼ Wishartq(ν,ψ−1)

Ψ ∼ Wishartq (ν0, Ψ0) , (8.84)

where ν ≥ q, ν0 ≥ q and Ψ0 is positive definite, so that Ψ, hence Σ, is invertible with

probability one. Note that the prior mean for Ψ is Σ
−1
0 . (a) Show that the joint density

of (W, Ψ) is

fW | Ψ(w |ψ) fΨ(ψ) = c(w)|ψ|(ν+ν0−q−1)/2 e−
1
2 trace((w+Ψ

−1
0 )ψ), (8.85)

where c(w) is some constant that does not depend on ψ, though it does depend on
Ψ0 and ν0. (b) Without doing any calculations, show that the posterior distribution
of Ψ is

Ψ | W = w ∼ Wishartq(ν + ν0, (w + Ψ
−1
0 )−1). (8.86)
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[Hint: Dividing the joint density in (8.85) by the marginal density of W, fW(w), yields
the posterior density just like the joint density, but with a different constant, say,
c∗(w). With ψ as the variable, the density is a Wishart one, with given parameters.]
(c) Letting S = W/ν be the sample covariance matrix, show that the posterior mean
of Σ is

E[Σ | W = w] =
1

ν + ν0 − q − 1
(νS + ν0Σ0), (8.87)

close to a weighted average of the prior guess and observed covariance matrices.
[Hint: Use Lemma 7.1 on Ψ, rather than trying to find the distribution of Σ.]

Exercise 8.8.25 (Bayesian inference). Exercise 3.7.29 considered Bayesian inference on
the normal mean when the covariance matrix is known, and the above Exercise 8.8.24
treated the covariance case with no mean apparent. Here we present a prior to deal
with the mean and covariance simultaneously. It is a two-stage prior:

µ |Ψ = ψ ∼ Np×q(µ0, K−1
0 ⊗ψ−1),

Ψ ∼ Wishartq (ν0, Ψ0) . (8.88)

Here, K0, µ0, Ψ0 and ν0 are known, where K0 and Ψ0 are positive definite, and ν0 ≥ q.
Show that unconditionally, E[µ] = µ0 and, using (8.83),

Cov[µ] =
1

ν0 − q − 1
K−1

0 ⊗ Ψ
−1
0 =

ν0

ν0 − q − 1
K−1

0 ⊗ Σ0. (8.89)

[Hint: Use the covariance decomposition in (2.74) on Ψ.]

Exercise 8.8.26. This exercise finds density of the marginal distribution of the µ in
(8.88). (a) Show that the joint density of µ and Ψ can be written

fµ,Ψ(m,ψ) =
1

(2π)pq/2d(ν0, q)
|Ψ0|−ν0/2|K0|q/2|ψ|(ν0+p−q−1)/2

e−
1
2 trace(((m−µ0)′K0(m−µ0)+Ψ

−1
0 )ψ), (8.90)

for the Wishart constant d(ν0, q) given in (8.72). [Hint: Use the pdfs in (8.54) and
(8.69).] (b) Argue that the final two terms in (8.90) (the |ψ| term and the exponential
term) look like the density of Ψ if

Ψ ∼ Wishartq(ν0 + p, ((m −µ0)
′K0(m −µ0) + Ψ

−1
0 )−1), (8.91)

but without the constants, hence integrating over ψ yields the inverse of those con-
stants. Then show that the marginal density of µ is

fµ(m) =
∫

fµ,Ψ(m,ψ)dψ

=
d(ν0 + p, q)

(2π)pq/2d(ν0, q)
|Ψ0|−ν0/2|K0|q/2 |(m −µ0)

′K0(m −µ0) + Ψ
−1
0 |−(ν0+p)/2

=
1

c(ν0, p, q)

|Ψ0|p/2|K0|q/2

|(m −µ0)′K0(m −µ0)Ψ0 + Iq|(ν0+p)/2
,

(8.92)
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where
c(ν0, p, q) = (2π)pq/2d(ν0, q)/d(ν0 + p, q). (8.93)

This density for µ is a type of multivariate t. Hotellings T2 is another type. (c) Show
that if p = q = 1, µ0 = 0, K0 = 1/ν0 and Ψ0 = 1, that the pdf (8.92) is that of a
Student’s t on ν0 degrees of freedom:

f (t | ν0) =
Γ((ν0 + 1)/2)√

νπ Γ(ν0/2)

1

(1 + t2/ν0)(ν0+1)/2
. (8.94)

Exercise 8.8.27 (Bayesian inference). Now we add some data to the prior in Exercise
8.8.25. The conditional model for the data is

Y |µ = m, Ψ = ψ ∼ Np×q(m, K−1 ⊗ψ−1),

W |µ = m, Ψ = ψ ∼ Wishartq(ν,ψ−1), (8.95)

where Y and W are independent given µ and Ψ. Note that W’s distribution does not
depend on the µ. The conjugate prior is given in (8.88), with the conditions given
therebelow. The K is a fixed positive definite matrix. A curious element is that prior
covariance of the mean and the conditional covariance of Y have the same ψ, which
helps tractability (as in Exercise 6.6.6). (a) Justify the following equations:

fY,W,µ,Ψ(y, w, m,ψ) = fY |µ,Ψ(y | m,ψ) fW | Ψ(w |ψ) fµ | Ψ(m |ψ) fΨ(ψ)

= fµ | Y,Ψ(m | y,ψ) fY | Ψ(y |ψ) fW | Ψ(w |ψ) fΨ(ψ)

(8.96)

(b) Show that the conditional distribution of µ given Y and Ψ is multivariate normal
with

E[µ | Y = y, Ψ = ψ] = (K + K0)
−1(Ky + K0µ0),

Cov[µ | Y = y, Ψ = ψ] = (K + K0)
−1 ⊗ψ−1. (8.97)

[Hint: Follows from Exercise 3.7.29, noting that ψ is fixed (conditioned upon) for this
calculation.] (c) Show that

Y | Ψ = ψ ∼ Np×q(µ0, (K−1 + K−1
0 )⊗ψ−1). (8.98)

[Hint: See (3.101).] (d) Let Z = (K−1 + K−1
0 )−1/2(Y −µ0), and show that the middle

two densities in the last line of (8.96) can be combined into the density of

U = W + Z′Z |Ψ = ψ ∼ Wishartq(ν + p,ψ−1), (8.99)

that is,
fY | Ψ(y |ψ) fW | Ψ(w |ψ) = c∗(u, w) fU | Ψ(u |ψ) (8.100)

for some constant c∗(u, w) that does not depend on ψ. (e) Now use Exercise 8.8.24
to show that

Ψ | U = u ∼ Wishartq(ν + ν0 + p, (u + Ψ
−1
0 )−1). (8.101)

(f) Thus the posterior distribution of µ and Ψ in (8.97) and (8.101) are given in the
same two stages as the prior in (8.88). The only differences are in the parameters.
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The prior parameters are µ0, K0, ν0, and Ψ0. What are the corresponding posterior
parameters? (g) Using (8.83), show that the posterior means of µ and Σ are

E[µ | Y = y, W = w] = (K + K0)
−1(Ky + K0µ0),

E[Σ | Y = y, W = w] =
1

ν + ν0 + p − q − 1
(u + ν0Σ0), (8.102)

and the posterior covariance of µ is

Cov[µ | Y = y, W = w] =
1

ν + ν0 + p − q − 1
(K + K0)

−1 ⊗ (u + ν0Σ0). (8.103)





Chapter 9

Likelihood Methods

9.1 Likelihood

For the linear models, we derived estimators of β using the least-squares principle,
and found estimators of ΣR in an obvious manner. Likelihood provides another
general approach to deriving estimators, hypothesis tests, and model selection pro-
cedures, with a wider scope than least squares. In this chapter we present general
likelihood methods, and apply them to the linear models. Chapter 10 considers like-
lihood analysis of models on covariance matrices.

Throughout this chapter, we assume we have a statistical model consisting of a
random object (usually a matrix or a set of matrices) Y with space Y , and a set of
distributions {Pθ |θ ∈ Θ}, where Θ is the parameter space. We assume that these
distributions have densities, with Pθ having associated density f (y | θ).
Definition 9.1. For a statistical model with densities, the likelihood function is defined for
each fixed y ∈ Y as the function L(· ; y) : θ → [0, ∞) given by

L(θ ; y) = a(y) f (y | θ), (9.1)

for any positive a(y).

Likelihoods are to be interpreted in only relative fashion, that is, to say the likeli-
hood of a particular θ1 is L(θ1; y) does not mean anything by itself. Rather, meaning
is attributed to saying that the relative likelihood of θ1 to θ2 (in light of the data y) is
L(θ1; y)/L(θ2; y). Which is why the “a(y)” in (9.1) is allowed. There is a great deal of
controversy over what exactly the relative likelihood means. We do not have to worry
about that particularly, since we are just using likelihood as a means to an end. The
general idea, though, is that the data supports θ’s with relatively high likelihood.

The next few sections consider maximum likelihood estimation. Subsequent sec-
tions look at likelihood ratio tests, and two popular model selection techniques (AIC
and BIC).

9.2 Maximum likelihood estimation

Given the data y, it is natural (at least it sounds natural terminologically) to take as
estimate of θ the value that is most likely. Indeed, that is the maximum likelihood
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estimate.

Definition 9.2. The maximum likelihood estimate (MLE) of the parameter θ based on

the data y is the unique value, if it exists, θ̂(y) ∈ Θ that maximizes the likelihood L(θ; y).

It may very well be that the maximizer is not unique, or does not exist at all, in
which case there is no MLE for that particular y. The MLE of a function of θ, g(θ),

is defined to be the function of the MLE, that is, ĝ(θ) = g(θ̂). See Exercises 9.6.1 and
9.6.2 for justification.

9.3 The MLE in the both-sides model

9.3.1 Maximizing the likelihood

The basic model for this section is the both-sides model, where we allow setting an
arbitrary set of the βij’s to zero. To specify a submodel of the p × l matrix β, we use
a pattern P as in Section 6.51, P being a p × l matrix with just 0’s and 1’s indicating
which elements of β are allowed to be nonzero. Then given the pattern P, the model
is formally defined as

Y ∼ Nn×q(xβz′, In ⊗ ΣR), (β, ΣR) ∈ B(P)× Sq, (9.2)

where Y is n × q, x is n × p, z is q × l, B(P) is the set of β’s with pattern P as in (6.51),
and Sq is the set of q × q positive definite symmetric matrices as in (5.51). We also
assume that

n ≥ p + q, x′x is invertible, and z′z is invertible. (9.3)

It is useful to look at two expressions for the likelihood of Y, corresponding to the
equations (8.54) and (8.48). Dropping the constant from the density, we have

L(β, ΣR ; y) =
1

|ΣR|n/2
e−

1
2 trace(Σ

−1
R (y−xβz′)′(y−xβz′)) (9.4)

=
1

|ΣR|n/2
e−

1
2 (v−γD′)(In⊗Σ

−1
R )(v−γD′)′ , (9.5)

where in the latter expression, as in (5.39),

v = row(y), γ = row(β), and D = x ⊗ z. (9.6)

Now with β ∈ B(P), certain elements of γ are set to zero, indicated by the zeroes
in row(P). Let γ∗ be the vector γ, but with the elements assumed zero dropped.
Some examples, paralleling the patterns in (6.53) and (6.54):

P =

(
1 1 0 0
1 1 0 0

)
⇒ γ∗ = (β11 β12 β21 β22),

P =




1 1
0 1
0 1


⇒ γ∗ = (β11 β12 β22 β32),

and P =

(
1 1
1 0

)
⇒ γ∗ = (β11 β12 β12). (9.7)
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Also, let D∗ be the matrix D, but dropping the columns corresponding to zeros in
row(P), so that

γD′ = γ∗D∗′. (9.8)

To start the maximization, suppose first that we know the Σ̂R, but not the MLE of
γ∗. Then maximizing the likelihood (9.4) over β ∈ B(P) is equivalent to maximizing
the likelihood over γ (with specified zeroes) in (9.5), which by (9.6), is equivalent to
minimizing

(v − γ∗D∗′)(In ⊗ Σ̂
−1
R )(v − γ∗D∗′)′ (9.9)

over γ∗, where there are no restrictions on the γ∗. This final equation is the objec-
tive function in (5.36), which we know is minimized by the weighted least squares
estimator (5.35), i.e.,

γ̂∗ = v(In ⊗ Σ̂
−1
R )D∗(D∗′(In ⊗ Σ̂

−1
R )D∗)−1. (9.10)

Next, turn it around, so that we know γ̂∗, but not the MLE of ΣR. We can then
reconstruct β̂ ∈ B(P) from γ̂∗ , yielding the residual

R̂ = y − xβ̂z′, (9.11)

and can write the likelihood (9.4) as

L(β̂, ΣR ; y) =
1

|ΣR|n/2
e−

1
2 trace(Σ

−1
R U), where U = R̂′R̂. (9.12)

We need to maximize that likelihood over ΣR ∈ S+
q . We appeal to the following

lemma, proved in Section 9.3.4.

Lemma 9.1. Suppose a > 0 and U ∈ S+
q . Then

g(Σ) =
1

|Σ|a/2
e−

1
2 trace(Σ

−1U) (9.13)

is uniquely maximized over Σ ∈ S+
q by

Σ̂ =
1

a
U, (9.14)

and the maximum is

g(Σ̂) =
1

|Σ̂|a/2
e−

aq
2 . (9.15)

Applying this lemma to (9.12) yields

Σ̂R =
1

n
R̂′R̂. (9.16)

We have gotten to the circular point that if we know β̂, then we can find Σ̂R,

and if we know Σ̂R, then we can find β̂. But in reality we start knowing neither.

The solution is to iterate the two steps, that is, start with a guess at Σ̂R (such as the

sample covariance matrix), then find the β̂, then update the Σ̂R, then back to the
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β̂, etc., until convergence. If the process converges, then it converges to the MLE.
In most cases it does converge, and rather quickly. This type of algorithm is called
iteratively reweighted least squares.

Once we have the MLE, we also have from (9.15) that the maximum of the likeli-
hood is

L(β̂, Σ̂R ; y) =
1

|Σ̂R|n/2
e−

nq
2 . (9.17)

The distributions of the estimators may not be multivariate normal and Wishart,
depending on the pattern P. In the model with no restrictions, we can find exact
distributions, as in the next section. In general, we have the asymptotic (as n → ∞,
but p, q and l are fixed) results for the MLE, which imply the approximation for the
nonzero coefficents,

γ̂∗ ≈ N(γ∗, (D∗′(In ⊗ Σ̂
−1
R )D∗)−1), (9.18)

should be reasonable for large n. See Lehmann and Casella [1998] for a general review
of the asymptotic distribution of MLE’s. For small n, the approximate standard errors
arising from (9.18) are likely to be distinct underestimates. Section 9.3.3 below has
suggestions for improving these estimates, which we incorporate into our R function,
bothsidesmodel.mle.

9.3.2 Examples

Continue with the model (6.46) for the mouth size data, in which the growth curves
are assumed linear:

Y = xβz′ + R =

(
111 111
116 016

)(
β0 β1
δ0 δ1

)(
1 1 1 1

−3 −1 1 3

)
+ R. (9.19)

We will use the functions bothsidesmodel and bothsidesmodel.mle to find the least
squares and maximum likelihood estimates of β:

x <− cbind(1,mouths[,5])
y <− mouths[,1:4]
z <− cbind(1,c(−3,−1,1,3))
bothsidesmodel(x,y,z) # For LS
bothsidesmodel.mle(x,y,z) # For MLE

The next table compares the estimates and their standard errors for the two methods:

Estimates Standard errors
LS MLE LS MLE Ratio

β̂0 24.969 24.937 0.486 0.521 0.93

β̂1 0.784 0.827 0.086 0.091 0.95

δ̂0 −2.321 −2.272 0.761 0.794 0.96

δ̂1 −0.305 −0.350 0.135 0.138 0.98

(9.20)

The two methods give fairly similar results. The last column is the ratio of the
standard errors, least squares to maximum likelihood. Least squares is about 2 to 7%
better in this example.
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Now turn to the leprosy example in Sections 6.4.3 and 6.4.4. We will consider the
model with the before effects assumed to be zero, so that the model is

Y = xβ + R

=






1 1 1
1 1 −1
1 −2 0


⊗ 110






µb µa

0 αa

0 βa


+ R. (9.21)

This model is multivariate regression, but with restrictions on the β. The parameters
of interest are the after effects αa and βa. We use the same functions as above, but
utilizing a pattern, the first P in (6.54):

x <− kronecker(cbind(1,c(1,1,−2),c(1,−1,0)),rep(1,10))
y <− leprosy[,1:2]
pattern <− cbind(c(1,0,0),1)
bothsidesmodel(x,y,diag(2),pattern)
bothsidesmodel.mle(x,y,diag(2),pattern)

The parameters of interest:

Estimates Standard errors
LS MLE LS MLE Ratio

α̂a −2.200 −1.130 0.784 0.507 1.544

β̂a −0.400 −0.054 1.357 0.879 1.544

(9.22)

In this case, the two methods produce somewhat different results, and maximum like-
lihood yields substantially smaller standard errors. But here, the likelihood method
does underestimate the standard errors a bit.

Now compare the estimates here in (9.22) to those in (6.43), which are least squares,
but differ on whether we adjusted for covariates. Rearranging (6.43) a bit, we have

Estimates Standard errors
Original Covariate- Original Covariate- Ratio

adjusted adjusted
α̂a −2.200 −1.130 0.784 0.547 1.433

β̂a −0.400 −0.054 1.357 0.898 1.511

(9.23)

Note that the least squares estimates (and standard errors) in (9.22) are the same
as for the model without the covariates in (6.43). That is to be expected, since in
both cases, to find the after parameters, we are fitting the regression model with just
the x to the before variable. On the other hand, the maximum likelihood estimates
in (9.22) are the same as the covariate-adjusted estimates in (6.43). Exercise 9.6.5
explains why. Note that the standard errors for the covariate-adjusted estimates are
larger than those for the MLE. The larger ones are in fact the correct ones, so the
likelihood approximation underestimated the two standard errors by about 7% and
2%, respectively. Thus the MLE’s are still substantially better than the least squares
estimates, just not quite 54% better as suggested by (9.22).

The main difference between least squares and maximum likelihood for these
models is that least squares looks at the columns of Y one-by-one, while maximum
likelihood takes into account the correlation between the columns, thus may be able
to use information in all the columns to improve the estimation in each column. In



170 Chapter 9. Likelihood Methods

particular, maximum likelihood automatically performs the covariate adjustment in
the leprosy example. For small samples, it may be that the noise in the cross-column
information overwhelms the signal, so that least squares is preferable. But maxi-
mum likelihood is known to be asymptotically efficient, so that, for large enough n,
it produces the lowest standard errors.

9.3.3 Calculating the estimates

We have seen in (5.46) that if z is invertible, and there is no restriction on the β, then
the weighted least squares estimator (9.10) of β does not depend on the Σ̂R, being
the regular least squares estimate. That is, the maximum likelihood and least squares
estimators of β are the same. Otherwise, the least squares and maximum likelihood
estimates will differ.

Consider the both-sides model,

Y = xβz′a + R, (9.24)

where za may not be square, i.e., it is q × l with l ≤ q, but there are still no restrictions
on β. We can find the MLE of β in this model without using iteratively reweighted
least squares. In Section 6.2.2, for least squares, we turned this model into a multi-
variate regression by calculating Yz in (6.16). Here we do the same, but first fill out
the z so that it is square. That is, we find an additional q × (q − l) matrix zb so that

z = (za zb) is invertible, and z′azb = 0. (9.25)

Exercise 5.8.29 guarantees that there is such a matrix. Then we can write model (9.24)
equivalently as

Y = x (β 0)

(
z′a
z′b

)
+ R = x(β 0)z′ + R, (9.26)

where the 0 matrix is p × (q − l). Now we move the z to the other side, so that with

Yz = Y(z′)−1, the model becomes

Yz = (Yza Yzb) = x (β 0) + Rz, (9.27)

where
Rz ∼ N(0, In ⊗ Σz). (9.28)

Here, Yza is n × l, to conform with β, and Yzb is n × (q − l).
Compare the model (9.27) to the model with covariates in (6.39). Because E[Yzb] =

0, we can condition as in (6.40). Partitioning the covariance matrix as

Σz =

(
Σzaa Σzab
Σzba Σzbb

)
, (9.29)

where Σzaa is l × l and Σzbb is (q − l)× (q − l), we have that

Yza | Yzb = yzb ∼ N(α+ yzbη, In ⊗ Σzaa·b), (9.30)

where

η = (Σzbb)
−1

Σzba,

α = E[Yza]− E[Yzb]η = xβ,

and Σzaa·b = Σzaa − ΣzabΣ
−1
zbbΣzba. (9.31)
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Thus we have the conditional model

Yza = (x yzb)

(
β

η

)
+ R∗, (9.32)

where
R∗ | Yzb = yzb ∼ N(0, In ⊗ Σzaa·b). (9.33)

There is also the marginal model, for Yzb, which has mean zero:

Yzb ∼ N(0, In ⊗ Σzbb). (9.34)

The density of Yz can now be factored as

f (yz |β, Σz) = f (yza | yzb,β,η, Σzaa·b)× f (yzb | Σzbb). (9.35)

The set of parameters (β,η, Σzaa·b, Σzbb) can be seen to be in one-to-one correspon-

dence with (β, Σz), and has space Rp×l × R(q−l)×l × S+
l × S+

q−l . In particular, the

parameters in the conditional density are functionally independent of those in the
marginal density, which means that we can find the MLE of (β,η, Σzaa·b) without
having to worry about the Σzbb.

The β can be estimated using the model (9.32), which is again a standard mul-
tivariate regression, though now with the yzb moved from the left-hand part of the
model into the x-part. Thus we can use least squares to calculate the MLE of the co-
efficients, and their standard errors, then find confidence intervals and t-statistics for
the β̂ij’s as in Section 6.3. The t-statistics are conditionally Student’s t, conditioning
on Yzb, hence unconditionally as well.

To illustrate, consider the both-sides model in (9.19) for the mouth size data. Here,
the za in (9.24) is the 2× 4 matrix z in (9.19) used to fit the linear growth curve model.
We could use the function fillout in Section A.11 to fill out the matrix as in (9.25), but
we already have a candidate for the zb, i.e., the quadratic and cubic parts of the

orthogonal polynomial in (6.29). Thus to find the β̂ and its standard errors, we use

x <− cbind(1,mouths[,5])
y <− mouths[,1:4]
z <− cbind(1,c(−3,−1,1,3),c(−1,1,1,−1),c(−1,3,−3,1))
yz <− y%∗%solve(t(z))
yza <− yz[,1:2]
xyzb <− cbind(x,yz[,3:4])
lm(yza ∼xyzb−1) # or bothsidesmodel(xyzb,yza)

We obtain the “MLE” results presented in (9.20).
There are submodels of the both-sides models (including multivariate regression)

defined by a pattern P that can be fit analytically, but the function bothsidesmodel.mle

uses the iteratively reweighted least squares method in Section 9.3.1 to estimate the β̂.
We could use the covariance in (9.11) to estimate the standard errors of the estimated
coefficients, but we can improve the estimates by first conditioning on any columns
Yj of Y for which the corresponding columns βj of β are assumed zero. Thus we
actually fit a conditional model as in (9.32), where now the β may have restrictions,
though the η does not. Another slight modification we make is to use n − p∗ instead
of n as the divisor in (9.16), where p∗ is the number of rows of β with at least one
nonzero component.
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9.3.4 Proof of Lemma 9.1

Because U is positive definite and symmetric, it has an invertible symmetric square

root, U1/2. Let Ψ = U−1/2
ΣU−1/2, and from (9.13) write

g(Σ) = h(U−1/2
ΣU−1/2), where h(Ψ) ≡ 1

|U|a/2

1

|Ψ|a/2
e−

1
2 trace(Ψ

−1) (9.36)

is a function of Ψ ∈ S+
q . Exercise 9.6.6 shows that (9.36) is maximized by Ψ̂ = (1/a)Iq,

hence

h(Ψ̂) =
1

|U|a/2| 1
a Iq|a/2

e−
1
2 a·trace(Iq), (9.37)

from which follows (9.15). Also,

Ψ̂ = U−1/2
Σ̂U−1/2 ⇒ Σ̂ = U1/2 1

a
IqU1/2 =

1

a
U, (9.38)

which proves (9.14). ✷

9.4 Likelihood ratio tests

Again our big model has Y with space Y and a set of distributions {Pθ | θ ∈ Θ} with
associated densities f (y | θ). Testing problems we consider are of the form

H0 : θ ∈ Θ0 versus HA : θ ∈ ΘA, (9.39)

where

Θ0 ⊂ ΘA ⊂ Θ. (9.40)

Technically, the space in HA should be ΘA − Θ0, but we take that to be implicit.
The likelihood ratio statistic for problem (9.39) is defined to be

LR =
supθ∈ΘA

L(θ; y)

supθ∈Θ0
L(θ; y)

, (9.41)

where the likelihood L is given in Definition 9.1.
The idea is that the larger LR, the more likely the alternative HA is, relative to the

null H0. For testing, one would either use LR as a basis for calculating a p-value, or
find a cα such that rejecting the null when LR > cα yields a level of (approximately) α.
Either way, the null distribution of LR is needed, at least approximately. The general
result we use says that under certain conditions (satisfied by most of what follows),
under the null hypothesis,

2 log(LR) −→D χ2
d f where d f = dim(HA)− dim(H0) (9.42)

as n → ∞ (which means there must be some n to go to infinity). The dimension
of a hypothesis is the number of free parameters it takes to uniquely describe the
associated distributions. This definition is not very explicit, but in most examples the
dimension will be “obvious.”
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9.4.1 The LRT in the both-sides model

In the both-sides model (9.2), we can use the likelihood ratio test to test any two
nested submodels that are defined by patterns. That is, suppose we have two patterns,
the null P0 and the alternative PA, where P0 is a subpattern of PA, i.e., B(P0) ⊂
B(PA). (That is, everywhere P0 has a one, PA also has a one.) Thus we test

H0 : β ∈ B(P0) versus HA : β ∈ B(PA). (9.43)

Using (9.17), we can write (9.42) as

2 log(LR) = n(log(|Σ̂0|)− log(|Σ̂A|)) → χ2
d f , d f = ∑

ij

(PAij − P0ij), (9.44)

where Σ̂0 and Σ̂A are the MLE’s of ΣR under the null and alternative, respectively.
The degrees of freedom in the test statistic (9.42) is the difference in the number of
ones in PA and P0.

The chi-squared character of the statistic in (9.44) is asymptotic. In testing block
hypotheses as in Section 7.2, we can improve the approximation (or find an exact test)
using the techniques in that section. In fact, the likelihood ratio test is a Wilks’ Λ test.
The only change we make is to use the idea in Section 9.3.3 to obtain a multivariate
regression model from the both-sides model.

We start with the both-sides model as in (9.24), and suppose PA is a matrix con-
sisting of all ones, so that it provides no restriction, and the zeroes in P0 form a block,
leading to the null exemplified by that in (7.13). By permuting the rows and column
appropriately, we can partition the p× l coefficient matrix so that the model is written

Y = (x1 x2)

(
β11 β21
β12 β22

)
z′a + R, (9.45)

where β11 is p∗ × l∗, x1 is n × p∗, and x2 is n × (p − p∗), and the hypotheses are

H0 : β11 = 0 versus HA : β11 6= 0. (9.46)

The other βij’s have no restriction. This testing problem is often called the generalized
multivariate analysis of variance (GMANOVA) problem.

Repeat the steps in (9.25) through (9.35). Using the partitioning (9.45), the condi-
tional model Yza|Yzb = yzb in (9.32) is

Yza = (x1 x2 yzb)



β11 β21
β12 β22

η1 η2


+ Rza, (9.47)

where Yza is n × l, Yzb is n × (q − l), and η1 is (q − l)× l∗. Now we can implement
the tests in Section 7.2 based on the model (9.47), where β11 here plays the role of β∗

in (7.12), and (x1, x2, Yzb) plays the role of x. In this case, the B and W in (7.20) are
again independent, with ν = n − p − q + l,

B ∼ Wishartl∗(p∗, Σ
∗
z), and W ∼ Wishartl∗(n − p − q + l, Σ

∗
z). (9.48)

Exercises 9.6.7 through 9.6.9 show that the likelihood ratio (9.41) is Wilks’ Λ, i.e.,

Λ = (LR)−2/n =
|W|

|W + B| ∼ Wilksl∗(p∗ , n − p − q + 1). (9.49)
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Hence the statistic in (9.44) with the Bartlett correction (7.37) is

−
(

n − p − q + l − l∗ − p∗ + 1

2

)
log(Λ) ≈ χ2

p∗ l∗ . (9.50)

9.5 Model selection: AIC and BIC

We often have a number of models we wish to consider, rather than just two as in
hypothesis testing. (Note also that hypothesis testing may not be appropriate even
when choosing between two models, e.g., when there is no obvious allocation to
“null” and “alternative” models.) For example, in the both-sides model, each pattern
of zeroes for the β defines a different model. Here, we assume there are K models
under consideration, labelled M1, M2, . . . , MK. Each model is based on the same data,
Y, but has its own density and parameter space:

Model Mk ⇒ Y ∼ fk(y | θk), θk ∈ Θk. (9.51)

The densities need not have anything to do with each other, i.e., one could be normal,
another uniform, another logistic, etc., although often they will be of the same family.
It is possible that the models will overlap, so that several models might be correct at
once, e.g., when there are nested models.

Let

lk(θk ; y) = log(Lk(θk ; y)) = log( fk(y |θk)) + C(y), k = 1, . . . , K, (9.52)

be the loglikelihoods for the models. The constant C(y) is arbitrary, being the
log(a(y)) from (9.1). As long as it is the same for each k, it will not affect the outcome
of the following procedures. Define the deviance of the model Mk at parameter value
θk by

deviance(Mk(θk) ; y) = −2 lk(θk ; y). (9.53)

It is a measure of fit of the model to the data; the smaller the deviance, the better the
fit. The MLE of θk for model Mk minimizes this deviance, giving us the observed
deviance,

deviance(Mk(θ̂k) ; y) = −2 lk(θ̂k ; y) = −2 max
θk∈Θk

lk(θk ; y). (9.54)

Note that the likelihood ratio statistic in (9.42) is just the difference in observed de-
viance of the two hypothesized models:

2 log(LR) = deviance(H0(θ̂0) ; y)− deviance(HA(θ̂A) ; y). (9.55)

At first blush one might decide the best model is the one with the smallest ob-
served deviance. The problem with that approach is that because the deviances are
based on minus the maximum of the likelihoods, the model with the best observed
deviance will be the largest model, i.e., one with highest dimension. Instead, we add
a penalty depending on the dimension of the parameter space, as for Mallow’s Cp

in (7.78). The two most popular likelihood-based procedures are the Bayes informa-
tion criterion (BIC) of Schwarz [1978] and the Akaike information criterion (AIC) of
Akaike [1974] (who actually meant for the “A” to stand for “An”):

BIC(Mk ; y) = deviance(Mk(θ̂k) ; y) + log(n)dk, and (9.56)

AIC(Mk ; y) = deviance(Mk(θ̂k) ; y) + 2dk, (9.57)
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where

dk = dim(Θk). (9.58)

Whichever criterion is used, it is implemented by finding the value for each model,
then choosing the model with the smallest value of the criterion, or looking at the
models with the smallest values.

Note that the only difference between AIC and BIC is the factor multiplying the di-
mension in the penalty component. The BIC penalizes each dimension more heavily
than does the AIC, at least if n > 7, so tends to choose more parsimonious mod-
els. (The corrected version of the AIC in (9.87) for multivariate regression has the
penalty depending on (n, p, q).) In more complex situations than we deal with here,
the deviance information criterion is useful, which uses more general definitions of the
deviance. See Spiegelhalter et al. [2002].

The next two sections present some further insight into the two criteria.

9.5.1 BIC: Motivation

The AIC and BIC have somewhat different motivations. The BIC, as hinted at by the
“Bayes” in the name, is an attempt to estimate the Bayes posterior probability of the
models. More specifically, if the prior probability that model Mk is the true one is πk,
then the BIC-based estimate of the posterior probability is

P̂BIC[Mk | y] =
e−

1
2 BIC(Mk ; y)πk

e−
1
2 BIC(M1 ; y)π1 + · · ·+ e−

1
2 BIC(MK ; y)πK

. (9.59)

If the prior probabilities are taken to be equal, then because each posterior probability
has the same denominator, the model that has the highest posterior probability is
indeed the model with the smallest value of BIC. The advantage of the posterior
probability form is that it is easy to assess which models are nearly as good as the
best, if there are any.

To see where the approximation arises, we first need a prior on the parameter
space. In this case, there are several parameter spaces, one for each model under
consideration. Thus is it easier to find conditional priors for each θk, conditioning on
the model:

θk | Mk ∼ ρk(θk), (9.60)

for some density ρk on Θk. The marginal probability of each model is the prior
probability:

πk = P[Mk]. (9.61)

The conditional density of (Y,θk) given Mk is

gk(y,θk | Mk) = fk(y | θk)ρk(θk). (9.62)

To find the density of Y given Mk, we integrate out the θk:

Y | Mk ∼ gk(y | Mk) =
∫

Θk

gk(y,θk | Mk)dθk

=
∫

Θk

fk(y |θk)ρk(θk)dθk. (9.63)
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With the parameters hidden, it is straightforward to find the posterior probabilities
of the models using Bayes theorem, Theorem 2.2:

P[Mk | y] =
gk(y | Mk)πk

g1(y | M1)π1 + · · ·+ gK(y | MK)πK
. (9.64)

Comparing (9.64) to (9.59), we see that the goal is to approximate gk(y | Mk) by

e−
1
2 BIC(Mk ; y). To do this, we use the Laplace approximation, as in Schwarz [1978].

The following requires a number of regularity assumptions, not all of which we will
detail. One is that the data y consists of n iid observations, another that n is large.
Many of the standard likelihood-based assumptions needed can be found in Chapter
6 of Lehmann and Casella [1998], or any other good mathematical statistics text. For
convenience we drop the “k”, and from (9.63) consider

∫

Θ
f (y | θ)ρ(θ)dθ =

∫

Θ
el(θ ; y)ρ(θ)dθ. (9.65)

The Laplace approximation expands l(θ ; y) around its maximum, the maximum

occuring at the maximum likelihood estimator θ̂. Then, assuming all the derivatives
exist,

l(θ ; y) ≈ l(θ̂ ; y) + (θ− θ̂)′∇(θ̂) +
1

2
(θ− θ̂)′H(θ̂)(θ− θ̂), (9.66)

where ∇(θ̂) is the d × 1 (θ is d × 1) vector with

∇i(θ̂) =
∂

∂θi
l(θ ; y) |

θ=θ̂, (9.67)

and H is the d × d matrix with

Hij =
∂2

∂θi∂θj
l(θ ; y) |

θ=θ̂ . (9.68)

Because θ̂ is the MLE, the derivative of the loglikelihood at the MLE is zero, i.e.,

∇(θ̂) = 0. Also, let

F̂ = − 1

n
H(θ̂), (9.69)

which is called the observed Fisher information contained in one observation. Then
(9.65) and (9.66) combine to show that

∫

Θ
f (y | θ)ρ(θ)dθ ≈ el(θ̂ ; y)

∫

Θ
e−

1
2 (θ−θ̂)′nF̂(θ−θ̂)ρ(θ)dθ. (9.70)

If n is large, the exponential term in the integrand drops off precipitously when θ is

not close to θ̂, and assuming that the prior density ρ(θ) is fairly flat for θ near θ̂, we
have ∫

Θ
e−

1
2 (θ−θ̂)′nF̂(θ−θ̂)ρ(θ)dθ ≈

∫

Θ
e−

1
2 (θ−θ̂)′nF̂(θ−θ̂)dθρ(θ̂). (9.71)

The integrand in the last term looks like the density (8.48) as if

θ ∼ Nd(θ̂, (nF̂)−1), (9.72)
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but without the constant. Thus the integral is just the reciprocal of that constant, i.e.,

∫

Θ
e−

1
2 (θ−θ̂)′nF̂(θ−θ̂)dθ = (

√
2π)d/2|nF̂|−1/2 = (

√
2π)d/2|F̂|−1/2n−d/2. (9.73)

Putting (9.70) and (9.73) together gives

log

(∫

Θ
f (y | θ)ρ(θ)dθ

)
≈ l(θ̂ ; y)− d

2
log(n)

+ log(ρ(θ̂)) +
d

2
log(2π)− 1

2
log(|F̂|)

≈ l(θ̂ ; y)− d

2
log(n)

= − 1

2
BIC(M ; y). (9.74)

Dropping the last three terms in the first equation is justified by noting that as n → ∞,

l(θ̂ ; y) is of order n (in the iid case), log(n)d/2 is clearly of order log(n), and the other
terms are bounded. (This step may be a bit questionable since n has to be extremely
large before log(n) starts to dwarf a constant.)

There are a number of approximations and heuristics in this derivation, and in-
deed the resulting approximation may not be especially good. See Berger, Ghosh,
and Mukhopadhyay [2003], for example. A nice property is that under conditions,
if one of the considered models is the correct one, then the BIC chooses the correct
model as n → ∞.

9.5.2 AIC: Motivation

The Akaike information criterion can be thought of as a generalization of Mallows’
Cp from Section 7.5, based on deviance rather than error sum of squares. To evaluate
model Mk as in (9.51), we imagine fitting the model based on the data Y, then testing

it out on a new (unobserved) variable, YNew, which has the same distribution as and
is independent of Y. The measure of discrepancy between the model and the new
variable is the deviance in (9.53), where the parameter is estimated using Y. We then
take the expected value, yielding the expected predictive deviance,

EPredDevk = E[deviance(Mk(θ̂k) ; YNew)]. (9.75)

The expected value is over θ̂, which depends on only Y, and YNew.
As for Mallows’ Cp, we estimate the expected predictive deviance using the ob-

served deviance, then add a term to ameliorate the bias. Akaike argues that for large
n, if Mk is the true model,

∆ = EPredDevk − E[deviance(Mk(θ̂k) ; Y)] ≈ 2dk, (9.76)

where dk is the dimension of the model as in (9.58), from which the estimate AIC in
(9.57) arises. A good model is then one with a small AIC.

Note also that by adjusting the priors πk = P[Mk] in (9.59), one can work it so
that the model with the lowest AIC has the highest posterior probability. See Exercise
9.6.13.
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Akaike’s original motivation was information-theoretic, based on the Kullback-
Leibler divergence from density f to density g. This divergence is defined as

KL( f || g) = −
∫

g(w) log

(
f (w)

g(w)

)
dw. (9.77)

For fixed g, equation (1.59) shows that the Kullback-Leibler divergence is positive
unless g = f , in which case it is zero. For the Akaike information criterion, g is

the true density of Y and YNew, and for model k, f is the density estimated using

the maximum likelihood estimate of the parameter, fk(w | θ̂), where θ̂ is based on Y.
Write

KL( fk(w | θ̂k) || g) = −
∫

g(w) log( fk(w | θ̂))dw +
∫

g(w) log(g(w))dw

=
1

2
E[deviance(Mk(θ̂k) ; YNew) | Y = y]− Entropy(g). (9.78)

Here the g, the true density of Y, does not depend on the model Mk, hence neither
does its entropy, defined in (1.44). Thus EPredDevk from (9.75) is equivalent to (9.78)
upon taking the further expectation over Y.

One slight logical glitch in the development is that while the theoretical criterion
(9.75) is defined assuming Y and Y∗ have the true distribution, the approximation in
(9.76) assumes the true distribution is contained in the model Mk. Thus it appears
that the approximation is valid for all models under consideration only if the true
distribution is contained in all the models. Even so, the AIC is a legitimate method for
model selection. See the book Burnham and Anderson [2002] for more information.

Rather than justify the result in full generality, we will show the exact value for ∆

for multivariate regression, as Hurvich and Tsai [1989] did in the multiple regression
model.

9.5.3 AIC: Multivariate regression

The multivariate regression model (4.8) (with no constraints) is

Model M : Y ∼ Nn×q (xβ, In ⊗ ΣR) , β ∈ Rp×q, (9.79)

where x is n × p and ΣR is q × q. Now from (9.4),

l(β, ΣR; y) = − n

2
log(|ΣR|)−

1

2
trace(Σ−1

R (y − xβ)′(y − xβ)). (9.80)

The MLE’s are then

β̂ = (x′x)−1x′y and Σ̂R =
1

n
y′Qxy, (9.81)

as in (9.16), since the least squares estimate is the weighted least squares estimate
(hence MLE) when z is square and there are no constraints on β. See (5.46). Using
(9.17) and (9.53), we see that the deviances evaluated at the data Y and the unobserved
YNew are, respectively,

deviance(M(β̂, Σ̂R) ; Y) = n log(|Σ̂R|) + nq, and

deviance(M(β̂, Σ̂R) ; YNew) = n log(|Σ̂R|) + trace(Σ̂
−1
R (YNew − xβ̂)′(YNew − xβ̂)).

(9.82)
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The first terms on the right-hand sides in (9.82) are the same, hence the difference
in (9.76) is

∆ = E[trace(Σ̂
−1
R U′U)]− nq, where U = YNew − xβ̂ = YNew − PxY. (9.83)

From Theorem 6.1, we know that β̂ and Σ̂R are independent, and further both are

independent of YNew, hence we have

E[trace(Σ̂
−1
R U′U)] = trace(E[Σ̂

−1
R ]E[U′U]). (9.84)

Using calculations as in Section 7.5.2, we find (in Exercise 9.6.11) that

∆ =
n

n − p − q − 1
2 dM, (9.85)

where dM is the dimension of model M, summing the pq for the βij’s and q(q + 1)/2
for the ΣR:

dM = pq +
q(q + 1)

2
. (9.86)

Note that the dimension in (7.76) resolves to dM when there are no zeroes in the β.

Then from (9.76), the estimate of EPredDev is

AICc(M ; y) = deviance(M(β̂, Σ̂R) ; y) +
n

n − p − q − 1
2 dM. (9.87)

The lower case “c” stands for “corrected.” For large n, ∆ ≈ 2 dim(M). In univariate
regression q = 1, and (9.87) is the value given in Hurvich and Tsai [1989].

The exact value for ∆ in (9.85) for submodels of the model M, where a subset of
βij’s is set to zero, is not in general easy to find. If the submodel is itself a multivariate
regression model, which occurs if each row of the β is either all zero or all nonzero,
then the answer is as in (9.87) and (9.86), but substituting the number of nonzero
rows for the p. An ad hoc solution for model Mk given by the pattern Pk is to let pk
be the number of rows of Pk that have at least one “1,” then use

∆k =
n

n − pk − q − 1
2 dk, dk = ∑

ij

pk,ij +
q(q + 1)

2
. (9.88)

9.5.4 Example: Skulls

We will look at the data on Egyptian skulls teated previously in Exercises 4.4.2, 6.6.10,
7.6.15, and 7.6.20. There are thirty observations on each of five time periods, and
four measurements made on each observation. The x we consider is an orthogonal
polynomial (of degree 4) matrix in the time periods, which we take to be equally
spaced. Thus (n, p, q) = (150, 5, 4). The model is multivariate regression, Y = xβ +
R, so that z = I4. The estimates of the coefficients, and their t-statistics, for the
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unrestricted model are below:

Maximal Basibregmatic Basialveolar Nasal
Breadth Height Length Height

Est. t Est. t Est. t Est. t
Intercept 133.97 357.12 132.55 334.98 96.46 240.26 50.93 195.78
Linear 1.27 4.80 −0.69 −2.48 −1.59 −5.59 0.34 1.85
Quadratic −0.12 −0.55 −0.34 −1.43 −0.02 −0.10 0.03 0.21
Cubic −0.15 −0.55 −0.25 −0.88 0.34 1.20 −0.26 −1.43
Quartic 0.04 0.41 0.10 0.91 −0.08 −0.74 −0.05 −0.72

(9.89)
Looking at the t-statistics, we see that all the intercepts are highly significant, which
is not surprising, and all the quadratic, cubic, and quartic coefficients’ are under 2
in absolute value. Two of the linear terms are highly significant, one is somewhat
significant, and one is somewhat not so.

Hypothesis testing is one approach to comparing pairs of models. Consider testing
the null hypothesis that all measurements have linear fits, versus the general model.
In terms of patterns for the β, we test

H0 : P =




1111
1111
0000
0000
0000


 versus HA : P =




1111
1111
1111
1111
1111


 . (9.90)

We first set up the data matrices.

x <− cbind(1,c(−2,−1,0,1,2),c(2,−1,−2,−1,2),c(−1,2,0,−2,1),c(1,−4,6,−4,1))
# or x <− cbind(1,poly(1:5,4))
x <− kronecker(x,rep(1,30))
y <− skulls[,1:4]
z <− diag(4)

To find the likelihood ratio test statistic in (9.55), we need to fit the two models, and
find their deviances and dimensions.

pattern0 <− rbind(c(1,1,1,1),1,0,0,0)
b0 <− bothsidesmodel.mle(x,y,z,pattern0)
bA <− bothsidesmodel.mle(x,y,z) # If the pattern is all 1’s, we can omit it from the arguments
lrstat <− b0$Dev−bA$Dev
b0$Dim
bA$Dim

The statistic is lrstat = 10.4086. The dimension of the null model is 18, which includes
the 8 nonzero βij’s, plus the 10 parameters in the ΣR. For the alternative model, we

have 20+ 10 = 30. Thus the statistic should be compared to a χ2
ν for ν = 30− 18 = 12

(which is just the number of 0’s in the null’s pattern). Clearly, the result is not
significant, hence we fail to reject the null hypothesis.

Furthermore, the fourth measurement, nasal height, may not need a linear term,
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leading us to consider testing

H0 : P =




1111
1110
0000
0000
0000


 versus HA : P =




1111
1111
0000
0000
0000


 . (9.91)

We already have the results of what is now the alternative hypothesis. For the null,
we find

pattern0[2,4]<−0 # New null pattern
b00 <− bothsidesmodel.mle(x,y,z,pattern0)
b00$Dev−b0$Dev
[1] 3.431563

It is easy to see that the difference in dimensions is 1, so with a statistic of 3.4316, the

χ2
1 yields a p-value of 0.064, not quite significant. Thus this last linear parameter may

or may not be zero.
The model selection approach allows a more comprehensive comparison of all

possible models. We will consider the submodels that honor the monotonicity of
the polynomials for each measurement variable. That is, each column of pattern P
indicates the degree of the polynomial for the corresponding measurement, where a
degree p polynomial has 1’s in rows 1 through p + 1, and zeroes elsewhere. Denote a
model by four integers indicating the degree+ 1 for each variable, so that, for example,
M2321 is the model with linear, quadratic, linear, and constant models for the four
variables, respectively. The hypotheses in (9.90) are M2222 and M5555, and the null in
(9.91) is M2221.

For model Mijkl, we first set up the pattern, then fit the model. It helps to write a
little function to provide the pattern:

skullspattern <− function(i,j,k,l) {
pattern <− matrix(0,ncol=4,nrow=5)
if(i>0) pattern[1:i,1] <− 1
if(j>0) pattern[1:j,2] <− 1
if(k>0) pattern[1:k,3] <− 1
if(l>0) pattern[1:l,4] <− 1
pattern

}

We then loop over the function, fitting the model each time and collecting the results:

results <− NULL
models <− NULL
for(i in 0:5) {

for(j in 0:5) {
for(k in 0:5) {

for (l in 0:5) {
bothsidesmodel <− bothsidesmodel.mle(x,y,z,skullspattern(i,j,k,l))
results <− rbind(results,c(bothsidesmodel$Dev,bothsidesmodel$Dim,bothsidesmodel$AICc
models <− rbind(models,c(i,j,k,l))

}
}
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}
}

We also find the BIC-based estimates of the posterior probabilities (actually, per-
centages) of the models from (9.59):

bic <− results[,4]
p <− exp(−(bic−max(bic))/2) # Subtract the max to avoid underflow
p <− 100∗p/sum(p)

Since each column can have from 0 to 5 ones, there are 65 = 1296 possible models. We
could reasonably drop all the models with at least one zero in the first row without
changing the results. The next table has the results from fitting all 1296 models,
though we just show the ten with the best (lowest) BIC’s:

Model Deviance Dimension AICc BIC P̂BIC

2221 2334.29 17 2369.96 2419.47 32.77
2222 2330.86 18 2368.62 2421.05 14.88
2122 2336.93 17 2372.60 2422.12 8.75
2321 2331.98 18 2370.01 2422.17 8.52
2121 2342.18 16 2375.74 2422.35 7.80
2322 2328.55 19 2368.69 2423.75 3.87
3221 2333.91 18 2371.94 2424.10 3.24
2231 2334.26 18 2372.29 2424.45 2.72
3222 2330.48 19 2370.62 2425.68 1.47
2223 2330.54 19 2370.68 2425.74 1.43

(9.92)

The factor multiplying the dimension dk for the AICc as in (9.88) here ranges from
2.07 to 2.14, while for the BIC in (9.56), it is log(n) = log(150) = 5.01. Thus the BIC
will tend to choose sparser models. The top four models for BIC are ranked numbers

3, 1, 6, and 4 for AICc. But BIC’s third best, 2122, is AICc’s 32nd best, and BIC’s fifth
best, 2121, is AICc’s 133rd best. Note that these two models are quite sparse.

Looking at the top ten models, we see they are within one or two parameters of
M2222, which is the model with linear fits for all four variables. That model is the
best under AICc, and second best under BIC. The best model under BIC shows linear
fits for the first three variables, but just a constant fit for the fourth. The BIC-based
estimated probabilities for the models are quite spread out, with the top ten models
having a total probability of about 85%. The best model has a probability of 33%,
which is high but not nearly overwhelming. All the top five have probabilities over
7%.

We can also estimate the probabilities of other events. For example, the probability
that the maximum degree of the four polynomials is quartic sums the probabilities
of all models for which the maximum of its indices is 5, yielding 0.73%. Similarly,
the probabilities that the maximum degree is cubic, quartic, linear, and constant are
estimated to be 5.03%, 30.00%, 64.23%, and 0. Thus we can be approximately 94%
sure that linear or quadratics are enough. The chance any of the variables has a zero
model (i.e., has a zero mean) is zero.

Looking at the individual variables, we can sum the probabilities of models for
which variable i has degree j. We obtain the following, where the entries are the
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estimated percentages:

Maximal Basibregmatic Basialveolar Nasal
Breadth Height Length Height

Constant 0.05 21.53 0.00 61.70
Linear 90.22 60.51 90.48 34.39
Quadratic 8.89 15.64 7.50 3.23
Cubic 0.78 1.96 1.80 0.61
Quartic 0.07 0.35 0.23 0.08

(9.93)

Thus we can be fairly confident that linear fits are good for the first and third vari-
ables, maximal breadth and basialveolar length. Basibregmatic height is also likely
to be linear, but the constant and quadratic models have non-negligible probabilities.
Nasal height is more likely to be constant than linear.

9.5.5 Example: Histamine in dogs

Now turn to the histamine in dogs example. The data are in Table 4.2, and a both-
sides model is presented in (6.44). Notice that the drug effect and interaction effect
are approximately opposite, which arises because the two depleted cells have approx-
imately the same after values. That is, when histamine is depleted, the drug does not
seem to matter. Thus we try a different model, where the contrasts are the deple-
tion effect, the drug effect within the intact group, and the drug effect within the
depleted group. We also use the before measurements as covariates, and orthogonal
polynomials for the three after measurements. Thus Ya = (x, yb)βz′ + R, where

x =




1 −1 −1 0
1 1 0 −1
1 −1 1 0
1 1 0 1


⊗ 14 and z =




1 −1 1
1 0 −2
1 1 1


 . (9.94)

Here, β is 5 × 3. We are mainly interested in the three contrasts, which are repre-
sented by the middle three rows of β. The first row contains the constants, and the
last row contains the effects of the before measurements on the after measurements’
coefficients. The models we will consider are then of the form Mijklm, where i, j, k, l, m
are the numbers of ones in the the five rows, respectively, indicating the degree + 1
of the polynomials. If the depletion effect is in the model, then the constant effect
should be, and if one of the drug effects is in the model, then the depletion effect
should be as well. Thus we have the constraints

0 ≤ i ≤ j ≤ k, l ≤ 3, 0 ≤ m ≤ 3. (9.95)

For example, the model with a quadratic constant, linear depletion effect, a linear
drug effect within the intact group, a constant drug effect within the depleted group,
and no before effect, has (i, j, k, l, m) = (3, 2, 2, 1, 0):

M32210 : P =




111
110
110
100
000


 (9.96)

Fitting model Mijklm proceeds using the following:



184 Chapter 9. Likelihood Methods

x <− cbind(1,c(−1,1,−1,1),c(−1,0,1,0),c(0,−1,0,1))
x <− kronecker(x,rep(1,4))
xyb <− cbind(x,histamine[,1])
ya <− histamine[,2:4]
z <− cbind(1,c(−1,0,1),c(1,−2,1))
pattern <− matrix(0,nrow=5,ncol=3)
if(i>0) pattern[1,1:i] <− 1
if(j>0) pattern[2,1:j] <− 1
if(k>0) pattern[3,1:k] <− 1
if(l>0) pattern[4,1:l] <− 1
if(m>0) pattern[5,1:m] <− 1
bothsidesmodel.mle(xyb,ya,z,pattern)

Here, the AICc yields sparser models, because the factor multiplying the dimen-
sion dk ranges from 3.20 to 4.57 (n = 16, q = 3 and pk = 2, 3, 4, 5), while for BIC, the
log(n) = 2.77. There are 200 models this time. The top ten according to BIC are

Model Deviance Dimension AICc BIC P̂BIC

22200 −146.70 12 −104.03 −113.42 12.24
22202 −151.70 14 −95.70 −112.89 9.36
22201 −148.19 13 −96.19 −112.15 6.48
32200 −147.94 13 −101.72 −111.89 5.70
32202 −152.95 15 −92.95 −111.36 4.36
22100 −141.28 11 −102.17 −110.78 3.26
22203 −152.35 15 −92.35 −110.77 3.24
22210 −146.80 13 −94.80 −110.75 3.22
32201 −149.44 14 −93.44 −110.62 3.02
33200 −149.40 14 −99.62 −110.58 2.96

(9.97)

The best model for both AICc and BIC is M22200, which fits a linear model to the
depletion effect, a linear model to the drug effect within the intact group, and zeroes
out the drug effect within the depleted group and the before effect. As noted above,
once the dogs have their histamine depleted, the drugs have no effect. Note that the
top three models are the same, except for the before effects. Since we are not really
interested in that effect, it is annoying that so much of the ordering of the models
depends on it. To clean up the presentation, we can find the marginals for the effects
of interest. That is, we sum the probabilities of all models that have a particular jkl.
This leaves us with 30 probabilities, the top twelve of which are in the table below:

Model(jkl) P̂BIC Model(jkl) P̂BIC

220 45.58 222 3.08
221 12.30 211 2.35
210 8.76 321 1.98
110 7.36 111 1.98
320 7.35 310 1.43
330 4.25 331 1.14

(9.98)

The top amalgamated model now has the same effects for the contrasts of interest
as the previous best model, but with a fairly substantial probability of 46%. We can
further summarize the results as in (9.93) to find the estimated percentages of the
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polynomial degrees for the contrasts:

Model Depletion effect Drug effect Drug effect
within intact within depleted

Zero 0.12 0.36 75.04
Constant 9.44 22.98 20.18
Linear 72.78 70.92 4.56
Quadratic 17.66 5.75 0.22

(9.99)

Thus the first two effects have over 99.5% probability of being non-zero, with each
over a 70% chance the effect is linear. The third effect has a 75% of being zero.

The estimated nonzero coefficients of interest for the best model in (9.97) are

Constant Linear
Est. t Est. t

Depletion effect −0.259 −2.70 0.092 2.14
(Depleted−Intact)
Drug effect within intact 0.426 3.13 −0.140 −2.32
(Trimethaphan−Morphine)

(9.100)

The average depletion effect is negative, which means the depleted dogs have lower
histamine levels than the intact ones, which is reasonable. Also, the positive slope
means this difference decreases over time. For the drug effect within the intact group,
we see that Trimethanphan is better on average, but its advantage decreases some-
what over time.

9.6 Exercises

Exercise 9.6.1. Consider the statistical model with space Y and densities f (y | θ)
for θ ∈ Θ. Suppose the function g : Θ → Ω is one-to-one and onto, so that a
reparametrization of the model has densities f ∗(y |ω) for ω ∈ Ω, where f ∗(y |ω) =
f (y | g−1(ω)). (a) Show that θ̂ uniquely maximizes f (y | θ) over θ if and only if

ω̂ ≡ g(θ̂) uniquely maximizes f ∗(y |ω) over ω. [Hint: Show that f (y | θ̂) > f (y | θ)
for all θ′ 6= θ̂ implies f ∗(y | ω̂) > f ∗(y |ω) for all ω 6= ω̂, and vice versa.] (b) Argue

that if θ̂ is the MLE of θ, then g(θ̂) is the MLE of ω.

Exercise 9.6.2. Again consider the statistical model with space Y and densities f (y | θ)
for θ ∈ Θ, and suppose g : Θ → Ω is just onto. Let g∗ be any function of θ such that
the joint function h(θ) = (g(θ), g∗(θ)), h : Θ → Λ, is one-to-one and onto, and set

the reparametrized density as f ∗(y |λ) = f (y | h−1(λ)). Exercise 9.6.1 shows that if

θ̂ uniquely maximizes f (y | θ) over Θ, then λ̂ = h(θ̂) uniquely maximizes f ∗(y |λ)
over Λ. Argue that if θ̂ is the MLE of θ, that it is legitimate to define g(θ̂) to be the
MLE of ω = g(θ).

Exercise 9.6.3. Give (β, Σz) as a function of (β,γ, Σz,aa·b, Σz,bb) defined in (9.29) and

(9.31), and show that the latter set of parameters has space Rp×l × R(q−l)×l × Sl ×
Sq−l.

Exercise 9.6.4. Verify (9.36).
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Exercise 9.6.5. Consider the covariate example in Section 6.4.4 and (9.21), where

(Yb Ya) =






1 1 1
1 1 −1
1 −2 0


⊗ 110






µb µa

0 αa

0 βa


+ R, (9.101)

where Cov[R] = I10 ⊗ ΣR with

ΣR =

(
σbb σba
σab σaa

)
. (9.102)

Then conditionally,

Ya | Yb = yy ∼ N


(x yb)




µ∗

αa

βa

γ


 , σaa·b In


 , (9.103)

where µ∗ = µa − γµb and γ = σab/σbb. (a) What is the marginal distribution of Yb?
Note that its distribution depends on only (µb, σbb). Write the joint density of (Yb, Ya)
as a product of the conditional and marginal densities, as in (9.35). (b) Show that the
parameter vectors (µb, µa, αa, βa, ΣR) and (µ∗, αa, βa, γ, σaa·b, µb, σbb) are in one-to-one
correspondence. (c) Show that the parameters for the conditional distribution of
Ya|Yb are functionally independent of those for the marginal distribution of Yb. That
is, the joint space of (µ∗, αa, βa, γ, σaa·b) and (µb, σbb) is a rectangle formed by their
individual spaces. (d) Argue that therefore the MLE of (αa, βa) in the model (9.101) is
the least squares estimate from the conditional model (9.103). (Thus confirming the
correspondence found in (9.22) and (9.23).)

Exercise 9.6.6. Consider maximizing h(Ψ) in (9.36) over Ψ ∈ Sq. (a) Let Ψ = ΓΛΓ
′

be the spectral decomposition of Ψ, so that the diagonals of Λ are the eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λq ≥ 0. (Recall Theorem 1.1.) Show that

1

|Ψ|a/2
e−

1
2 trace(Ψ

−1) =
q

∏
i=1

[λ−a/2
i e

− 1
2λi ]. (9.104)

(b) Find λ̂i, the maximizer of λ−a/2
i exp(−1/(2λi)), for each i = 1, . . . , q. (c) Show

that these λ̂i’s satisfy the conditions on the eigenvalues of Λ. (d) Argue that then

Ψ̂ = (1/a)Iq maximizes h(Ψ).

Exercise 9.6.7. This exercise is to show that the Wilks’ Λ test for the testing situation
in Section 7.2.5 is the likelihood ratio test. We have

Y = xβ + R = (x1 x2)

(
β1
β2

)
+ R, (9.105)

where x1 is n × p1 and x2 is n × p2. The hypotheses are

H0 : β2 = 0 versus HA : β2 6= 0. (9.106)

(a) Show that the MLE of ΣR under the alternative is Σ̂A = W/n, where W =
Y′Q(x1,x2)Y. (b) Show that Σ̂0 = (W + B)/n, where W + B = Y′Qx1 Y. (c) Find

the κ so that likelihood ratio statistic LR in (9.41) equals Λκ for Λ = |W|/|B + W|.
This Λ is Wilks’ Λ as in (7.35).
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Exercise 9.6.8. Now consider the model with partitioning

Y = (Y1 Y2) = (x1 x2)

(
β11 β21
β12 β22

)
+ R, (9.107)

where Y1 is n × l∗, Y2 is n × (q − l∗), β11 is p1 × l∗, x1 is n × p1, and x2 is n × p2. We
test

H0 : β11 = 0 versus HA : β11 6= 0. (9.108)

(a) Find the conditional distribution of Y2|Y1 = y1 and the marginal distribution
of Y1. (b) Argue that that conditional distribution is the same under the null and
alternative hypotheses, hence we can find the likelihood ratio test by using just the
marginal distribution of Y1. (c) Use Exercise 9.6.7 to show that the likelihood ratio
test is equivalent to Wilks’ Λ test. What are the parameters for the Λ in this case?

Exercise 9.6.9. Argue that the likelihood ratio test of (9.46) based on (9.45) is equiva-
lent to Wilks’ Λ test, and specify the parameters for the Λ. [Hint: Use Exercise 9.6.8
to show that the test can be based on the conditional distribution in (9.47), then make
the appropriate identifications of parameters.]

Exercise 9.6.10. Consider the multivariate regression model (4.8), where ΣR is known.
(a) Use (9.80) to show that

l(β ; y)− l(β̂ ; y) = − 1

2
trace(Σ−1

R (β̂− β)′x′x(β̂ − β)). (9.109)

(b) Show that in this case, (9.66) is actually an equality, and give H, which is a function
of ΣR and x′x.

Exercise 9.6.11. (a) Show that for the Σ̂R in (9.81),

E[Σ̂
−1
R ] =

n

n − p − q − 1
Σ
−1
R (9.110)

(b) Show that

U ∼ N(0, (In + Px)⊗ ΣR) (9.111)

for U in (9.83), and thus

E[U′U] = (n + p)ΣR. (9.112)

(c) Show that

trace(E[Σ̂
−1
R ]E[U′U]) = nq

n + p

n − p − q − 1
. (9.113)

(d) Finally, show that

trace(E[Σ̂
−1
R ]E[U′U])− nq = 2

n

n − p − q − 1

(
pq +

q(q + 1)

2

)
, (9.114)

proving (9.85).

Exercise 9.6.12. Show that in (9.85), ∆ → 2 dim(M) as n → ∞.
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Exercise 9.6.13. Show that in (9.59), if we take the prior probabilities as

πk ∝

(√
n

e

)dk

, (9.115)

where dk is the dimension of Model k, then the model that maximizes the estimated
posterior probability is the model with the lowest AIC. Note that except for very
small n, this prior places relatively more weight on higher-dimensional models.

Exercise 9.6.14 (Prostaglandin). Continue with the prostaglandin data from Exercise
7.6.16. (a) Find the maximum likelihood estimates and standard errors for the coef-
ficients in the model with just one cycle. Compare these results to the least squares
estimates and standard errors. Which method produces the larger standard errors?
Approximately how much larger are they? (b) Find the BIC’s and the corresponding
estimated probabilities for the following models: constant, one cycle, one and two
cycle, all cycles. Which has the best BIC? Does it have a relatively high estimated
probability?

Exercise 9.6.15 (Caffeine). This question continues the caffeine data in Exercises 4.4.4
and 6.6.11. Start with the both-sides model Y = xβz′ + R, where as before the Y
is 2 × 28, the first column being the scores without caffeine, and the second being
the scores with caffeine. The x is a 28 × 3 ANOVA matrix for the three grades, with
orthogonal polynomials. The linear vector is (−1′9, 0′10, 1′9)

′ and the quadratic vector
is (1′9,−1.81′10, 1′9)

′. The z looks at the sum and difference of scores:

z =

(
1 −1
1 1

)
. (9.116)

The goal of this problem is to use BIC to find a good model, choosing among the con-
stant, linear and quadratic models for x, and the “overall mean” and “overall mean
+ difference models” for the scores. (a) For each of the 6 models, find the deviance,
number of free parameters, BIC, and estimated probability. (b) Which model has
highest probability? (c) What is the chance that the difference effect is in the model?
(d) Find the MLE of β for the best model.

Exercise 9.6.16 (Leoprosy). Continue with the leprosy example from Exercise 9.6.5.
We are interested in finding a good model, but are not interested in the parameters
µb or σbb. Thus we can base the analysis solely on the conditional model in (9.103).

(a) Find the BIC’s and corresponding probability estimates for the 23 = 8 models
found by setting subsets of (αa, βa, γ) to 0. Which model has the best BIC? What is
its estimated probability? (b) What is the probability (in percent) that the drug vs.
placebo effect is in the model? The Drug A vs. Drug D effect? The before effect
(i.e.,γ 6= 0)?

Exercise 9.6.17 (Mouth sizes). Section 7.5.1 presents Mallows’ Cp for a number of
models fit to the mouth size data. Fit the same models, but find their BIC’s. (a) Which
model has the best BIC? Which has the second best? What is the total estimated
probability of those two models? Are they the same as the best two models chosen
by Cp in (7.83)? (b) What is the estimated probability that the two curves are different,
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i.e., that the δj’s are not all zero? (c) Find the estimated probabilities for each degree of
polynomial (zero, constant, linear, quadratic, cubic) for each effect (boys, girls−boys),
analogous to the table in (9.99).

Exercise 9.6.18. (This is a discussion question, in that there is no exact answer. Your
reasoning should be sound, though.) Suppose you are comparing a number of mod-
els using BIC, and the lowest BIC is bmin. How much larger than bmin would a BIC
have to be for you to consider the corresponding model ignorable? That is, what is δ
so that models with BIC > bmin + δ don’t seem especially viable. Why?

Exercise 9.6.19. Often, in hypothesis testing, people misinterpret the p-value to be the
probability that the null is true, given the data. We can approximately compare the
two values using the ideas in this chapter. Consider two models, the null (M0) and
alternative (MA), where the null is contained in the alternative. Let deviance0 and
devianceA be their deviances, and dim0 and dimA be their dimensions, respectively.
Supposing that the assumptions are reasonable, the p-value for testing the null is

p-value = P[χ2
ν > δ], where ν = dimA −dim0 and δ = deviance0 −devianceA. (a)

Give the BIC-based estimate of the probability of the null for a given ν, δ and sample
size n. (b) For each of various values of n and ν (e.g, n = 1, 5, 10, 25, 100, 1000 and
ν = 1, 5, 10, 25), find the δ that gives a p-value of 5%, and find the corresponding
estimate of the probability of the null. (c) Are the probabilities of the null close to
5%? What do you conclude?





Chapter 10

Models on Covariance Matrices

The models so far have been on the means of the variables. In this chapter, we
look at some models for the covariance matrix. We start with testing the equality of
covariance matrices, then move on to testing independence and conditional indepen-
dence of sets of variables. Next is factor analysis, where the relationships among the
variables are assumed to be determined by latent (unobserved) variables. Principal
component analysis is sometimes thought of as a type of factor analysis, although it is
more of a decomposition than actual factor analysis. See Section 13.1.5. We conclude
with a particular class of structural models, called invariant normal models

We will base our hypothesis tests on Wishart matrices (one, or several independent
ones). In practice, these matrices will often arise from the residuals in linear models,
especially the Y′QxY as in (6.14). If U ∼ Wishartq(ν, Σ), where Σ is invertible and
ν ≥ q, then the likelihood is

L(Σ; U) = |Σ|−ν/2 e−
1
2 trace(Σ

−1U). (10.1)

The likelihood follows from the density in (8.71). An alternative derivation is to note
that by (8.54), Z ∼ N(0, Iν ⊗ Σ) has likelihood L∗(Σ; z) = L(Σ; z′z). Thus z′z is a
sufficient statistic, and there is a theorem that states that the likelihood for any X is

the same as the likelihood for its sufficient statistic. Since Z′Z =D U, (10.1) is the
likelihood for U.

Recall from (5.51) that S+
q denotes the set of q × q positive definite symmetric

matrices. Then Lemma 9.1 shows that the MLE of Σ ∈ S+
q based on (10.1) is

Σ̂ =
U

ν
, (10.2)

and the maximum likelihood is

L(Σ̂ ; U) =

∣∣∣∣
U

ν

∣∣∣∣
−ν/2

e−
1
2 νq. (10.3)

191
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10.1 Testing equality of covariance matrices

We first suppose we have two groups, e.g., boys and girls, and wish to test whether
their covariance matrices are equal. Let U1 and U2 be independent, with

Ui ∼ Wishartq(νi, Σi), i = 1, 2. (10.4)

The hypotheses are then

H0 : Σ1 = Σ2 versus HA : Σ1 6= Σ2, (10.5)

where both Σ1 and Σ2 are in S+
q . (That is, we are not assuming any particular struc-

ture for the covariance matrices.) We need the likelihoods under the two hypotheses.
Because the Ui’s are independent,

L(Σ1, Σ2; U1, U2) = |Σ1|−ν1/2 e−
1
2 trace(Σ

−1
1 U1)|Σ2|−ν2/2 e−

1
2 trace(Σ

−1
2 U2), (10.6)

which, under the null hypothesis, becomes

L(Σ, Σ; U1, U2) = |Σ|−(ν1+ν2)/2 e−
1
2 trace(Σ

−1(U1+U2)), (10.7)

where Σ is the common value of Σ1 and Σ2. The MLE under the alternative hypoth-
esis is found by maximizing (10.5), which results in two separate maximizations:

Under HA: Σ̂A1 =
U1

ν1
, Σ̂A2 =

U2

ν2
. (10.8)

Under the null, there is just one Wishart, U1 + U2, so that

Under H0: Σ̂01 = Σ̂02 =
U1 + U2

ν1 + ν2
. (10.9)

Thus

sup
HA

L =

∣∣∣∣
U1

ν1

∣∣∣∣
−ν1/2

e−
1
2 ν1q

∣∣∣∣
U2

ν2

∣∣∣∣
−ν2/2

e−
1
2 ν2q, (10.10)

and

sup
H0

L =

∣∣∣∣
U1 + U2

ν1 + ν2

∣∣∣∣
−(ν1+ν2)/2

e−
1
2 (ν1+ν2)q. (10.11)

Taking the ratio, note that the parts in the e cancel, hence

LR =
supHA

L

supH0
L

=
|U1/ν1|−ν1/2 |U2/ν2|−ν2/2

|(U1 + U2)/(ν1 + ν2)|−(ν1+ν2)/2
. (10.12)

And

2 log(LR) = (ν1 + ν2) log

∣∣∣∣
U1 + U2

ν1 + ν2

∣∣∣∣− ν1 log

∣∣∣∣
U1

ν1

∣∣∣∣− ν2 log

∣∣∣∣
U2

ν2

∣∣∣∣ . (10.13)

Under the null hypothesis, 2 log(LR) approaches a χ2 as in (9.41). To figure out
the degrees of freedom, we have to find the number of free parameters under each
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hypothesis. A Σ ∈ S+
q , unrestricted, has q(q + 1)/2 free parameters, because of the

symmetry. Under the alternative, there are two such sets of parameters. Thus,

dim(H0) = q(q + 1)/2, dim(HA) = q(q + 1)

⇒ dim(HA)− dim(H0) = q(q + 1)/2. (10.14)

Thus, under H0,

2 log(LR) −→ χ2
q(q+1)/2. (10.15)

10.1.1 Example: Grades data

Using the grades data on n = 107 students in (4.10), we compare the covariance
matrices of the men and women. There are 37 men and 70 women, so that the sample
covariance matrices have degrees of freedom ν1 = 37 − 1 = 36 and ν2 = 70 − 1 = 69,
respectively. Their estimates are:

Men:
1

ν1
U1 =




166.33 205.41 106.24 51.69 62.20
205.41 325.43 206.71 61.65 69.35
106.24 206.71 816.44 41.33 41.85
51.69 61.65 41.33 80.37 50.31
62.20 69.35 41.85 50.31 97.08


 , (10.16)

and

Women:
1

ν2
U2 =




121.76 113.31 58.33 40.79 40.91
113.31 212.33 124.65 52.51 50.60
58.33 124.65 373.84 56.29 74.49
40.79 52.51 56.29 88.47 60.93
40.91 50.60 74.49 60.93 112.88


 . (10.17)

These covariance matrices are clearly not equal, but are the differences significant?
The pooled estimate, i.e., the common estimate under H0, is

1

ν1 + ν2
(U1 + U2) =




137.04 144.89 74.75 44.53 48.21
144.89 251.11 152.79 55.64 57.03

74.75 152.79 525.59 51.16 63.30
44.53 55.64 51.16 85.69 57.29
48.21 57.03 63.30 57.29 107.46


 (10.18)

Then

2 log(LR) = (ν1 + ν2) log

∣∣∣∣
U1 + U2

ν1 + ν2

∣∣∣∣− ν1 log

∣∣∣∣
U1

ν1

∣∣∣∣− ν2 log

∣∣∣∣
U2

ν2

∣∣∣∣

= 105 log(2.6090 × 1010)− 36 log(2.9819 × 1010)− 69 log(1.8149 × 1010)

= 20.2331. (10.19)

The degrees of freedom for the χ2 is q(q + 1)/2 = 5 × 6/2 = 15. The p-value is 0.16,
which shows that we have not found a significant difference between the covariance
matrices.
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10.1.2 Testing the equality of several covariance matrices

It is not hard to extend the test to testing the equality of more than two covariance
matrices. That is, we have U1, . . . , Um, independent, Ui ∼ Wishartl(νi, Σi), and wish
to test

H0 : Σ1 = · · · = Σm versus HA : not. (10.20)

Then

2 log(LR) = (ν1 + · · ·+νm) log

∣∣∣∣
U1 + · · ·+ Um

ν1 + · · ·+ νm

∣∣∣∣− ν1 log

∣∣∣∣
U1

ν1

∣∣∣∣− · · · − νm log

∣∣∣∣
Um

νm

∣∣∣∣ ,

(10.21)

and under the null,

2 log(LR) −→ χ2
d f , d f = (m − 1)q(q + 1)/2. (10.22)

This procedure is Bartlett’s test for the equality of covariances.

10.2 Testing independence of two blocks of variables

In this section, we assume U ∼ Wishartq(ν, Σ), and partition the matrices:

U =

(
U11 U12
U21 U22

)
and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
, (10.23)

where

U11 and Σ11 are q1 × q1, and U22 and Σ22 are q2 × q2; q = q1 + q2. (10.24)

Presuming the Wishart arises from multivariate normals, we wish to test whether the
two blocks of variables are independent, which translates to testing

H0 : Σ12 = 0 versus HA : Σ12 6= 0. (10.25)

Under the alternative, the likelihood is just the one in (10.1), hence

sup
HA

L(Σ; U) =

∣∣∣∣
U

ν

∣∣∣∣
−ν/2

e−
1
2 νq. (10.26)

Under the null, because Σ is then block diagonal,

|Σ| = |Σ11| |Σ22| and trace(Σ−1U) = trace(Σ−1
11 U11) + trace(Σ−1

22 U22). (10.27)

Thus the likelihood under the null can be written

|Σ11|−ν/2 e−
1
2 trace(Σ

−1
11 U11) × |Σ22|−ν/2 e−

1
2 trace(Σ

−1
22 U22). (10.28)

The two factors can be maximized separately, so that

sup
H0

L(Σ; U) =

∣∣∣∣
U11

ν

∣∣∣∣
−ν/2

e−
1
2 νq1 ×

∣∣∣∣
U22

ν

∣∣∣∣
−ν/2

e−
1
2 νq2 . (10.29)
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Taking the ratio of (10.26) and (10.28), the parts in the exponent of the e again
cancel, hence

2 log(LR) = ν (log(|U11/ν|) + log(|U22/ν|)− log(|U/ν|)). (10.30)

(The ν’s in the denominators of the determinants cancel, so they can be erased if
desired.)

Section 13.3 considers canonical correlations, which are a way to summarize rela-
tionships between two sets of variables.

10.2.1 Example: Grades data

Continuing Example 10.1.1, we start with the pooled covariance matrix Σ̂ = (U1 +
U2)/(ν1 + ν2), which has q = 5 and ν = 105. Here we test whether the first three
variables (homework, labs, inclass) are independent of the last two (midterms, final),
so that q1 = 3 and q2 = 2. Obviously, they should not be independent, but we will
test it formally. Now

2 log(LR) = ν (log(|U11/ν|) + log(|U22/ν|)− log(|U/ν|))
= 28.2299. (10.31)

Here the degrees of freedom in the χ2 are q1 × q2 = 6, because that is the number of
covariances we are setting to 0 in the null. Or you can count

dim(HA) = q(q + 1)/2 = 15,

dim(H0) = q1(q1 + 1)/2 + q2(q2 + 1)/2 = 6 + 3 = 9, (10.32)

which has dim(HA)−dim(H0) = 6. In either case, the result is clearly significant (the
p-value is less than 0.0001), hence indeed the two sets of scores are not independent.

Testing the independence of several block of variables is almost as easy. Consider
the three variables homework, inclass, and midterms, which have covariance

Σ =




σ11 σ13 σ14
σ31 σ33 σ34
σ41 σ43 σ44


 (10.33)

We wish to test whether the three are mutually independent, so that

H0 : σ13 = σ14 = σ34 = 0 versus HA : not. (10.34)

Under the alternative, the estimate of Σ is just the usual one from (10.18), where
we pick out the first, third, and fourth variables. Under the null, we have three

independent variables, so σ̂ii = Uii/ν is just the appropriate diagonal from Σ̂. Then
the test statistic is

2 log(LR) = ν (log(|U11/ν|) + log(|U33/ν|) + log(|U44/ν|)− log(|U∗/ν|))
= 30.116, (10.35)

where U∗ contains just the variances and covariances of the variables 1, 3, and 4. We
do not need the determinant notation for the Uii, but leave it in for cases in which
the three blocks of variables are not 1 × 1. The degrees of freedom for the χ2 is then
3, because we are setting three free parameters to 0 in the null. Clearly that is a
significant result, i.e., these three variables are not mutually independent.
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10.2.2 Example: Testing conditional independence

Imagine that we have (at least) three blocks of variables, and wish to see whether
the first two are conditionally independent given the third. The process is exactly
the same as for testing independence, except that we use the conditional covariance
matrix. That is, suppose

Y = (Y1, Y2, Y3) ∼ N(xβz′, In ⊗ ΣR), Yi is n × qi, q = q1 + q2 + q3, (10.36)

where

ΣR =




Σ11 Σ12 Σ13
Σ21 Σ22 Σ23
Σ31 Σ32 Σ33


 , (10.37)

so that Σii is qi × qi. The null hypothesis is

H0 : Y1 and Y2 are conditionally independent given Y3. (10.38)

The conditional covariance matrix is

Cov[(Y1, Y2) |Y3 = y3] =

(
Σ11 Σ12
Σ21 Σ22

)
−
(

Σ13
Σ23

)
Σ
−1
33

(
Σ31 Σ32

)

=

(
Σ11 − Σ13Σ

−1
33 Σ31 Σ12 − Σ13Σ

−1
33 Σ32

Σ21 − Σ23Σ
−1
33 Σ31 Σ22 − Σ23Σ

−1
33 Σ32

)

≡
(

Σ11·3 Σ12·3
Σ21·3 Σ22·3

)
(10.39)

Then the hypotheses are

H0 : Σ12·3 = 0 versus HA : Σ12·3 6= 0. (10.40)

Letting U/ν be the usual estimator of ΣR, where

U = Y′QxY ∼ Wishart(q1+q2+q3)(ν, ΣR), ν = n − p, (10.41)

we know from Proposition 8.1 that the conditional covariance is also Wishart, but
loses q3 degrees of freedom:

U(1:2)(1:2)·3 ≡
(

U11·3 U12·3
U21·3 U22·3

)

∼ Wishart(q1+q2)

(
ν − q3,

(
Σ11·3 Σ12·3
Σ21·3 Σ22·3

))
. (10.42)

(The U is partitioned analogously to the ΣR.) Then testing the hypothesis Σ12·3 here
is the same as (10.30) but after dotting out 3:

2 log(LR) = (ν − q3) ( log(|U11·3/(ν − q3)|) + log(|U22·3/(ν − q3)|)
− log(|U(1:2)(1:2)·3/(ν − q3)|)), (10.43)

which is asymptotically χ2
q1q2

under the null.
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An alternative (but equivalent) method for calculating the conditional covariance
is to move the conditioning variables Y3 to the x matrix, as we did for covariates.
Thus, leaving out the z,

(Y1 Y2) | Y3 = y3 ∼ N(x∗β∗, In ⊗ Σ
∗), (10.44)

where

x∗ = (x y3) and Σ
∗ =

(
Σ11·3 Σ12·3
Σ21·3 Σ22·3

)
. (10.45)

Then

U(1:2)(1:2)·3 = (Y1 Y2)
′Qx∗(Y1 Y2). (10.46)

See Exercise 10.5.5.
We note that there appears to be an ambiguity in the denominators of the Ui’s for

the 2 log(LR). That is, if we base the likelihood on the original Y of (10.36), then the
denominators will be n. If we use the original U in (10.41), the denominators will
be n − p. And what we actually used, based on the conditional covariance matrix
in (10.42), were n − p − q3. All three possibilities are fine in that the asymptotics as
n → ∞ are valid. We chose the one we did because it is the most focussed, i.e., there
are no parameters involved (e.g., β) that are not directly related to the hypotheses.

Testing the independence of three or more blocks of variables, given another
block, again uses the dotted-out Wishart matrix. For Example, consider Example
10.2.1 with variables homework, inclass, and midterms, but test whether those three
are conditionally independent given the “block 4” variables, labs and final. The
conditional U matrix is now denoted U(1:3)(1:3)·4, and the degrees of freedom are

ν − q4 = 105 − 2 = 103, so that the estimate of the conditional covariance matrix is




σ̂11·4 σ̂12·4 σ̂13·4
σ̂21·4 σ̂22·4 σ̂23·4
σ̂31·4 σ̂32·4 σ̂33·4


 =

1

ν − q4
U(1:3)(1:3)·4

=




51.9536 −18.3868 5.2905
−18.3868 432.1977 3.8627

5.2905 3.8627 53.2762


 . (10.47)

Then, to test

H0 : σ12·4 = σ13·4 = σ23·4 = 0 versus HA : not, (10.48)

we use the statistic analogous to (10.35),

2 log(LR) = (ν − q4) (log(|U11·4/(ν − q4)|) + log(|U22·4/(ν − q4)|)
+ log(|U33·4/(ν − q4)|)− log(|U(1:3)(1:3)·4/(ν − q4)|))

= 2.76. (10.49)

The degrees of freedom for the χ2 is again 3, so we accept the null: There does not
appear to be significant relationship among these three variables given the labs and
final scores. This implies, among other things, that once we know someone’s labs and
final scores, knowing the homework or inclass will not help in guessing the midterms
score. We could also look at the sample correlations, unconditionally (from (10.18))
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and conditionally:

Unconditional
HW InClass Midterms

HW 1.00 0.28 0.41
InClass 0.28 1.00 0.24
Midterms 0.41 0.24 1.00

Conditional on Labs, Final
HW InClass Midterms
1.00 −0.12 0.10

−0.12 1.00 0.03
0.10 0.03 1.00

(10.50)
Notice that the conditional correlations are much smaller than the unconditional

ones, and the conditional correlation between homework and inclass scores is nega-
tive, though not significantly so. Thus it appears that the labs and final scores explain
the relationships among the other variables.

10.3 Factor analysis

The example above suggested that the relationship among three variables could be
explained by two other variables. The idea behind factor analysis is that the relation-
ships (correlations, to be precise) of a set of variables can be explained by a number
of other variables, called factors. The kicker here is that the factors are not observed.
Spearman [1904] introduced the idea based on the idea of a “general intelligence”
factor. This section gives the very basics of factor analysis. More details can be found
in Lawley and Maxwell [1971], Harman [1976] and Basilevsky [1994], as well as many
other books.

The model we consider sets Y to be the n × q matrix of observed variables, and X
to be the n × p matrix of factor variables, which we do not observe. Assume

(
X Y

)
∼ N(D

(
δ γ

)
, In ⊗ Σ), Σ =

(
ΣXX ΣXY
ΣYX ΣYY

)
, (10.51)

where D is an n × k design matrix (e.g., to distinguish men from women), and δ

(k × p) and γ (k × q) are the parameters for the means of X and Y, respectively. Factor
analysis is not primarily concerned with the means (that is what the linear models
are for), but with the covariances. The key assumption is that the variables in Y
are conditionally independent given X, which means the conditional covariance is
diagonal:

Cov[Y | X = x] = In ⊗ ΣYY·X = In ⊗ Ψ = In ⊗




ψ11 0 · · · 0
0 ψ22 · · · 0
...

...
. . .

...
0 0 · · · ψqq


 . (10.52)

Writing out the conditional covariance matrix, we have

Ψ = ΣYY − ΣYXΣ
−1
XXΣXY ⇒ ΣYY = ΣYXΣ

−1
XXΣXY + Ψ, (10.53)

so that marginally,

Y ∼ N(Dγ, In ⊗ (ΣYXΣ
−1
XXΣXY + Ψ)). (10.54)

Because Y is all we observe, we cannot estimate ΣXY or ΣXX separately, but only the

function ΣYXΣ
−1
XXΣXY. Note that if we replace X with X∗ = AX for some invertible

matrix A,
ΣYXΣ

−1
XXΣXY = ΣYX∗Σ

−1
X∗X∗ΣX∗Y, (10.55)
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so that the distribution of Y is unchanged. See Exercise 10.5.6. Thus in order to
estimate the parameters, we have to make some restrictions. Commonly it is assumed
that ΣXX = Ip, and the mean is zero:

X ∼ N(0, In ⊗ Ip). (10.56)

Then, letting β = Σ
−1
XXΣXY = ΣXY,

Y ∼ N(Dγ, In ⊗ (β′β + Ψ)). (10.57)

Or, we can write the model as

Y = Dγ + Xβ+ R, X ∼ N(0, In ⊗ Ip), R ∼ N(0, In ⊗ Ψ), (10.58)

where X and R are independent. The equation decomposes each variable (column)
in Y into the fixed mean plus the part depending on the factors plus the parts unique
to the individual variables. The element βij is called the loading of factor i on the
variable j. The variance ψj is the unique variance of variable j, i.e., the part not
explained by the factors. Any measurement error is assumed to be part of the unique
variance.

There is the statistical problem of estimating the model, meaning the β′β and Ψ

(and γ, but we already know about that), and the interpretative problem of finding
and defining the resulting factors. We will take these concerns up in the next two
subsections.

10.3.1 Estimation

We estimate the γ using least squares as usual, i.e.,

γ̂ = (D′D)−1D′Y. (10.59)

Then the residual sum of squares matrix is used to estimate the β and Ψ:

U = Y′QDY ∼ Wishartq(ν,β′β+ Ψ), ν = n − k. (10.60)

The parameters are still not estimable, because for any p × p orthogonal matrix
Γ, (Γβ)′(Γβ) yields the same β′β. We can use the QR decomposition from Theorem
5.4. Our β is p × q with p < q. Write β = (β1,β2), where β1 has the first p columns
of β. We apply the QR decomposition to β1, assuming the columns are linearly
independent. Then β1 = QT, where Q is orthogonal and T is upper triangular with
positive diagonal elements. Thus we can write Q′β1 = T, or

Q′β = Q′ ( β1 β2

)
=
(

T T∗ ) ≡ β∗, (10.61)

where T∗ is some p × (q − p) matrix. E.g., with p = 3, q = 5,

β∗ =




β∗11 β∗12 β∗13 β∗14 β∗15
0 β∗22 β∗23 β∗24 β∗25
0 0 β∗33 β∗34 β∗35


 , (10.62)

where the β∗ii’s are positive. If we require that β satisfies constraints (10.62), then it
is estimable. (Exercise 10.5.7.) Note that there are p(p − 1)/2 non-free parameters
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(since βij = 0 for i > j), which means the number of free parameters in the model

is pq − p(p − 1)/2 for the β part, and q for Ψ. Thus for the p-factor model Mp, the
number of free parameters is

dp ≡ dim(Mp) = q(p + 1)− p(p − 1)

2
. (10.63)

(We are ignoring the parameters in the γ, because they are the same for all the models
we consider.) In order to have a hope of estimating the factors, the dimension of the
factor model cannot exceed the dimension of the most general model, ΣYY ∈ S+

q ,

which has q(q + 1)/2 parameters. Thus for identifiability we need

q(q + 1)

2
− dp =

(q − p)2 − p − q

2
≥ 0. (10.64)

E.g., if there are q = 10 variables, at most p = 6 factors can be estimated.
There are many methods for estimating β and Ψ. As in (10.1), the maximum

likelihood estimator maximizes

L(β, Ψ; U) =
1

|β′β + Ψ|ν/2
e−

1
2 trace((β′β+Ψ)−1U) (10.65)

over β satisfying (10.62) and Ψ being diagonal. There is not a closed form solution to
the maximization, so it must be done numerically. There may be problems, too, such

as having one or more of the ψj’s being driven to 0. It is not obvious, but if β̂ and Ψ̂

are the MLE’s, then the maximum of the likelihood is, similar to (10.3),

L(β̂, Ψ̂; U) =
1

|β̂′β̂+ Ψ̂|ν/2
e−

1
2 νq. (10.66)

See Section 9.4 of Mardia, Kent, and Bibby [1979].
Typically one is interested in finding the simplest model that fits. To test whether

the p-factor model fits, we use the hypotheses

H0 : ΣYY = β′β + Ψ, β is p × q versus HA : ΣYY ∈ S+
q . (10.67)

The MLE for HA is Σ̂YY = U/ν, so that

LR =

(
|β̂′β̂ + Ψ̂|
|U/ν|

)ν/2

. (10.68)

Now
2 log(LR) = ν(log(|β̂′β̂+ Ψ̂|)− log(|U/ν|)), (10.69)

which is asymptotically χ2
d f with d f being the difference in (10.64). Bartlett suggests

a slight adjustment to the factor ν, similar to the Box approximation for Wilks’ Λ, so
that under the null,

2 log(LR)∗ = (ν − 2q + 5

6
− 2p

3
)(log(|β̂′β̂+ Ψ̂|)− log(|U/ν|)) −→ χ2

d f , (10.70)

where

d f =
(q − p)2 − p − q

2
. (10.71)
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Alternatively, one can use AIC (9.56) or BIC (9.57) to assess Mp for several p.
Because νq is the same for all models, we can take

deviance(Mp(β̂, Ψ̂) ; y) = ν log(|β̂′β̂+ Ψ̂|), (10.72)

so that

BIC(Mp) = ν log(|β̂′β̂ + Ψ̂|) + log(ν) (q(p + 1)− p(p − 1)/2) , (10.73)

AIC(Mp) = ν log(|β̂′β̂ + Ψ̂|) + 2 (q(p + 1)− p(p − 1)/2) . (10.74)

10.3.2 Describing the factors

Once you have decided on the number p of factors in the model and the estimate β̂,

you have a choice of rotations. That is, since Γβ̂ for any p × p orthogonal matrix Γ

has exactly the same fit, you need to choose the Γ. There are a number of criteria. The

varimax criterion tries to pick a rotation so that the loadings (β̂ij’s) are either large in
magnitude, or close to 0. The hope is that it is then easy to interpret the factors by
seeing which variables they load heavily upon. Formally, the varimax rotation is that
which maximizes the sum of the variances of the squares of the elements in each row.

That is, if F is the p × q matrix consisting of the squares of the elements in Γβ̂, then
the varimax rotation is the Γ that maximizes trace(FHqF′), Hq being the centering
matrix (1.12). There is nothing preventing you from trying as many Γ’s as you wish.
It is an art to find a rotation and interpretation of the factors.

The matrix X, which has the scores of the factors for the individuals, is unobserved,
but can be estimated. The joint distribution is, from (10.51) with the assumptions
(10.56),

(
X Y

)
∼ N

((
0 Dγ

)
, In ⊗ Σ

)
, Σ =

(
Ip β

β′ β′β + Ψ

)
. (10.75)

Then given the observed Y:

X | Y = y ∼ N(α∗ + yβ∗, In ⊗ ΣXX·Y), (10.76)

where

β∗ = (β′β+ Ψ)−1β′, α∗ = −Dγβ∗, (10.77)

and

ΣXX·Y = Ip − β(β′β+ Ψ)−1β′. (10.78)

An estimate of X is the estimate of E[X | Y = y]:

X̂ = (y − Dγ̂)(β̂′β̂+ Ψ̂)−1β̂′. (10.79)
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10.3.3 Example: Grades data

Continue with the grades data in Section 10.2.2, where the D in

E(Y) = Dγ (10.80)

is a 107 × 2 matrix that distinguishes men from women. The first step is to estimate
ΣYY:

Σ̂YY =
1

ν
Y′QDY, (10.81)

where here ν = 107 − 2 (since D has two columns), which is the pooled covariance
matrix in (10.18).

We illustrate with the R program factanal. The input to the program can be a data
matrix or a covariance matrix or a correlation matrix. In any case, the program will
base its calculations on the correlation matrix. Unless D is just a column of 1’s, you
shouldn’t give it Y, but S = Y′QDY/ν, where ν = n − k if D is n × k. You need to also
specify how many factors you want, and the number of observations (actually, ν + 1
for us). We’ll start with one factor. The sigmahat is the S, and covmat= indicates to R
that you are giving it a covariance matrix. (Do the same if you are giving a correlation
matrix.) In such cases, the program does not know what n or k is, so you should set
the parameter n.obs. It assumes that D is 1n, i.e., that k = 1, so to trick it into using
another k, set n.obs to n − k + 1, which in our case is 106. Then the one-factor model
is fit to the sigmahat in (10.18) using

f <− factanal(covmat=sigmahat,factors=1,n.obs=106)

The output includes the uniquenesses (diagonals of Ψ̂), f$uniquenesses, and the
(transpose of the) loadings matrix, f$loadings. Here,

diagonals of Ψ̂ :
HW Labs InClass Midterms Final

0.247 0.215 0.828 0.765 0.786
(10.82)

and

β̂ :
HW Labs InClass Midterms Final

Factor1 0.868 0.886 0.415 0.484 0.463
(10.83)

The given loadings and uniquenesses are based on the correlation matrix, so the fitted
correlation matrix can be found using

corr0 <− f$loadings%∗%t(f$loadings) + diag(f$uniquenesses)

The result is

One-factor model HW Labs InClass Midterms Final
HW 1.00 0.77 0.36 0.42 0.40
Labs 0.77 1.00 0.37 0.43 0.41
InClass 0.36 0.37 1.00 0.20 0.19
Midterms 0.42 0.43 0.20 1.00 ∗0.22
Final 0.40 0.41 0.19 0.22 1.00

(10.84)

Compare that to the observed correlation matrix. which is in the matrix f$corr:
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Unrestricted model HW Labs InClass Midterms Final
HW 1.00 0.78 0.28 0.41 0.40
Labs 0.78 1.00 0.42 0.38 0.35
InClass 0.28 0.42 1.00 0.24 0.27
Midterms 0.41 0.38 0.24 1.00 ∗0.60
Final 0.40 0.35 0.27 0.60 1.00

(10.85)

The fitted correlations are reasonably close to the observed ones, except for the
midterms/final correlation: The actual is 0.60, but the estimate from the one-factor
model is only 0.22. It appears that this single factor is more focused on other correla-
tions.

For a formal goodness-of-fit test, we have

H0 : One-factor model versus HA : Unrestricted. (10.86)

We can use either the correlation or covariance matrices, as long as we are consistent,
and since factanal gives the correlation, we might as well use that. The MLE under
HA is then corrA, the correlation matrix obtained from S, and under H0 is corr0. Then

2 log(LR) = ν(log(|β̂′β̂ + Ψ̂|)− log(|S|)) (10.87)

is found in R using

105∗log(det(corr0)/det(f$corr))

yielding the value 37.65. It is probably better to use Bartlett’s refinement (10.70),

(105 − (2∗5+5)/6−2/3)∗log(det(corr0)/det(f$corr))

which gives 36.51. This value can be found in f$STATISTIC, or by printing out f. The

degrees of freedom for the statistic in (10.71) is ((q − p)2 − p − q)/2 = 5, since p = 1
and q = 5. Thus H0 is rejected: The one-factor model does not fit.

Two factors

With small q, we have to be careful not to ask for too many factors. By (10.64), two is
the maximum when q = 5. In R, we just need to set factors=2 in the factanal function.

The χ2 for goodness-of-fit is 2.11, on one degree of freedom, hence the two-factor
model fits fine. The estimated correlation matrix is now

Two-factor model HW Labs InClass Midterms Final
HW 1.00 0.78 0.35 0.40 0.40
Labs 0.78 1.00 0.42 0.38 0.35
InClass 0.35 0.42 1.00 0.24 0.25
Midterms 0.40 0.38 0.24 1.00 0.60
Final 0.40 0.35 0.25 0.60 1.00

(10.88)

which is quite close to the observed correlation matrix (10.85) above. Only the In-
Class/HW correlation is a bit off, but not by much.

The uniquenesses and loadings for this model are

diagonals of Ψ̂ :
HW Labs InClass Midterms Final
0.36 0.01 0.80 0.48 0.30

(10.89)
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and

β̂ :
HW Labs InClass Midterms Final

Factor 1 0.742 0.982 0.391 0.268 0.211
Factor 2 0.299 0.173 0.208 0.672 0.807

(10.90)

The routine gives the loadings using the varimax criterion.
Looking at the uniquenesses, we notice that inclass’s is quite large, which suggests

that it has a factor unique to itself, e.g., being able to get to class. It has fairly low
loadings on both factors. We see that the first factor loads highly on homework
and labs, especially labs, and the second loads heavily on the exams, midterms and
final. (These results are not surprising given the example in Section 10.2.2, where we
see homework, inclass, and midterms are conditionally independent given labs and
final.) So one could label the factors “Diligence” and “Test taking ability”.

The exact same fit can be achieved by using other rotations Γβ, for a 2 × 2 orthog-
onal matrix Γ. Consider the rotation

Γ =
1√
2

(
1 1
1 −1

)
. (10.91)

Then the loadings become

Γβ̂ :
HW Labs InClass Midterms Final

Factor∗ 1 0.736 0.817 0.424 0.665 0.720
Factor∗ 2 0.314 0.572 0.129 −0.286 −0.421

(10.92)

Now Factor∗ 1 could be considered an overall ability factor, and Factor∗ 2 a contrast
of HW+Lab and Midterms+Final.

Any rotation is fine — whichever you can interpret easiest is the one to take.

Using the BIC to select the number of factors

We have the three models: One-factor (M1), two-factor (M2), and unrestricted (MBig).

The deviances (10.72) are ν log(|Σ̂|)), where here we take the correlation form of the

Σ̂’s. The relevant quantities are next:

Model Deviance d BIC BIC P̂BIC

M1 −156.994 10 −110.454 16.772 0
M2 −192.382 14 −127.226 0 0.768

MBig −194.640 15 −124.831 2.395 0.232

(10.93)

The only difference between the two BIC columns is that the second one has 127.226
added to each element, making it easier to compare them. These results conform to
what we had before. The one-factor model is untenable, and the two-factor model is
fine, with 77% estimated probability. The full model has a decent probability as well.

Estimating the score matrix X

The score matrix is estimated as in (10.79). You have to be careful, though, to use

consistently the correlation form or covariance form. That is, if the (β̂, Ψ̂) is estimated
from the correlation matrix, then the residuals y − Dγ̂ must be rescaled so that the
variances are 1. Or you can let R do it, by submitting the residuals and asking for the
“regression” scores:
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Figure 10.1: Plot of factor scores for two-factor model.

x <− cbind(1,grades[,1])
gammahat <− solve(t(x)%∗%x,t(x)%∗%grades[,2:6])
resids <− grades[,2:6]−x%∗%gammahat
xhat <− factanal(resids,factors=2,scores=’regression’)$scores

The xhat is then 107 × 2:

X̂ =




−5.038 −1.352
−4.083 −0.479
−0.083 −2.536

...
...

0.472 1.765




. (10.94)

Now we can use the factor scores in scatter plots. For example, Figure 10.1 contains
a scatter plot of the estimated factor scores for the two-factor model. They are by
construction uncorrelated, but one can see how diligence has a much longer lower
tail (lazy people?).

We also calculated box plots to compare the women’s and men’s distribution on
the factors:

par(mfrow=c(1,2))
yl <− range(xhat) # To obtain the same y−scales
w <− (x[,2]==1) # Whether women (T) or not.
boxplot(list(Women=xhat[w,1],Men=xhat[!w,1]),main=’Factor 1’,ylim=yl)
boxplot(list(Women=xhat[w,2],Men=xhat[!w,2]),main=’Factor 2’,ylim=yl)

See Figure 10.2. There do not appear to be any large overall differences.
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Figure 10.2: Box plots comparing the women and men on their factor scores.

10.4 Some symmetry models

Some structural models on covariances matrices, including testing independence, can
be defined through group symmetries. The advantage of such models is that the
likelihood estimates and tests are very easy to implement. The ones we present
are called invariant normal models as defined in Andersson [1975]. We will be
concerned with these models’ restrictions on the covariance matrices. More generally,
the models are defined on the means as well. Basically, the models are ones which
specify certain linear constraints among the elements of the covariance matrix.

The model starts with

Y ∼ Nn×q(0, In ⊗ Σ), (10.95)

and a q × q group G (see (5.75)), a subgroup of the group of q × q orthogonal matrices
Oq. The model demands that the distribution of Y be invariant under multiplication

on the right by elements of G , that is,

Yg =D Y for all g ∈ G . (10.96)

Now because Cov(Yg) = In ⊗ g′
Σg, (10.95) and (10.96) imply that

Σ = g′
Σg for all g ∈ G . (10.97)

Thus we can define the mean zero invariant normal model based on G to be (10.95)
with

Σ ∈ S+
q (G) ≡ {Σ ∈ S+

q | Σ = g′
Σg for all g ∈ G}. (10.98)

A few examples are in order at this point. Typically, the groups are fairly simple
groups.
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10.4.1 Some types of symmetry

Independence and block independence

Partition the variables in Y so that

Y = (Y1, . . . , YK), where Yk is n × qk, (10.99)

and

Σ =




Σ11 Σ12 · · · Σ1K
Σ21 Σ22 · · · Σ2K

...
...

. . .
...

ΣK1 ΣK2 · · · ΣKK


 , Σkl is qk × ql . (10.100)

Independence of one block of variables from the others entails setting the covari-
ance to zero, that is, Σkl = 0 means Yk and Yl are independent. Invariant normal
models can specify a block being independent of all the other blocks. For example,
suppose K = 3. Then the model that Y1 is independent of (Y2, Y3) has

Σ =




Σ11 0 0
0 Σ22 Σ23
0 Σ32 Σ33


 . (10.101)

The group that gives rise to that model consists of two elements:

G =








Iq1 0 0
0 Iq2 0
0 0 Iq3


 ,




−Iq1 0 0
0 Iq2 0
0 0 Iq3





 . (10.102)

(The first element is just Iq, of course.) It is easy to see that Σ of (10.101) is invariant

under G of (10.102). Lemma 10.1 below can be used to show any Σ in S+(G) is of the
form (10.101).

If the three blocks Y1, Y2 and Y3 are mutually independent, then Σ is block diag-
onal,

Σ =




Σ11 0 0
0 Σ22 0
0 0 Σ33


 , (10.103)

and the corresponding G consists of the eight matrices

G =








±Iq1 0 0
0 ±Iq2 0
0 0 ±Iq3





 . (10.104)

An extreme case is when all variables are mutually independent, so that qk = 1
for each k (and K = q), Σ is diagonal, and G consists of all diagonal matrices with
±1’s down the diagonal.

Intraclass correlation structure

The intraclass correlation structure arises when the variables are interchangeable.
For example, the variables may be similar measurements (such as blood pressure)
made several times, or scores on sections of an exam, where the sections are all
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measuring the same ability. In such cases, the covariance matrix would have equal
variances, and equal covariances:

Σ = σ2




1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ · · · ρ 1


 . (10.105)

The G for this model is the group of q × q permutation matrices Pq. (A permutation
matrix has exactly one 1 in each row and one 1 in each column, and zeroes elsewhere.
If g is a permutation matrix and x is a q× 1 vector, then gx contains the same elements
as x, but in a different order.)

Compound symmetry

Compound symmetry is an extension of intraclass symmetry, where there are groups
of variables, and the variables within each group are interchangeable. Such models
might arise, e.g., if students are given three interchangeable batteries of math ques-
tions, and two interchangeable batteries of verbal questions. The covariance matrix
would then have the form

Σ =




a b b c c
b a b c c
b b a c c
c c c d e
c c c e d


 . (10.106)

In general, the group would consist of block diagonal matrices, with permutation
matrices as the blocks. That is, with Σ partitioned as in (10.100),

G =








G1 0 · · · 0
0 G2 · · · 0
...

...
. . .

...
0 0 · · · GK


 | G1 ∈ Pq1 , G2 ∈ Pq2 , . . . , GK ∈ PqK





. (10.107)

IID, or spherical symmetry

Combining independence and intraclass correlation structure yields Σ = σ2Iq, so that
the variables are independent and identically distributed. The group for this model is
the set of permutation matrices augmented with ± signs on the 1’s. (Recall Exercise
8.8.6.)

The largest group possible for these models is the group of q × q orthogonal ma-
trices. When (10.96) holds for all orthogonal g, the distribution of Y is said to be

spherically symmetric. It turns out that this choice also yields Σ = σ2Iq. This result is a
reflection of the fact that iid and spherical symmetry are the same for the multivari-
ate normal distribution. If Y has some other distribution, then the two models are
distinct, although they still have the same covariance structure.
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10.4.2 Characterizing the structure

It is not always obvious given a structure for the covariance matrix to find the cor-
responding G , or even to decide whether there is a corresponding G . But given the
group, there is a straightforward method for finding the structure. We will consider
just finite groups G , but the idea extends to general groups, in which case we would
need to introduce uniform (Haar) measure on these groups.

For given finite group G and general Σ, define the average of Σ by

Σ =
∑g∈G g′

Σg

#G . (10.108)

It should be clear that if Σ ∈ S+
q (G), then Σ = Σ. The next lemma shows that all

averages are in S+
q (G).

Lemma 10.1. For any Σ ∈ S+
q , Σ ∈ S+

q (G).

Proof. For any h ∈ G ,

h′
Σh =

∑g∈G h′g′
Σgh

#G

=
∑g∗∈G g∗′

Σg∗

#G
= Σ. (10.109)

The second line follows by setting g∗ = gh, and noting that as g runs over G , so does
g∗. (This is where the requirement that G is a group is needed.) But (10.109) implies

that Σ ∈ G .

The lemma shows that

S+
q (G) = {Σ | Σ ∈ S+

q }, (10.110)

so that one can discover the structure of covariance matrices invariant under a partic-
ular group by averaging a generic Σ. That is how one finds the structures in (10.101),
(10.103), (10.106), and (10.107) from their respective groups.

10.4.3 Maximum likelihood estimates

The maximum likelihood estimate of Σ in (10.98) is the Σ̂ ∈ S+
q (G) that maximizes

L(Σ; y) =
1

|Σ|n/2
e−

1
2 trace(Σ

−1u), Σ ∈ S+(G), where u = y′y. (10.111)

The requirement Σ ∈ S+
q (G) means that

Σ
−1 = (g′

Σg)−1 = g′
Σ
−1g (10.112)
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for any g ∈ G , that is, Σ
−1 ∈ S+

q (G), hence

trace(Σ−1u) = trace

(
∑g∈G g′

Σ
−1g

#G u

)

= trace

(
∑g∈G g′

Σ
−1gu

#G

)

= trace

(
∑g∈G Σ

−1gug′

#G

)

= trace

(
Σ
−1 ∑g∈G gug′

#G

)

= trace(Σ−1u). (10.113)

Thus

L(Σ; y) =
1

|Σ|n/2
e−

1
2 trace(Σ

−1u). (10.114)

We know from Lemma 9.1 that the maximizer of L in (10.114) over Σ ∈ S+
q is

Σ̂ =
u

n
, (10.115)

but since that maximizer is in S+
q (G) by Lemma 10.1, and S+

q (G) ⊂ S+
q , it must

be the maximizer over S+
q (G). That is, (10.115) is indeed the maximum likelihood

estimate for (10.111).
To illustrate, let S = U/n. Then if G is as in (10.104), so that the model is that

three sets of variables are independent (10.103), the maximum likelihood estimate is
the sample analog

Σ̂(G) =




S11 0 0
0 S22 0
0 0 S33


 . (10.116)

In the intraclass correlation model (10.105), the group is the set of q × q permutation
matrices, and the maximum likelihood estimate has the same form,

Σ̂(G) = σ̂2




1 ρ̂ · · · ρ̂
ρ̂ 1 · · · ρ̂
...

...
. . .

...
ρ̂ · · · ρ̂ 1


 , (10.117)

where

σ̂2 =
1

q

q

∑
i=1

sii, and ρ̂σ̂2 =
∑ ∑1≤i<j≤q sij

(q
2)

. (10.118)

That is, the common variance is the average of the original variances, and the common
covariance is the average of the original covariances.
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10.4.4 Hypothesis testing and model selection

The deviance for the model defined by the group G is, by (10.3),

deviance(M(G)) = n log(|Σ̂(G)|), (10.119)

where we drop the exponential term since nq is the same for all models. We can
then use this deviance in finding AIC’s or BIC’s for comparing such models, once we
figure out the dimensions of the models, which is usually not too hard. E.g., if the
model is that Σ is unrestricted, so that GA = {Iq}, the trivial group, the dimension

for HA is (q+1
2 ). The dimension for the independence model in (10.103) and (10.104)

sums the dimensions for the diagonal blocks: (q1+1
2 ) + (q2+1

2 ) + (q3+1
2 ). The dimension

for the intraclass correlation model (10.105) is 2 (for the variance and covariance).

Also, the likelihood ratio statistic for testing two nested invariant normal models
is easy to find. These testing problems use two nested groups, GA ⊂ G0, so that the
hypotheses are

H0 : Σ ∈ S+
q (G0) versus HA : Σ ∈ S+

q (GA), (10.120)

Note that the larger G , the smaller S+
q (G), since fewer covariance matrices are in-

variant under a larger group. Then the likelihood ratio test statistic, 2 log(LR), is the
difference of the deviances, as in (9.55).

The mean is not zero

So far this subsection assumed the mean is zero. In the more general case that Y ∼
Nn×q(xβ, In ⊗ Σ), estimate Σ restricted to S+

q (G) by finding U = Y′QxY, then taking

Σ̂ =
U

n
or

U

n − p
, (10.121)

(where x is n × p), depending on whether you want the maximum likelihood estimate
or an unbiased estimate. In testing, I would suggest taking the unbiased versions,
then using

deviance(M(G)) = (n − p) log(|Σ̂(G)|). (10.122)

10.4.5 Example: Mouth sizes

Continue from Section 7.3.1 with the mouth size data, using the model (7.51). Because
the measurements within each subject are of the same mouth, a reasonable question
to ask is whether the residuals within each subject are exchangeable, i.e., whether ΣR
has the intraclass correlation structure (10.105). Let U = Y′QxY and the unrestricted
estimate be Σ̂A = U/ν for ν = n − 2 = 25. Then Σ̂A and the estimate under the
intraclass correlation hypothesis Σ̂0, given in (10.117) and (10.118), are

Σ̂A =




5.415 2.717 3.910 2.710
2.717 4.185 2.927 3.317
3.910 2.927 6.456 4.131
2.710 3.317 4.131 4.986


 (10.123)



212 Chapter 10. Covariance Models

and

Σ̂0 =




5.260 3.285 3.285 3.285
3.285 5.260 3.285 3.285
3.285 3.285 5.260 3.285
3.285 3.285 3.285 5.260


 . (10.124)

To test the null hypothesis that the intraclass correlation structure holds, versus
the general model, we have from (10.119)

2 log(LR) = 25 (log(|Σ̂0|)− log(|Σ̂A|)) = 9.374. (10.125)

The dimension for the general model is dA = q(q + 1)/2 = 10, and for the null is
just d0 = 2, thus the degrees of freedom for this statistic is d f = dA − d0 = 8. The
intraclass correlation structure appears to be plausible.

We can exploit this structure (10.105) on the ΣR to more easily test hypotheses
about the β in both-sides models like (7.51). First, we transform the matrix ΣR into a
diagonal matrix with two distinct variances. Notice that we can write this covariance
as

ΣR = σ2(1 − ρ)Iq + σ2ρ1q1′q. (10.126)

Let Γ be any q × q orthogonal matrix whose first column is proportional to 1q, i.e.,
1q/

√
q. Then

Γ
′
ΣRΓ = σ2(1 − ρ)Γ′

Γ + σ2ρΓ
′1q1′qΓ

= σ2(1 − ρ)Iq + σ2ρ




√
q

0
...
0



( √

q 0 · · · 0
)

= σ2

(
1 + (q − 1)ρ 0

0 (1 − ρ)Iq−1

)
≡ Λ. (10.127)

We used the fact that because all columns of Γ except the first are orthogonal to 1q,

Γ
′1q =

√
q(1, 0, . . . , 0)′. As suggested by the notation, this Λ is indeed the eigenvalue

matrix for ΣR, and Γ contains a corresponding set of eigenvectors.
In the model (7.51), the z is almost an appropriate Γ:

z =




1 −3 1 −3
1 −1 −1 1
1 1 −1 −1
1 3 1 3


 . (10.128)

The columns are orthogonal, and the first is 14, so we just have to divide each column
by its length to obtain orthonormal columns. The squared lengths of the columns are
the diagonals of z′z : (4, 20, 4, 20). Let ∆ be the square root of z′z,

∆ =




2 0 0 0

0
√

20 0 0
0 0 2 0

0 0 0
√

20


 , (10.129)
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and set
Γ = z∆

−1 and β∗ = β∆, (10.130)

so that the both-sides model can be written

Y = xβ∆∆
−1z′ + R = xβ∗

Γ
′ + R. (10.131)

Multiplying everything on the right by Γ yields

Y∗ ≡ YΓ = xβ∗ + R∗, (10.132)

where
R∗ ≡ RΓ ∼ N(0, In ⊗ Γ

′
ΣRΓ) = N(0, In ⊗ Λ). (10.133)

The estimate of β∗ is straightforward:

β̂∗ = (x′x)−1x′Y∗ =
(

49.938 3.508 0.406 −0.252
−4.642 −1.363 −0.429 0.323

)
. (10.134)

These estimates are the same as those for model (6.29), multiplied by ∆ as in (10.130).
The difference is in their covariance matrix:

β̂∗ ∼ N(β∗, Cx ⊗ Λ). (10.135)

To estimate the standard errors of the estimates, we look at the sum of squares
and cross products of the estimated residuals,

U∗ = Y∗′QxY∗ ∼ Wishartq(ν, Λ), (10.136)

where ν = trace(Qx) = n − p = 27 − 2 = 25. Because the Λ in (10.127) is diagonal,

the diagonals of U∗ are independent scaled χ2
ν’s:

U∗
11 ∼ τ2

0 χ2
ν, U∗

jj ∼ τ2
1 χ2

ν, j = 2, . . . , q = 4. (10.137)

Unbiased estimates are

τ̂2
0 =

U11

ν
∼ τ2

0

ν
χ2

ν and τ̂2
1 =

U22 + · · ·Uqq

(q − 1)ν
∼ τ2

1

(q − 1)ν
χ2
(q−1)ν. (10.138)

For our data,

τ̂2
0 =

377.915

25
= 5.117 and τ̂2

1 =
59.167 + 26.041 + 62.919

75
= 1.975. (10.139)

The estimated standard errors of the β̂∗ij’s from (10.135) are found from

Cx ⊗ Λ̂ =

(
0.0625 −0.0625

−0.0625 0.1534

)
⊗




15.117 0 0 0
0 1.975 0 0
0 0 1.975 0
0 0 0 1.975


 , (10.140)

being the square roots of the diagonals:

Standard errors
Constant Linear Quadratic Cubic

Boys 0.972 0.351 0.351 0.351
Girls−Boys 1.523 0.550 0.550 0.550

(10.141)
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The t-statistics divide (10.134) by their standard errors:

t-statistics
Constant Linear Quadratic Cubic

Boys 51.375 9.984 1.156 −0.716
Girls−Boys −3.048 −2.477 −0.779 0.586

(10.142)

These statistics are not much different from what we found in Section 6.4.1, but the
degrees of freedom for all but the first column are now 75, rather than 25. The main
impact is in the significance of δ1, the difference between the girls’ and boys’ slopes.
Previously, the p-value was 0.033 (the t = −2.26 on 25 df). Here, the p-value is 0.016,
a bit stronger suggestion of a difference.

10.5 Exercises

Exercise 10.5.1. Verify the likelihood ratio statistic (10.21) for testing the equality of
several covariance matrices as in (10.20).

Exercise 10.5.2. Verify that trace(Σ−1U) = trace(Σ−1
11 U11) + trace(Σ−1

22 U22), as in
(10.27), for Σ being block-diagonal, i.e., Σ12 = 0 in (10.23).

Exercise 10.5.3. Show that the value of 2 log(LR) of (10.30) does not change if the ν’s
in the denominators are erased.

Exercise 10.5.4. Suppose U ∼ Wishartq(ν, Σ), where Σ is partitioned as

Σ =




Σ11 Σ12 · · · Σ1K
Σ21 Σ22 · · · Σ2K

...
...

. . .
...

ΣK1 ΣK2 · · · ΣKK


 , (10.143)

where Σij is qi × qj, and the qi’s sum to q. Consider testing the null hypothesis that
the blocks are mutually independent, i.e.,

H0 : Σij = 0 for 1 ≤ i < j ≤ K, (10.144)

versus the alternative that Σ is unrestricted. (a) Find the 2 log(LR), and the degrees

of freedom in the χ2 approximation. (The answer is analogous to that in (10.35).) (b)
Let U∗ = AUA for some diagonal matrix A with positive diagonal elements. Replace
the U in 2 log(LR) with U∗. Show that the value of the statistic remains the same.
(c) Specialize to the case that all qi = 1 for all i, so that we are testing the mutual
independence of all the variables. Let C be the sample correlation matrix. Show that
2 log(LR) = −ν log(|C|). [Hint: Find the appropriate A from part (b).)

Exercise 10.5.5. Show that (10.46) holds. [Hint: Apply Exercise 5.8.25(c), with D1 = x
and D2 = y3, to obtain

Qx∗ = Qx − Qxy3(y
′
3Qxy3)

−1y′
3Qx. (10.145)

Then show that the right-hand side of (10.46) is the same as V′V, where V is found
by regressing Qxy3 out of Qx(Y1, Y2). This V′V is the left-hand side of (10.46).]
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Exercise 10.5.6. Show that (10.55) holds.

Exercise 10.5.7. Suppose β and α are both p × q, p < q, and let their decompositions
from (10.61) and (10.62) be β = Qβ∗ and α = Γα∗, where Q and Γ are orthogonal,
α∗ij = β∗ij = 0 for i > j, and α∗ii’s and βii’s are positive. (We assume the first p columns

of α, and of β, are linearly independent.) Show that α′α = β′β if and only if
α∗ = β∗. [Hint: Use the uniqueness of the QR decomposition, in Theorem 5.4.]

Exercise 10.5.8. Show that the conditional parameters in (10.76) are as in (10.77) and
(10.78).

Exercise 10.5.9. Show that if the factor analysis is fit using the correlation matrix,

then the correlation between variable j and factor i is estimated to be β̂ij, the loading
of factor i on variable j.

Exercise 10.5.10. What is the factor analysis model with no factors (i.e., erase the β
in (10.57))? Choose from the following: The covariance of Y is unrestricted; the mean
of Y is 0; the Y variables are mutually independent; the covariance matrix of Y is a
constant times the identity matrix.

Exercise 10.5.11. Show that if Σ ∈ S+
q (G) of (10.98), that Σ in (10.108) is in S+

q (G).

Exercise 10.5.12. Verify the steps in (10.113).

Exercise 10.5.13. Show that if Σ has intraclass correlation structure (10.105), then
Σ = σ2(1 − ρ)Iq + σ2ρ1q1′q as in (10.126).

Exercise 10.5.14. Multivariate complex normals arise in spectral analysis of multiple
time series. A q-dimensional complex normal is Y1 + i Y2, where Y1 and Y2 are 1 × q
real normal vectors with joint covariance of the form

Σ = Cov
((

Y1 Y2
))

=

(
Σ1 F
−F Σ1

)
, (10.146)

i.e., Cov(Y1) = Cov(Y2). Here, “i” is the imaginary i =
√
−1. (a) Show that F =

Cov(Y1, Y2) is skew-symmetric, which means that F′ = −F. (b) What is F when q = 1?
(c) Show that the set of Σ’s as in (10.146) is the set S+

2q(G) in (10.98) with

G =

{
I2q,

(
0 −Iq

Iq 0

)
,

(
0 Iq

−Ip 0

)
,−I2q

}
. (10.147)

Exercise 10.5.15 (Mouth sizes). For the boys’ and girls’ mouth size data in Table 4.1,
let ΣB be the covariance matrix for the boys’ mouth sizes, and ΣG be the covariance
matrix for the girls’ mouth sizes. Consider testing

H0 : ΣB = ΣG versus HA : ΣB 6= ΣG. (10.148)

(a) What are the degrees of freedom for the boys’ and girls’ sample covariance matri-

ces? (b) Find |Σ̂B|, |Σ̂G|, and the pooled |Σ̂|. (Use the unbiased estimates of the Σi’s.)

(c) Find 2 log(LR). What are the degrees of freedom for the χ2? What is the p-value?

Do you reject the null hypothesis (if α = .05)? (d) Look at trace(Σ̂B), trace(Σ̂G). Also,
look at the correlation matrices for the girls and for the boys. What do you see?
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Exercise 10.5.16 (Mouth sizes). Continue with the mouth size data from Exercise
10.5.15. (a) Test whether ΣB has the intraclass correlation structure (versus the gen-

eral alternative). What are the degrees of freedom for the χ2? (b) Test whether ΣG
has the intraclass correlation structure. (c) Now assume that both ΣB and ΣG have
the intraclass correlation structure. Test whether the covariances matrices are equal.
What are the degrees of freedom for this test? What is the p-value. Compare this
p-value to that in Exercise 10.5.15, part (c). Why is it so much smaller (if it is)?

Exercise 10.5.17 (Grades). This problem considers the grades data. In what follows,
use the pooled covariance matrix in (10.18), which has ν = 105. (a) Test the indepen-
dence of the first three variables (homework, labs, inclass) from the fourth variable,
the midterms score. (So leave out the final exams at this point.) Find l1, l2, |Σ̂11|, |Σ̂22|,
and |Σ̂|. Also, find 2 log(LR) and the degrees of freedom for the χ2. Do you accept or
reject the null hypothesis? (b) Now test the conditional independence of the set (home-
work, labs, inclass) from the midterms, conditioning on the final exam score. What

is the ν for the estimated covariance matrix now? Find the new l1, l2, |Σ̂11|, |Σ̂22|, and

|Σ̂|. Also, find 2 log(LR) and the degrees of freedom for the χ2. Do you accept or
reject the null hypothesis? (c) Find the correlations between the homework, labs and
inclass scores and the midterms scores, as well as the conditional correlations given
the final exam. What do you notice?

Exercise 10.5.18 (Grades). The table in (10.93) has the BIC’s for the one-factor, two-
factor, and unrestricted models for the Grades data. Find the deviance, dimension,
and BIC for the zero-factor model, M0. (See Exercise 10.5.10.) Find the estimated
probabilities of the four models. Compare the results to those without M0.

Exercise 10.5.19 (Exams). The exams matrix has data on 191 statistics students, giving
their scores (out of 100) on the three midterm exams, and the final exam. (a) What
is the maximum number of factors that can be estimated? (b) Give the number of
parameters in the covariance matrices for the 0, 1, 2, and 3 factor models (even if they
are not estimable). (c) Plot the data. There are three obvious outliers. Which obser-
vations are they? What makes them outliers? For the remaining exercise, eliminate
these outliers, so that there are n = 188 observations. (d) Test the null hypothesis
that the four exams are mutually independent. What are the adjusted 2 log(LR)∗

(in (10.70)) and degrees of freedom for the χ2? What do you conclude? (e) Fit the
one-factor model. What are the loadings? How do you interpret them? (f) Look at

the residual matrix C − β̂′β̂, where C is the observed correlation matrix of the orig-
inal variables. If the model fits exactly, what values would the off-diagonals of the
residual matrix be? What is the largest off-diagonal in this observed matrix? Are the
diagonals of this matrix the uniquenesses? (g) Does the one-factor model fit?

Exercise 10.5.20 (Exams). Continue with the Exams data from Exercise 10.5.19. Again,
do not use the outliers found in part (c). Consider the invariant normal model where
the group G consists of 4 × 4 matrices of the form

G =

(
G∗ 03
0′3 1

)
(10.149)
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where G∗ is a 3 × 3 permutation matrix. Thus the model is an example of com-
pound symmetry, from Section 10.4.1. The model assumes the three midterms are
interchangeable. (a) Give the form of a covariance matrix Σ which is invariant un-
der that G . (It should be like the upper-left 4 × 4 block of the matrix in (10.106).)
How many free parameters are there? (b) For the exams data, give the MLE of the
covariance matrix under the assumption that it is G-invariant. (c) Test whether this
symmetry assumption holds, versus the general model. What are the degrees of free-
dom? For which elements of Σ is the null hypothesis least tenable? (d) Assuming Σ

is G-invariant, test whether the first three variables are independent of the last. (That
is, the null hypothesis is that Σ is G-invariant and σ14 = σ24 = σ34 = 0, while the
alternative is that Σ is G-invariant, but otherwise unrestricted.) What are the degrees
of freedom for this test? What do you conclude?

Exercise 10.5.21 (South Africa heart disease). The data for this question comes from
a study of heart disease in adult males in South Africa from Rousseauw et al. [1983].
(We return to these data in Section 11.8.) The R data frame is SAheart, found in
the ElemStatLearn package [Halvorsen, 2009]. The main variable of interest is “chd”,
congestive heart disease, where 1 indicates the person has the disease, 0 he does
not. Explanatory variables include sbc (measurements on blood pressure), tobacco
use, ldl (bad cholesterol), adiposity (fat %), family history of heart disease (absent
or present), type A personality, obesity, alcohol usage, and age. Here you are to
find common factors among the the explanatory variables excluding age and family
history. Take logs of the variables sbc, ldl, and obesity, and cube roots of alcohol
and tobacco, so that the data look more normal. Age is used as a covariate. Thus
Y is n × 7, and D = (1n xage). Here, n = 462. (a) What is there about the tobacco
and alcohol variables that is distinctly non-normal? (b) Find the sample correlation
matrix of the residuals from the Y = Dγ + R model. Which pairs of variables have
correlations over 0.25, and what are their correlations? How would you group these
variables? (c) What is the largest number of factors that can be fit for this Y? (d) Give
the BIC-based probabilities of the p-factor models for p = 0 to the maximum found
in part (c), and for the unrestricted model. Which model has the highest probability?

Does this model fit, according to the χ2 goodness of fit test? (e) For the most probable
model from part (d), which variables’ loadings are highest (over 0.25) for each factor?
(Use the varimax rotation for the loadings.) Give relevant names to the two factors.
Compare the factors to what you found in part (b). (f) Keeping the same model,
find the estimated factor scores. For each factor, find the two-sample t-statistic for
comparing the people with heart disease to those without. (The statistics are not
actually distributed as Student’s t, but do give some measure of the difference.) (g)
Based on the statistics in part (f), do any of the factors seem to be important factors in
predicting heart disease in these men? If so, which one(s). If not, what are the factors
explaining?

Exercise 10.5.22 (Decathlon). Exercise 1.9.20 created a biplot for the decathlon data
The data consist of the scores (number of points) on each of ten events for the top 24
men in the decathlon at the 2008 Olympics. For convenience, rearrange the variables
so that the running events come first, then the jumping, then throwing (ignoring the
overall total):

y <− decathlon[,c(1,5,10,6,3,9,7,2,4,8)]
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Fit the 1, 2, and 3 factor models. (The chi-squared approximations for the fit might
not be very relevant, because the sample size is too small.) Based on the loadings, can
you give an interpretation of the factors? Based on the uniquenesses, which events
seem to be least correlated with the others?



Chapter 11

Classification

Multivariate analysis of variance seeks to determine whether there are differences
among several groups, and what those differences are. Classification is a related area
in which one uses observations whose group memberships are known in order to
classify new observations whose group memberships are not known. This goal was
the basic idea behind the gathering of the Fisher/Anderson iris data (Section 1.3.1).
Based on only the petal and sepal measurements of a new iris, can one effectively
classify it into one of the three species setosa, virginica and versicolor? See Figure 1.4
for an illustration of the challenge.

The task is prediction, as in Section 7.5, except that rather than predicting a con-
tinuous variable Y, we predict a categorical variable. We will concentrate mainly on
linear methods arising from Fisher’s methods, logistic regression, and trees. There is
a vast array of additional approaches, including using neural networks, support vec-
tor machines, boosting, bagging, and a number of other flashy-sounding techniques.

Related to classification is clustering (Chapter 12), in which one assumes that there
are groups in the population, but which groups the observations reside in is unob-
served, analogous to the factors in factor analysis. In the machine learning com-
munity, classification is supervised learning, because we know the groups and have
some data on group membership, and clustering is unsupervised learning, because
group membership itself must be estimated. See the book by Hastie, Tibshirani, and
Friedman [2009] for a fine statistical treatment of machine learning.

The basic model is a mixture model, presented in the next section.

11.1 Mixture models

The mixture model we consider assumes there are K groups, numbered from 1 to K,
and p predictor variables on which to base the classifications. The data then consist
of n observations, each a 1 × (p + 1) vector,

(Xi, Yi), i = 1, . . . , n, (11.1)

where Xi is the 1× p vector of predictors for observation i, and Yi is the group number
of observation i, so that Yi ∈ {1, . . . , K}. Marginally, the proportion of the population
in group k is

P[Y = k] = πk, k = 1, . . . , K. (11.2)

219
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Figure 11.1: Three densities, plus a mixture of the three (the thick line).

Each group then has a conditional distribution Pk:

Xi |Yi = k ∼ Pk , (11.3)

where the Pk will (almost always) depend on some unknown parameters. Assuming
that Pk has density fk(x), the joint density of (Xi, Yi) is a mixed one as in (2.11), with

f (xi, yi) = fyi
(xi)πyi

. (11.4)

The marginal pdf of Xi is found by summing the joint density over the groups:

f (xi) = π1 f1(xi) + · · ·+ πK fK(xi). (11.5)

For example, suppose that K = 3, π1 = π2 = π3 = 1/3, and the three groups are,
conditionally,

X |Y = 1 ∼ N(5, 1), X |Y = 2 ∼ N(5, 22), X |Y = 3 ∼ N(10, 1). (11.6)

Figure 11.1 exhibits the three pdfs, plus the mixture pdf, which is the thick black line.
The data for classification includes the group index, so that the joint distributions

of (Xi, Yi) are operative, meaning we can estimate the individual densities. The over-
all density for the data is then

n

∏
i=1

f (xi, yi) =
n

∏
i=1

fyi
(xi)πyi

=


πN1

1 ∏
{i|yi=1}

f1(xi)


 · · ·


πNK

K ∏
{i|yi=K}

fK(xi)




=

[
K

∏
k=1

πNk

k

]
×




K

∏
k=1

∏
{i|yi=k}

fk(xi)


 , (11.7)
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where Nk is the number of observations in group k:

Nk = #{yi = k}. (11.8)

The classification task arises when a new observation, XNew, arrives without its group

identification YNew, so its density is that of the mixture. We have to guess what the
group is.

In clustering, the data themselves are without group identification, so we have just
the marginal distributions of the Xi. Thus the joint pdf for the data is

Πn
i=1 f (xi) = Πn

i=1(π1 f1(xi) + · · ·+ πK fK(xi)). (11.9)

Thus clustering is similar to classifying new observations, but without having any
previous y data to help estimate the πk’s and fk’s. See Section 12.3.

11.2 Classifiers

A classifier is a function C that takes the new observation, and emits a guess at its
group:

C : X −→ {1, . . . , K}, (11.10)

where X is the space of XNew. The classifier may depend on previous data, as well

as on the πk’s and fk’s, but not on the YNew. A good classifier is one that is unlikely
to make a wrong classification. Thus a reasonable criterion for a classifier is the
probability of an error:

P[C(XNew) 6= YNew]. (11.11)

We would like to minimize that probability. (This criterion assumes that any type of
misclassification is equally bad. If that is an untenable assumption, then one can use
a weighted probability:

K

∑
k=1

K

∑
l=1

wklP[C(XNew) = k and YNew = l], (11.12)

where wkk = 0.)
Under the (unrealistic) assumption that we know the πk’s and fk’s, the best guess

of YNew given XNew is the group that has the highest conditional probability.

Lemma 11.1. Define the Bayes classifier by

CB(x) = k i f P[Y = k | X = x] > P[Y = l | X = x] f or l 6= k. (11.13)

Then CB minimizes (11.11) over classifiers C.

Proof. Let I be the indicator function, so that

I[C(XNew) 6= YNew] =

{
1 i f C(XNew) 6= YNew

0 i f C(XNew) = YNew (11.14)

and
P[C(XNew) 6= YNew] = E[I[C(XNew) 6= YNew]]. (11.15)
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As in (2.34), we have that

E[I[C(XNew) 6= YNew]] = E[eI(X
New)], (11.16)

where

eI(x
New) = E[I[C(XNew) 6= YNew] | XNew = xNew]

= P[C(xNew) 6= YNew | XNew = xNew]

= 1 − P[C(xNew) = YNew |XNew = xNew]. (11.17)

Thus if we minimize the last expression in (11.17) for each xNew, we have minimized
the expected value in (11.16). Minimizing (11.17) is the same as maximizing

P[C(xNew) = YNew | XNew = xNew], (11.18)

but that conditional probability can be written

K

∑
l=1

I[C(xNew) = l] P[YNew = l | XNew = xNew]. (11.19)

This sum equals P[YNew = l | XNew = xNew] for whichever k C chooses, so to maxi-
mize the sum, choose the l with the highest conditional probability, as in (11.13).

Now the conditional distribution of YNew given XNew is obtained from (11.4) and
(11.5) (it is Bayes theorem, Theorem 2.2):

P[YNew = k | XNew = xNew] =
fk(x

New)πk

f1(xNew)π1 + · · ·+ fK(xNew)πK
. (11.20)

Since, given xNew, the denominator is the same for each k, we just have to choose the
k to maximize the numerator:

CB(x) = k if fk(x
New)πk > fl(x

New)πl f or l 6= k. (11.21)

We are assuming there is a unique maximum, which typically happens in practice
with continuous variables. If there is a tie, any of the top categories will yield the
optimum.

Consider the example in (11.6). Because the πk’s are equal, it is sufficient to look at
the conditional pdfs. A given x is then classified into the group with highest density,
as given in Figure 11.2.

Thus the classifications are

CB(x) =





1 if 3.640 < x < 6.360
2 if x < 3.640 or 6.360 < x < 8.067 or x > 15.267
3 if 8.067 < x < 15.267

(11.22)

In practice, the πk’s and fk’s are not known, but can be estimated from the data.
Consider the joint density of the data as in (11.7). The πk’s appear in only the first
term. They can be estimated easily (as in a multinomial situation) by

π̂k =
Nk

n
. (11.23)
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Figure 11.2: Three densities, and the regions in which each is the highest. The den-
sities are 1: N(5,1), solid line; 2: N(5,4), dashed line; 3: N(10,1), dashed/dotted line.
Density 2 is also the highest for x > 15.267.

The parameters for the fk’s can be estimated using the xi’s that are associated with
group k. These estimates are then plugged into the Bayes formula to obtain an ap-
proximate Bayes classifier. The next section shows what happens in the multivariate
normal case.
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11.3 Fisher’s linear discrimination

Suppose that the individual fk’s are multivariate normal densities with different
means but the same covariance, so that

Xi |Yi = k ∼ N1×p(µk , Σ). (11.24)

The pdf’s (8.48) are then

fk(x |µk, Σ) = c.
1

|Σ|1/2
e−

1
2 (x−µk)Σ

−1(x−µk)
′

= c.
1

|Σ|1/2
e−

1
2 xΣ

−1x′
exΣ

−1µ′
k− 1

2µkΣ
−1µ′

k . (11.25)

We can ignore the factors that are the same for each group, i.e., that do not depend
on k, because we are in quest of the highest pdf×πk. Thus for a given x, we choose
the k to maximize

πk exΣ
−1µ′

k− 1
2µkΣ

−1µ′
k , (11.26)

or, by taking logs, the k that maximizes

d∗k (x) ≡ xΣ
−1µ′

k −
1

2
µkΣ

−1µ′
k + log(πk). (11.27)

These d∗k ’s are called the discriminant functions. Note that in this case, they are
linear in x, hence linear discriminant functions. It is often convenient to target one

group (say the Kth) as a benchmark, then use the functions

dk(x) = d∗k (x)− d∗K(x), (11.28)

so that the final function is 0.
We still must estimate the parameters, but that is straightforward: take the π̂k =

NK/n as in (11.23), estimate the µk’s by the obvious sample means:

µ̂k =
1

Nk
∑

{i|yi=k}
xi, (11.29)

and estimate Σ by the MLE, i.e., because we are assuming the covariances are equal,
the pooled covariance:

Σ̂ =
1

n

K

∑
k=1

∑
{i|yi=k}

(xi − µ̂k)
′(xi − µ̂k). (11.30)

(The numerator equals X′QX for Q being the projection matrix for the design matrix
indicating which groups the observations are from. We could divide by n − K to
obtain the unbiased estimator, but the classifications would still be essentially the
same, exactly so if the πk’s are equal.) Thus the estimated discriminant functions are

d̂k(x) = ck + xa′k , (11.31)
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Figure 11.3: Fisher’s linear discrimination for the iris data using just sepal length
and width. The solid line separates setosa (s) and versicolor (v); the dashed line
separates setosa and virginica (g); and the dashed/dotted line separates versicolor
and virginica.

where

ak = (µ̂k − µ̂K)Σ̂
−1

and

ck = − 1

2
(µ̂kΣ̂

−1
µ̂′

k − µ̂KΣ̂
−1
µ̂′

K) + log(π̂k/π̂K). (11.32)

Now we can define the classifier based upon Fisher’s linear discrimination func-
tion to be

ĈFLD(x) = k i f d̂k(x) > d̂l(x) f or l 6= k. (11.33)

(The hat is there to emphasize the fact that the classifier is estimated from the data.) If
p = 2, each set {x | dk(x) = dl(x)} defines a line in the x-space. These lines divide the
space into a number of polygonal regions (some infinite). Each region has the same

Ĉ(x). Similarly, for general q, the regions are bounded by hyperplanes. Figure 11.3
illustrates for the iris data when using just the sepal length and width. The solid line
is the line for which the discriminant functions for setosas and versicolors are equal.
It is basically perfect for these data. The dashed line tries to separate setosas and
virginicas. There is one misclassification. The dashed/dotted line tries to separate
the versicolors and virginicas. It is not particularly successful. See Section 11.4.1 for
a better result using all the variables.
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Remark

Fisher’s original derivation in Fisher [1936] of the classifier (11.33) did not start with
the multivariate normal density. Rather, in the case of two groups, he obtained the
p × 1 vector a that maximized the ratio of the squared difference of means of the
variable Xia

′ for the two groups to the variance:

((µ̂1 − µ̂2)a
′)2

aΣ̂a′
. (11.34)

The optimal a is (anything proportional to)

â = (µ̂1 − µ̂2)Σ̂
−1

, (11.35)

which is the a1 in (11.32). Even though our motivation leading to (11.27) is different
than Fisher’s, because we end up with his coefficients, we will refer to (11.31) as
Fisher’s.

11.4 Cross-validation estimate of error

In classification, an error occurs if an observation is misclassified, so one often uses
the criterion (11.11) to assess the efficacy of a classifier. This criterion depends on
the distribution of the X as well as the Y, and needs to be estimated. To relate the
error to the data at hand, we take the criterion to be the probability of error given the
observed Xi’s, (c.f. the prediction error in (7.70)),

ClassError =
1

n

n

∑
i=1

P[Ĉ(XNew
i ) 6= YNew

i | XNew
i = xi], (11.36)

where the (X
(New)
i , YNew

i ) are independent, and independent of the data, but with the
same distribution as the data. So the criterion is measuring how well the classifier
would work on a new data set with the same predictors xi.

How does one estimate the error? The obvious approach is to try the classifier on
the data, and count the number of misclassifications:

ClassErrorObs =
1

n

n

∑
i=1

I[Ĉ(xi) 6= yi]. (11.37)

As in prediction, this error will be an underestimate because we are using the same
data to estimate the classifier and test it out. A common approach to a fair estimate is
to initially set aside a random fraction of the observations (e.g., 10% to 25%) to be test
data, and use the remaining so-called training data to estimate the classifier. Then
this estimated classifier is tested on the test data.

Cross-validation is a method that takes the idea one step further, by repeatedly
separating the data into test and training data. The “leave-one-out” cross-validation
uses single observations as the test data. It starts by setting aside the first observation,
(x1, y1), and calculating the classifier using the data (x2, y2), . . . , (xn, yn). (That is, we
find the sample means, covariances, etc., leaving out the first observation.) Call the

resulting classifier Ĉ(−1). Then determine whether this classifier classifies the first
observation correctly:

I[Ĉ(−1)(x1) 6= y1]. (11.38)
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The Ĉ(−1) and Y1 are independent, so the function in (11.38) is almost an unbiased
estimate (conditionally on X1 = x1) of the error

P[Ĉ(XNew
1 ) 6= YNew

1 | XNew
1 = x1], (11.39)

the only reason it is not exactly unbiased is that Ĉ(−1) is based on n − 1 observations,

rather than the n for Ĉ. This difference should be negligible.

Repeat the process, leaving out each observation in turn, so that Ĉ(−i) is the classi-
fier calculated without observation i. Then the almost unbiased estimate of ClassError
in (11.36) is

̂ClassErrorLOOCV =
1

n

n

∑
i=1

I[Ĉ(−i)(xi) 6= yi]. (11.40)

If n is large, and calculating the classifier is computationally challenging, then leave-
one-out cross-validation can use up too much computer time (especially if one is
trying a number of different classifiers). Also, the estimate, though nearly unbiased,
might have a high variance. An alternative is to leave out more than one observation
each time, e.g., the 10% cross-validation would break the data set into 10 sets of size ≈
n/10, and for each set, use the other 90% to classify the observations. This approach
is much more computationally efficient, and less variable, but does introduce more
bias. Kshirsagar [1972] contains a number of other suggestions for estimating the
classifiaction error.

11.4.1 Example: Iris data

Turn again to the iris data. Figure 1.3 has the scatter plot matrix. Also see Figures
1.4 and 11.3. In R, the iris data is in the data frame iris. You may have to load the
datasets package. The first four columns constitute the n × p matrix of xi’s, n = 150,
p = 4. The fifth column has the species, 50 each of setosa, versicolor, and virginica.
The basic variables are then

x.iris <− as.matrix(iris[,1:4])
y.iris <− rep(1:3,c(50,50,50)) # gets group vector (1,...,1,2,...,2,3,...,3)

We will offload many of the calculations to the function lda in Section A.3.1. The
following statement calculates the ak and ck in (11.32):

ld.iris <− lda(x.iris,y.iris)

The ak are in the matrix ld.iris$a and the ck are in the vector ld.iris$c, given below:

k ak ck

1 (Setosa) 11.325 20.309 −29.793 −39.263 18.428
2 (Versicolor) 3.319 3.456 −7.709 −14.944 32.159
3 (Virginica) 0 0 0 0 0

(11.41)

Note that the final coefficients are zero, because of the way we normalize the functions
in (11.28).

To see how well the classifier works on the data, we have to first calculate the
dk(xi). The following places these values in an n × K matrix disc:

disc <− x.iris%∗%ld.iris$a
disc <− sweep(disc,2,ld.iris$c,’+’)
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The rows corresponding to the first observation from each species are

k
i 1 2 3
1 97.703 47.400 0

51 −32.305 9.296 0
101 −120.122 −19.142 0

(11.42)

The classifier (11.33) classifies each observation into the group corresponding to the
column with the largest entry. Applied to the observations in (11.42), we have

ĈFLD(x1) = 1, ĈFLD(x51) = 2, ĈFLD(x101) = 3, (11.43)

that is, each of these observations is correctly classified into its group. To find the

ĈFLD’s for all the observations, use

imax <− function(z) ((1:length(z))[z==max(z)])[1]
yhat <− apply(disc,1,imax)

where imax is a little function to give the index of the largest value in a vector. To see
how close the predictions are to the observed, use the table command:

table(yhat,y.iris)

which yields
y

ŷ 1 2 3
1 50 0 0
2 0 48 1
3 0 2 49

(11.44)

Thus there were 3 observations misclassified — two versicolors were classified as
virginica, and one virginica was classified as versicolor. Not too bad. The observed
misclassification rate is

ClassErrorObs =
#{ĈFLD(xi) 6= yi}

n
=

3

150
= 0.02. (11.45)

As noted above in Section 11.4, this value is likely to be an optimistic (underestimate)
of ClassError in (11.36), because it uses the same data to find the classifier and to test
it out. We will find the leave-one-out cross-validation estimate (11.40) using the code
below, where we set varin=1:4 to specify using all four variables.

yhat.cv <− NULL
n <− nrow(x.iris)
for(i in 1:n) {

dcv <− lda(x.iris[−i,varin],y.iris[−i])
dxi <− x.iris[i,varin]%∗%dcv$a+dcv$c
yhat.cv <− c(yhat.cv,imax(dxi))

}
sum(yhat.cv!=y.iris)/n

Here, for each i, we calculate the classifier without observation i, then apply it to
that left-out observation i, the predictions placed in the vector yhat.cv. We then count

how many observations were misclassified. In this case, ̂ClassErrorLOOCV = 0.02,
just the same as the observed classification error. In fact, the same three observations
were misclassified.
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Subset selection

The above classifications used all four iris variables. We now see if we can obtain
equally good or better results using a subset of the variables. We use the same loop
as above, setting varin to the vector of indices for the variables to be included. For
example, varin = c(1,3) will use just variables 1 and 3, sepal length and petal length.

Below is a table giving the observed error and leave-one-out cross-validation error
(in percentage) for 15 models, depending on which variables are included in the
classification.

Classification errors
Variables Observed Cross-validation

1 25.3 25.3
2 44.7 48.0
3 5.3 6.7
4 4.0 4.0

1, 2 20.0 20.7
1, 3 3.3 4.0
1, 4 4.0 4.7
2, 3 4.7 4.7
2, 4 3.3 4.0
3, 4 4.0 4.0

1, 2, 3 3.3 4.0
1, 2, 4 4.0 5.3
1, 3, 4 2.7 2.7
2, 3, 4 2.0 4.0

1, 2, 3, 4 2.0 2.0

(11.46)

Note that the cross-validation error estimates are either the same, or a bit larger,
than the observed error rates. The best classifier uses all 4 variables, with an estimated
2% error. Note, though, that Variable 4 (Petal Width) alone has only a 4% error rate.
Also, adding Variable 1 to Variable 4 actual worsens the prediction a little, showing
that adding the extra variation is not worth it. Looking at just the observed error, the
prediction stays the same.

Figure 11.4 shows the classifications using just petal widths. Because the sample
sizes are equal, and the variances are assumed equal, the separating lines between
two species are just the average of their means. We did not plot the line for setosa
versus virginica. There are six misclassifications, two versicolors and four virginicas.
(Two of the latter had the same petal width, 1.5.)
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Figure 11.4: Boxplots of the petal widths for the three species of iris. The solid
line separates the setosas from the versicolors, and the dashed line separates the
versicolors from the virginicas.

11.5 Fisher’s quadratic discrimination

When the equality of the covariance matrices is not tenable, we can use a slightly
more complicated procedure. Here the conditional probabilities are proportional to

πk fk(x |µk, Σk) = c πk
1

|Σk|1/2
e−

1
2 (x−µk)Σ

−1
k (x−µk)

′

= c e−
1
2 (x−µk)Σ

−1
k (x−µk)

′− 1
2 log(|Σk |)+log(πk). (11.47)

Then the discriminant functions can be taken to be the terms in the exponents (times
2, for convenience), or their estimates:

d̂ Q
k (x) = −(x − µ̂k)Σ̂

−1
k (x − µ̂k)

′ + ck, (11.48)

where
ck = − log(|Σ̂k|) + 2 log(Nk/n), (11.49)

and Σ̂k is the sample covariance matrix from the kth group. Now the boundaries
between regions are quadratic rather than linear, hence Fisher’s quadratic discrimi-
nation function is defined to be

ĈFQD(x) = k i f d̂ Q
k (x) > d̂ Q

l (x) f or l 6= k. (11.50)

11.5.1 Example: Iris data, continued

We consider the iris data again, but as in Section 11.5 we estimate three separate co-
variance matrices. Sections A.3.2 and A.3.3 contain the functions qda and predict.qda
for calculating the quadratic discriminant functions (11.25) and finding the predic-
tions. Apply these to the iris data as follows:



11.5. Quadratic discrimination 231

qd.iris <− qda(x.iris,y.iris)
yhat.qd <− NULL
for (i in 1:n) {

yhat.qd <− c(yhat.qd,imax(predict.qda(qd.iris,x.iris[i,])))
}
table(yhat.qd,y.iris)

The resulting table is (11.44), the same as for linear discrimination. The leave-one-out
cross-validation estimate of classification error is 4/150 = 0.0267, which is slightly
worse than that for linear discrimination. It does not appear that the extra complica-
tion of having three covariance matrices improves the classification rate.

Hypothesis testing, AIC, or BIC can also help decide between the model with equal
covariance matrices and the model with three separate covariance matrices. Because
we have already calculated the estimates, it is quite easy to proceed. The two models
are then

MSame ⇒ Σ1 = Σ2 = Σ3 ≡ Σ;

MDiff ⇒ (Σ1, Σ2, Σ3) unrestricted. (11.51)

Both models have the same unrestricted means, and we can consider the πk’s fixed,
so we can work with just the sample covariance matrices, as in Section 10.1. Let
U1, U2, and U3 be the sum of squares and cross-products matrices (1.15) for the three
species, and U = U1 + U2 + U3 be the pooled version. The degrees of freedom for
each species is νk = 50 − 1 = 49. Thus from (10.10) and (10.11), we can find the
deviances (9.53) to be

deviance(MSame) = (ν1 + ν2 + ν3) log(|U/(ν1 + ν2 + ν3)|)
= −1463.905,

deviance(MDiff) = ν1 log(|U1/ν1|) + ν2 log(|U2/ν2|) + ν3 log(|U3/ν3|)
= −1610.568 (11.52)

Each covariance matrix has (q+1
2 ) = 10 parameters, hence

dSame = 10 and dDiff = 30. (11.53)

To test the null hypothesis MSame versus the alternative MDiff, as in (9.55),

2 log(LR) = deviance(MSame)− deviance(MDiff)

= −1463.905 + 1610.568

= 146.663, (11.54)

on dSame − dDiff = 20 degrees of freedom. The statistic is highly significant; we reject

emphatically the hypothesis that the covarince matrices are the same. The AIC’s
(9.56) and BIC’s (9.57) are found directly from (11.54):

AIC BIC
MSame −1443.90 −1414.00
MDiff −1550.57 −1460.86

(11.55)
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They, too, favor the separate covariance model. Cross-validation above suggests that
the equal-covariance model is slightly better. Thus there seems to be a conflict be-
tween AIC/BIC and cross-validation. The conflict can be explained by noting that
AIC/BIC are trying to model the xi’s and yi’s jointly, while cross-validation tries to
model the conditional distribution of the yi’s given the xi’s. The latter does not really
care about the distribution of the xi’s, except to the extent it helps in predicting the
yi’s.

11.6 Modifications to Fisher’s discrimination

The key component in both the quadratic and linear discriminant functions is the
quadratic form,

q(x;µk, ΣK) = − 1

2
(x −µk)Σ

−1
k (x −µk)

′, (11.56)

where in the case the Σk’s are equal, the “xΣ
−1x′” part is ignored. Without the − 1

2 ,
(11.56) is a measure of distance (called the Mahalanobis distance) between an x and
the mean of the kth group, so that it makes sense to classify an observation into the
group to which it is closest (modulo an additive constant). The idea is plausible
whether the data are normal or not, and whether the middle component is a general
Σk or not. E.g., when taking the Σ’s equal, we could take

Σ = Ip =⇒ q(x;µk, Ip) = − 1

2
‖x −µk‖2, or

Σ = ∆, diagonal =⇒ q(x;µk, ∆) = − 1

2 ∑(xi −µki)
2/δii. (11.57)

The first case is regular Euclidean distance. In the second case, one would need to
estimate the δii’s by the pooled sample variances. These alternatives may be better
when there are not many observations per group, and a fairly large number of vari-
ables p, so that estimating a full Σ introduces enough extra random error into the
classification to reduce its effectiveness.

Another modification is to use functions of the individual variables. E.g., in the
iris data, one could generate quadratic boundaries by using the variables

Sepal Length, (Sepal Length)2, Petal Length, (Petal Length)2 (11.58)

in the x. The resulting set of variables certainly would not be multivariate normal,
but the classification based on them may still be reasonable. See the next section for
another method of incorporating such functions.

11.7 Conditioning on X: Logistic regression

Based on the conditional densities of X given Y = k and priors πk, Lemma 11.1
shows that the Bayes classifier in (11.13) is optimal. In Section 11.3, we saw that if the
conditional distributions of the X are multivariate normal, with the same covariance
matrix for each group, then the classifier devolved to a linear one (11.31) in x. The
linearity is not specific to the normal, but is a consequence of the normal being an
exponential family density, which means the density has the form

f (x |θ) = a(x)et(x)θ′−ψ(θ) (11.59)
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for some 1× m parameter θ, 1× m function t(x) (the sufficient statistic), and function
a(x), where ψ(θ) is the normalizing constant.

Suppose that the conditional density of X given Y = k is f (x | θk), that is, each
group has the same form of the density, but a different parameter value. Then the
analog to equations (11.27) and (11.28) yields discriminant functions like those in
(11.31),

dk(x) = γk + t(x)α′
k, (11.60)

a linear function of t(x), where αk = θk − θK, and γk is a constant depending on the
parameters. (Note that dK(x) = 0.) To implement the classifier, we need to estimate
the parameters θk and πk, usually by finding the maximum likelihood estimates.
(Note that Fisher’s quadratic discrimination in Section 11.5 also has discriminant
functions (11.48) of the form (11.60), where the t is a function of the x and its square,
xx′.) In such models the conditional distribution of Y given X is given by

P[Y = k |X = x] =
edk(x)

ed1(x) + · · ·+ edK−1(x) + 1
(11.61)

for the dk’s in (11.60). This conditional model is called the logistic regression model.
Then an alternative method for estimating the γk’s and αk’s is to find the values that
maximize the conditional likelihood,

L((γ1,α1), . . . , (γK−1, aK−1) ; (x1, y1), . . . , (xn, yn)) =
n

∏
i=1

P[Y = yi | Xi = xi]. (11.62)

(We know that αK = 0 and γK = 0.) There is no closed-form solution for solving
the likelihood equations, so one must use some kind of numerical procedure like
Newton-Raphson. Note that this approach estimates the slopes and intercepts of the
discriminant functions directly, rather than (in the normal case) estimating the means
and variances, and the πk’s, then finding the slopes and intercepts as functions of
those estimates.

Whether using the exponential family model unconditionally or the logistic model
conditionally, it is important to realize that both lead to the exact same classifier.
The difference is in the way the slopes and intercepts are estimated in (11.60). One
question is then which gives the better estimates. Note that the joint distribution of
the (X, Y) is the product of the conditional of Y given X in (11.61) and the marginal
of X in (11.5), so that for the entire data set,

n

∏
i=1

f (yi, xi | θk)πyi
=

[
n

∏
i=1

P[Y = yi | Xi = xi, θk]

]

×
[

n

∏
i=1

(π1 f (xi | θ1) + · · ·+ πK f (xi | θK))

]
.

(11.63)

Thus using just the logistic likelihood (11.62), which is the first term on the right-
hand side in (11.63), in place of the complete likelihood on the left, leaves out the
information about the parameters that is contained in the mixture likelihood (the
second term on the right). As we will see in Chapter 12, there is information in the
mixture likelihood. One would then expect that the complete likelihood gives better
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estimates in the sense of asymptotic efficiency of the estimates. It is not clear whether
that property always translates to yielding better classification schemes, but maybe.

On the other hand, the conditional logistic model is more general in that it yields
valid estimates even when the exponential family assumption does not hold. We can
entertain the assumption that the conditional distributions in (11.61) hold for any
statistics t(x) we wish to use, without trying to model the marginal distributions of
the X’s at all. This realization opens up a vast array of models to use, that is, we can
contemplate any functions t we wish.

In what follows, we restrict ourselves to having K = 2 groups, and renumber the
groups {0, 1}, so that Y is conditionally Bernoulli:

Yi | Xi = xi ∼ Bernoulli(ρ(xi)), (11.64)

where
ρ(x) = P[Y = 1 | X = x]. (11.65)

The modeling assumption from (11.61) can be translated to the logit (log odds) of ρ,
logit(ρ) = log(ρ/(1 − ρ)). Then

logit(ρ(x)) = logit(ρ(x |γ,α)) = γ + xα′. (11.66)

(We have dropped the t from the notation. You can always define x to be whatever
functions of the data you wish.) The form (11.66) exhibits the reason for calling the
model “logistic regression.” Letting

logit(ρ) =




logit(ρ(x1 | γ,α))
logit(ρ(x2 | γ,α))

...
logit(ρ(xn | γ,α))


 , (11.67)

we can set up the model to look like the regular linear model,

logit(ρ) =




1 x1
1 x2
...

...
1 xn




(
γ
α′

)
= Xβ. (11.68)

We turn to examples.

11.7.1 Example: Iris data

Consider the iris data, restricting to classifying the virginicas versus versicolors. The
next table has estimates of the linear discrimination functions’ intercepts and slopes
using the multivariate normal with equal covariances, and the logistic regression
model:

Intercept Sepal Length Sepal Width Petal Length Petal Width
Normal 17.00 3.63 5.69 −7.11 −12.64
Logistic 42.64 2.47 6.68 −9.43 −18.29

(11.69)
The two estimates are similar, the logistic giving more weight to the petal widths,
and having a large intercept. It is interesting that the normal-based estimates have an
observed error of 3/150, while the logistic has 2/150.
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11.7.2 Example: Spam

The Hewlett-Packard spam data was introduced in Exercise 1.9.14. The n = 4601
observations are emails to George Forman, at Hewlett-Packard labs. The The Y clas-
sifies each email as spam (Y = 1) or not spam, Y = 0. There are q = 57 explana-
tory variables based on the contents of the email. Most of the explanatory variables
are frequency variables with many zeroes, hence are not at all normal, so Fisher’s
discrimination may not be appropriate. One could try to model the variables using
Poissons or multinomials. Fortunately, if we use the logistic model, we do not need to
model the explanatory variables at all, but only decide on the xj’s to use in modeling
the logit in (11.68).

The ρ(x | γ,α) is the probability an email with message statistics x is spam. We
start by throwing in all 57 explanatory variables linearly, so that in (11.68), the design
matrix contains all the explanatory variables, plus the 1n vector. This fit produces an
observed misclassification error rate of 6.9%.

A number of the coefficients are not significant, hence it makes sense to try subset
logistic regression, that is, find a good subset of explanatory variables to use. It is
computationally much more time consuming to fit a succession of logistic regression
models than regular linear regression models, so that it is often infeasible to do an
all-subsets exploration. Stepwise procedures can help, though are not guaranteed
to find the best model. Start with a given criterion, e.g., AIC, and a given subset of
explanatory variables, e.g., the full set or the empty set. At each step, one has an
“old” model with some subset of the explanatory variables, and tries every possible
model that either adds one variable or removes one variable from that subset. Then
the “new” model is the one with the lowest AIC. The next step uses that new model
as the old, and adds and removes one variable from that. This process continues until
at some step the new model and old model are the same.

The table in (11.70) shows the results when using AIC and BIC. (The R code is
below.) The BIC has a stronger penalty, hence ends up with a smaller model, 30
variables (including the 1n) versus 44 for the AIC. For those two “best” models as
well as the full model, the table also contains the 46-fold cross-validation estimate
of the error, in percent. That is, we randomly cut the data set into 46 blocks of 100
observations, then predict each block of 100 from the remaining 4501. For the latter
two models, cross-validation involves redoing the entire stepwise procedure for each
reduced data set. A computationally simpler, but maybe not as defensible, approach
would be to use cross-validation on the actual models chosen when applying stepwise
to the full data set. Here, we found the estimated errors for the best AIC and BIC
models were 7.07% and 7.57%, respectively, approximately the same as for the more
complicated procedure.

p Deviance AIC BIC Obs. error CV error CV se
Full 58 1815.8 1931.8 2305.0 6.87 7.35 0.34
Best AIC 44 1824.9 1912.9 2196.0 6.78 7.15 0.35
Best BIC 30 1901.7 1961.7 2154.7 7.28 7.59 0.37

(11.70)

The table shows that all three models have essentially the same cross-validation
error, with the best AIC’s model being best. The standard errors are the standard

deviations of the 46 errors divided by
√

46, so give an idea of how variable the error
estimates are. The differences between the three errors are not large relative to these
standard errors, so one could arguably take either the best AIC or best BIC model.
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The best AIC model has p = 44 parameters, one of which is the intercept. The
table (11.71) categorizes the 41 frequency variables (word or symbol) in this model,
according to the signs of their coefficients. The ones with positive coefficients tend
to indicate spam, while the others indicate non-spam. Note that the latter tend to be
words particular to someone named “George” who works at a lab at HP, while the
spam indicators have words like “credit”, “free”, “money”, and exciting symbols like
“!” and “$”. Also with positive coefficients are the variables that count the number
of capital letters, and the length of the longest run of capitals, in the email.

Positive Negative
3d our over remove internet order
mail addresses free business you
credit your font 000 money 650 tech-
nology ! $ #

make address will hp hpl george lab
data 85 parts pm cs meeting original
project re edu table conference ;

(11.71)

Computational details

In R, logistic regression models with two categories can be fit using the generalized
linear model function, glm. The spam data is in the data frame Spam. The indicator
variable, Yi, for spam is called spam. We first must change the data matrix into a data
frame for glm: Spamdf <− data.frame(Spam). The full logistic regression model is fit
using

spamfull <− glm(spam ∼.,data=Spamdf,family=binomial)

The “spam ∼.” tells the program that the spam variable is the Y, and the dot means
use all the variables except for spam in the X. The “family = binomial” tells the pro-
gram to fit logistic regression. The summary command, summary(spamfull), will print
out all the coefficients, which I will not reproduce here, and some other statistics, in-
cluding

Null deviance: 6170.2 on 4600 degrees of freedom
Residual deviance: 1815.8 on 4543 degrees of freedom
AIC: 1931.8

The “residual deviance” is the regular deviance in (9.53). The full model uses 58
variables, hence

AIC = deviance+2p = 1815.8 + 2 × 58 = 1931.8, (11.72)

which checks. The BIC is found by substituting log(4601) for the 2.
We can find the predicted classifications from this fit using the function predict,

which returns the estimated linear Xβ̂ from (11.68) for the fitted model. The Ŷi’s

are then 1 or 0 as the ρ(x(i) | ĉ, â) is greater than or less than 1
2 . Thus to find the

predictions and overall error rate, do

yhat <− ifelse(predict(spamfull)>0,1,0)
sum(yhat!=Spamdf[,’spam’])/4601

We find the observed classifcation error to be 6.87%.
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Cross-validation

We will use 46-fold cross-validation to estimate the classification error. We randomly
divide the 4601 observations into 46 groups of 100, leaving one observation who
doesn’t get to play. First, permute the indices from 1 to n:

o <− sample(1:4601)

Then the first hundred are the indices for the observations in the first leave-out-block,
the second hundred in the second leave-out-block, etc. The loop is next, where the
err collects the number of classification errors in each block of 100.

err <− NULL
for(i in 1:46) {

oi <− o[(1:100)+(i−1)∗100]
yfiti <− glm(spam ∼., family = binomial,data = Spamdf,subset=(1:4601)[−oi])
dhati <− predict(yfiti,newdata=Spamdf[oi,])
yhati <− ifelse(dhati>0,1,0)
err <− c(err,sum(yhati!=Spamdf[oi,’spam’]))

}

In the loop for cross-validation, the oi is the vector of indices being left out. We then fit
the model without those by using the keyword subset=(1:4601)[−oi], which indicates
using all indices except those in oi. The dhati is then the vector of discriminant
functions evaluated for the left out observations (the newdata). The mean of err is the
estimated error, which for us is 7.35%. See the entry in table in (11.70).

Stepwise

The command to use for stepwise regression is step. To have the program search
through the entire set of variables, use one of the two statements

spamstepa <− step(spamfull,scope=list(upper= ∼.,lower = ∼1))
spamstepb <− step(spamfull,scope=list(upper= ∼.,lower = ∼1),k=log(4601))

The first statement searches on AIC, the second on BIC. The first argument in the step
function is the return value of glm for the full data. The upper and lower inputs refer
to the formulas of the largest and smallest models one wishes to entertain. In our
case, we wish the smallest model to have just the 1n vector (indicated by the “~1”),
and the largest model to contain all the vectors (indicated by the “~.”).

These routines may take a while, and will spit out a lot of output. The end result
is the best model found using the given criterion. (If using the BIC version, while
calculating the steps, the program will output the BIC values, though calling them
“AIC.” The summary output will give the AIC, calling it “AIC.” Thus if you use just
the summary output, you must calculate the BIC for yourself. )

To find the cross-validation estimate of classification error, we need to insert the
stepwise procedure after fitting the model leaving out the observations, then predict
those left out using the result of the stepwise procedure. So for the best BIC model,
use the following:

errb <− NULL
for(i in 1:46) {

oi <− o[(1:100)+(i−1)∗100]
yfiti <− glm(spam ∼., family = binomial, data = Spamdf,subset=(1:4601)[−oi])
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stepi <− step(yfiti,scope=list(upper= ∼.,lower = ∼1),k=log(4501))
dhati <− predict(stepi,newdata=Spamdf[oi,])
yhati <− ifelse(dhati>0,1,0)
errb <− c(errb,sum(yhati!=Spamdf[oi,’spam’]))

}

The estimate for the best AIC model uses the same statements but with k = 2 in
the step function. This routine will take a while, because each stepwise procedure
is time consuming. Thus one might consider using cross-validation on the model
chosen using the BIC (or AIC) criterion for the full data.

The neural networks R package nnet [Venables and Ripley, 2002] can be used to fit
logistic regression models for K > 2.

11.8 Trees

The presentation here will also use just K = 2 groups, labeled 0 and 1, but can be
extended to any number of groups. In the logistic regression model (11.61), we mod-
eled P[Y = 1 |X = x] ≡ ρ(x) using a particular parametric form. In this section we
use a simpler, nonparametric form, where ρ(x) is constant over rectangular regions
of the X-space.

To illustrate, we will use the South African heart disease data from Rousseauw
et al. [1983], which was used in Exercise 10.5.21. The Y is congestive heart disease
(chd), where 1 indicates the person has the disease, 0 he does not. Explanatory
variables include various health measures. Hastie et al. [2009] apply logistic regres-
sion to these data. Here we use trees. Figure 11.5 plots the chd variable for the
age and adiposity (fat percentage) variables. Consider the vertical line. It splits the
data according to whether age is less than 31.5 years. The splitting point 31.5 was
chosen so that the proportions of heart disease in each region would be very dif-
ferent. Here, 10/117 = 8.85% of the men under age 31.5 had heart disease, while
150/345 = 43.48% of those above 31.5 had the disease.

The next step is to consider just the men over age 31.5, and split them on the
adiposity variable. Taking the value 25, we have that 41/106 = 38.68% of the men
over age 31.5 but with adiposity under 25 have heart disease; 109/239 = 45.61% of
the men over age 31.5 and with adiposity over 25 have the disease. We could further
split the younger men on adiposity, or split them on age again. Subsequent steps
split the resulting rectangles, each time with either a vertical or horizontal segment.

There are also the other variables we could split on. It becomes easier to represent
the splits using a tree diagram, as in Figure 11.6. There we have made several splits,
at the nodes. Each node needs a variable and a cutoff point, such that people for
which the variable is less than the cutoff are placed in the left branch, and the others
go to the right. The ends of the branches are terminal nodes or leaves. This plot has 15
leaves. At each leaf, there are a certain number of observations. The plot shows the
proportion of 0’s (the top number) and 1’s (the bottom number) at each leaf.

For classification, we place a 0 or 1 at each leaf, depending on whether the pro-
portion of 1’s is less than or greater than 1/2. Figure 11.7 shows the results. Note
that for some splits, both leaves have the same classification, because although their
proportions of 1’s are quite different, they are both on the same side of 1/2. For
classification purposes, we can snip some of the branches off. Further analysis (Sec-
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Figure 11.5: Splitting on age and adiposity. The open triangles indicate no heart
disease, the solid discs indicate heart disease. The percentages are the percentages of
men with heart disease in each region of the plot.

tion 11.8.1) leads us to the even simpler tree in Figure 11.8. The tree is very easy to
interpret, hence popular among people (e.g., doctors) who need to use them. The
tree also makes sense, showing age, type A personality, tobacco use, and family his-
tory are important factors in predicting heart disease among these men. The trees
also are flexible, incorporating continuous or categorical variables, avoiding having
to consider transformations, and automatically incorporating interactions. E.g., the
type A variable shows up only for people between the ages of 31.5 and 50.5, and
family history and tobacco use show up only for people over 50.5.

Though simple to interpret, it is easy to imagine that finding the “best” tree is a
rather daunting prospect, as there is close to an infinite number of possible trees in
any large data set (at each stage one can split any variable at any of a number of
points), and searching over all the possibilities is a very discrete (versus continuous)
process. In the next section, we present a popular, and simple, algorithm to find a
good tree.

11.8.1 CART

Two popular commercial products for fitting trees are Categorization and Regression

Trees, CART®, by Breiman et al. [1984], and C5.0, by Quinlan [1993]. We will take the
CART approach, the main reason being the availability of an R version. It seems that
CART would appeal more to statisticians, and C5.0 to data-miners, but I do not think
the results of the two methods would differ much.
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Figure 11.6: A large tree, with proportions at the leaves

We first need an objective function to measure the fit of a tree to the data. We will
use deviance, although other measures such as the observed misclassification rate are
certainly reasonable. For a tree T with L leaves, each observation is placed in one of
the leaves. If observation yi is placed in leaf l, then that observation’s ρ(xi) is given
by the parameter for leaf l, say pl . The likelihood for that Bernoulli observation is

p
yi

l (1 − pl)
1−yi . (11.73)

Assuming the observations are independent, at leaf l there is a sample of iid Bernoulli
random variables with parameter pl , hence the overall likelihood of the sample is

L(p1, . . . , pL | y1, . . . , yn) =
L

∏
l=1

pwl

l (1 − pl)
nl−wl , (11.74)

where

nl = #{i at leaf l}, wl = #{yi = 1 at leaf l}. (11.75)

This likelihood is maximized over the pl ’s by taking p̂l = wl/nl . Then the deviance
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Figure 11.7: A large tree, with classifications at the leaves.
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Figure 11.8: A smaller tree, chosen using BIC.
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(9.53) for this tree is

deviance(T ) = −2
L

∑
l=1

(wl log( p̂l) + (nl − wl) log(1 − p̂l)) . (11.76)

The CART method has two main steps: grow the tree, then prune the tree. The
tree is grown in a stepwise, greedy fashion, at each stage trying to find the next
split that maximally reduces the objective function. We start by finding the single
split (variable plus cutoff point) that minimizes the deviance among all such splits.
Then the observations at each resulting leaf are optimally split, again finding the
variable/cutoff split with the lowest deviance. The process continues until the leaves
have just a few observations, e.g., stopping when any split would result in a leaf with
fewer than five observations.

To grow the tree for the South African heart disease data in R, we need to install
the package called tree [Ripley, 2010]. A good explanation of it can be found in
Venables and Ripley [2002]. We use the data frame SAheart in the ElemStatLearn
package [Halvorsen, 2009]. The dependent variable is chd. To grow a tree, use

basetree <− tree(as.factor(chd)∼.,data=SAheart)

The as.factor function indicates to the tree function that it should do classification. If
the dependent variable is numeric, tree will fit a so-called regression tree, not what
we want here. To plot the tree, use one of the two statements

plot(basetree);text(basetree,label=’yprob’,digits=1)
plot(basetree);text(basetree)

The first gives the proportions of 0’s and 1’s at each leaf, and the second gives the
classifications of the leaves, yielding the trees in Figures 11.6 and 11.7, respectively.

This basetree is now our base tree, and we consider only subtrees, that is, trees
obtainable by snipping branches off this tree. As usual, we would like to balance
observed deviance with the number of parameters in the model, in order to avoid
overfitting. To whit, we add a penalty to the deviance depending on the number of
leaves in the tree. To use AIC or BIC, we need to count the number of parameters for
each subtree, conditioning on the structure of the base tree. That is, we assume that
the nodes and the variable at each node are given, so that the only free parameters
are the cutoff points and the pl ’s. The task is one of subset selection, that is, deciding
which nodes to snip away. If the subtree has L leaves, then there are L − 1 cutoff
points (there are L − 1 nodes), and L pl’s, yielding 2L − 1 parameters. Thus the BIC
criterion for a subtree T with L leaves is

BIC(T ) = deviance(T ) + log(n)(2L − 1). (11.77)

The prune.tree function can be used to find the subtree with the lowest BIC. It takes
the base tree and a value k as inputs, then finds the subtree that minimizes

objk(T ) = deviance(T ) + kL. (11.78)

Thus for the best AIC subtree we would take k = 4, and for BIC we would take
k = 2 log(n):

aictree <− prune.tree(basetree,k=4)
bictree <− prune.tree(basetree,k=2∗log(462)) # n = 462 here.
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Figure 11.9: The best subtree using the BIC criterion, before snipping redundant
leaves.

If the k is not specified, then the routine calculates the numbers of leaves and de-
viances of best subtrees for all values of k. The best AIC subtree is in fact the full
base tree, as in Figure 11.7. Figure 11.9 exhibits the best BIC subtree, which has eight
leaves. There are also routines in the tree package that use cross-validation to choose
a good factor k to use in pruning.

Note that the tree in Figure 11.9 has some redundant splits. Specifically, all leaves
to the left of the first split (age < 31.5) lead to classification “0.” To snip at that node,
we need to determine its index in basetree. One approach is to print out the tree,
resulting in the output in Listing 11.1. We see that node #2 is “age < 31.5,” which is
where we wish to snip, hence we use

bictree.2 <− snip.tree(bictree,nodes=2)

Plotting the result yields Figure 11.8. It is reasonable to stick with the presnipped

tree, in case one wished to classify using a cutoff point for p̂l ’s other than 1
2 .

There are some drawbacks to this tree-fitting approach. Because of the stepwise
nature of the growth, if we start with the wrong variable, it is difficult to recover. That
is, even though the best single split may be on age, the best two-variable split may
be on type A and alcohol. There is inherent instability, because having a different
variable at a given node can completely change the further branches. Additionally,
if there are several splits, the sample sizes for estimating the pl ’s at the farther-out
leaves can be quite small. Boosting, bagging, and random forests are among the tech-
niques proposed that can help ameliorate some of these problems and lead to better
classifications. They are more black-box-like, though, losing some of the simplicity of
the simple trees. See Hastie et al. [2009].
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Listing 11.1: Text representation of the output of tree for the tree in Figure 11.9

node), split, n, deviance, yval, (yprob)
∗ denotes terminal node

1) root 462 596.10 0 ( 0.65368 0.34632 )
2) age < 31.5 117 68.31 0 ( 0.91453 0.08547 )

4) tobacco < 0.51 81 10.78 0 ( 0.98765 0.01235 ) ∗
5) tobacco > 0.51 36 40.49 0 ( 0.75000 0.25000 )
10) alcohol < 11.105 16 0.00 0 ( 1.00000 0.00000 ) ∗
11) alcohol > 11.105 20 27.53 0 ( 0.55000 0.45000 ) ∗

3) age > 31.5 345 472.40 0 ( 0.56522 0.43478 )
6) age < 50.5 173 214.80 0 ( 0.68786 0.31214 )
12) typea < 68.5 161 188.90 0 ( 0.72671 0.27329 ) ∗
13) typea > 68.5 12 10.81 1 ( 0.16667 0.83333 ) ∗

7) age > 50.5 172 236.10 1 ( 0.44186 0.55814 )
14) famhist: Absent 82 110.50 0 ( 0.59756 0.40244 )

28) tobacco < 7.605 58 68.32 0 ( 0.72414 0.27586 ) ∗
29) tobacco > 7.605 24 28.97 1 ( 0.29167 0.70833 ) ∗

15) famhist: Present 90 110.00 1 ( 0.30000 0.70000 ) ∗

Estimating misclassification rate

The observed misclassification rate for any tree is easily found using the summary
command. Below we find the 10-fold cross-validation estimates of the classification
error. The results are in (11.79). Note that the BIC had the lowest estimate, though
by only about 0.01. The base tree was always chosen by AIC. It is interesting that the
BIC trees were much smaller, averaging 5 leaves versus 22 for the AIC/base trees.

Obs. error CV error CV se Average L
Base tree 0.208 0.328 0.057 22
Best AIC 0.208 0.328 0.057 22
Best BIC 0.229 0.317 0.063 5

(11.79)

The following finds the cross-validation estimate for the BIC chosen tree:

o <− sample(1:462) # Reorder the indices
err <− NULL # To collect the errors
for(i in 1:10) {

oi <− o[(1:46)+46∗(i−1)] # Left−out indices
basetreei <− tree(as.factor(chd)∼.,data=SAheart,subset=(1:462)[−oi])
bictreei <− prune.tree(basetreei,k=2∗log(416)) # BIC tree w/o left−out data
yhati <− predict(bictreei,newdata=SAheart[oi,],type=’class’)
err <− c(err,sum(yhati!=SAheart[oi,’chd’]))

}

For each of the left-out observations, the predict statement with type=’class’ gives
the tree’s classification of the left-out observations. The estimate of the error is then
mean(err)/46, and the standard error is sd(err)/46.
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11.9 Exercises

Exercise 11.9.1. Show that (11.19) follows from (11.18).

Exercise 11.9.2. Compare the statistic in (11.34) and its maximum using the â in

(11.35) to the motivation for Hotelling’s T2 presented in Section 8.4.1.

Exercise 11.9.3. Write the γk in (11.60) as a function of the θi’s and πi’s.

Exercise 11.9.4 (Spam). Consider the spam data from Section 11.7.2 and Exercise
1.9.14. Here we simplify it a bit, and just look at four of the 0/1 predictors: Whether
or not the email contains the words “free” or “remove” or the symbols “!” or “$”.
The following table summarizes the data, where the first four columns indicate the
presence (1) or absence (0) of the word or symbol, and the last two columns give the
numbers of corresponding emails that are spam or not spam. E.g., there are 98 emails
containing “remove” and “!”, but not “free” nor “$”, 8 of which are not spam, 90 are
spam.

free remove ! $ not spam spam
0 0 0 0 1742 92
0 0 0 1 157 54
0 0 1 0 554 161
0 0 1 1 51 216
0 1 0 0 15 28
0 1 0 1 4 17
0 1 1 0 8 90
0 1 1 1 5 166
1 0 0 0 94 42
1 0 0 1 28 20
1 0 1 0 81 159
1 0 1 1 38 305
1 1 0 0 1 16
1 1 0 1 0 33
1 1 1 0 2 116
1 1 1 1 8 298

(11.80)

Assuming a multinomial distribution for the 25 = 32 possibilities, find the estimated
Bayes classifier of email as “spam” or “not spam” based on the other four variables
in the table. What is the observed error rate?

Exercise 11.9.5 (Crabs). This problem uses data on 200 crabs, categorized into two
species, Orange and Blue, and two sexes. It is in the MASS R package [Venables
and Ripley, 2002]. The data is in the data frame crabs. There are 50 crabs in each
species×sex category; the first 50 are blue males, then 50 blue females, then 50 orange
males, then 50 orange females. The five measurements are frontal lobe size, rear
width, carapace length, carapace width, and body depth, all in millimeters. The goal
here is to find linear discrimination procedures for classifying new crabs into species
and sex categories. (a) The basic model is that Y ∼ N(xβ, I200 ⊗ Σ), where x is any
analysis of variance design matrix (n × 4) that distinguishes the four groups. Find the

MLE of Σ, Σ̂. (b) Find the ck’s and ak’s in Fisher’s linear discrimination for classifying
all four groups, i.e., classifying on species and sex simultaneously. (Take π̂k = 1/4 for
all four groups.) Use the version wherein dK = 0. (c) Using the procedure in part (b)
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on the observed data, how many crabs had their species misclassified? How many
had their sex misclassified? What was the overall observed misclassification rate (for
simultaneous classification of color and sex)? (d) Use leave-one-out cross-validation
to estimate the overall misclassification rate. What do you get? Is it higher than the
observed rate in part (c)?

Exercise 11.9.6 (Crabs). | Continue with the crabs data from Exercise 11.9.5, but use
classification trees to classify the crabs by just species. (a) Find the base tree using the
command

crabtree <− tree(sp ∼FL+RW+CL+CW+BD,data=crabs)

How many leaves does the tree have? Snip off redundant nodes. How many leaves
does the snipped tree have? What is its observed misclassification rate? (b) Find the
BIC for the subtrees found using prune.tree. Give the number of leaves, deviance,
and dimension for the subtree with the best BIC. (c) Consider the subtree with the
best BIC. What is its observed misclassification rate? What two variables figure most
prominently in the tree? Which variables do not appear? (d) Now find the leave-
one-out cross-validation estimate of the misclassification error rate for the best model
using BIC. How does this rate compare with the observed rate?

Exercise 11.9.7 (South African heart disease). This question uses the South African
heart disease study discussed in Section 11.8. The objective is to use logistic regres-
sion to classify people on the presence of heart disease, variable chd. (a) Use the
logistic model that includes all the explanatory variables to do the classification. (b)
Find the best logistic model using the stepwise function, with BIC as the criterion.
Which variables are included in the best model from the stepwise procedure? (c) Use
the model with just the variables suggested by the factor analysis of Exercise 10.5.21:
tobacco, ldl, adiposity, obesity, and alcohol. (d) Find the BIC, observed error rate, and
leave-one-out cross-validation rate for the three models in parts (a), (b) and (c). (e)
True or false: (i) The full model has the lowest observed error rate; (ii) The factor-
analysis based model is generally best; (iii) The cross-validation-based error rates are
somewhat larger than the corresponding observed error rates; (iv) The model with
the best observed error rate has the best cv-based error rate as well; (v) The best
model of these three is the one chosen by the stepwise procedure; (vi) Both adiposity
and obesity seem to be important factors in classifying heart disease.

Exercise 11.9.8 (Zipcode). The objective here is to classify handwritten numerals
(0, 1, . . . , 9), so that machines can read people’s handwritten zipcodes. The data set
consists of 16 × 16 grayscale images, that is, each numeral has been translated to a
16 × 16 matrix, where the elements of the matrix indicate the darkness (from −1 to
1) of the image at 256 grid points. The data set is from LeCun [1989], and can be
found in the R package StatElemLearn [Halvorsen, 2009]. This question will use just
the 7’s, 8’s and 9’s, for which there are n = 1831 observations. We put the data in
three matrices, one for each digit, called train7, train8, and train9. Each row contains
first the relevant digit, then the 256 grayscale values, for one image. The task is to use
linear discrimination to distinguish between the digits, even though it is clear that
the data are not multivariate normal. First, create the three matrices from the large
zip.train matrix:
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train7 <− zip.train[zip.train[,1]==7,−1]
train8 <− zip.train[zip.train[,1]==8,−1]
train9 <− zip.train[zip.train[,1]==9,−1]

(a) Using the image, contour, and matrix functions in R, reconstruct the images of
some of the 7’s, 8’s and 9’s from their grayscale values. (Or explore the zip2image
function in the StatElemLearn package.) (b) Use linear discrimination to classify the
observation based on the 256 variables under the three scenarios below. In each case,
find both the observed misclassification rate and the estimate using cross-validation.
(i) Using Σ = I256. (ii) Assuming Σ is diagonal, using the pooled estimates of the
individual variances. (iii) Using the pooled covariance matrix as an estimate of Σ.
(d) Which method had the best error rate, estimated by cross-validation? (e) Create a
data set of digits (7’s, 8’s, and 9’, as well as 5’s) to test classifiers as follows:

test5 <− zip.train[zip.test[,1]==5,−1]
test7 <− zip.train[zip.test[,1]==7,−1]
test8 <− zip.train[zip.test[,1]==8,−1]
test9 <− zip.train[zip.test[,1]==9,−1]

Using the discriminant functions from the original data for the best method from part
(b), classify these new observations. What is the error rate for the 7’s, 8’s, and 9’s?
How does it compare with the cross-validation estimate? How are the 5’s classified?

Exercise 11.9.9 (Spam). Use classification trees to classify the spam data. It is best to
start as follows:

Spamdf <− data.frame(Spam)
spamtree <− tree(as.factor(spam)∼.,data=Spamdf)

Turning the matrix into a data frame makes the labeling on the plots simpler. (a)
Find the BIC’s for the subtrees obtained using prune.tree. How many leaves in the
best model? What is its BIC? What is its observed error rate? (b) Use 46-fold cross-
validation (so you leave out 100 observations each time) to estimate the error rate,
as in the procedure as on page 244. (c) Repeat parts (a) and (b), but using the
first ten principal components of the spam explanatory variables as the predictors.
(Exercise 1.9.15 calculated the principal components.) Repeat again, but this time
using the first ten principal components based on the scaled explanatory variables,
scale(Spam[,1:57]). Compare the effectiveness of the three approaches.

Exercise 11.9.10. This questions develops a Bayes classifier when there is a mix of nor-
mal and binomial explanatory variables. Consider the classification problem based
on (Y, X, Z), where Y is the variable to be classified, with values 0 and 1, and X and
Z are predictors. X is a 1 × 2 continuous vector, and Z takes the values 0 and 1. The
model for (Y, X, Z) is given by

X | Y = y, Z = z ∼ N(µyz, Σ), (11.81)

and
P[Y = y & Z = z] = pyz, (11.82)

so that p00 + p01 + p10 + p11 = 1. (a) Find an expression for P[Y = y | X = x & Z =
z]. (b) Find the 1 × 2 vector αz and the constant γz (which depend on z and the
parameters) so that

P[Y = 1 | X = x & Z = z] > P[Y = 0 | X = x & Z = z] ⇔ xα′
z + γz > 0. (11.83)
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(c) Suppose the data are (Yi, Xi, Zi), i = 1, . . . , n, iid, distributed as above. Find
expressions for the MLE’s of the parameters (the four µyz’s, the four pyz’s, and Σ).

Exercise 11.9.11 (South African heart disease). Apply the classification method in Ex-
ercise 11.9.10 to the South African heart disease data, with Y indicating heart disease
(chd), X containing the two variables age and type A, and Z being the family history
of heart disease variable (history: 0 = absent, 1 = present). Randomly divide the data
into two parts: The training data with n = 362, and the test data with n = 100. E.g.,
use

random.index <− sample(462,100)
sahd.train <− SAheart[−random.index,]
sahd.test <− SAheart[random.index,]

(a) Estimate the αz and γz using the training data. Find the observed misclassification

rate on the training data, where you classify an observation as Ŷi = 1 if xiα̂z + γ̂z > 0,

and Ŷi = 0 otherwise. What is the misclassification rate for the test data (using the
estimates from the training data)? Give the 2 × 2 table showing true and predicted
Y’s for the test data. (b) Using the same training data, find the classification tree. You
don’t have to do any pruning. Just take the full tree from the tree program. Find the
misclassification rates for the training data and the test data. Give the table showing
true and predicted Y’s for the test data. (c) Still using the training data, find the
classification using logistic regression, with the X and Z as the explanatory variables.
What are the coefficients for the explanatory variables? Find the misclassification
rates for the training data and the test data. (d) What do you conclude?
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Clustering

The classification and prediction we have covered in previous chapters were cases
of supervised learning. For example, in classification, we try to find a function that
classifies individuals into groups using their x values, where in the training set we
know what the proper groups are because we observe their y’s. In clustering, we
again wish to classify observations into groups using their x’s, but do not know the
correct groups even in the training set, i.e., we do not observe the y’s, nor often even
know how many groups there are. Clustering is a case of unsupervised learning.

There are many clustering algorithms. Most are reasonably easy to implement
given the number K of clusters. The difficult part is deciding what K should be.
Unlike in classification, there is no obvious cross-validation procedure to balance
the number of clusters with the tightness of the clusters. Only in the model-based
clustering do we have direct AIC or BIC criteria. Otherwise, a number of reasonable
but ad hoc measures have been proposed. We will look at “silhouettes.”

In some situations one is not necessarily assuming that there are underlying clus-
ters, but rather is trying to divide the observations into a certain number of groups
for other purposes. For example, a teacher in a class of 40 students might want to
break up the class into four sections of about ten each based on general ability (to
give more focused instruction to each group). The teacher does not necessarily think
there will be wide gaps between the groups, but still wishes to divide for pedagogical
purposes. In such cases K is fixed, so the task is a bit simpler.

In general, though, when clustering one is looking for groups that are well sep-
arated. There is often an underlying model, just as in Chapter 11 on model-based
classification. That is, the data are

(Y1, X1), . . . , (Yn, Xn), iid, (12.1)

where yi ∈ {1, . . . , K},

X |Y = k ∼ fk(x) = f (x | θk) and P[Y = k] = πk, (12.2)

as in (11.2) and (11.3). If the parameters are known, then the clustering proceeds
exactly as for classification, where an observation x is placed into the group

C(x) = k that maximizes
fk(x)πk

f1(x)π1 + · · ·+ fK(x)πK
. (12.3)

249
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See (11.13). The fly in the ointment is that we do not observe the yi’s (neither in the
training set nor for the new observations), nor do we necessarily know what K is, let
alone the parameter values.

The following sections look at some approaches to clustering. The first, K-means,

does not explicitly use a model, but has in the back of its mind fk’s being N(µk, σ2Ip).
Hierarchical clustering avoids the problems of number of clusters by creating a tree
containing clusterings of all sizes, from K = 1 to n. Finally, the model-based cluster-
ing explicitly assumes the fk’s are multivariate normal (or some other given distribu-
tion), with various possibilities for the covariance matrices.

12.1 K-Means

For a given number K of groups, K-means assumes that each group has a mean vector
µk. Observation xi is assigned to the group with the closest mean. To estimate these
means, we minimize the sum of the squared distances from the observations to their
group means:

obj(µ1, . . . ,µK) =
n

∑
i=1

min
µ1,...,µK

‖xi −µk‖2. (12.4)

An algorithm for finding the clusters starts with a random set of means µ̂1, . . . , µ̂K
(e.g., randomly choose K observations from the data), then iterate the following two
steps:

1. Having estimates of the means, assign observations to the group corresponding
to the closest mean,

C(xi) = k that minimizes ‖xi − µ̂k‖2 over k. (12.5)

2. Having individuals assigned to groups, find the group means,

µ̂k =
1

#{C(xi) = k} ∑
i|C(xi)=k

xi. (12.6)

The algorithm is guaranteed to converge, but not necessarily to the global mini-
mum. It is a good idea to try several random starts, then take the one that yields the
lowest obj in (12.4). The resulting means and assignments are the K-means and their
clustering.

12.1.1 Example: Sports data

Recall the data on people ranking seven sports presented in Section 1.6.2. Using the
K-means algorithm for K = 1, . . . , 4, we find the following means (where K = 1 gives
the overall mean):
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K = 1 BaseB FootB BsktB Ten Cyc Swim Jog
Group 1 3.79 4.29 3.74 3.86 3.59 3.78 4.95

K = 2 BaseB FootB BsktB Ten Cyc Swim Jog
Group 1 5.01 5.84 4.35 3.63 2.57 2.47 4.12
Group 2 2.45 2.60 3.06 4.11 4.71 5.21 5.85

K = 3 BaseB FootB BsktB Ten Cyc Swim Jog
Group 1 2.33 2.53 3.05 4.14 4.76 5.33 5.86
Group 2 4.94 5.97 5.00 3.71 2.90 3.35 2.13
Group 3 5.00 5.51 3.76 3.59 2.46 1.90 5.78

K = 4 BaseB FootB BsktB Ten Cyc Swim Jog
Group 1 5.10 5.47 3.75 3.60 2.40 1.90 5.78
Group 2 2.30 2.10 2.65 5.17 4.75 5.35 5.67
Group 3 2.40 3.75 3.90 1.85 4.85 5.20 6.05
Group 4 4.97 6.00 5.07 3.80 2.80 3.23 2.13

(12.7)

Look at the K = 2 means. Group 1 likes swimming and cycling, while group 2
likes the team sports, baseball, football, and basketball. If we compare these to the
K = 3 clustering, we see group 1 appears to be about the same as the team sports
group from K = 2, while groups 2 and 3 both like swimming and cycling. The
difference is that group 3 does not like jogging, while group 2 does. For K = 4, it
looks like the team-sports group has split into one that likes tennis (group 3), and
one that doesn’t (group 2). At this point it may be more useful to try to decide
what number of clusters is “good.” (Being able to interpret the clusters is one good
characteristic.)

12.1.2 Silhouettes

One measure of clustering efficacy is Rousseeuw’s [1987] notion of silhouettes. The
silhouette of an observation i measures how well it fits in its own cluster versus how
well it fits in its next closest cluster. Adapted to K-means, we have

a(i) = ‖xi − µ̂k‖2 and b(i) = ‖xi − µ̂l‖2, (12.8)

where observation i is assigned to group k, and group l has the next-closest group
mean to xi. Then its silhouette is

silhouette(i) =
b(i)− a(i)

max{a(i), b(i)} . (12.9)

By construction, b(i) ≥ a(i), hence the denominator is b(i), and the silhouette takes
values between 0 and 1. If the observation is equal to its group mean, its silhouette
is 1. If it is halfway between the two group means, its silhouette is 0. For other
clusterings (K-medoids, as in Section 12.2, for example), the silhouettes can range
from -1 to 1, but usually stay above 0, or at least do not go much below.

Figure 12.1 contains the silhouettes for K’s from 2 to 5 for the sports data. The
observations (along the horizontal axis) are arranged by group and, within group,
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Figure 12.1: The silhouettes for K = 2, . . . , 5 clusters. The horizontal axis indexes the
observations. The vertical axis exhibits the values of the silhouettes.

by silhouettes. This arrangement allows one to compare the clusters. In the first
plot (K = 2 groups), the two clusters have similar silhouettes, and the silhouettes are
fairly “full.” High silhouettes are good, so that the average silhouette is a measure of
goodness for the clustering. In this case, the average is 0.625. For K = 3, notice that
the first silhouette is still full, while the two smaller clusters are a bit frail. The K = 4
and 5 silhouettes are not as full, either, as indicated by their averages.

Figure 12.2 plots the average silhouette versus K. It is clear that K = 2 has the
highest silhouette, hence we would take K = 2 as the best cluster size.

12.1.3 Plotting clusters in one and two dimensions

With two groups, we have two means in p(= 7)-dimensional space. To look at the
data, we can project the observations to the line that runs through the means. This
projection is where the clustering is taking place. Let

z =
µ̂1 − µ̂2

‖µ̂1 − µ̂2‖
, (12.10)
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Figure 12.3: The histogram for the observations along the line connecting the two
means for K = 2 groups.

the unit vector pointing from µ̂2 to µ̂1. Then using z as an axis, the projections of the
observations onto z have coordinates

wi = xiz
′, i = 1, . . . , N. (12.11)

Figure 12.3 is the histogram for the wi’s, where group 1 has wi > 0 and group 2 has
wi < 0. We can see that the clusters are well-defined in that the bulk of each cluster
is far from the center of the other cluster.

We have also plotted the sports, found by creating a “pure” ranking for each sport.
Thus the pure ranking for baseball would give baseball the rank of 1, and the other
sports the rank of 4.5, so that the sum of the ranks, 28, is the same as for the other
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rankings. Adding these sports to the plot helps aid in interpreting the groups: team
sports on the left, individual sports on the right, with tennis on the individual-sport
side, but close to the border.

If K = 3, then the three means lie in a plane, hence we would like to project the
observations onto that plane. One approach is to use principal components (Section
1.6) on the means. Because there are three, only the first two principal components
will have positive variance, so that all the action will be in the first two. Letting

Z =



µ̂1
µ̂2
µ̂3


 , (12.12)

we apply the spectral decomposition (1.33) in Theorem 1.1 to the sample covariance
matrix of Z:

1

3
Z′H3Z = GLG′, (12.13)

where G is orthogonal and L is diagonal. The diagonals of L here are 11.77, 4.07, and
five zeros. We then rotate the data and the means using G,

W = XG and W(means) = ZG. (12.14)

Figure 12.4 plots the first two variables for W and W(means), along with the seven
pure rankings. We see the people who like team sports to the right, and the people
who like individual sports to the left, divided into those who can and those who
cannot abide jogging. Compare this plot to the biplot that appears in Figure 1.6.

12.1.4 Example: Sports data, using R

The sports data is in the R matrix sportsranks. The K-means clustering uses the

function kmeans. We create a list whose Kth component contains the results for
K = 2, . . . , 10 groups:

kms <− vector(’list’,10)
for(K in 2:10) {

kms[[K]] <− kmeans(sportsranks,centers=K,nstart=10)
}

The centers input specifies the number of groups desired, and nstart=10 means ran-
domly start the algorithm ten times, then use the one with lowest within sum of
squares. The output in kms[[K]] for the K-group clustering is a list with centers, the
K × p of estimated cluster means; cluster, an n-vector that assigns each observation
to its cluster (i.e., the ŷi’s); withinss, the K-vector of SSk’s (so that SS(K) is found
by sum(kms[[K]]$withinss)); and size, the K-vector giving the numbers of observations
assigned to each group.

Silhouettes

Section A.4.1 contains a simple function for calculating the silhouettes in (12.9) for
a given K-means clustering. The sort.silhouette function in Section A.4.2 sorts the
silhouette values for plotting. The following statements produce Figure 12.1:
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Figure 12.4: The scatter plot for the data projected onto the plane containing the
means for K = 3.

sil.ave <− NULL # To collect silhouette’s means for each K
par(mfrow=c(3,3))
for(K in 2:5) {

sil <− silhouette.km(sportsranks,kms[[K]]$centers)
sil.ave <− c(sil.ave,mean(sil))
ssil <− sort.silhouette(sil,kms[[K]]$cluster)
plot(ssil,type=’h’,xlab=’Observations’,ylab=’Silhouettes’)
title(paste(’K =’,K))

}

The sil.ave calculated above can then be used to obtain Figure 12.2:

plot(2:10,sil.ave,type=’l’,xlab=’K’,ylab=’Average silhouette width’)

Plotting the clusters

Finally, we make plots as in Figures 12.3 and 12.4. For K = 2, we have the one z as in
(12.10) and the wi’s as in (12.11):
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z <− kms[[2]]$centers[1,]−kms[[2]]$centers[2,]
z <− z/sqrt(sum(z^2))
w <− sportsranks%∗%z
xl <− c(−6,6); yl <− c(0,13) # Fix the x− and y−ranges
hist(w[kms[[2]]$cluster==1],col=2,xlim=xl,ylim=yl,main=’K=2’,xlab=’W’)
par(new=TRUE) # To allow two histograms on the same plot
hist(w[kms[[2]]$cluster==2],col=3,xlim=xl,ylim=yl,main=’ ’,xlab=’ ’)

To add the sports’ names:

y <− matrix(4.5,7,7)−3.5∗diag(7)
ws <− y%∗%z
text(ws,c(10,11,12,8,9,10,11),labels=dimnames(sportsranks)[[2]])

The various placement numbers were found by trial and error.
For K = 3, or higher, we can use R’s eigenvector/eigenvalue function, eigen, to

find the G used in (12.14):

z <− kms[[3]]$centers
g <− eigen(var(z))$vectors[,1:2] # Just need the first two columns
w <− sportsranks%∗%g # For the observations
ws <− y%∗%g # For the sports’ names
wm <− z%∗%g # For the groups’ means
cl <− kms[[3]]$cluster
plot(w,xlab=’Var 1’,ylab=’Var 2’,pch=cl)
text(wc,labels=1:3)
text(ws,dimnames(sportsranks)[[2]])

12.2 K-medoids

Clustering with medoids [Kaufman and Rousseeuw, 1990] works directly on dis-
tances between objects. Suppose we have n objects, o1, . . . , on, and a dissimilarity
measure d(oi, oj) between pairs. This d satisfies

d(oi, oj) ≥ 0, d(oi, oj) = d(oj, oi), and d(oi, oi) = 0, (12.15)

but it may not be an actual metric in that it need not satisfy the triangle inequality.
Note that one cannot necessarily impute distances between an object and another
vector, e.g., a mean vector. Rather than clustering around means, the clusters are then
built around some of the objects. That is, K-medoids finds K of the objects (c1, . . . , cK)
to act as centers (or medoids), the objective being to find the set that minimizes

obj(c1, . . . , cK) =
N

∑
i=1

min
{c1,...,cK}

d(oi, ck). (12.16)

Silhouettes are defined as in (12.9), except that here, for each observation i,

a(i) = ∑
j ∈ Group k

d(oi, oj) and b(i) = ∑
j ∈ Group l

d(oi, oj), (12.17)

where group k is object i’s group, and group l is its next closest group.



12.2. K-medoids 257

In R, one can use the package cluster, [Maechler et al., 2005], which implements
K-medoids clustering in the function pam, which stands for partitioning around
medoids. Consider the grades data in Section 4.2.1. We will cluster the five vari-
ables, homework, labs, inclass, midterms, and final, not the 107 people. A natural
measure of similarity between two variables is their correlation. Instead of using the
usual Pearson coefficient, we will use Kendall’s τ, which is more robust. For n × 1
vectors x and y, Kendall’s τ is

T(x, y) =
∑1≤i<j≤n Sign(xi − xj)Sign(yi − yj)

(n
2)

. (12.18)

The numerator looks at the line segment connecting each pair of points (xi, yi) and
(xj, yj), counting +1 if the slope is positive and −1 if it is negative. The denominator

normalizes the statistic so that it is between ±1. Then T(x, y) = +1 means that the
xi’s and yi’s are exactly monotonically increasingly related, and −1 means they are
exactly monotonically decreasingly related, much as the correlation coefficient. The
T’s measure similarities, so we subtract each T from 1 to obtain the dissimilarity
matrix:

HW Labs InClass Midterms Final
HW 0.00 0.56 0.86 0.71 0.69
Labs 0.56 0.00 0.80 0.68 0.71
InClass 0.86 0.80 0.00 0.81 0.81
Midterms 0.71 0.68 0.81 0.00 0.53
Final 0.69 0.71 0.81 0.53 0.00

(12.19)

Using R, we find the dissimilarity matrix:

x <− grades[,2:6]
dx <− matrix(nrow=5,ncol=5) # To hold the dissimilarities
for(i in 1:5)

for(j in 1:5)
dx[i,j] <− 1−cor.test(x[,i],x[,j],method=’kendall’)$est

This matrix is passed to the pam function, along with the desired number of groups
K. Thus for K = 3, say, use

pam3 <− pam(as.dist(dx),k=3)

The average silhouette for this clustering is in pam3$silinfo$avewidth. The results for
K = 2, 3 and 4 are

K 2 3 4
Average silhouette 0.108 0.174 0.088

(12.20)

We see that K = 3 has the best average silhouette. The assigned groups for this clus-
tering can be found in pam3$clustering, which is (1,1,2,3,3), meaning the groupings
are, reasonably enough,

{HW, Labs} {InClass} {Midterms, Final}. (12.21)

The medoids, i.e., the objects chosen as centers, are in this case labs, inclass, and
midterms, respectively.
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12.3 Model-based clustering

In model-based clustering [Fraley and Raftery, 2002], we assume that the model in
(12.2) holds, just as for classification. We then estimate the parameters, which in-
cludes the θk’s and the πk’s, and assign observations to clusters as in (12.3):

Ĉ(xi) = k that maximizes
f (xi | θ̂k)π̂k

f (xi | θ̂1)π̂1 + · · ·+ f (xi | θ̂K)π̂K

. (12.22)

As opposed to classification situations, in clustering we do not observe the yi’s, hence
cannot use the joint distribution of (Y, X) to estimate the parameters. Instead, we
need to use the marginal of X, which is the denominator in the C:

f (xi) = f (xi | θ1, . . . , θK, π1, . . . , πK)

= f (xi | θ1)π1 + · · ·+ f (xi | θK)πK. (12.23)

The density is a mixture density, as in (11.5).
The likelihood for the data is then

L(θ1, . . . ,θK , π1, . . . , πK ; x1, . . . , xn) =
n

∏
i=1

( f (xi | θ1)π1 + · · ·+ f (xi | θK)πK) .

(12.24)
The likelihood can be maximized for any specific model (specifying the f ’s and θk’s
as well as K), and models can compared using the BIC (or AIC). The likelihood
(12.24) is not always easy to maximize due to its being a product of sums. Often the
EM algorithm (see Section 12.4) is helpful.

We will present the multivariate normal case, as we did in (11.24) and (11.25) for
classification. The general model assumes for each k that

X |Y = k ∼ N1×p(µk, Σk). (12.25)

We will assume the µk’s are free to vary, although models in which there are equalities
among some of the elements are certainly reasonable. There are also a variety of
structural and equality assumptions on the Σk’s used.

12.3.1 Example: Automobile data

The R function we use is in the package mclust, Fraley and Raftery [2010]. Our
data consists of size measurements on 111 automobiles, the variables include length,
wheelbase, width, height, front and rear head room, front leg room, rear seating, front
and rear shoulder room, and luggage area. The data are in the file cars, from Con-

sumers’ Union [1990], and can be found in the S-Plus® [TIBCO Software Inc., 2009]
data frame cu.dimensions. The variables in cars have been normalized to have medians
of 0 and median absolute deviations (MAD) of 1.4826 (the MAD for a N(0, 1)).

The routine we’ll use is Mclust (be sure to capitalize the M). It will try various
forms of the covariance matrices and group sizes, and pick the best based on the BIC.
To use the default options and have the results placed in mcars, use

mcars <− Mclust(cars)

There are many options for plotting in the package. To see a plot of the BIC’s, use
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Figure 12.5: −BIC’s for fitting the entire data set.

plot(mcars,cars,what=’BIC’)

You have to clicking on the graphics window, or hit enter, to reveal the plot. The result
is in Figure 12.5. The horizontal axis specifies the K, and the vertical axis gives the
BIC values, although these are the the negatives of our BIC’s. The symbols plotted
on the graph are codes for various structural hypotheses on the covariances. See
(12.31). In this example, the best model is Model “VVV” with K = 2, which means
the covariance matrices are arbitrary and unequal.

Some pairwise plots (length versus height, width versus front head room, and
rear head room versus luggage) are given in Figure 12.6. The plots include ellipses to
illustrate the covariance matrices. Indeed we see that the two ellipses in each plot are
arbitrary and unequal. To plot variable 1 (length) versus variable 4 (height), use

plot(mcars,cars,what=’classification’,dimens=c(1,4))

We also plot the first two principal components (Section 1.6). The matrix of eigenvec-
tors, G in (1.33), is given by eigen(var(cars))$vectors:

carspc <− cars%∗%eigen(var(cars))$vectors # Principal components

To obtain the ellipses, we redid the clustering using the principal components as the
data, and specifying G=2 groups in Mclust.

Look at the plots. The lower left graph shows that group 2 is almost constant
on the luggage variable. In addition, the upper left and lower right graphs indicate
that group 2 can be divided into two groups, although the BIC did not pick up the



260 Chapter 12. Clustering

−4 −2 0 2 4

−
5

0
5

10
15

20

Length

H
ei

gh
t

−4 −2 0 2 4

−
4

−
2

0
2

4

Width

F
ro

nt
 h

ea
d 

ro
om

−4 −2 0 2 4 6

−
8

−
4

0
2

4

Rear head room

Lu
gg

ag
e

0 10 20 30

−
20

−
10

0
5

PC1

P
C

2

Figure 12.6: Some two-variable plots of the clustering produced by Mclust. The solid
triangles indicate group 1, and the open squares indicate group 2. The fourth graph
plots the first two principal components of the data.

difference. The Table 12.1 exhibits four of the variables for the 15 automobiles in
group 2.

We have divided this group as suggested by the principal component plot. Note
that the first group of five are all sports cars. They have no back seats or luggage areas,
hence the values in the data set for the corresponding variables are coded somehow.
The other ten automobiles are minivans. They do not have specific luggage areas, i.e.,
trunks, either, although in a sense the whole vehicle is a big luggage area. Thus this
group really is a union of two smaller groups, both of which are quite a bit different
than group 1.

We now redo the analysis on just the group 1 automobiles:

cars1 <− cars[mcars$classification==1,]
mcars1 <− Mclust(cars1)

The model chosen by BIC is “XXX with 1 components” which means the best cluster-
ing is one large group, where the Σ is arbitrary. See Figure 12.7 for the BIC plot. The
EEE models (equal but arbitrary covariance matrices) appear to be quite good, and
similar BIC-wise, for K from 1 to 4. To get the actual BIC values, look at the vector
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Rear Head Rear Seating Rear Shoulder Luggage
Chevrolet Corvette −4.0 −19.67 −28.00 −8.0
Honda Civic CRX −4.0 −19.67 −28.00 −8.0
Mazda MX5 Miata −4.0 −19.67 −28.00 −8.0
Mazda RX7 −4.0 −19.67 −28.00 −8.0
Nissan 300ZX −4.0 −19.67 −28.00 −8.0
Chevrolet Astro 2.5 0.33 −1.75 −8.0
Chevrolet Lumina APV 2.0 3.33 4.00 −8.0
Dodge Caravan 2.5 −0.33 −6.25 −8.0
Dodge Grand Caravan 2.0 2.33 3.25 −8.0
Ford Aerostar 1.5 1.67 4.25 −8.0
Mazda MPV 3.5 0.00 −5.50 −8.0
Mitsubishi Wagon 2.5 −19.00 2.50 −8.0
Nissan Axxess 2.5 0.67 1.25 −8.5
Nissan Van 3.0 −19.00 2.25 −8.0
Volkswagen Vanagon 7.0 6.33 −7.25 −8.0

Table 12.1: The automobiles in group 2 of the clustering of all the data.

mcars1$BIC[,’’EEE’’]. The next table has the BIC’s and corresponding estimates of the
posterior probabilities for the first five model, where we shift the BIC’s so that the
best is 0:

K 1 2 3 4 5
BIC 0 28.54 9.53 22.09 44.81

P̂BIC 99.15 0 0.84 0 0
(12.26)

Indeed, it looks like one group is best, although three groups may be worth looking
at. It turns out the three groups are basically large, middle-sized, and small cars. Not
profound, perhaps, but reasonable.

12.3.2 Some of the models in mclust

The mclust package considers several models for the covariance matrices. Suppose
that the covariance matrices for the groups are Σ1, . . . , ΣK, where each has its spectral
decomposition (1.33)

Σk = ΓkΛkΓ
′
k, (12.27)

and the eigenvalue matrix is decomposed as

Λk = ck∆k where |∆k| = 1 and ck = [
p

∏
j=1

λj]
1/p, (12.28)

the geometric mean of the eigenvalues. A covariance matrix is then described by
shape, volume, and orientation:

Shape(Σk) = ∆k;

Volume(Σk) = |Σk| = c
p
k ;

Orientation(Σk) = Γk. (12.29)
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Figure 12.7: −BIC’s for the data set without the sports cars or minivans.

The covariance matrices are then classified into spherical, diagonal, and ellipsoidal:

Spherical ⇒ ∆k = Ip ⇒ Σk = ckIp;

Diagonal ⇒ Γk = Ip ⇒ Σk = ckDk;

Ellipsoidal ⇒ Σk is arbitrary. (12.30)

The various models are defined by the type of covariances, and what equalities
there are among them. I haven’t been able to crack the code totally, but the descrip-
tions tell the story. When K ≥ 2 and p ≥ 2, the following table may help translate the
descriptions into restrictions on the covariance matrices through (12.29) and(12.30):

Code Description Σk

EII spherical, equal volume σ2Ip

VII spherical, unequal volume σ2
k Ip

EEI diagonal, equal volume and shape Λ

VEI diagonal, varying volume, equal shape ck∆

EVI diagonal, equal volume, varying shape c∆k
VVI diagonal, varying volume and shape Λk
EEE ellipsoidal, equal volume, shape, and orientation Σ

EEV ellipsoidal, equal volume and equal shape ΓkΛΓ
′
k

VEV ellipsoidal, equal shape ckΓk∆Γ
′
k

VVV ellipsoidal, varying volume, shape, and orientation arbitrary

(12.31)

Here, Λ’s are diagonal matrices with positive diagonals, ∆’s are diagonal matrices
with positive diagonals whose product is 1 as in (12.28), Γ’s are orthogonal matrices,
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Σ’s are arbitrary nonnegative definite symmetric matrices, and c’s are positive scalars.
A subscript k on an element means the groups can have different values for that
element. No subscript means that element is the same for each group.

If there is only one variable, but K ≥ 2, then the only two models are “E,” meaning
the variances of the groups are equal, and “V,” meaning the variances can vary. If
there is only one group, then the models are as follows:

Code Description Σ

X one-dimensional σ2

XII spherical σ2Ip

XXI diagonal Λ

XXX ellipsoidal arbitrary

(12.32)

12.4 An example of the EM algorithm

The aim of this section is to give the flavor of an implementation of the EM algorithm.
We assume K groups with the multivariate normal distribution as in (12.25), with
different arbitrary Σk’s. The idea is to iterate two steps:

1. Having estimates of the parameters, find estimates of P[Y = k | X = xi]’s.

2. Having estimates of P[Y = k | X = xi]’s, find estimates of the parameters.

Suppose we start with initial estimates of the πk’s, µk’s, and Σk’s. E.g., one could
first perform a K-means procedure, then use the sample means and covariance ma-
trices of the groups to estimate the means and covariances, and estimate the πk’s by
the proportions of observations in the groups. Then, as in (12.22), for step 1 we use

P̂[Y = k |X = xi] =
f (xi | µ̂k, Σ̂k)π̂k

f (xi | µ̂1, Σ̂1)π̂1 + · · ·+ f (xi | µ̂K, Σ̂K)π̂K

≡ w
(i)
k , (12.33)

where θ̂k = (µ̂k, Σ̂k).

Note that for each i, the w
(i)
k can be thought of as weights, because their sum over

k is 1. Then in Step 2, we find the weighted means and covariances of the xi’s:

µ̂k =
1

n̂k

N

∑
i=1

w
(i)
k xi

and Σ̂k =
1

n̂k

n

∑
i=1

w
(i)
k (xi − µ̂k)(xi − µ̂k)

′,

where n̂k =
n

∑
i=1

w
(i)
k .

Also, π̂k =
n̂k

n
. (12.34)

The two steps are iterated until convergence. The convergence may be slow, and
it may not approach the global maximum likelihood, but it is guaranteed to increase



264 Chapter 12. Clustering

the likelihood at each step. As in K-means, it is a good idea to try different starting
points.

In the end, the observations are clustered using the conditional probabilities, be-
cause from (12.22),

Ĉ(xi) = k that maximizes w
(i)
k . (12.35)

12.5 Soft K-means

We note that the K-means procedure in (12.5) and (12.6) is very similar to the EM
procedure in (12.33) and (12.34) if we take a hard form of conditional probability, i.e.,
take

w
(i)
k =

{
1 if xi is assigned to group k
0 otherwise.

(12.36)

Then the µ̂k in (12.34) becomes the sample means of the observations assigned to
cluster k.

A model for which model-based clustering mimics K-means clustering assumes

that in (12.25), the covariance matrices Σk = σ2Ip (model “EII” in (12.31)), so that

fk(xi) = c
1

σp e
− 1

2σ2 ‖xi−µ̂k‖2

. (12.37)

If σ is fixed, then the EM algorithm proceeds as above, except that the covariance
calculation in (12.34) is unnecessary. If we let σ → 0 in (12.33), fixing the means, we
have that

P̂[Y = k |X = xi] −→ w
(i)
k (12.38)

for the w
(i)
k in (12.36), at least if all the π̂k’s are positive. Thus for small fixed σ,

K-means and model-based clustering are practically the same.
Allowing σ to be estimated as well leads to what we call soft K-means, soft be-

cause we use a weighted mean, where the weights depend on the distances from
the observations to the group means. See Hastie et al. [2009]. In this case, the EM
algorithm is as in (12.33) and (12.34), but with the estimate of the covariance replaced

with the pooled estimate of σ2,

σ̂2 =
1

n

K

∑
k=1

n

∑
i=1

w
(i)
k ‖xi − µ̂k‖2. (12.39)

12.5.1 Example: Sports data

In Section 12.1.1, we used K-means to find clusters in the data on peoples’ favorite
sports. Here we use soft K-means. There are a couple of problems with using this
model (12.37): (1) The data are discrete, not continuous as in the multivariate normal;
(2) The dimension is actually 6, not 7, because each observation is a permutation of
1, . . . , 7, hence sums to the 28. To fix the latter problem, we multiply the data matrix
by any orthogonal matrix whose first column is constant, then throw away the first
column of the result (since it is a constant). Orthogonal polynomials are easy in R:

h <− poly(1:7,6) # Gives all but the constant term.
x <− sportsranks%∗%h
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The clustering can be implemented in Mclust by specifying the “EII” model in
(12.31):

skms <− Mclust(x,modelNames=’EII’)

The shifted BIC’s are

K 1 2 3 4 5
BIC 95.40 0 21.79 32.28 48.27

(12.40)

Clearly K = 2 is best, which is what we found using K-means in Section 12.1.1. It
turns out the observations are clustered exactly the same for K = 2 whether using
K-means or soft K-means. When K = 3, the two methods differ on only three obser-
vations, but for K = 4, 35 are differently clustered.

12.6 Hierarchical clustering

A hierarchical clustering gives a sequence of clusterings, each one combining two
clusters of the previous stage. We assume n objects and their dissimilarities d as in
(12.15). To illustrate, consider the five grades’ variables in Section 12.2. A possible
hierarchical sequence of clusterings starts with each object in its own group, then
combines two of those elements, say midterms and final. The next step could combine
two of the other singletons, or place one of them with the midterms/final group. Here
we combine homework and labs, then combine all but inclass, then finally have one
big group with all the objects:

{HW} {Labs} {InClass} {Midterms} {Final}
→{HW} {Labs} {InClass} {Midterms, Final}
→{HW, Labs} {InClass} {Midterms, Final}
→{InClass} {HW, Labs, Midterms, Final}
→{InClass, HW, Labs, Midterms, Final} (12.41)

Reversing the steps and connecting, one obtains a tree diagram, or dendrogram, as in
Figure 12.8.

For a set of objects, the question is which clusters to combine at each stage. At
the first stage, we combine the two closest objects, that is, the pair (oi, oj) with the

smallest d(o1, oj). At any further stage, we may wish to combine two individual
objects, or a single object to a group, or two groups. Thus we need to decide how
to measure the dissimilarity between any two groups of objects. There are many
possibilities. Three popular ones look at the minimum, average, and maximum of
the individuals’ distances. That is, suppose A and B are subsets of objects. Then the
three distances between the subsets are

Single linkage: d(A, B) = min
a∈A,b∈B

d(a, b)

Average linkage: d(A, B) =
1

#A × #B ∑
a∈A

∑
b∈B

d(a, b)

Complete linkage: d(A, B) = max
a∈A,b∈B

d(a, b) (12.42)

In all cases, d({a}, {b}) = d(a, b). Complete linkage is an example of Hausdorff
distance, at least when the d is a distance.
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Figure 12.8: Hierarchical clustering of the grades, using complete linkage.

12.6.1 Example: Grades data

Consider the dissimilarities for the five variables of the grades data given in (12.19).
The hierarchical clustering using these dissimilarities with complete linkage is given
in Figure 12.8. This clustering is not surprising given the results of K-medoids in
(12.21). As in (12.41), the hierarchical clustering starts with each object in its own
cluster. Next we look for the smallest dissimilarity between two objects, which is the
0.53 between midterms and final. In the dendrogram, we see these two scores being
connected at the height of 0.53.

We now have four clusters, with dissimilarity matrix

HW Labs InClass {Midterms, Final}
HW 0.00 0.56 0.86 0.71
Labs 0.56 0.00 0.80 0.71
InClass 0.86 0.80 0.00 0.81
{Midterms, Final} 0.71 0.71 0.81 0.00

(12.43)

(The dissimilarity between the cluster {Midterms, Final} and itself is not really zero,
but we put zero there for convenience.) Because we are using complete linkage, the
dissimilarity between a single object and the cluster with two objects is the maximum
of the two individual dissimilarities. For example,

d({HW}, {Midterms, Final}) = max{d(HW, Midterms), d(HW, Final)}
= max{0.71, 0.69}
= 0.71. (12.44)

The two closest clusters are now the singletons HW and Labs, with a dissimilarity of
0.56. The new dissimilarity matrix is then

{HW, Labs} InClass {Midterms, Final}
{HW, Labs} 0.00 0.86 0.71
InClass 0.86 0.00 0.81
{Midterms, Final} 0.71 0.81 0.00

(12.45)
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Figure 12.9: Clustering the sports, using complete linkage.

The next step combines the two two-object clusters, and the final step places InClass
with the rest.

To use R, we start with the dissimilarity matrix dx in (12.19). The routine hclust
creates the tree, and plclust plots it. We need the as.dist there to let the function know
we already have the dissimilarities. Then Figure 12.8 is created by the statement

plclust(hclust(as.dist(dx)))

12.6.2 Example: Sports data

Turn to the sports data from Section 12.1.1. Here we cluster the sports, using squared
Euclidean distance as the dissimilarity, and compete linkage. To use squared Eu-
clidean distances, use the dist function directly on the data matrix. Figure 12.9 is
found using

plclust(hclust(dist(t(sportsranks))))

Compare this plot to the K-means plot in Figure 12.4. We see somewhat similar
closenesses among the sports.

Figure 12.10 clusters the individuals using complete linkage and single linkage,
created using

par(mfrow=c(2,1))
dxs <− dist(sportsranks) # Gets Euclidean distances
lbl <− rep(’ ’,130) # Prefer no labels for the individuals
plclust(hclust(dxs),xlab=’Complete linkage’,sub=’ ’,labels=lbl)
plclust(hclust(dxs,method=’single’),xlab=’Single linkage’,sub=’ ’,labels=lbl)

Complete linkage tends to favor similar-sized clusters, because by using the max-
imum distance, it is easier for two small clusters to get together than anything to
attach itself to a large cluster. Single linkage tends to favor a few large clusters, and
the rest small, because the larger the cluster, the more likely it will be close to small
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Figure 12.10: Clustering the individuals in the sports data, using complete linkage
(top) and single linkage (bottom).

clusters. These ideas are borne out in the plot, where complete linkage yields a more
treey-looking dendrogram.
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12.7 Exercises

Exercise 12.7.1. Show that |Σk| = c
p
k in (12.29) follows from (12.27) and (12.28).

Exercise 12.7.2. (a) Show that the EM algorithm, where we use the w
(i)
k ’s in (12.36) as

the estimate of P̂[Y = k | X = xi], rather than that in (12.33), is the K-means algorithm
of Section 12.1. [Note: You have to worry only about the mean in (12.34).] (b) Show

that the limit as σ → 0 of P̂[Y = k | X = xi] is indeed given in (12.36), if we use the fk
in (12.37) in (12.33).

Exercise 12.7.3 (Grades). This problem is to cluster the students in the grades data
based on variables 2–6: homework, labs, inclass, midterms, and final. (a) Use K-
means clustering for K = 2. (Use nstart=100, which is a little high, but makes sure
everyone gets similar answers.) Look at the centers, and briefly characterize the
clusters. Compare the men and women (variable 1, 0=Male, 1=Female) on which
clusters they are in. (Be sure to take into account that there are about twice as many
women as men.) Any differences? (b) Same question, for K = 3. (c) Same question,
for K = 4. (d) Find the average silhouettes for the K = 2, 3 and 4 clusterings from
parts (a), (b) and (c). Which K has the highest average silhouette? (e) Use soft K-
means to find the K = 1, 2, 3 and 4 clusterings. Which K is best according to the
BIC’s? (Be aware that the BIC’s in Mclust are negative what we use.) Is it the same as
for the best K-means clustering (based on silhouettes) found in part (d)? (f) For each
of K = 2, 3, 4, compare the classifications of the data using regular K-means to that of
soft K-means. That is, match the clusters produced by both methods for given K, and
count how many observations were differently clustered.

Exercise 12.7.4 (Diabetes). The R package mclust contains the data set diabetes [Reaven
and Miller, 1979]. There are n = 145 subjects and four variables. The first variable
(class) is a categorical variable indicating whether the subject has overt diabetes (my
interpretation: symptoms are obvious), chemical diabetes (my interpretation: can
only be detected through chemical analysis of the blood), or is normal (no diabetes).
The other three variables are blood measurements: glucose, insulin, sspg. (a) First,
normalize the three blood measurement variables so that they have means zero and
variances 1:

blood <− scale(diabetes[,2:4])

Use K-means to cluster the observations on the three normalized blood measurement
variables for K = 1, 2, . . . , 9. (b) Find the average silhouettes for the clusterings found
in part (a), except for K = 1. Which K would you choose based on this criterion?
(c) Use model-based clustering, again with K = 1, . . . 9. Which model and K has the
best BIC? (d) For each of the two “best” clusterings in parts (b) and (c), plot each
pair of variables, indicating which cluster each point was assigned, as in Figure 12.6.
Compare these to the same plots that use the class variable as the indicator. What
do you notice? (e) For each of the two best clusterings, find the table comparing the
clusters with the class variable. Which clustering was closest to the class variable?
Why do you suppose that clustering was closest? (Look at the plots.)

Exercise 12.7.5 (Iris). This question applies model-based clustering to the iris data,
pretending we do not know which observations are in which species. (a) Do the
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model-based clustering without any restrictions (i.e., use the defaults). Which model
and number K was best, according to BIC? Compare the clustering for this best model
to the actual species. (b) Now look at the BIC’s for the model chosen in part (a), but
for the various K’s from 1 to 9. Calculate the corresponding estimated posterior
probabilities. What do you see? (c) Fit the same model, but with K = 3. Now
compare the clustering to the true species.

Exercise 12.7.6 (Grades). Verify the dissimilarity matrices in (12.43) and (12.45).

Exercise 12.7.7 (Soft drinks). The data set softdrinks has 23 peoples’ ranking of 8
soft drinks: Coke, Pepsi, Sprite, 7-up, and their diet equivalents. Do a hierarchical
clustering on the drinks, so that the command is

hclust(dist(t(softdrinks)))

then plot the tree with the appropriate labels. Describe the tree. Does the clustering
make sense?

Exercise 12.7.8 (Cereal). Exercise 1.9.19 presented the cereal data (in the R data ma-
trix cereal), finding the biplot. Do hierarchical clustering on the cereals, and on the
attributes. Do the clusters make sense? What else would you like to know from these
data? Compare the clusterings to the biplot. What is the advantage of the biplot
relative to the hierarchical clusterings?
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Principal Components and Related Techniques

Data reduction is a common goal in multivariate analysis — one has too many vari-
ables, and wishes to reduce the number of them without losing much information.
How to approach the reduction depends of course on the goal of the analysis. For
example, in linear models, there are clear dependent variables (in the Y matrix) that
we are trying to explain or predict from the explanatory variables (in the x matrix,
and possibly the z matrix). Then Mallows’ Cp or cross-validation are reasonable ap-
proaches. If the correlations between the Y’s are of interest, then factor analysis is
appropriate, where the likelihood ratio test is a good measure of how many factors
to take. In classification, using cross-validation is a good way to decide on the vari-
ables. In model-based clustering, and in fact any situation with a likelihood, one can
balance the fit and complexity of the model using something like AIC or BIC.

There are other situations in which the goal is not so clear cut as in those above;
one is more interested in exploring the data, using data reduction to get a better
handle on the data, in the hope that something interesting will reveal itself. The
reduced data may then be used in more formal models, although I recommend first
considering targeted reductions as mentioned in the previous paragraph, rather than
immediately jumping to principal components.

Below we discuss principal components in more depth, then present multidimen-
sional scaling, and canonical correlations.

13.1 Principal components, redux

Recall way back in Section 1.6 that the objective in principal component analysis was
to find linear combinations (with norm 1) with maximum variance. As an exploratory
technique, principal components can be very useful, as are other projection pursuit
methods. The conceit underlying principal components is that variance is associated
with interestingness, which may or may not hold. As long as in an exploratory mood,
though, if one finds the top principal components are not particularly interesting or
interpretable, then one can go in a different direction.

But be careful not to shift over to the notion that components with low variance
can be ignored. It could very well be that they are the most important, e.g., most
correlated with a separate variable of interest. Using principal components as the
first step in a process, where one takes the first few principal components to use in
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another procedure such as clustering or classification, may or may not work out well.
In particular, it makes little sense to use principal components to reduce the variables
before using them in a linear process such as regression, canonical correlations, or
Fisher’s linear discrimination. For example, in regression, we are trying to find the
linear combination of x’s that best correlates with y. The answer is given by the fit, ŷ.
Using principal components first on the x’s will give us a few new variables that are
linear combinations of x’s, which we then further take linear combinations of to cor-
relate with the y. What we end up with is a worse correlation than if we just started
with the original x’s, since some parts of the x’s are left behind. The same thinking
goes when using linear discrimination: We want the linear combination of x’s that
best distinguishes the groups, not the best linear combination of a few linear com-
binations of the x’s. Because factor analysis tries to account for correlations among
the variables, if one transforms to principal components, which are uncorrelated, be-
fore applying factor analysis, then there will be no common factors. On the other
hand, if one is using nonlinear techniques such as classification trees, first reducing
by principal components may indeed help.

Even principal components are not unique. E.g., you must choose whether or
not to take into account covariates or categorical factors before finding the sample
covariance matrix. You also need to decide how to scale the variables, i.e., whether to
leave them in their original units, or scale so that all variables have the same sample
variance, or scale in some other way. The scaling will affect the principal components,
unlike in factor analysis or linear regression.

13.1.1 Example: Iris data

Recall that the Fisher/Anderson iris data (Section 1.3.1) has n = 150 observations
and q = 4 variables. The measurements of the petals and sepals are in centimeters,
so it is reasonable to leave the data unscaled. On the other hand, the variances of
the variables do differ, so scaling so that each has unit variance is also reasonable.
Furthermore, we could either leave the data unadjusted in the sense of subtracting
the overall mean when finding the covariance matrix, or adjust the data for species by
subtracting from each observation the mean of its species. Thus we have four reason-
able starting points for principal components, based on whether we adjust for species
and whether we scale the variables. Figure 13.1 has plots of the first two principal
components for each of these possibilities. Note that there is a stark difference be-
tween the plots based on adjusted and unadjusted data. The unadjusted plots show
a clear separation based on species, while the adjusted plots have the species totally
mixed, which would be expected because there are differences in means between
the species. Adjusting hides those differences. There are less obvious differences
between the scaled and unscaled plots within adjusted/unadjusted pairs. For the ad-
justed data, the unscaled plot seems to have fairly equal spreads for the three species,
while the scaled data has the virginica observations more spread out than the other
two species.

The table below shows the sample variances, s2, and first principal component’s
loadings (sample eigenvector), PC1, for each of the four sets of principal components:
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Figure 13.1: Plots of the first two principal components for the iris data, depending on
whether adjusting for species and whether scaling the variables to unit variance. For
the individual points, “s” indicates setosa, “v” indicates versicolor, and “g” indicates
virginica.

Unadjusted Adjusted
Unscaled Scaled Unscaled Scaled
s2 PC1 s2 PC1 s2 PC1 s2 PC1

Sepal Length 0.69 0.36 1 0.52 0.26 0.74 1 −0.54
Sepal Width 0.19 −0.08 1 −0.27 0.11 0.32 1 −0.47
Petal Length 3.12 0.86 1 0.58 0.18 0.57 1 −0.53
Petal Width 0.58 0.36 1 0.56 0.04 0.16 1 −0.45

(13.1)

Note that whether adjusted or not, the relative variances of the variables affect
the relative weighting they have in the principal component. For example, for the
unadjusted data, petal length has the highest variance in the unscaled data, and
receives the highest loading in the eigenvector. That is, the first principal component
is primarily sepal length. But for the scaled data, all variables are forced to have
the same variance, and now the loadings of the variables are much more equal. The
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Figure 13.2: The left-hand plot is a scree plot (i versus li) of the eigenvalues for the
automobile data. The right-hand plot shows i versus log(li/li+1), the successive log-
proportional gaps.

opposite holds for sepal width. A similar effect is seen for the adjusted data. The
sepal length has the highest unscaled variance and highest loading in PC1, and petal
width the lowest variance and loading. But scaled, the loadings are approximately
equal.

Any of the four sets of principal components is reasonable. Which to use depends
on what one is interested in, e.g., if wanting to distinguish between species, the
unadjusted plots are likely more interesting, while when interested in relations within
species, adjusting make sense. We mention that in cases where the units are vastly
different for the variables, e.g., population in thousands and areas in square miles of
cities, leaving the data unscaled is less defensible.

13.1.2 Choosing the number of principal components

One obvious question is, “How does one choose p?” Unfortunately, there is not
any very good answer. In fact, it is probably not even a good question, because the
implication of the question is that once we have p, we can proceed using just the
first p principal components, and throw away the remainder. Rather, we take a more
modest approach and ask “Which principal components seem to be worth exploring
further?” A key factor is whether the component has a reasonable interpretation. Of
course, nothing prevents you from looking at as many as you have time for.

The most common graphical technique for deciding on p is the scree plot, in
which the sample eigenvalues are plotted versus their indices. (A scree is a pile of
small stones at the bottom of a cliff.) Consider Example 12.3.1 on the automobile data,
here using the n = 96 autos with trunk space, and all q = 11 variables. Scaling the
variables so that they are have unit sample variance, we obtain the sample eigenvalues

6.210, 1.833, 0.916, 0.691, 0.539, 0.279, 0.221, 0.138, 0.081, 0.061, 0.030. (13.2)

The scree plot is the first one in Figure 13.2. Note that there is a big drop from the
first to the second eigenvalue. There is a smaller drop to the third, then the values
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seem to level off. Other simple plots can highlight the gaps. For example, the second
plot in the figure shows the logarithms of the successive proportional drops via

log(ratioi) ≡ log

(
li

li+1

)
. (13.3)

The biggest drops are again from #1 to #2, and #2 to #3, but there are almost as large
proportional drops at the fifth and tenth stages.

One may have outside information or requirements that aid in choosing the com-
ponents. For examples, there may be a reason one wishes a certain number of com-
ponents (say, three if the next step is a three-dimensional plot), or to have as few
components as possible in order to achieve a certain percentage (e.g., 95%) of the to-
tal variance. If one has an idea that the measurement error for the observed variables
is c, then it makes sense to take just the principal components that have eigenvalue

significantly greater than c2. Or, as in the iris data, all the data is accurate just to one
decimal place, so that taking c = 0.05 is certainly defensible.

To assess significance, assume that

U ∼ Wishartq(ν, Σ), and S =
1

ν
U, (13.4)

where ν > q and Σ is invertible. Although we do not necessarily expect this dis-
tribution to hold in practice, it will help develop guidelines to use. Let the spectral
decompositions of S and Σ be

S = GLG′ and Σ = ΓΛΓ
′, (13.5)

where G and Γ are orthogonal, and L and Λ are diagonal with nonincreasing diagonal
elements (the eigenvalues), as in Theorem 1.1. The eigenvalues of S will be distinct
with probability 1. If we assume that the eigenvalues of Σ are also distinct, then
Theorem 13.5.1 in Anderson [2003] shows that for large ν, the sample eigenvalues are

approximately independent, and li ≈ N(λi, 2λ2
i /ν). If components with λi ≤ c2 are

ignorable, then it is reasonable to ignore the li for which

√
ν

li − c2

√
2 li

< 2, equivalently, li <
c2

1 − 2
√

2/
√

ν
. (13.6)

(One may be tempted to take c = 0, but if any λi = 0, then the corresponding li will
be zero as well, so that there is no need for hypothesis testing.) Other test statistics
(or really “guidance statistics”) can be easily derived, e.g., to see whether the average

of the k smallest eigenvalues are less than c2, or the sum of the first p are greater than
some other cutoff.

13.1.3 Estimating the structure of the component spaces

If the eigenvalues of Σ are distinct, then the spectral decomposition (13.5) splits
the q-dimensional space into q orthogonal one-dimensional spaces. If, say, the first
two eigenvalues are equal, then the first two subspaces are merged into one two-
dimensional subspace. That is, there is no way to distinguish between the top two
dimensions. At the extreme, if all eigenvalues are equal, in which case Σ = λIq, there
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is no statistically legitimate reason to distinguish any principal components. More
generally, suppose there are K distinct values among the λi’s, say

α1 > α2 > · · · > αK , (13.7)

where qk of the λi’s are equal to αk:

λ1 = · · · = λq1 = α1,

λq1+1 = · · · = λq1+q2 = α2,

...

λq1+···+qK−1+1 = · · · = λq = αK . (13.8)

Then the space is split into K orthogonal subspaces, of dimensions q1, . . . , qK,
where q = q1 + · · ·+ qK. The vector (q1, . . . , qK) is referred to as the pattern of equal-
ities among the eigenvalues. Let Γ be an orthogonal matrix containing eigenvectors
as in (13.5), and partition it as

Γ =
(

Γ1 Γ2 · · · ΓK

)
, Γk is q × qk, (13.9)

so that Γk contains the eigenvectors for the qk eigenvalues that equal αk. These are
not unique because ΓkJ for any qk × qk orthogonal matrix J will also yield a set of
eigenvectors for those eigenvalues. The subspaces have corresponding projection
matrices P1, . . . , PK, which are unique, and we can write

Σ =
K

∑
k=1

αkPk, where Pk = ΓkΓ
′
k. (13.10)

With this structure, the principal components can be defined only in groups, i.e., the
first q1 of them represent one group, which have higher variance than the next group
of q2 components, etc., down to the final qK components. There is no distinction
within a group, so that one would take either the top q1 components, or the top
q1 + q2, or the top q1 + q2 + q3, etc.

Using the distributional assumption (13.4), we find the Bayes information criterion
to choose among the possible patterns (13.8) of equality. The best set can then be used
in plots such as in Figure 13.3, where the gaps will be either enhanced (if large) or
eliminated (if small). The model (13.8) will be denoted M(q1,...,qK). Anderson [1963]

(see also Section 13.1.6) shows the following.

Theorem 13.1. Suppose (13.4) holds, and S and Σ have spectral decompositions as in (13.5).

Then the MLE of Σ under the model M(q1,...,qK) is given by Σ̂ = GΛ̂G′, where the λ̂i’s are

found by averaging the relevant li’s:

λ̂1 = . . . = λ̂q1 = α̂1 =
1

q1
(l1 + . . . + lq1),

λ̂q1+1 = · · · = λ̂q1+q2 = α̂2 =
1

q2
(lq1+1 + · · ·+ lq1+q2),

...

λ̂q1+···+qK−1+1 = · · · = λ̂q = α̂K =
1

qK
(lq1+···+qK−1+1 + · · ·+ lq). (13.11)
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The number of free parameters is

d(q1, . . . qK) =
1

2
(q2 −

K

∑
k=1

q2
k) + K. (13.12)

The deviance can then be taken to be

deviance(M(q1,...qK)(Σ̂) ; S) = ν
q

∑
i=1

log(λ̂i) = ν
K

∑
k=1

qk log(α̂k). (13.13)

See Exercise 13.4.3. Using (13.12), we have

BIC(M(q1,...qK)) = ν
K

∑
k=1

qk log(α̂k) + log(ν)d(q1, . . . qK). (13.14)

13.1.4 Example: Automobile data

Let S be the scaled covariance matrix for the automobiles with trunks, described in
Section 12.3.1. Equation (13.2) and Figure 13.2 exhibit the eigenvalues of S, They are
denoted lj in (13.15). We first illustrate the model (13.8) with pattern (1, 1, 3, 3, 2, 1).
The MLE’s of the eigenvalues are then found by averaging the third through fifth,
the sixth through eighth, the ninth and tenth, and leaving the others alone, denoted

below by the λ̂j’s:

j 1 2 3 4 5
lj 6.210 1.833 0.916 0.691 0.539

λ̂j 6.210 1.833 0.716 0.716 0.716

j 6 7 8 9 10 11
lj 0.279 0.221 0.138 0.081 0.061 0.030

λ̂j 0.213 0.213 0.213 0.071 0.071 0.030

(13.15)

With ν = n − 1 = 95,

deviance(M(1,1,3,3,2,1)(Σ̂) ; S) = 95 ∑
j

log(λ̂j) = −1141.398, (13.16)

and d(1, 1, 3, 3, 2, 1) = 54, hence

BIC(M(1,1,3,3,2,1)) = −1141.398 + log(95) 54 = −895.489. (13.17)

Table 13.1.4 contains a number of models, one each for K from 1 to 11. Each
pattern after the first was chosen to be the best that is obtained from the previous by
summing two consecutive qk’s. The estimated probabilities are among those in the
table. Clearly, the preferred is the one with MLE in (13.15). Note that the assumption
(13.4) is far from holding here, both because the data are not normal, and because
we are using a correlation matrix rather than a covariance matrix. We are hoping,
though, that in any case, the BIC is a reasonable balance of the fit of the model on the
eigenvalues and the number of parameters.
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Pattern d BIC BIC P̂BIC

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 66 −861.196 34.292 0.000
(1, 1, 1, 1, 1, 2, 1, 1, 1, 1) 64 −869.010 26.479 0.000
(1, 1, 1, 2, 2, 1, 1, 1, 1) 62 −876.650 18.839 0.000
(1, 1, 3, 2, 1, 1, 1, 1) 59 −885.089 10.400 0.004
(1, 1, 3, 2, 1, 2, 1) 57 −892.223 3.266 0.159
(1, 1, 3, 3, 2, 1) 54 −895.489 0.000 0.812
(1, 1, 3, 3, 3) 51 −888.502 6.987 0.025
(1, 4, 3, 3) 47 −870.824 24.665 0.000
(1, 4, 6) 37 −801.385 94.104 0.000
(5, 6) 32 −657.561 237.927 0.000

11 1 4.554 900.042 0.000

Table 13.1: The BIC’s for the sequence of principal component models for the auto-
mobile data.
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Figure 13.3: Plots of j versus the sample lj’s, and j versus the MLE’s λ̂j’s for the
chosen model.

Figure 13.3 shows the scree plots, using logs, of the sample eigenvalues and the
fitted ones from the best model. Note that the latter gives more aid in deciding how
many components to choose because the gaps are enhanced or eliminated. That is,
taking one or two components is reasonable, but because there is little distinction
among the next three, one may as well take all or none of those three. Similarly with
numbers six, seven and eight.

What about interpretations? Below we have the first five principal component
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loadings, multiplied by 100 then rounded off:

PC1 PC2 PC3 PC4 PC5

Length 36 −23 3 −7 26
Wheelbase 37 −20 −11 6 20
Width 35 −29 19 −11 1
Height 25 41 −41 10 −10
FrontHd 19 30 68 45 −16
RearHd 25 47 1 28 6
FrtLegRoom 10 −49 −30 69 −37
RearSeating 30 26 −43 2 18
FrtShld 37 −16 20 −11 10
RearShld 38 −1 7 −13 12
Luggage 28 6 −2 −43 −81

(13.18)

The first principal component has fairly equal positive loadings for all variables, in-
dicating an overall measure of bigness. The second component tends to have positive
loadings for tallness (height, front headroom, rear headroom), and negative loadings
for the length and width-type variables. This component then measures tallness rela-
tive to length and width. The next three may be harder to interpret. Numbers 3 and 4
could be front seat versus back seat measurements, and number 5 is mainly luggage
space. But from the analysis in (13.15), we have that from a statistical significance
point of view, there is no distinction among the third through fifth components, that
is, any rotation of them is equally important. Thus we might try a varimax rotation
on the three vectors, to aid in interpretation. (See Section 10.3.2 for a description of
varimax.) The R function varimax will do the job. The results are below:

PC∗
3 PC∗

4 PC∗
5

Length −4 −20 18
Wheelbase −11 0 21
Width 13 −17 −6
Height −32 29 −1
FrontHd 81 15 7
RearHd 11 18 19
FrtLegRoom 4 83 6
RearSeating −42 10 18
FrtShld 12 −22 1
RearShld 0 −19 3
Luggage −4 8 −92

(13.19)

These three components are easy to interpret, weighting heavily on front headroom,
front legroom, and luggage space, respectively.

Figure 13.4 plots the first two principal components. The horizontal axis repre-
sents the size, going from the largest at the left to the smallest at the right. The
vertical axis has tall/narrow cars at the top, and short/wide at the bottom. We also
performed model-based clustering (Section 12.3) using just these two variables. The
best clustering has two groups, whose covariance matrices have the same eigenval-
ues but different eigenvectors (“EEV” in (12.31)), indicated by the two ellipses, which
have the same size and shape, but have different orientations. These clusters are rep-
resented in the plot as well. We see the clustering is defined mainly by the tall/wide
variable.
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Figure 13.4: The first two principal component variables for the automobile data
(excluding sports cars and minivans), clustered into two groups.

Using R

In Section 12.3.1 we created cars1, the reduced data set. To center and scale the data,
so that the means are zero and variances are one, use

xcars <− scale(cars1)

The following obtains eigenvalues and eigenvectors of S:

eg <− eigen(var(xcars))

The eigenvalues are in eg$values and the matrix of eigenvectors are in eg$vectors. To
find the deviance and BIC for the pattern (1, 1, 3, 3, 2, 1) seen in (13.15 and (13.17), we
use the function pcbic (detailed in Section A.5.1):

pcbic(eg$values,95,c(1,1,3,3,2,1))

In Section A.5.2 we present the function pcbic.stepwise, which uses the stepwise pro-
cedure to calculate the elements in Table 13.1.4:

pcbic.stepwise(eg$values,95)

13.1.5 Principal components and factor analysis

Factor analysis and principal components have some similarities and some differ-
ences. Recall the factor analysis model with p factors in (10.58). Taking the mean to
be 0 for simplicity, we have

Y = Xβ + R, (13.20)

where X and R are independent, with

X ∼ N(0, In ⊗ Ip) and R ∼ N(0, In ⊗ Ψ), Ψ diagonal. (13.21)
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For principal components, where we take the first p components, partition Γ and
Λ in (13.5) as

Γ =
(

Γ1 Γ2
)

and Λ =

(
Λ1 0
0 Λ2

)
. (13.22)

Here, Γ1 is q × p, Γ2 is q × (q − p), Λ1 is p × p, and Λ2 is (q − p)× (q − p), the Λk’s
being diagonal. The large eigenvalues are in Λ1, the small ones are in Λ2. Because
Iq = ΓΓ

′ = Γ1Γ
′
1 + Γ2Γ

′
2, we can write

Y = YΓ1Γ
′
1 + YΓ2Γ

′
2 = Xβ+ R, (13.23)

where

X = YΓ1 ∼ N(0, ΣX), β = Γ
′
1 and R = YΓ2Γ

′
2 ∼ N(0, In ⊗ ΣR). (13.24)

Because Γ
′
1Γ2 = 0, X and R are again independent. We also have (Exercise 13.4.4)

ΣX = Γ
′
1ΓΛΓ

′
Γ1 = Λ1, and ΣR = Γ2Γ

′
2ΓΛΓ

′
Γ2Γ

′
2 = Γ2Λ2Γ

′
2. (13.25)

Comparing these covariances to the factor analytic ones in (13.20), we see the follow-
ing:

ΣX ΣR

Factor analysis Ip Ψ

Principal components Λ1 Γ2Λ1Γ
′
2

(13.26)

The key difference is in the residuals. Factor analysis chooses the p-dimensional X so
that the residuals are uncorrelated, though not necessarily small. Thus the correlations
among the Y’s are explained by the factors X. Principal components chooses the p-
dimensional X so that the residuals are small (the variances sum to the sum of the
(q − p) smallest eigenvalues), but not necessarily uncorrelated. Much of the variance
of the Y is explained by the components X.

A popular model that fits into both frameworks is the factor analytic model (13.20)
with the restriction that

Ψ = σ2Iq, σ2 “small.” (13.27)

The interpretation in principal components is that the X contains the important infor-
mation in Y, while the residuals R contain just random measurement error. For factor
analysis, we have that the X explains the correlations among the Y, and the residuals
happen to have the same variances. In this case, we have

Σ = βΣXXβ
′ + σ2Iq. (13.28)

Because β is q × p, there are at most p positive eigenvalues for βΣXXβ
′. Call these

λ∗
1 ≥ λ∗

2 ≥ · · · ≥ λ∗
p, and let Λ

∗
1 be the p× p diagonal matrix with diagonals λ∗

i . Then

the spectral decomposition is

βΣXXβ
′ = Γ

(
Λ
∗
1 0

0 0

)
Γ
′ (13.29)

for some orthogonal Γ. But any orthogonal matrix contains eigenvectors for Iq = ΓΓ
′,

hence Γ is also an eigenvector matrix for Σ:

Σ = ΓΛΓ
′ = Γ

(
Λ
∗
1 + σ2Ip 0

0 σ2Iq−p

)
Γ
′. (13.30)
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Thus the eigenvalues of Σ are

λ∗
1 + σ2 ≥ λ∗

2 + σ2 ≥ · · · ≥ λ∗
p + σ2 ≥ σ2 = · · · = σ2, (13.31)

and the eigenvectors for the first p eigenvalues are the columns of Γ1. In this case the
factor space and the principal component space are the same. In fact, if the λ∗

j are

distinct and positive, the eigenvalues (13.30) satisfy the structural model (13.8) with
pattern (1, 1, . . . , 1, q − p). A common approach to choosing p is to use hypothesis
testing on such models to find the smallest p for which the model fits. See Anderson
[1963] or Mardia, Kent, and Bibby [1979]. Of course, AIC or BIC could be used as
well.

13.1.6 Justification of the principal component MLE, Theorem 13.1

We first find the MLE of Σ, and the maximal value of the likelihood, for U as in (13.4),
where the eigenvalues of Σ satisfy (13.8). We know from (10.1) that the likelihood for
S is

L(Σ ; S) = |Σ|−ν/2 e−
ν
2 trace(Σ

−1S). (13.32)

For the general model, i.e., where there is no restriction among the eigenvalues of Σ

(M(1,1,...,1)), the MLE of Σ is S.

Suppose there are nontrivial restrictions (13.8). Write Σ and S in their spectral
decomposition forms (13.5) to obtain

L(Σ ; S) = |Λ|−ν/2 e−
ν
2 trace((ΓΛΓ

′)−1GLG′)

= (∏ λi)
−ν/2 e−

1
2 trace(Λ

−1
Γ
′GLG′

Γ). (13.33)

Because of the multiplicities in the eigenvalues, the Γ is not uniquely determined
from Σ, but any orthogonal matrix that maximizes the likelihood is adequate.

We start by fixing Λ, and maximizing the likelihood over the Γ. Set

F = G′
Γ, (13.34)

which is also orthogonal, and note that

− 1

2
trace(Λ−1F′LF) = − 1

2

q

∑
i=1

q

∑
j=1

f 2
ij

li

λj

=
q

∑
i=1

q

∑
j=1

f 2
ij liβj −

1

2λq

q

∑
i=1

li, (13.35)

where

βj = − 1

2λj
+

1

2λq
. (13.36)

(The 1/(2λq) is added because we need the βj’s to be nonnegative in what follows.)
Note that the last term in (13.35) is independent of F. We do summation by parts by
letting

δi = βi − βi+1, di = li − li+1, 1 ≤ i ≤ q − 1, δq = βq , dq = lq, (13.37)
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so that

li =
q

∑
k=i

dk and βj =
q

∑
m=j

δm. (13.38)

Because the li’s and λi’s are nondecreasing in i, the li’s are positive, and by (13.36)
the βj’s are also nonnegative, we have that the δi’s and di’s are all nonnegative. Using
(13.38) and interchanging the orders of summation, we have

q

∑
i=1

q

∑
j=1

f 2
ij liβj =

q

∑
i=1

q

∑
j=1

q

∑
k=i

q

∑
m=j

f 2
ij dkδm

=
q

∑
k=1

q

∑
m=1

dkδm

k

∑
i=1

m

∑
j=1

f 2
ij. (13.39)

Because F is an orthogonal matrix,

k

∑
i=1

m

∑
j=1

f 2
ij ≤ min{k, m}. (13.40)

Also, with F = Iq, the fii = 1, hence expression in (13.40) is an equality. By the
nonnegativity of the dk’s and δm’s, the sum in (13.39), hence in (13.35), is maximized
(though not uniquely) by taking F = Iq. Working back, from (13.34), the (not neces-
sarily unique) maximizer over Γ of (13.35) is

Γ̂ = G. (13.41)

Thus the maximum over Γ in the likelihood (13.33) is

L(GΛG′ ; S) = (∏ λi)
−ν/2e−

ν
2 ∑(li/λi). (13.42)

Break up the product according to the equalities (13.8):

K

∏
k=1

α
−qkν/2
k e−

ν
2 (tk/αk), (13.43)

where

t1 =
q1

∑
i=1

li and tk =
q1+···+qk

∑
i=q1+···+qk−1+1

li for 2 ≤ k ≤ K. (13.44)

It is easy to maximize over each αk in (13.43), which proves that (13.11) is indeed the
MLE of the eigenvalues. Thus with (13.41), we have the MLE of Σ as in Theorem 13.1.

We give a heuristic explanation of the dimension (13.12) of the model M(q1,...qK) in

(13.8). To describe the model, we need the K distinct parameters among the λi’s, as
well as the K orthogonal subspaces that correspond to the distinct values of λi. We
start by counting the number of free parameters needed to describe an s-dimensional
subspace of a t-dimensional space, s < t. Any such subspace can be described by a
t × s basis matrix B, that is, the columns of B comprise a basis for the subspace. (See
Section 5.2.) The basis is not unique, in that BA for any invertible s × s matrix A is
also a basis matrix, and in fact any basis matrix equals BA for some such A. Take A
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to be the inverse of the top s× s submatrix of B, so that BA has Is as its top s × s part.
This matrix has (t − s)× s free parameters, represented in the bottom (t − s)× s part
of it, and is the only basis matrix with Is at the top. Thus the dimension is (t − s)× s.
(If the top part of B is not invertible, then we can find some other subset of s rows to
use.)

Now for model (13.8), we proceed stepwise. There are q1(q2 + · · ·+ qK) parame-
ters needed to specify the first q1-dimensional subspace. Next, focus on the subspace
orthogonal to that first one. It is (q2 + · · ·+ qK)-dimensional, hence to describe the
second, q2-dimensional, subspace within that, we need q2 × (q3 + · · ·+ qK) parame-
ters. Continuing, the total number of parameters is

q1(q2 + · · ·+ qK) + q2(q3 + · · ·+ qK) + · · ·+ qK−1qk =
1

2
(q2 −

K

∑
k=1

q2
k). (13.45)

Adding K for the distinct λi’s, we obtain the dimension in (13.12).

13.2 Multidimensional scaling

Given n objects and defined distances, or dissimiarities, between them, multidimen-
sional scaling tries to mimic the dissimilarities as close as possible by representing
the objects in p-dimensional Euclidean space, where p is fairly small. That is, sup-

pose o1, . . . , on are the objects, and d(oi, oj) is the dissimilarity between the ith and

jth objects, as in (12.15). Let ∆ be the n × n matrix of d2(oi, oj)’s. The goal is to find
1 × p vectors x̂1, . . . , x̂n so that

∆ij = d2(oi, oj) ≈ ‖x̂i − x̂j‖2. (13.46)

Then the x̂i’s are plotted in Rp, giving an approximate visual representation of the
original dissimilarities.

There are a number of approaches. Our presentation here follows that of Mar-
dia, Kent, and Bibby [1979], which provides more in-depth coverage. We will start
with the case that the original dissimilarities are themselves Euclidean distances, and
present the so-called classical solution. Next, we exhibit the classical solution when
the distances may not be Euclidean. Finally, we briefly mention the nonmetric ap-
proach.

13.2.1 ∆ is Euclidean: The classical solution

Here we assume that object oi has associated a 1 × q vector yi, and let Y be the n × q

matrix with yi as the ith row. Of course, now Y looks like a regular data matrix. It
might be that the objects are observations (people), or they are variables, in which
case this Y is really the transpose of the usual data matrix. Whatever the case,

d2(oi, oj) = ‖yi − yj‖2. (13.47)

For any n× p matrix X with rows xi, define ∆(X) to be the n× n matrix of ‖xi − xj‖2’s,

so that (13.47) can be written ∆ = ∆(Y).
The classical solution looks for x̂i’s in (13.46) that are based on rotations of the

yi’s, much like principal components. That is, suppose B is a q × p matrix with
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orthonormal columns, and set

x̂i = yiB, and X̂ = YB. (13.48)

The objective is then to choose the B that minimizes

∑ ∑1≤i<j≤n

∣∣∣‖yi − yj‖2 − ‖x̂i − x̂j‖2
∣∣∣ (13.49)

over B. Exercise 13.4.9 shows that ‖yi − yj‖2
> ‖x̂i − x̂j‖2, which means that the ab-

solute values in (13.49) can be removed. Also, note that the sum over the ‖yi − yj‖2 is
independent of B, and by symmetry, minimizing (13.49) is equivalent to maximizing

n

∑
i=1

n

∑
j=1

‖x̂i − x̂j‖2 ≡ 1′n∆(X̂)1n . (13.50)

The next lemma is useful in relating the ∆(Y) to the deviations.

Lemma 13.1. Suppose X is n × p. Then

∆(X) = a1′n + 1na′ − 2HnXX′Hn, (13.51)

where a is the n × 1 vector with ai = ‖xi − x‖2, x is the mean of the xi’s, and Hn is the
centering matrix (1.12).

Proof. Write

‖xi − xj‖2 = ‖(xi − x)− (xj − x)‖2

= ai − 2(HnX)i(HnX)′j + aj, (13.52)

from which we obtain (13.51).

By (13.50) and (13.51) we have

n

∑
i=1

n

∑
j=1

‖x̂i − x̂j‖2 = 1′n∆(X̂)1n

= 1′n(a1′n + 1na′ − 2HnXX′Hn)1n

= 2n1′na = 2n
n

∑
i=1

‖x̂i − x̂‖2, (13.53)

because Hn1n = 0. But then

n

∑
i=1

‖x̂i − x̂‖2 = trace(X̂′HnX̂)

= trace(B′Y′HnYB). (13.54)

Maximizing (13.54) over B is a principal components task. That is, as in Lemma 1.3,
this trace is maximized by taking B = G1, the first p eigenvectors of Y′HnY. To
summarize:



286 Chapter 13. Principal Components, etc.

Proposition 13.1. If ∆ = ∆(Y), then the classical solution of the multidimensional scaling

problem for given p is X̂ = YG1, where the columns of G1 consist of the first p eigenvectors
of Y′HnY.

If one is interested in the distances between variables, so that the distances of in-
terest are in ∆(Y′) (note the transpose), then the classical solution uses the first p
eigenvectors of YHqY′.

13.2.2 ∆ may not be Euclidean: The classical solution

Here, we are given only the n × n dissimilarity matrix ∆. The dissimilarities may or
may not arise from Euclidean distance on vectors yi, but the solution acts as if they
do. That is, we assume there is an n × q matrix Y such that ∆ = ∆(Y), but we do not
observe the Y, nor do we know the dimension q. The first step in the process is to

derive the Y from the ∆(Y), then we apply Proposition 13.1 to find the X̂.
It turns out that we can assume any value of q as long as it is larger than the

values of p we wish to entertain. Thus we are safe taking q = n. Also, note that using
(13.51), we can see that ∆(HnX) = ∆(X), which implies that the sample mean of Y is
indeterminate. Thus we may as well assume the mean is zero, i.e.,

HnY = Y, (13.55)

so that (13.51) yields
∆ = ∆(Y) = a1′n + 1na′ − 2YY′. (13.56)

To eliminate the a’s, we can pre- and post-multiply by Hn:

Hn∆Hn = Hn(a1′n + 1na′ − 2YY′)Hn = −2YY′, (13.57)

hence

YY′ = − 1

2
Hn∆Hn. (13.58)

Now consider the spectral decomposition (1.33) of YY′,

YY′ = JLJ′, (13.59)

where the orthogonal J = (j1, . . . , jn) contains the eigenvectors, and the diagonal L
contains the eigenvalues. Separating the matrices, we can take

Y = JL1/2 =
( √

l1 j1

√
l2 j2 · · ·

√
ln jn

)
. (13.60)

Now we are in the setting of Section 13.2.1, hence by Proposition 13.1, we need G1,
the first p eigenvectors of

Y′HnY = (JL1/2)′(JL1/2) = L1/2J′JL1/2 = L. (13.61)

But the matrix of eigenvectors is just In, hence we take the first p columns of Y in
(13.60):

X̂ =
( √

l1 j1

√
l2 j2 · · · √

lp jp
)

. (13.62)

It could be that ∆ is not Euclidean, that is, there is no Y for which ∆ = ∆(Y).
In this case, the classical solution uses the same algorithm as in equations (13.58) to
(13.62). A possible glitch is that some of the eigenvalues may be negative, but if p is
small, the problem probably won’t raise it’s ugly head.
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13.2.3 Nonmetric approach

The original approach to multidimensional scaling attempts to find the X̂ that gives
the same ordering of the observed dissimilarities, rather than trying to match the
actual values of the dissimilarities. See Kruskal [1964]. That is, take the t ≡ (n

2)
pairwise dissimilarities and order them:

d(oi1
, oj1) ≤ d(oi2

, oj2) ≤ · · · ≤ d(oit
, ojt

). (13.63)

The ideal would be to find the x̂i’s so that

‖x̂i1
− x̂j1‖2 ≤ ‖x̂i2

− x̂j2‖2 ≤ · · · ≤ ‖x̂it
− x̂jt

‖2. (13.64)

That might not be (actually probably is not) possible for given p, so instead one

finds the X̂ that comes as close as possible, where close is measured by some “stress”
function. A popular stress function is given by

Stress2(X̂) =
∑ ∑1≤i<j≤n(‖x̂i − x̂j‖2 − d∗ij)

2

∑ ∑1≤i<j≤n‖x̂i − x̂j‖4
, (13.65)

where the d∗ij’s are constants that have the same ordering as the original dissimilarities

d(oi, oj)’s in (13.63), and among such orderings minimize the stress. See Johnson and
Wichern [2007] for more details and some examples. The approach is “nonmetric”
because it does not depend on the actual d’s, but just their order.

13.2.4 Examples: Grades and sports

The examples here all start with Euclidean distance matrices, and use the classical
solution, so everything is done using principal components.

In Section 12.6.1 we clustered the five variables for the grades data, (homework,
labs, inclass, midterms, final), for the n = 107 students. Here we find the multidi-
mensional scaling plot. The distance between two variables is the sum of squares of
the difference in scores the people obtained for them. So we take the transpose of the
data. The following code finds the plot.

ty <− t(grades[,2:6])
ty <− scale(ty,scale=F)
ev <− eigen(var(ty))$vectors[,1:2]
tyhat <− ty%∗%ev
lm <− range(tyhat)∗1.1
plot(tyhat,xlim=lm,ylim=lm,xlab=’Var 1’,ylab=’Var 2’,type=’n’)
text(tyhat,labels=dimnames(ty)[[1]])

To plot the variables’ names rather than points, we first create the plot with no plot-
ting: type=’n’. Then text plots the characters in the labels parameters, which we give
as the names of the first dimension of ty. The results are in Figure 13.5. Notice how
the inclass variable is separated from the others, homeworks and labs are fairly close,
and midterms and final are fairly close together, not surprisingly given the clustering.

Figure 13.5 also has the multidimensional scaling plot of the seven sports from
the Louis Roussos sports data in Section 12.1.1, found by substituting sportsranks for
grades[,2:6] in the R code. Notice that the first variable orders the sports according
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Figure 13.5: Multidimensional scaling plot of the grades’ variables (left) and the
sports’ variables (right).

to how many people typically participate, i.e., jogging, swimming and cycling can
be done solo, tennis needs two to four people, basketball has five per team, baseball
nine, and football eleven. The second variable serves mainly to separate jogging from
the others.

13.3 Canonical correlations

Testing the independence of two sets of variables in the multivariate normal dis-
tribution is equivalent to testing their covariance is zero, as in Section 10.2. When
there is no independence, one may wish to know where the lack of independence
lies. A projection-pursuit approach is to find the linear combination of the first set
which is most highly correlated with a linear combination of the second set, hoping
to isolate the factors within each group that explain a substantial part of the overall
correlations.

The distributional assumption is based on partitioning the 1 × q vector Y into Y1
(1 × q1) and Y2 (1 × q2), with

Y =
(

Y1 Y2
)
∼ N(µ, Σ), where Σ =

(
Σ11 Σ12
Σ21 Σ22

)
, (13.66)

Σ11 is q1 × q1 and Σ22 is q2 × q2. If α (q1 × 1) and β (q2 × 1) are coefficient vectors,
then

Cov[Y1α, Y2β] = α
′
Σ12β,

Var[Y1α] = α
′
Σ11α, and

Var[Y2β] = β
′
Σ22β, (13.67)

hence

Corr[Y1α, Y2β] =
α′

Σ12β√
α′Σ11α β

′Σ22β
. (13.68)
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Analogous to principal component analysis (Definition 1.2), the goal in canonical
correlation analysis is to maximize the correlation (13.68) over α and β. Equivalently,
we could maximize the covariance α′

Σ12β in (13.68) subject to the two variances
equaling one. Recall that principal component analysis led naturally to the spectral
decomposition theorem (Theorem 1.1). Similarly, canonical correlation analysis will
lead to the singular value decomposition (Theorem 13.2 below).

We begin the canonical correlation analysis with some simplfications. Let

γ = Σ
1/2
11 α and ψ = Σ

1/2
22 β (13.69)

so that

Corr[Y1α, Y2β] =
γ ′Ξψ

‖γ‖ ‖ψ‖ , (13.70)

where
Ξ = Σ

−1/2
11 Σ12Σ

−1/2
22 . (13.71)

This matrix Ξ is a multivariate generalization of the correlation coefficient which
is useful here, but I don’t know exactly how it should be interpreted. Since the
correlation is invariant to multiplying the γ and ψ by a constant, we can require
those vectors to have length one. The task is then to

maximize γ ′Ξψ subject to ‖γ‖ = ‖ψ‖ = 1. (13.72)

There are two steps:

1. Fix γ, and let c = Ξ
′γ, so that γ ′Ξψ = c′ψ. We know from Corollary 8.2 that

the maximum over ψ is achieved when ψ is proportional to c, i.e., ψ = c/‖c‖,
and that the maximum is ‖c‖. That is, we take

ψ =
Ξ
′γ

‖Ξ
′γ‖ =⇒ γ ′Ξψ =

√
γ ′ΞΞ

′γ. (13.73)

2. Now ΞΞ
′ is a q1 × q1 nonnegative definite symmetric matrix, hence we have the

spectral decomposition from (1.33):

ΞΞ
′ = ΓΛΓ

′, (13.74)

where Γ is the orthogonal matrix whose columns are the eigenvectors of ΞΞ
′,

and Λ is diagonal with diagonals λ1 ≥ λ2 ≥ · · · ≥ λq1 ≥ 0, the eigenvalues. It

follows that γ ′ΞΞ
′γ is maximized over ‖γ‖ = 1 by γ = γ1, the first eigenvector

of ΞΞ
′, and the maximum is λ1, the first eigenvalue.

Thus the maximum in (13.72) is found by taking ψ1 = Ξ
′γ1/‖Ξ

′γ1‖, and the
maximum is

δ1 ≡ γ ′1Ξψ1 = ‖Ξ
′γ1‖ =

√
λ1. (13.75)

Translating back, we have

Corr[Y1α1, Y2β1] = δ1 where α1 = Σ
−1/2
11 γ1 and β1 = Σ

−1/2
22 ψ1. (13.76)

This pair of linear combination vectors may not explain all the correlations be-
tween Y1 and Y2, hence we next find the maximal correlation over linear combina-
tions uncorrelated with the first combinations. We continue, with each pair maxi-
mizing the correlation subject to being uncorrelated with the previous. The precise
definition is below. Compare it to Definition 1.2 for principal components.



290 Chapter 13. Principal Components, etc.

Definition 13.1. Canonical correlations. Assume (Y1, Y2) are as in (13.66), where Σ11
and Σ22 are invertible, and set m = min{q1, q2}. Let α1, . . . ,αm be a set of q1 × 1 vectors,
and β1, . . . ,βm be a set of q2 × 1 vectors, such that

(α1,β1) is any (α,β) that maximizes α′
Σ12β over α′

Σ11α = β′
Σ11β = 1;

(α2,β2) is any (α,β) that maximizes α′
Σ12β over α′

Σ11α = β′
Σ11β = 1,

α′
Σ11α1 = β′

Σ22β1 = 0;

...

(αm,βm) is any (α,β) that maximizes α′
Σ12β over α′

Σ11α = β′
Σ11β = 1,

α′
Σ11αi = β

′
Σ22βi = 0,

i = 1, . . . , m − 1. (13.77)

Then δi ≡ α′
iΣ12βi is the ith canonical correlation, and αi and βi are the associated

canonical correlation loading vectors.

To find the canonical correlations and their loading vectors for i = 2, . . . , m, we

follow the same procedure as for i = 1. Thus γi is the ith eigenvector of ΞΞ
′ with cor-

responding eigenvalue λi, ψi = Ξ
′γi/‖Ξ

′γi‖. We then have that Corr[Y1αi, Y2βi] =

δi = ‖Ξ
′γi‖ =

√
λi, where αi = Σ

−1/2
11 γi and βi = Σ

−1/2
22 ψi. Exercise 13.4.11 verifies

that indeed the successive canonical variables are uncorrelated, i.e.,

α′
iΣ11αj = γ

′
iγj = 0 and β′

iΣ22βj = ψ′
iψj = 0 for 1 ≤ i, j ≤ m. (13.78)

Noting that γ ′i Ξ = δiψ
′
i , we can write

Γ
′
(m)Ξ = ∆Ψ

′
(m), (13.79)

where

Γ(m) = (γ1, . . . ,γm), Ψ(m) = (ψ1, . . . ,ψm), and ∆ =




δ1 0 · · · 0
0 δ2 · · · 0
...

...
. . .

...
0 0 · · · δm


 . (13.80)

If q1 ≤ q2, so that q1 = m, the matrix Γ(m) = Γ, the orthogonal matrix in (13.74). Thus

we can move it over to the right-hand side of (13.79), yielding the following1:

Theorem 13.2. Singular value decomposition. The q1 × q2 matrix Ξ can be written

Ξ = Γ(m)∆Ψ
′
(m) (13.81)

where Ψ(m) (q1 × m) and Γ(m) (q2 × m) have orthonormal columns, and ∆ is an m × m

diagonal matrix with diagonals δ1 ≥ δ2 ≥ · · · ≥ δm ≥ 0, where m = min{q1, q2}.

The spectral decomposition theorem is a key result in linear algebra, and very
useful in statistics. In the example below, we use it to estimate canonical correlations
and their loadings. Theorem 13.3 guarantees that the estimates are the MLE’s.

1To prove the theorem for q1 > q2, look at Ξ
′, then transpose back.
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13.3.1 Example: Grades

Return to the grades data. In Section 10.3.3, we looked at factor analysis, finding two
main factors: An overall ability factor, and a contrast of homework and labs versus
midterms and final. Here we lump in inclass assignments with homework and labs,
and find the canonical correlations between the sets (homework, labs, inclass) and
(midterms, final), so that q1 = 3 and q2 = 2. The Y is the matrix of residuals from the
model (10.80). In R,

s <− bothsidesmodel(cbind(1,grades[,1]),grades[,2:6])$Sigmaz
corr <− cov2cor(s)

The final statement calculates the correlation matrix from the S, yielding

HW Labs InClass Midterms Final
HW 1.00 0.78 0.28 0.41 0.40
Labs 0.78 1.00 0.42 0.38 0.35
InClass 0.28 0.42 1.00 0.24 0.27
Midterms 0.41 0.38 0.24 1.00 0.60
Final 0.40 0.35 0.27 0.60 1.00

(13.82)

There are q1 × q2 = 6 correlations between variables in the two sets. Canonical

correlations aim to summarize the overall correlations by the two δ̂i’s. The estimate
of the Ξ matrix in (13.77) is given by

Ξ̂ = S−1/2
11 S12S−1/2

22

=




0.236 0.254
0.213 0.146
0.126 0.185


 , (13.83)

found in R using

symsqrtinv1 <− symsqrtinv(s[1:3,1:3])
symsqrtinv2 <− symsqrtinv(s[4:5,4:5])
xi <− symsqrtinv1%∗%s[1:3,4:5]%∗%symsqrtinv2

where

symsqrtinv <− function(x) {
ee <− eigen(x)
ee$vectors%∗%diag(sqrt(1/ee$values))%∗%t(ee$vectors)

}

calculates the inverse symmetric square root of an invertible symmetric matrix x. The
singular value decomposition function in R is called svd:

sv <− svd(xi)
a <− symsqrtinv1%∗%sv$u
b <− symsqrtinv2%∗%sv$v
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The component sv$u is the estimate of Γ(m) and the component sv$v is the estimate

of Ψ(m) in (13.81). The matrices of loading vectors are obtained analogous to (13.76):

A = S−1/2
11 Ψ̂ =




−0.065 0.059
−0.007 −0.088
−0.014 0.039


 ,

and B = S−1/2
22 Γ̂ =

(
−0.062 −0.12
−0.053 0.108

)
. (13.84)

The estimated canonical correlations (singular values) are in the vector sv$d, which
are

d1 = 0.482 and d2 = 0.064. (13.85)

The d1 is fairly high, and d2 is practically negligible. (See the next section.) Thus it
is enough to look at the first columns of A and B. We can change signs, and take the
first loadings for the first set of variables to be (0.065, 0.007, 0.014), which is primarily
the homework score. For the second set of variables, the loadings are (0.062, 0.053),
essentially a straight sum of midterms and final. Thus the correlations among the two
sets of variables can be almost totally explained by the correlation between homework
and the sum of midterms and final, which correlation is 0.45, almost the optimum of
0.48.

13.3.2 How many canonical correlations are positive?

One might wonder how many of the δi’s are nonzero. We can use BIC (or AIC or
hypothesis testing) to get an idea. The model is based on the usual

S =
1

ν
U, where U ∼ Wishartq(ν, Σ), (13.86)

ν ≥ q, with Σ partitioned as in (13.66), and S is partitioned similarly. Let Γ(m)∆Ψ
′
(m)

in (13.81) be the singular value decomposition of Ξ as in (13.71). Then Model K
(1 ≤ K ≤ m ≡ min{q1, q2}) is given by

MK : δ1 > δ2 > · · · > δK > δK+1 = · · · = δm = 0, (13.87)

where the δi’s are the canonical correlations, i.e., diagonals of ∆. Let

S−1/2
11 S12S−1/2

22 = GDP′ (13.88)

be the sample analog of Ξ (on the left), and its singular value decomposition (on the
right).

We first obtain the MLE of Σ under model K. Note that Σ and (Σ11, Σ22, Ξ) are
in one-to-one correspondence. Thus it is enough to find the MLE of the latter set of
parameters. The next theorem is from Fujikoshi [1974].

Theorem 13.3. For the above setup, the MLE of (Σ11, Σ22, Ξ) under model MK in (13.87)
is given by

(S11, S22, GD(K)P
′), (13.89)

where D(K) is the diagonal matrix with diagonals (d1, d2, . . . , dK , 0, 0, . . . , 0).
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That is, the MLE is obtained by setting to zero the sample canonical correlations
that are set to zero in the model. One consequence of the theorem is that the natu-
ral sample canonical correlations and accompanying loading vectors are indeed the
MLE’s. The deviance, for comparing the models MK, can be expressed as

deviance(MK) = ν
K

∑
i=1

log(1 − d2
i ). (13.90)

See Exercise 13.4.15.
For the BIC, we need the dimension of the model. The number of parameters for

the Σii’s we know to be qi(qi + 1)/2. For Ξ, we look at the singular value decompo-
sition (13.81):

Ξ = Γ(m)∆(K)Ψ
′
(m) =

K

∑
i=1

δiγiψ
′
i . (13.91)

The dimension for the ∆(K)’s is K. For Γ(m), only the first K of the γi’s enter into the

equation. Thus the dimension is the same as for principal components with K distinct
eigenvalues, and the rest equal at 0, yielding pattern (1, 1, . . . , 1, q1 − K), where there
are K ones. Similarly, the Ψ(m)’s dimension is as for pattern (1, 1, . . . , 1, q2 − K). Then

by (13.45),

dim(Γ(m)) + dim(Ψ(m)) + dim(∆(K)) =
1

2
(q2

1 − K − (q1 − K)2)

+
1

2
(q2

2 − K − (q2 − K)2) + K

=K(q − K). (13.92)

Finally, we can take

BIC(MK) = ν
K

∑
k=1

log(1 − d2
k) + log(ν)K(q − K) (13.93)

because the qi(qi + 1)/2 parts of the dimensions are the same for each model.
In the example, we have three models: K = 0, 1, 2. K = 0 means the two sets

of variables are independent, which we already know is not true, and K = 2 is the
unrestricted model. The calculations, with ν = 105, d1 = 0.48226 and d2 = 0.064296:

K Deviance dim(Ξ) BIC P̂BIC

0 0 0 0 0.0099
1 −27.7949 4 −9.1791 0.9785
2 −28.2299 6 −0.3061 0.0116

(13.94)

Clearly K = 1 is best, which is what we figured above.

13.3.3 Partial least squares

A similar idea is to find the linear combinations of the variables to maximize the
covariance, rather than correlation:

Cov(Y1a, Y2b) = a′Σ12b. (13.95)
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The process is the same as for canonical correlations, but we use the singular value
decomposition of Σ12 instead of Ξ. The procedure is called partial least squares,
but it could have been called canonical covariances. It is an attractive alternative to
canonical correlations when there are many variables and not many observations, in
which cases the estimates of Σ11 and Σ22 are not invertible.

13.4 Exercises

Exercise 13.4.1. In the model (13.4), find the approximate test for testing the null
hypothesis that the average of the last k (k < q) eigenvalues is less than the constant

c2.

Exercise 13.4.2. Verify the expression for Σ in (13.10).

Exercise 13.4.3. Show that the deviance for the model in Theorem 13.1 is given by
(13.13). [Hint: Start with the likelihood as in (13.32). Show that

trace(Σ̂
−1

S) =
q

∑
i=1

li

λ̂i

= q. (13.96)

Argue you can then ignore the part of the deviance that comes from the exponent.]

Exercise 13.4.4. Verify (13.25). [Hint: First, show that Γ
′
1Γ = (Ip 0) and Γ

′
2Γ =

(0 Iq−p).]

Exercise 13.4.5. Show that (13.30) follows from (13.28) and (13.29).

Exercise 13.4.6. Prove (13.40). [Hint: First, explain why ∑
k
i=1 f 2

ij ≤ 1 and ∑
m
j=1 f 2

ij ≤ 1.]

Exercise 13.4.7. Verify the equality in (13.42), and show that (13.11) does give the
maximizers of (13.43).

Exercise 13.4.8. Verify the equality in (13.45).

Exercise 13.4.9. Show that ‖yi − yj‖2
> ‖x̂i − x̂j‖2 for yi and x̂i in (13.48). [Hint: Start

by letting B2 be any (q− p)× q matrix such that (B, B2) is an orthogonal matrix. Then

‖yi − yj‖2 = ‖(yi − yj)(B, B2)‖2 (why?), and by expanding equals ‖(yi − yj)B‖2 +

‖(yi − yj)B2‖2.]

Exercise 13.4.10. Verify (13.52) by expanding the second expression.

Exercise 13.4.11. Verify the equalities in (13.76). [To show ψ′
iψj = 0, write the cross-

product as γ ′i ΞΞ
′γj, then use the spectral decomposition of ΞΞ

′ found in (13.74).]

Exercise 13.4.12. Why are there only m pairs of linear combinations in Definition
13.1? [Hint: Show that there can be at most qi uncorrelated non-zero linear combina-
tions of Yi. You may want to use Exercise 5.8.36.]

Exercise 13.4.13. For the canonical correlations situation in Definition 13.1, let α =
(α1, . . . ,αm) and β = (β1, . . . ,βm) be matrices with columns being the loading vec-
tors. Find the covariance matrix of the transformation

(
Y1α Y2β

)
=
(

Y1 Y2
) ( α 0

0 β

)
. (13.97)

[It should depend on the parameters only through the δi’s.]
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Exercise 13.4.14. Given the singular decomposition of Ξ in (13.81), find the spec-
tral decompositions of ΞΞ

′ and of Ξ
′
Ξ. What can you say about the two matrices’

eigenvalues? How are these eigenvalues related to the singular values in ∆?

Exercise 13.4.15. This exercise derives the deviance for the canonical correlation
model in (13.87). Start with

−2 log(L(Σ̂ ; S)) = ν log(|Σ̂|) + ν trace(Σ̂
−1

S) (13.98)

for the likelihood in (13.32), where Σ̂ is the estimate given in Theorem 13.3. (a) Show
that

Σ =

(
Σ

1/2
11 0

0 Σ
1/2
22

)(
Iq1 Ξ

Ξ
′ Iq2

)(
Σ

1/2
11 0

0 Σ
1/2
22

)
, (13.99)

(b) Letting CK = PD(K)G′ and C = PDG′(= PD(m)G
′), show that

trace(Σ̂
−1

S) = trace

((
Iq1 CK

C′
K Iq2

)−1 (
Iq1 C
C′ Iq2

))

= trace((Iq1 − CKC′
K)

−1(Iq1 − CKC′ − CC′
K + CKC′

K)) + trace(Iq2)

= trace((Iq1 − CKC′
K)

−1(Iq1 − CKC′
K)) + trace(Iq2)

=q. (13.100)

[Hint: The first equality uses part (a). Assume that q1 ≤ q2, so that q2 = m. The
second equality then might be easiest to show by letting

H =

(
Iq1 −CK

0 Iq2

)
, (13.101)

and multiplying the two large matrices by H on the left and H′ on the right. For
the third equality, note that G is m × m, hence is an orthogonal matrix. Use that fact

to show that CKC′ = CC′
K = CKC′

K.] (c) Show that |Σ̂| = |S11||S22||Iq1 − CKC′
K|,

where CK is given in part (b). [Hint: Recall (5.101).] (d) Show that |Iq1 − CKC′
K| =

∏
K
i=1(1 − d2

i ). (e) Use parts (b) through (d) to find an expression for (13.98), then
argue that for comparing MK’s, we can take the deviance as in (13.90).

Exercise 13.4.16. Verify the calculation in (13.92).

Exercise 13.4.17 (Painters). The biplot for the painters data set (in the MASS package)
was analyzed in Exercise 1.9.18 (a) Using the first four variables, without any scaling,
find the sample eigenvalues li. Which seem to be large, and which small? (b) Find
the pattern of the li’s that has best BIC. What are the MLE’s of the λi’s for the best
pattern? Does the result conflict with your answer to part (a)?

Exercise 13.4.18 (Spam). In Exercises 1.9.15 and 11.9.9, we found principal compo-
nents for the spam data. Here we look for the best pattern of eigenvalues. Note that
the data is far from multivariate normal, so the distributional aspects should not be
taken too seriously. (a) Using the unscaled spam explanatory variables (1 through
57), find the best pattern of eigenvalues based on the BIC criterion. Plot the sample
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eigenvalues and their MLE’s. Do the same, but for the logs. How many principal
components is it reasonable to take? (b) Repeat part (b), but using the scaled data,
scale(Spam[,1:57]). (c) Which approach yielded the more satisfactory answer? Was
the decision to use ten components in Exercise 11.9.9 reasonable, at least for the scaled
data?

Exercise 13.4.19 (Iris). This question concerns the relationships between the sepal
measurements and petal measurements in the iris data. Let S be pooled covariance
matrix, so that the denominator is ν = 147. (a) Find the correlation between the
sepal length and petal length, and the correlation between the sepal width and petal
width. (b) Find the canonical correlation quantities for the two groups of variables
{Sepal Length, Sepal Width} and {Petal Length, Petal Width}. What do the loadings
show? Compare the di’s to the correlations in part (a). (c) Find the BIC’s for the three
models K = 0, 1, 2, where K is the number of nonzero δi’s. What do you conclude?

Exercise 13.4.20 (Exams). Recall the exams data set (Exercise 10.5.19) has the scores
of 191 students on four exams, the three midterms (variables 1, 2, and 3) and the final
exam. (a) Find the canonical correlations quantities, with the three midterms in one
group, and the final in its own group. Describe the relative weightings (loadings) of
the midterms. (b) Apply the regular multiple regression model with the final as the
Y and the three midterms as the X’s. What is the correlation between the Y and the
fit, Ŷ? How does this correlation compare to d1 in part (a)? What do you get if you

square this correlation? (c) Look at the ratios β̂i/ai1 for i = 1, 2, 3, where β̂i is the
regression coefficient for midterm i in part (b), and ai1 is the first canonical correlation
loading. What do you conclude? (d) Run the regression again, with the final still Y,

but use just the one explanatory variable Xa1. Find the correlation of Y and the Ŷ for
this regression. How does it compare to that in part (b)? (e) Which (if either) yields
a linear combination of the midterms that best correlates with the final, canonical
correlation analysis or multiple regression. (f) Look at the three midterms’ variances.
What do you see? Find the regular principal components (without scaling) for the
midterms. What are the loadings for the first principal component? Compare them
to the canonical correlations’ loadings in part (a). (g) Run the regression again, with
the final as the Y again, but with just the first principal component of the midterms as

the sole explanatory variable. Find the correlation between Y and Ŷ here. Compare
to the correlations in parts (b) and (d). What do you conclude?

Exercise 13.4.21 (States). This problems uses the matrix states, which contains several
demographic variables on the 50 United States, plus D.C. We are interested in the
relationship between crime variables and money variables:

Crime: Violent crimes per 100,000 people
Prisoners: Number of people in prison per 10,000 people.
Poverty: Percentage of people below the poverty line.
Employment: Percentage of people employed
Income: Median household income

Let the first two variables be Y1, and the other three be Y2. Scale them to have mean
zero and variance one:

y1 <− scale(states[,7:8])
y2 <− scale(states[,9:11])
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Find the canonical correlations between the Y1 and Y2. (a) What are the two canonical
correlations? How many of these would you keep? (b) Find the BIC’s for the K = 0, 1
and 2 canonical correlation models. Which is best? (c) Look at the loadings for the
first canonical correlation, i.e., a1 and b1. How would you interpret these? (d) Plot
the first canonical variables: Y1a1 versus Y2b1. Do they look correlated? Which
observations, if any, are outliers? (e) Plot the second canonical variables: Y1a2 versus
Y2b12. Do they look correlated? (f) Find the correlation matrix of the four canonical
variables: (Y1a1, Y1a2, Y2b1, Y2b2). What does it look like? (Compare it to the result
in Exercise 13.4.9.)





Appendix A

Extra R routines

These functions are very barebones. They do not perform any checks on the inputs,
and are not necessarily efficient. You are encouraged to robustify and enhance any of
them to your heart’s content.

A.1 Estimating entropy

We present a simple method for estimating the best entropy. See Hyvärinen et al.
[2001] for a more sophisticated approach, which is implemented in the R package
fastICA [Marchini et al., 2010]. First, we need to estimate the negentropy (1.46) for
a given univariate sample of n observations. We use the histogram as the density,
where we take K bins of equal width d, where K is the smallest integer larger than
log2(n) + 1 [Sturges, 1926]. Thus bin i is (bi−1, bi], i = 1, . . . , K, where bi = b0 + d × i,
and b0 and d are chosen so that (b0, bK] covers the range of the data. Letting p̂i be the
proportion of observations in bin i, the histogram estimate of the density g is

ĝ(x) =
p̂i

d
if bi−1 < x ≤ bi. (A.1)

From (2.102) in Exercise 2.7.16, we have that the negative entropy (1.46) is

Negent(ĝ) =
1

2

(
1 + log

(
2π

(
Var[I ] + 1

12

)))
+

K

∑
i=1

p̂i log( p̂i), (A.2)

where I is the random variable with P[I = i] = p̂i, hence

Var[I ] =
K

∑
i=1

i2 p̂i −
(

K

∑
i=1

i p̂i

)2

. (A.3)

See Section A.1.1 for the R function we use to calculate this estimate.
For projection pursuit, we have our n × q data matrix Y, and wish to find first the

q × 1 vector g1 with norm 1 that maximizes the estimated negentropy of Yg1. Next
we look for the g2 with norm 1 orthogonal to g1 that maximizes the negentropy of
Yg2, etc. Then our rotation is given by the orthogonal matrix G = (g1, g2, . . . , gq).

299
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We need to parametrize the orthogonal matrices somehow. For q = 2, we can set

G(θ) = E2(θ) ≡
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. (A.4)

Clearly each such matrix is orthogonal. As θ ranges from 0 to 2π, E2(θ) ranges
through half of the orthogonal matrices (those with determinant equal to +1), the
other half obtainable by switching the minus sign from the sine term to one of the
cosine terms. For our purposes, we need only to take 0 ≤ θ < π, since the other
G’s are obtained from that set by changing the sign on one or both of the columns.
Changing signs does not affect the negentropy, nor the graph except for reflection
around an axis. To find the best G(θ), we perform a simple line search over θ. See
Section A.1.2.

For q = 3 we use Euler angles θ1, θ2, and θ3, so that

G(θ1, θ2, θ3) = E3(θ1, θ2, θ3)

≡
(

E2(θ3) 0
0 1

)(
1 0
0 E2(θ2)

)(
E2(θ1) 0

0 1

)
. (A.5)

See Anderson et al. [1987] for similar parametrizations when q > 3. The first step is to
find the G = (g1, g2, g3) whose first column, g1, achieves the maximum negentropy
of Yg1. Here it is enough to take θ3 = 0, so that the left-hand matrix is the identity.
Because our estimate of negentropy for Yg is not continuous in g, we use the simulated
annealing option in the R function optim to find the optimal g1. The second step is to
find the best further rotation of the remaining variables, Y(g2, g3), for which we can
use the two-dimensional procedure above. See Section A.1.3.

A.1.1 negent: Estimating negative entropy

Description: Calculates the histogram-based estimate (A.2) of the negentropy (1.46)
for a vector of observations. See Listing A.1 for the code.

Usage: negent(x,K=log2(length(x))+1)

Arguments:

x: The n-vector of observations.

K: The number of bins to use in the histogram.

Value: The value of the estimated negentropy.

A.1.2 negent2D: Maximizing negentropy for q = 2 dimensions

Description: Searches for the rotation that maximizes the estimated negentropy of
the first column of the rotated data, for q = 2 dimensional data. See Listing A.2 for
the code.

Usage: negent2D(y,m=100)

Arguments:
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y: The n × 2 data matrix.

m: The number of angles (between 0 and π) over which to search.

Value: A list with the following components:

vectors: The 2 × 2 orthogonal matrix G that optimizes the negentropy.

values: Estimated negentropies for the two rotated variables. The largest is first.

A.1.3 negent3D: Maximizing negentropy for q = 3 dimensions

Description: Searches for the rotation that maximizes the estimated negentropy of
the first column of the rotated data, and of the second variable fixing the first, for
q = 3 dimensional data. The routine uses a random start for the function optim using
the simulated annealing option SANN, hence one may wish to increase the number
of attempts by setting nstart to a integer larger than 1. See Listing A.3 for the code.

Usage: negent3D(y,nstart=1,m=100,...)

Arguments:

y: The n × 3 data matrix.

nstart: The number of times to randomly start the search routine.

m: The number of angles (between 0 and π) over which to search to find the second
variables.

. . .: Further optional arguments to pass to the optim function to control the simulated
annealing algorithm.

Value: A list with the following components:

vectors: The 3 × 3 orthogonal matrix G that optimizes the negentropy.

values: Estimated negentropies for the three rotated variables, from largest to small-
est.

A.2 Both-sides model

The routines in this section apply to the both-sides model,

Y = xβz′ + R, R ∼ N(0, In ⊗ ΣR), (A.6)

where Y is n × q, x is n × p, and z is q × l. The functions require that n ≥ p, and x′x
and z′z be invertible.

There are two functions for fitting the model, one for least squares and one for
maximum likelihood. The both allow specifying a subset of the parameters in β to
be zero, using a pattern matrix P. The least squares routine also calculates Mallows’
Cp statistic. The MLE routine calculates AICc and BIC.
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The reverse.kronecker function is useful when using the linear regression routine
in R to find the least squares estimates, as in Section 6.4.2.

There are three functions for testing nested hypotheses. The first two use the least

squares estimates. The bothsidesmodel.chisquare finds the approximate χ2 statistic for
testing a arbitrary set of βij’s equalling zero. The bothsidesmodel.hotelling performs

the Hotelling T2 test and the Wilks’ Λ tests, but for only testing blocks of β equalling
zero, with the alternative being unrestricted. The likelihood ratio test comparing any
two nested models uses the routine bothsidesmodel.lrt.

A.2.1 bothsidesmodel: Calculate the least squares estimates

Description:

This function fits the model using least squares. It takes an optional pattern matrix
P as in (6.51), which specifies which βij’s are zero. See Listing A.4 for the code.

Usage: bothsidesmodel(x,y,z=diag(qq),pattern=matrix(1,nrow=p,ncol=l))

Arguments:

x: An n × p design matrix.

y: The n × q matrix of observations.

z: A q × l design matrix.

pattern: An optional n × p matrix of 0’s and 1’s.

Value: A list with the following components:

Beta: The least-squares estimate of β.

SE: The p × l matrix with the ijth element being the standard error of β̂ij.

T: The p × l matrix with the ijth element being the t-statistic based on β̂ij.

Covbeta: The estimated covariance matrix of the β̂ij’s.

df: A p-dimensional vector of the degrees of freedom for the t-statistics, where the

jth component contains the degrees of freedom for the jth column of β̂.

Sigmaz: The q × q matrix Σ̂z.

ResidSS: The q × q residual sum of squares and crossproducts matrix.

Dim: The dimension of the model, counting the nonzero βij’s and components of
Σz.

Cp: Mallow’s Cp statistic from Section 7.5.
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A.2.2 reverse.kronecker: Reverses the matrices in a Kronecker product

Description:
This function takes a matrix that is Kronecker product A ⊗ B (Definition 3.5),

where A is p × q and B is n × m, and outputs the matrix B ⊗ A. See Listing A.5 for
the code.

Usage: reverse.kronecker(ab,p,q)

Arguments:

ab: The (pn)× (qm) matrix A ⊗ B.

p: The number of rows of A.

qq: The number of columns of A.

Value: The (np)× (mq) matrix B ⊗ A.

A.2.3 bothsidesmodel.mle: Calculate the maximum likelihood estimates

Description:
This function fits the model using maximum likelihood. It takes an optional pat-

tern matrix P as in (6.51), which specifies which βij’s are zero. See Listing A.6 for the
code.

Usage: bothsidesmodel.mle(x,y,z=diag(qq),pattern=matrix(1,nrow=p,ncol=l))

Arguments:

x: An n × p design matrix.

y: The n × q matrix of observations.

z: A q × l design matrix.

pattern: An optional n × p matrix of 0’s and 1’s.

Value: A list with the following components:

Beta: The least-squares estimate of β.

SE: The p × l matrix with the ijth element being the standard error of β̂ij.

T: The p × l matrix with the ijth element being the t-statistic based on β̂ij.

Covbeta: The estimated covariance matrix of the β̂ij’s.

df: The degrees of freedom for the t-statistics, n − p.

Sigmaz: The q × q matrix Σ̂z.

Cx: The q × q matrix Cx = (x′x)−1.

ResidSS: The q × q residual sum of squares and crossproducts matrix.
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Deviance: The deviance of the model.

Dim: The dimension of the model, counting the nonzero βij’s and components of
Σz.

AICc: The corrected AIC criterion from (9.87) and (aic19).

BIC: The BIC criterion from (9.56).

A.2.4 bothsidesmodel.chisquare: Test subsets of β are zero

Description: Tests the null hypothesis that an arbitrary subset of the βij’s is zero,

based on the least squares estimates, using the χ2 test as in Section 7.1. The null
and alternative are specified by pattern matrices P0 and PA, respectively. If the PA is
omitted, then the alternative will be taken to be the unrestricted model.

See Listing A.7 for the code.

Usage: bothsidesmodel.chisquare(x,y,z,pattern0,patternA=matrix(1,nrow=ncol(x),ncol=ncol(z)))

Arguments:

x: An n × p design matrix.

y: The n × q matrix of observations.

z: A q × l design matrix.

pattern0: An n × p matrix of 0’s and 1’s specifying the null hypothesis.

patternA: An optional n × p matrix of 0’s and 1’s specifying the alternative hypoth-
esis.

Value: A list with the following components:

Theta: The vector of estimated parameters of interest.

Covtheta: The estimated covariance matrix of the estimated parameter vector.

df: The degrees of freedom in the test.

chisq: T2 statistic in (7.4).

pvalue: The p-value for the test.
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A.2.5 bothsidesmodel.hotelling: Test blocks of β are zero

Description: Performs tests of the null hypothesis H0 : β∗ = 0, where β∗ is a block
submatrix of β as in Section 7.2. An example is given in (7.12). The input consists
model matrices, plus vectors giving the rows and columns of β to be tested. In the
example, we set rows <− c(1,4,5) and cols <− c(1,3). See Listing A.8 for the code.

Usage: bothsidesmodel.test(x,y,z,rows,cols)

Arguments:

x: An n × p design matrix.

y: The n × q matrix of observations.

z: A q × l design matrix.

rows: The vector of rows to be tested.

cols: The vector of columns to be tested.

Value: A list with the following components:

Hotelling: A list with the components of the Lawley-Hotelling T2 test (7.22):

T2: The T2 statistic (7.19).

F: The F version (7.22) of the T2 statistic.

df: The degrees of freedom for the F.

pvalue: The p-value of the F.

Wilks: A list with the components of the Wilks Λ test (7.37):

lambda: The Λ statistic (7.35).

Chisq: The χ2 version (7.37) of the Λ statistic, using Bartlett’s correction.

df: The degrees of freedom for the χ2.

pvalue: The p-value of the χ2.

A.2.6 bothsidesmodel.lrt: Test subsets of β are zero

Description: Tests the null hypothesis that an arbitrary subset of the βij’s is zero,
using the likelihood ratio test as in Section 9.4. The null and alternative are specified
by pattern matrices P0 and PA, respectively. If the PA is omitted, then the alternative
will be taken to be the unrestricted model.

See Listing A.9 for the code.

Usage: bothsidesmodel.lrt(x,y,z,pattern0,patternA=matrix(1,nrow=ncol(x),ncol=ncol(z)))

Arguments:

x: An n × p design matrix.

y: The n × q matrix of observations.
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z: A q × l design matrix.

pattern0: An n × p matrix of 0’s and 1’s specifying the null hypothesis.

patternA: An optional n × p matrix of 0’s and 1’s specifying the alternative hypoth-
esis.

Value: A list with the following components:

chisq: The likelihood ratio statistic in (9.44).

df: The degrees of freedom in the test.

pvalue: The p-value for the test.

A.2.7 Helper functions

The functions tr and logdet find the trace and log determinant, respectively, of a
square matrix. See Listing A.10. The function fillout takes a q × (q − l) matrix z and
fills it out as in (9.25) so that it is q × q. See Listings A.11.

The function bothsidesmodel.df is used in bothsidesmodel of Section A.2.1 to find
the denominators needed to calculate an unbiased estimator of ΣR, as in Exercise
6.6.8. See Listing A.12. The functions bsm.simple and bsm.fit are used in bothsidesmodel.mle
of Section A.2.3 to estimate β. See Listings A.13 and A.14.

A.3 Classification

A.3.1 lda: Linear discrimination

Description: Finds the coefficents ak and constants ck for Fisher’s linear discrimina-
tion function dk in (11.31) and (11.32). See Listing A.15 for the code.

Usage: lda(x,y)

Arguments:

x: The n × p data matrix.

y: The n-vector of group identities, assumed to be given by the numbers 1, . . . , K for
K groups.

Value: A list with the following components:

a: A p × K matrix, where column k contains the coefficents ak for (11.31). The final
column is all zero.

c: The K- vector of constants ck for (11.31). The final value is zero.
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A.3.2 qda: Quadratic discrimination

Description: The function returns the elements needed to calculate the quadratic
discrimination in (11.48). Use the output from this function in predict.qda (Section
A.3.2) to find the predicted groups. See Listing A.16 for the code.

Usage: qda(x,y)

Arguments:

x: The n × p data matrix.

y: The n-vector of group identities, assumed to be given by the numbers 1, . . . , K for
K groups.

Value: A list with the following components:

Mean: A K × p matrix, where row k contains the sample mean vector for group k.

Sigma: A K× p× p array, where the Sigma[k,,] contains the sample covariance matrix

for group k, Σ̂k.

c: The K- vector of constants ck for (11.48).

A.3.3 predict.qda: Quadratic discrimination prediction

Description: The function uses the output from the function qda (Section A.3.2) and
a p-vector x, and calculates the predicted group for this x. See Listing A.17 for the
code.

Usage: predict.qda(qd,newx)

Arguments:

qd: The output from qda.

newx: A p-vector x whose components match the variables used in the qda function.

Value: A K-vector of the discriminant values d Q
k (x) in (11.48) for the given x.

A.4 Silhouettes for K-Means Clustering

A.4.1 silhouette.km: Calculate the silhouettes

This function is a bit different from the silhouette function in the cluster package,
[Maechler et al., 2005].

Description: Find the silhouettes (12.9) for K-means clustering from the data and and
the groups’ centers. See Listing A.18 for the code.

Usage: silhouette.km(x,centers)

Arguments:
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x: The n × p data matrix.

centers: The K × p matrix of centers (means) for the K clusters, row k being the
center for cluster k.

Value: The n-vector of silhouettes, indexed by the observations’ indices.

A.4.2 sort.silhouette: Sort the silhouettes by group

Description: Sorts the silhouettes, first by group, then by value, preparatory to plot-
ting. See Listing A.19 for the code.

Usage: sort.silhouette(sil,clusters)

Arguments:

sil: The n-vector of silhouette values.

clusters: The n-vector of cluster indices.

Value: The n-vector of sorted silhouettes.

A.5 Estimating the eigenvalues

We have two main functions, pcbic to find the MLE and BIC for a particular pattern,
and pcbic.stepwise, which uses a stepwise search to find a good pattern. The functions
pcbic.unite and pcbic.patterns are used by the main functions, and probably not of
much interest on their own.

A.5.1 pcbic: BIC for a particular pattern

Description: Find the BIC and MLE from a set of observed eigenvalues for a specific
pattern. See Listing A.20 for the code.

Usage: pcbic(eigenvals,n,pattern)

Arguments:

eigenvals: The q-vector of eigenvalues of the covariance matrix, in order from largest
to smallest.

n: The degrees of freedom in the covariance matrix.

pattern: The pattern of equalities of the eigenvalues, given by the K-vector
(q1, . . . , qK) as in (13.8).

Value: A list with the following components:

lambdaHat: A q-vector containing the MLE’s for the eigenvalues.

Deviance: The deviance of the model, as in (13.13).

Dimension: The dimension of the model, as in (13.12).

BIC: The value of the BIC for the model, as in (13.14).
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A.5.2 pcbic.stepwise: Choosing a good pattern

Description: Uses the stepwise procedure described in Section 13.1.4 to find a pattern
for a set of observed eigenvalues with good BIC value. See Listing A.20 for code.

Usage: pcbic.stepwise(eigenvals,n)

Arguments:

eigenvals: The q-vector of eigenvalues of the covariance matrix, in order from largest
to smallest.

n: The degrees of freedom in the covariance matrix.

Value: A list with the following components:

Patterns: A list of patterns, one for each value of length K.

BICs: A vector of the BIC’s for the above patterns.

BestBIC: The best (smallest) value among the BIC’s in BICs.

BestPattern: The pattern with the best BIC.

lambdaHat: A q-vector containing the MLE’s for the eigenvalues for the pattern with
the best BIC.

A.5.3 Helper functions

The function pcbic.unite takes as arguments a pattern (q1, . . . , qK), called pattern, and
an index i, called index1, where 1 ≤ i < K. It returns the pattern obtained by summing
qi and qi+1. See Listing A.22. The function pcbic.patterns (Listing A.23) takes the
arguments eigenvals, n, and pattern0 (as for pcbic in Section A.5.1), and returns the
best pattern and its BIC among the patterns obtainable by summing two consecutive
terms in pattern0 via pcbic.unite.

A.6 Function listings

Listing A.1: The function negent

negent <− function(x,K=ceiling(log2(length(x))+1)) {
p <− table(cut(x,breaks=K))/length(x)
sigma2 <− sum((1:K)^2∗p)−sum((1:K)∗p)^2
p <− p[(p>0)]
(1+log(2∗pi∗(sigma2+1/12)))/2+sum(p∗log(p))

}
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Listing A.2: The function negent2D

negent2D <− function(y,m=100) {
thetas <− (1:m)∗pi/m
ngnt <− NULL
for(theta in thetas) {

x <− y%∗%c(cos(theta),sin(theta))
ngnt <− c(ngnt,negent(x))

}
i <− imax(ngnt)
g <− c(cos(thetas[i]),sin(thetas[i]))
g <− cbind(g,c(−g[2],g[1]))
list(vectors = g,values = c(ngnt[i],negent(y%∗%g[,2])))

}

Listing A.3: The function negent3D

negent3D <− function(y,nstart=1,m=100,...) {
f <− function(thetas) {

cs <− cos(thetas)
sn <− sin(thetas)
negent(y%∗%c(cs[1],sn[1]∗c(cs[2],sn[2])))

}
tt <− NULL
nn <− NULL
for(i in 1:nstart) {

thetas <− runif(3)∗pi
o <− optim(thetas,f,method=’SANN’,control=list(fnscale=−1),...)
tt <− rbind(tt,o$par)
nn <− c(nn,o$value)

}
i <− imax(nn) # The index of best negentropy
cs<−cos(tt[i,])
sn<−sin(tt[i,])
g.opt <− c(cs[1],sn[1]∗cs[2],sn[1]∗sn[2])
g.opt <− cbind(g.opt,c(−sn[1],cs[1]∗cs[2],sn[2]∗cs[1]))
g.opt <− cbind(g.opt,c(0,−sn[2],cs[2]))
x <− y%∗%g.opt[,2:3]
n2 <− negent2D(x,m=m)
g.opt[,2:3] <− g.opt[,2:3]%∗%n2$vectors
list(vectors=g.opt,values = c(nn[i],n2$values))

}

Listing A.4: The function bothsidesmodel

bothsidesmodel <− function(x,y,z=diag(qq),pattern=matrix(1,nrow=p,ncol=l)) {
x <− cbind(x)
y <− cbind(y)
n <− nrow(y)
p <− ncol(x)
qq <− ncol(y)
z <− cbind(z)
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l <− ncol(z)

if((p*nrow(x)==1&&x==0) || (l*nrow(z)==1&&z==0)) {
sigma <− t(y)%*%y/n
output <− list(Beta = 0, SE = 0,T = 0, Covbeta = 0, df = n, Sigmaz=sigma)
return(output)

}

yz <− t(lm(t(y)∼z−1)$coef)
residb <− lm(yz∼x−1)$resid
sigmab <− t(residb)%*%residb/(n−p)

if(sum(pattern)==0) {
residss <− ((n−p−l−1)/(n−p))*tr(solve(sigmab,t(yz)%*%yz))
output <− list(Beta = 0, SE = 0,T = 0, Covbeta = 0, df = n,Sigmaz=sigmab,
ResidSS=residss,Dim=l*(l+1)/2,Cp=residss+l*(l+1))
return(output)

}

rowse <− rowt <− rowb <− rep(0,p*l)
rowp <− c(t(pattern))==1
xx <− t(x)%*%x
xyz <− t(x)%*%yz
xyz <− c(t(xyz))[rowp]
xxzz <− kronecker(xx,diag(l))[rowp,rowp]
dstarinv <− solve(xxzz)
g <− xyz%*%dstarinv
rowb[rowp] <− g
beta <− matrix(rowb,nrow=p,byrow=T)
df <− bothsidesmodel.df(xx,n,pattern)
residz <− yz−x%*%beta
residsscp <− t(residz)%*%residz
sigmaz <− residsscp/df
xxzsz <− kronecker(xx,sigmaz)[rowp,rowp]
covbeta <− dstarinv%*%xxzsz%*%dstarinv
covbetab <− matrix(0,p*l,p*l)
covbetab[rowp,rowp] <− covbeta
se <− sqrt(diag(covbeta))
tt <− g/se
rowse[rowp] <− se
rowt[rowp] <− tt
residss <− ((n−p−l−1)/(n−p))*tr(solve(sigmab,residsscp))
dd <− sum(pattern)+l*(l+1)/2

list(Beta = beta, SE = matrix(rowse,nrow=p,byrow=T),
T = matrix(rowt,nrow=p,byrow=T),
Covbeta = covbetab, df = diag(df),Sigmaz = sigmaz, ResidSS =residss,
Dim=dd,Cp=residss+2*dd)

}

Listing A.5: The function reverse.kronecker

reverse.kronecker <− function(ab,p,qq) {
m <− nrow(ab)/p
n <− ncol(ab)/qq
rr <− c(outer((0:(p−1))*m,1:m,"+"))
cc <− c(outer((0:(qq−1))*n,1:n,"+"))
ab[rr,cc]

}

Listing A.6: The function bothsidesmodel.mle

bothsidesmodel.mle <− function(x,y,z=diag(qq),pattern=matrix(1,nrow=p,ncol=l)) {
x <− cbind(x)
y <− cbind(y)
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n <− nrow(y)
p <− ncol(x)
qq <− ncol(y)
z <− cbind(z)
l <− ncol(z)

if(length(x)==1&&x==0) {
bsm <− list(Beta=0,SE=0,T=0,Covbeta=0,df=n)
resid <− y
psum <− 0

} else {
bsm <− list()
beta <− se <− tt <− matrix(0,nrow=p,ncol=l)
psum <− sum(pattern)
if(psum>0) {

rowin <− apply(pattern,1,max)==1
colin <− apply(pattern,2,max)==1
x1 <− x[,rowin,drop=FALSE]
z1 <− z[,colin,drop=FALSE]
yz <− cbind(y%*%solve(t(fillout(z1))))
l1 <− ncol(z1)
p1 <− ncol(x1)
yza <− yz[,1:l1,drop=FALSE]
xyzb <− x[,rowin,drop=FALSE]
if(l1<qq) xyzb <− cbind(xyzb,yz[,(l1+1):qq])
pattern1 <− pattern[rowin,colin]
if(min(pattern1)==1) {

bsm <− bsm.simple(xyzb,yza,diag(l1))
bsm$Cx <− bsm$Cx[1:p1,1:p1]

} else {
pattern2 <− rbind(pattern1,matrix(1,nrow=qq−l1,ncol=l1))
bsm <− bsm.fit(xyzb,yza,diag(l1),pattern2)

}
beta[rowin,colin] <− bsm$Beta[1:p1,]
se[rowin,colin] <− bsm$SE[1:p1,]
tt[rowin,colin] <− bsm$T[1:p1,]
bsm$Covbeta <− bsm$Covbeta[1:psum,1:psum]

}
bsm$Beta <− beta
bsm$SE <− se
bsm$T <− tt
if(psum==0) {

bsm$Covbeta <− 0
bsm$df <− n
p1 <− 0

}
resid <− y−x%*%beta%*%t(z)

}
bsm$ResidSS <− t(resid)%*%resid/n
bsm$Deviance <− n*logdet(bsm$Sigma) + n*qq
bsm$Dim <− psum+qq*(qq+1)/2
bsm$AICc <− bsm$Deviance+(n/(n−p1−qq−1))*2*bsm$Dim
bsm$BIC <− bsm$Deviance + log(n)*bsm$Dim

bsm
}

Listing A.7: The function bothsidesmodel.chisquare

bothsidesmodel.chisquare <− function(x,y,z,pattern0,
patternA=matrix(1,nrow=ncol(x),ncol=ncol(z))) {

bsm <− bothsidesmodel(x,y,z,patternA)
which <− patternA∗(1−pattern0)
which <− c(t(which)) == 1
theta <− c(t(bsm$Beta))[which]
covtheta <− bsm$Covbeta[which,which]
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chisq <− theta%∗%solve(covtheta,theta)
df <− sum(which)
list(Theta=theta,Covtheta = covtheta,df = df, Chisq=chisq,pvalue=1−pchisq(chisq,df))

}

Listing A.8: The function bothsidesmodel.hotelling

bothsidesmodel.hotelling <− function(x,y,z,rows,cols) {
bsm <− bothsidesmodel(x,y,z)
lstar <− length(cols)
pstar <− length(rows)
nu <− bsm$df[1]
bstar <− bsm$Beta[rows,cols]
if(lstar==1) bstar <− matrix(bstar,ncol=1)
if(pstar==1) bstar <− matrix(bstar,nrow=1)
W.nu <− bsm$Sigmaz[cols,cols]
cx <− solve(t(x)%∗%x)
B <− t(bstar)%∗%solve(cx[rows,rows])%∗%bstar
t2 <− tr(solve(W.nu)%∗%B)
f <− (nu−lstar+1)∗t2/(lstar∗pstar∗nu)
df <− c(lstar∗pstar,nu−lstar+1)
W <− W.nu∗nu
lambda <− ifelse(lstar==1,W/(W+B),det(W)/det(W+B))
chis <− −(nu−(lstar−pstar+1)/2)∗log(lambda)
Hotelling <− list(T2 = t2, F = f, df = df,pvalue = 1−pf(f,df[1],df[2]))
Wilks <− list(Lambda=lambda,Chisq=chis,df=df[1],pvalue=1−pchisq(chis,df[1]))
list(Hotelling = Hotelling,Wilks = Wilks)

}

Listing A.9: The function bothsidesmodel.lrt

bothsidesmodel.lrt <− function(x,y,z,pattern0,patternA=matrix(1,nrow=ncol(x),ncol=ncol(z))) {
bsmA <− bothsidesmodel.mle(x,y,z,patternA)
bsm0 <− bothsidesmodel.mle(x,y,z,pattern0)
chisq <− bsm0$Deviance−bsmA$Deviance
df <− bsmA$Dim − bsm0$Dim
list(Chisq=chisq,df=df,pvalue=1−pchisq(chisq,df))

}

Listing A.10: The functions tr and logdet

tr <− function(x) sum(diag(x))

logdet <− function(x) {determinant(x)$modulus[1]}
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Listing A.11: The function fillout

fillout <− function(z) {
if(is.vector(z)) z <− matrix(z,ncol=1)
qq <− nrow(z)
l <− ncol(z)
if(l<qq) {

qz <− diag(qq)−z%∗%solve(t(z)%∗%z,t(z))
z <− cbind(z,eigen(qz)$vector[,1:(qq−l)])

}
if(l>qq) {

z <− t(fillout(t(z)))
}
z

}

Listing A.12: The function bothsidesmodel.df

bothsidesmodel.df <− function(xx,n,pattern) {
l <− ncol(pattern)
tt <− pattern==1
pj <− apply(pattern,2,sum)
df <− matrix(0,l,l)
diag(df) <− n−pj
a <− vector("list",l)
a[[1]] <− solve(xx[tt[,1],tt[,1]])
for(i in 2:l) {

if(pj[i]>0) a[[i]] <− solve(xx[tt[,i],tt[,i]])
for(j in 1:(i−1)) {

if(pj[i]==0|pj[j]==0) {pij<−0}
else {

b <− xx[tt[,i],tt[,j]]
if(is.vector(b)) b <− matrix(b,nrow=pj[i])
pij <− tr(a[[i]]%∗%b%∗%a[[j]]%∗%t(b))

}
df[j,i] <− df[i,j] <− n−pj[i]−pj[j]+pij

}
}
df

}

Listing A.13: The function bsm.simple

bsm.simple <− function(x,y,z) {
yz <− y%∗%z%∗%solve(t(z)%∗%z)
cx <− solve(t(x)%∗%x)
beta <− cx%∗%t(x)%∗%yz
residz <− yz − x%∗%beta
df <− nrow(yz)−ncol(x)
sigmaz <− t(residz)%∗%residz/df
se <− sqrt(outer(diag(cx),diag(sigmaz),"∗"))
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list(Beta = beta, SE = se, T = beta/se, Covbeta = kronecker(cx,sigmaz),df = df,
Sigmaz = sigmaz, Cx=cx)

}

Listing A.14: The function bsm.fit

bsm.fit <− function(x,y,z,pattern) {
n <− nrow(y)
p <− ncol(x)
l <− ncol(z)
xx <− t(x)%∗%x
xy <− t(x)%∗%y
rowp <− c(t(pattern))==1
lsreg <− lm(y∼x−1)
yqxy <− t(lsreg$resid)%∗%lsreg$resid
beta0 <− lsreg$coef
sigma <− cov(y)∗(n−1)/n
rowse <− rowt <− rowb <− rep(0,p∗l)
dev0 <− n∗logdet(sigma)

maxiter = 25
iter = 0;

repeat {
sigmainvz <− solve(sigma,z)
xyz <− c(t(xy%∗%sigmainvz))[rowp]
xxzz <− kronecker(xx,t(z)%∗%sigmainvz)[rowp,rowp]
dstarinv <− solve(xxzz)
gamma <− xyz%∗%dstarinv
rowb[rowp] <− gamma
beta <− matrix(rowb,nrow=p,byrow=T)
betadiff <− beta0−beta%∗%t(z)
sigma <− (yqxy+t(betadiff)%∗%xx%∗%betadiff)/n
dev <− n∗logdet(sigma)
iter <− iter+1
if(abs(dev−dev0) < 0.00001) break;
if(iter>=maxiter) break;
dev0 <− dev

}
df <− n−p
covbeta <− solve(xxzz)∗(n/df)
se <− sqrt(diag(covbeta))
tt <− gamma/se
rowse[rowp] <− se
rowt[rowp] <− tt
se <− matrix(rowse,nrow=p,byrow=T)
tt <− matrix(rowt,nrow=p,byrow=T)
list(Beta = beta, SE = se, T = tt, Covbeta = covbeta, df = df)

}
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Listing A.15: The function lda

lda <− function(x,y) {
if(is.vector(x)) {x <− matrix(x,ncol=1)}
K <− max(y)
p <− ncol(x)
n <− nrow(x)
m <− NULL
v <− matrix(0,ncol=p,nrow=p)
for(k in 1:K) {

xk <− x[y==k,]
if(is.vector(xk)) {xk <− matrix(xk,ncol=1)}
m <− rbind(m,apply(xk,2,mean))
v <− v + var(xk)∗(nrow(xk)−1)

}
v <− v/n
phat <− table(y)/n

ck <− NULL
ak <− NULL
vi <− solve(v)
for(k in 1:K) {

c0 <− −(1/2)∗(m[k,]%∗%vi%∗%m[k,]−m[K,]%∗%vi%∗%m[K,])
+log(phat[k]/phat[K])

ck <− c(ck,c0)
a0 <− vi%∗%(m[k,]−m[K,])
ak <− cbind(ak,a0)

}
list(a = ak, c = ck)

}

Listing A.16: The function qda

qda <− function(x,y) {
K <− max(y)
p <− ncol(x)
n <− nrow(x)
m <− NULL
v <− array(0,c(K,p,p))
ck <− NULL
phat <− table(y)/n
for(k in 1:K) {

xk <− x[y==k,]
m <− rbind(m,apply(xk,2,mean))
nk <− nrow(xk)
v[k,,] <− var(xk)∗(nk−1)/nk
ck <− c(ck,−log(det(v[k,,]))+2∗log(phat[k]))

}

list(Mean = m,Sigma = v, c = ck)
}
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Listing A.17: The function predict.qda

predict.qda <− function(qd,newx) {
newx <− c(newx)

disc <− NULL
K <− length(qd$c)
for(k in 1:K) {

dk <− −t(newx−qd$Mean[k,])%∗%
solve(qd$Sigma[k,,],newx−qd$Mean[k,])+qd$c[k]

disc <− c(disc,dk)
}
disc

}

Listing A.18: The function silhouette.km

silhouette.km <− function(x,centers) {
dd <− NULL
k <− nrow(centers)
for(i in 1:k) {

xr <− sweep(x,2,centers[i,],’−’)
dd<−cbind(dd,apply(xr^2,1,sum))

}
dd <− apply(dd,1,sort)[1:2,]
(dd[2,]−dd[1,])/dd[2,]

}

Listing A.19: The function sort.silhouette

sort.silhouette <− function(sil,cluster) {
ss <− NULL
ks <− sort(unique(cluster))
for(k in ks) {

ss <− c(ss,sort(sil[cluster==k]))
}
ss

}
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Listing A.20: The function pcbic

pcbic <− function(eigenvals,n,pattern) {
p <− length(eigenvals)
l <− eigenvals
k <− length(pattern)
istart <− 1
for(i in 1:k) {

iend <− istart+pattern[i]
l[istart:(iend−1)] = mean(l[istart:(iend−1)])
istart <− iend

}
dev <− n∗sum(log(l))
dimen <− (p^2−sum(pattern^2))/2 + k
bic <− dev + log(n)∗dimen
list(lambdaHat = l,Deviance = dev,Dimension = dimen,BIC = bic)

}

Listing A.21: The function pcbic.stepwise

pcbic.stepwise <− function(eigenvals,n) {
k <− length(eigenvals)
p0 <− rep(1,k)
b <− rep(0,k)
pb <− vector(’list’,k)
pb[[1]] <− p0
b[1] <− pcbic(eigenvals,n,p0)$BIC
for(i in 2:k) {

psb <− pcbic.subpatterns(eigenvals,n,pb[[i−1]])
b[i] <− min(psb$bic)
pb[[i]] <− psb$pattern[,psb$bic==b[i]]

}
ib <− (1:k)[b==min(b)]
list(Patterns = pb,BICs = b,

BestBIC = b[ib],BestPattern = pb[[ib]],
LambdaHat = pcbic(eigenvals,n,pb[[ib]])$lambdaHat)

}

Listing A.22: The function pcbic.unite

pcbic.unite <− function(pattern,index1) {
k <− length(pattern)
if(k==1) return(pattern)
if(k==2) return(sum(pattern))
if(index1==1) return(c(pattern[1]+pattern[2],pattern[3:k]))
if(index1==k−1) return(c(pattern[1:(k−2)],pattern[k−1]+pattern[k]))
c(pattern[1:(index1−1)],pattern[index1]+pattern[index1+1],pattern[(index1+2):k])

}
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Listing A.23: The function pcbic.subpatterns

pcbic.subpatterns <− function(eigenvals,n,pattern0) {
b <− NULL
pts <− NULL
k <− length(pattern0)
if(k==1) return(F)
for(i in 1:(k−1)) {

p1 <− pcbic.unite(pattern0,i)
b2 <− pcbic(eigenvals,n,p1)
b <− c(b,b2$BIC)
pts <− cbind(pts,p1)

}
list(bic=b,pattern=pts)

}
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