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PREFACE

These notes have been prepared in conjunction with the course Statistics 133, which
I taught in Spring 1999. They are intended as informal notes introducing some of the
theory of multivariate analysis and also showing how some of the better-known multivariate
analysis techniques may be implemented in SPlus. The material draws on a number of
standard references in the field; among those which I have used particularly heavily are
Mardia, Kent and Bibby (1979), and Chatfield and Collins (1980).

Beginning with the 2000-2001 academic year, Statistics 133 is to become Statistics
185 with the new name “Time Series and Multivariate Analysis”. A separate set of course
notes is available for the “Time Series” section of Statistics 133.

Richard Smith
Chapel Hill
May 1999
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1. MULTIVARIATE NORMAL DISTRIBUTION THEORY
1.1 Definitions

Definition 1. A p-dimensional random vector X has a multivariate normal distri-
bution with mean vector p and nonsingular p X p covariance matrix ¥ (notation: X ~

MV N,[u, X]) if X has the density

1
fx(z) = 2m) P28~V exp {—i(x — )y Yz - /1,)} . (1.1)
Definition 2. X ~ MV Np[p, Y] if and only if X has the characteristic function
itT X T Lr
E (e ) =exp | it" p— §t 3t ). (1.2)

Note that (1.1) makes sense only if 3 is nonsingular, whereas (1.2) is valid without any
such restriction. For this reason, some people like to think of (1.2) as the correct definition.
That (1.1) implies (1.2), when X is nonsingular, is shown by the following argument.

First, since X is a covariance matrix, it is necessarily symmetric and non-negative
definite. Since we are assuming it is nonsingular, it must therefore be positive definite
as well, which implies that ¥~! exists and has a symmetric positive-definite square root
matrix A, satisfying A2 = ¥~ Let Y = A(X — p). It is easily verified that the data
transformation from X to Y has Jacobian |A| (determinant of A), which is the same as
%|71/2, and that (X — p)TE"1(X — p) = YTY. Therefore, the density of Y is

fr(y) = (2m) P exp (—%yTy> : (1.3)

If we write Y = (Y1, ..., Y,)T with corresponding values y = (y1, ..., yp)T, then (1.3) is the

same as
({7 (434)]
X — — -
U7 P —5Yi

which confirms that Y7, ..., Y, are independent N(0,1) random variables. Hence it follows
that for any ¢t = (¢1,...,t,)7,

E(e“TY) - E{exp(ithYj)} = H exp (—%) = exp (_752_15) .

However, writing X = p+ A~'Y, we have
E{eitTX} _ eitTu ) E{eitTA*Y}

1
= exp (itT,u, — §tTA_1A_1t>

1
= exp (itTp, — itTEt) ,
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consistent with (1.2).

Proposition 1. If X ~ MV Np[p,¥] and Y = AX +b, where Ais ¢ x p, bis ¢ x 1, then
Y ~ MV N,[Ap + b, AL AT].

Proof. We use definition 2 of the MVN, since in many cases one of ¥ or AXAT will
be singular. But then

E{eit Y} = E{exp(itT AX + itTh)}
1
= exp (itTAu — 5tTAz:ATt + z'th)
1
= exp {z’tT(Au +b) — 5tT(AzAT)t} :
which is as required.

Corollary 1. If X ~ MV N,[p,Y] and a € RP, then aTY ~ N(aT i, aTXa).

Remark 1. The converse statement also holds, i.e. if aT X is (univariate) normal for
any vector a, then X is multivariate normal. This is sometimes taken as an alternative
definition of the multivariate normal distribution.

Proposition 2. If X ~ MV Np|u, ] with nonsingular ¥, and U = (X —p) TS~ 1(X —p),
then U ~ x2.

Proof. Defining Y = A(X — p) as before, we have U = YTA7I1Y"1A71lY = YTY =
§=1 Yj2, and it is well known that the sum of squares of p independent standard normal
variables has a X?, distribution.

To avoid constantly repeating statements of the form “assuming the matrix X is
nonsingular”, we shall henceforth adopt the convention that whenever a definition or a
proposition involves the inverse of a matrix, it is part of the statement that the inverse is
assumed to exist.

Proposition 3. Suppose
X1 %3} Y11 X2
X = ~ MV N, , .
()~ [(32) (5 52)
In other words, X is being partitioned into two vectors X; and X5, whose dimensions are
p1 and p2 say, with p; + p2 = p, and p and ¥ are partitioned correspondingly. Then the
conditional distribution of X; given Xy = x5 is
MV Ny, [p1 + $12555 (22 — p2), S11 — L12555 Soa ).
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Proof. Define X7 = X; — 2122521X2, X5 = Xo,

. [ XE) (T =Yy
* ‘(Xa*)‘AX’ A‘(O 1)

where [ is the identity matrix.

By Prop. 1, X* is multivariate normal with mean

Ap = (Ml = D125, 42 )
2

and covariance matrix

I =215 Y X I 0
AZ_IAT: 124499 11 12 B
(0 I Yor Yoz ) \ —%55 ey T

_ (I —21222_21> (En — 21222_21221 212)

0 I 0 Y99
_ (- Y19¥55 Y21 0
O 222 )

This shows that X{ and X5 are uncorrelated, and hence independent with

X} ~ MV Ny, [p1 — S12555 p2, 11 — B12555 So1]
X5 ~ MV Ny, [pi2, ¥a2]-

To calculate the conditional distribution of X; given Xs, write
X1 =X} + 3012555 Xo.

The second term is constant while the first is independent of X5 and therefore has the
same distribution conditionally as it does unconditionally. This distribution is normal,
hence X; is conditionally normal with conditional mean p; — 21222_21 W2 + 21222_21X 5 and
covariance Y11 — 21222_21221. This proves the result.

1.2 The Wishart Distribution

Definition 3. Let Xi,..., X, be independent MV N,[0,¥] and M = Z;nzl XjX]T.
The M is said to have the Wishart distribution with m degrees of freedom and covariance
matrix ¥, notation M ~ W,[X, m]. The density is

far (M) = M D R exp {5 r(B7IM))
M B 2mp/2pp(p—1)/4|33|m/2 H§:1F (m+21—j)

with respect to Lebesgue measure on RP(P+t1)/2 restricted to positive definite symmetric
matrices M.



The case ¥ = I, (the p X p identity matrix) is known as standard Wishart.

The precise form of the probability density function is very rarely used, the one ex-
ception to this statement being in Bayesian calculations where the Wishart distribution
is often used as a conjugate prior for the inverse of a normal covariance matrix. Even in
this case, for applied Bayesian calculations, it is not necessary to remember the constants
needed to make the density integrate to 1.

Although the Wishart density is defined for any real positive m, in practice we usually
restrict attention to cases when m is integer, and in that case, most of the important
properties are derived from Definition 3 rather than from the form of the density function.

Proposition 4. If M ~ W,[£,m] and B is p x ¢, then BTM B ~ W, [BTYB, m].

Proof. 1If X; ~ MVN,[0,%] then BTX; ~ MVN,[0,BTSB] by Prop. 1, and
BTMB =3 ,(B"X;)(B" X;)T. The result is then immediate from Definition 3.

Corollary 2. If M ~ W,[E,m] then S~Y2M¥%~1/2 ~ W, [I,, m)].
Proposition 5. If M ~ Wi[o?, m], then M/a? ~ x2,.

Proof. M/a® = 7 .(X;/0)?, which is the sum of squares of m independent NJ0,1]
variables.

Corollary 3. If M ~ W,[%, m] and a € RP is such that a¥Xa # 0, then

a’Ma
T ~Y Xm.
atXa

Proof. Immediate from Prop. 4 and Prop. 5.

Note that it follows from Corollary 3 that all diagonal entries of a Wishart matrix
have scaled 2, distributions.

Up to this point, all the properties we have derived have been more or less immediate
consequences of the definitions. Now, however, comes something much more subtle:

Proposition 6. If M ~ W,[¥, m| and a € RP and m > p — 1, then

al¥"1q

2
oI M-1q Xm—p+1- (1.4)

Before proving Prop. 6, we note



Proposition 7. Suppose we partition both A and A~! as
_ (A A 1 [ A A2
A= <A21 A22 9 A - A21 A22 .
Then the elements of A~! may be given by
A = (A1 — A12Agy Asr) 7,
A12 — —A11A12A2_21,
A21 — —A2_21A21A11,
A?? = (Agy — As1 AT A1) 71,

assuming (as in earlier results) that all the inverse matrices given in these formulae actually
exist.

The proof of Proposition 7 is essentially just direct verification by multiplying out the
matrices and some algebraic rearrangement of the expressions that result. We omit all
details of this.

Proof of Proposition 6. We divide this into two cases, doing it first for the case when
a’ = (1,0,0,0...,0), and then in general. The proof follows that given by Chatfield and
Collins (1980), which reduces to showing that the result is equivalent to a standard one
about least squares regression.

Suppose, then, a¥ = (1,0,0,0...,0). Partitioning both ¥ and M by the first row and

column, we write
_ (o X2 1 [l %12
Y= <E21 222) ’ by - (221 222 ’

mi11 M12 -1 mll ]\412
M = , M~ = ,
(M21 M22> (

where by Prop. 7,

11 1 11 1

o = — , m = — .
011 — 2312222 Y91 mi1 — M12M22 Moy

So in this case, the result reduces to showing

11 -1
g _ mi1 — M12M22 M21 2

— — NX _ . (1.5)
m!t 011 — 2122221221 mept

Suppose X;, i = 1,2,...,m are a sample of independent observations from N (0, ).
Write Xi:(Xi(l), vees XJ(p))T so that, in particular, Xi(l) is the first component of the vector
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X;. To prove (1.5), we proceed by conditioning on all the other components, i.e. on
{XZ-(J), 2 <j<p, 1<i<m}. With that conditioning, we may write

p .

Jj=2

where {e;} are independent N(0,72) random variables and {3;, 2 < j < p} are the

regression coefficients of Xi(l) on {Xi(J), 2 < j < p}. Prop. 3 shows that 8 = (Bs, ..., B,)T =
21222_21 and 72 = 011 — 21222_21221. Suppose, however, we were interested in estimating 3
based on the regression equation (1.6). We form the standard sums of squares and products
of the dependent and independent variables without centering, since we are assuming the
overall mean of all the observations is 0. Writing (1.6) in the form y = Af + ¢, a typical
entry of the matrix AT A is of the form

m
S xPxM, 2<j<p 2<k<p, (1.7)
=1

and the collection of all such entries is precisely the matrix My, the lower (p—1) X (p—1)
submatrix of M. Similarly, the vector that corresponds to ATy in the regression model

(1.6) is the submatrix M»;. Finally, the regression sum of squares yy or Y i, XZ.(I)2 is
just mq1. Therefore, in the regression equation (1.6), the least squares estimate of 3 is
M2_21M21, and the residual sum of squares is mq; — M12M2_21M21. Noting that we are
estimating a (p— 1)-dimensional parameter vector based on m observations, standard least

squares regression theory shows that

mi1 — M12M2_21M21
m—p+1

is an unbiased estimator of 72, with m — p + 1 degrees of freedom, and a scaled an_p 41
distribution. In particular,

—1
mi1 — M12M22 M21 2
~ Xm—p+1'

T2

However, this result is precisely (1.5), expressed as a conditional distribution given {Xi(j ),
2<j<p, 1<i<m}.

The form of this result is that the conditional distribution of mq; — M 12M2_21M21 does
not depend on the values we are conditioning on, and therefore holds unconditionally as
well. With that, we have proved (1.5) in the form originally stated, and hence have proved
Prop. 6 in the case that a” = (1,0,0,0...,0).

To complete the proof of Prop. 6, we must show that the same result holds for any
other a as well. Let A be a p X p nonsingular matrix whose first column is a. Provided
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a # 0, we can always find such a matrix by taking the last p — 1 columns of A to be
linearly independent vectors in the space orthogonal to a. Let B = A~!. By Prop. 4,
BMBT ~ W,[BEBT,m]. Now, (BMBT)=1 = ATM~1A and the top left hand entry of
this matrix is precisely a? M~ta. Similarly, (BXBT)~! = ATY 1A with top left hand
entry aT¥"1a. Therefore, by the result for the case a = (1,0,0,0...,0), applied to the
matrix BM BT, we deduce (1.4), which is the result we want. With this, the proof of Prop.
6 is complete.

Remark 2. The result of Prop. 6 holds for any deterministic a € R?, and therefore
holds also for random a provided the distribution of a is independent of M. This note is
critical in the next subsection.

1.3 Hotelling’s T?

Definition 4. Suppose X and S are independent such that
X ~ MV N,p, X, msS ~ W,[3, m].

Then
T2(m) = (X — p)"S™ (X ~ )

is known as Hotelling’s T? statistic. We shall see in Chapter 2 that this plays a similar
role in multivariate analysis to that of the student’s ¢ distribution in univariate statistical
theory.

The next proposition states the distribution of 7T°2:

Proposition 8.

m—p+1

T?(m) ~ Fpm—pt1, provided m >p—1.
mp

p

Proof. Define M = mS.

By Remark 2 following Prop. 6, the result of Prop. 6 holds if we replace the deter-
ministic vector a by the random vector X — p, whose distribution is independent of M by
assumption. Therefore, defining

(X —p)"S X —p)
(X =p)TS 1 (X —p)’

R=m-

we see that R ~ an_p 41, independent of X. We also have
U= (X~ )87 (X — ) ~ X

by Prop. 2. Therefore,



with R, U having independent x? distributions. Finally

m-p+l_, _(U R
mp Tp(m)—(p m—p+1 Fpm—pt1;

1.4 The joint distribution of the sample mean and the sample
covariance matrix

as required.

Suppose X1, ..., X, are independent random vectors with the common distribution
MV Ny i, X]. Let X = (X7 + ...+ Xp)/n.

Proposition 9.

S K= ) (X = )T = (& = ) (X = )T+ 3 (X - X)X - D).

7

_ Proof. 3.,(X; )(Xi — )t =2 (Xi —
X)(X; = X)T +2Z( ) (Xi = X) + (X
the expansion is 0, giving the result.

X+ X = p)(Xi = X+ X — )" =55,(X; -
1) (X — ). However the middle term in

Define the sample covariance matrix,

LS - X) (X - X)T

i

S:n—l

Proposition 10. X and S are independent, with

\/H(X — )~ MVNP[07 ¥, .
(n=1)S ~ W,[S,n — 1]. (1.9)

Proof. E{n(X — p)(X — )T} = 1E {3°,(X; — p)(X; — )T} = 3, so (1.8) follows
directly from Prop. 1. The main part of the proof is to show that (n —1)S has a Wishart
distribution and is independent of X.

Let D = (d;;) be a n x n orthogonal matrix (DTD = DDT = I,,, where I, is the
n x n identity matrix) such that d;1 = 1/y/n for i = 1,...,n. Define V; = 3" .(X; — p)d;i.
We claim:
(i) E{V;Y,I'} = S if i = k, 0 otherwise.
(i) 32, YoV = $u(X - ) (X — )"

11



(i) 1Y{" =n(X - p)(X —p)".

Note that (i) implies that Y7, ..., Y;, are independent, since for random variables which

are jointly normally distributed, uncorrelated implies independent.

Proof of (). B{> ;> ,(X;—p)d;ji(Xe— ) de} = ¥->2; djidjk. But by orthogonality

of D, Z djidjg is 1 1f 1=k, 0 otherwise, as required.

Proof of (ii). 3, Z 2o (X5 — p)dyi (X — w) " dy; = Z > (X5 — 1) (X — )7
>, djidk;} which reduces to ZJ (X 1)(X; — )T, again using orthogonahty of D.

Proof of (i4i). Immediate by substitution.

Therefore, we may write
> (K== =1y + Y vy
% =2

=n(X - (X -+ vy

1=2

and the two summands are therefore independent with distributions W,[%, 1] and W,[X, n—
1] respectively. Moreover, by Prop. 9, >, Y;V;T is the same as (n —1)S. With this, the

proof of Prop. 10 is complete.
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2. INFERENCE ABOUT THE MULTIVARIATE
NORMAL DISTRIBUTION

2.1 Point estimates

Suppose X1, ..., X,, are independent random vectors with common distribution
MV N,[u,X]. In this chapter, we consider estimation and hypothesis testing problems
associated with p and 3.

A natural starting place is to consider the maximum likelihood estimators for this
problem. Ignoring the (27)~?/2 component of the probability density function, which
plays no part in any inferential procedures, the log likelihood is given by

(%) = ~ 2 og [ = 5 30 (Xi = )5 (X — )

n n, s 1,5 1 - _ =
= Dlog [ — DX —p)TSTNE ) - S(Ke - K)TET(X - X (21)
The middle term is < 0, and = 0 if and only if p = X . Therefore, the maximum likelihood
estimator of p is 1 = X.

The third term in (2.1) may be written in the form —3tr{}",(X;—X)TE"1(X;-X)} =
—tr{Z71 Y, (X - X)(Xs — X)T} = =251 6r{E 1S}, using the formula tr(AB) =tr(BA)
whenever AB and BA are both well-defined square matrices. However, it is more conve-
nient for our present purposes to write this as —2tr{-~'Sg}, where

5 - T (X = D)X = 5T

n

in other words, using n rather than n — 1 in the denominator.

With these notational conventions, we now see that the maximum likelihood estimator
of 3 is the positive-definite symmetric matrix which minimizes

log || + tr(X71Sp). (2.2)
We claim this is achieved by setting 3 = Sj.
To see this, write X715y = A and use to formula |AB| = |A| - | B| to write (2.2) as
log |So| — log |A| + tr(A).
But if the eigenvalues of A are Ay, ..., A,, we have |A| =[], \; and tr(4) = > . \; so the

problem becomes to minimize
P

D (A —log Ai). (2.3)

=1
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However it is readily checked that the expression f(A) = A — log A is minimized over
0 < A < oo by A = 1. Hence the solution to (2.3) is achieved when A\; = ... = A, =1, or in
other words when A is the identity matrix, which is what we set out to establish. Hence,
Sp is the maximum likelihood estimator of .

We have shown that X and Sy are the maximum likelihood estimators of y and
respectively, and this means that they are asymptotically efficient estimators, but they do
not necessarily have optimal small-sample properties. In the case of ¥, we have shown
that Sy is the maximum likelihood estimator but we know from Prop. 10 that S rather
than Sy is an unbiased estimator, and for that reason most statisticians in practice use
S rather than Sy in defining the sample covariance matrix. Nevertheless, the likelihood
function plays an important role in defining estimators and tests for more complicated
multivariate analysis problems, so it is important to understand how to calculate the
maximum likelihood estimator for this problem.

This discussion is of course directly analogous to the corresponding discussion in
univariate problems, so it should come as no surprise that there is a conflict between the
MLE and the best unbaised estimator. What is more surprising is that in multivariate
problems there is also a debate over the appropriate estimator for p. In a series of papers
in the 1950s, Charles Stein showed that the MLE is inadmissible with respect to mean
squared error, whenever p > 3. In other words, there are other estimators which achieve a
smaller expected mean squared error, whatever the true value of u. This discovery led to a
rich field of research on improved estimators in very wide classes of multivariate problems,
but these ideas are not very easy to apply in practice, and in any case none of this theory
impinges on the asymptotic properties of maximum likelihood estimators — MLEs are
asymptotically efficient for virtually all of the problems we shall consider. Therefore, the
discussion in these notes will continue to focus around maximum likelihood techniques.
The reader interested in finding out more about the Stein effect and inadmissibility should
read the celebrated paper by James and Stein (1961), or for a modern account, Berger
(1985).

2.2 Testing hypotheses via likelihood ratios

There are two very widely used approaches to hypothesis testing, (a) likelihood ratio
tests, (b) the union-intersection principle.

We first consider likelihood ratio tests. The general principle is as follows: suppose
Hy is the null hypothesis and H; is the alternative hypothesis, where the hypotheses are
“nested” in the sense that Hy is contained within H;. More specifically, suppose Hj is
obtained from H; by placing v independent parameter constraints on Hi, so that v is
the difference in dimensions between the two models. Let Ly and L; be the maximized
likelihood under Hy and H7 respectively; we should always have L; > Ly because of the
nesting. Let W = 2log(L1/Lo). Then W is the likelihood ratio statistic, also known as
Wilks’ statistic. In some cases, we can figure out the exact distribution of W when Hj is

14



true. In other cases, it is usual to use the asymptotic result W ~ x2 under Hy, which is
true as the sample size n — oo in any regular parametric problem.

Having outlined the general principle, we now consider three specific examples:

Case I. Testing Hy : p = pg against Hy : p # pg, when pg is given and the covariance
matrix ¥ is assumed known.

In this case the log likelihood (modulo constants) is of form

—g log | %] — % D (X=X - p). (2.4)

Under Hy, we simply substitute p = pg in (2.4). Under H;, the MLE for u is X, so we
substitute this value in (2.4). We then have that

W = (X; — po) "2 (Xi — po) — (X5 — X)T271(X; — X)
= n(X — o) TETHX — po)- (2.5)

The asymptotic theory says that as n — oo, the distribution of W approaches X12a- In fact,
Prop. 2 shows that this is the exact distribution which holds for all n.

Case II. Testing Hy : p = po against Hy @ p # po, when pg is given and the
covariance matrix X is assumed unknown.

In this case, maximum likelihood estimators for both p and ¥ must be substituted
in (2.4). Under Hy, the MLEs are i = X and 3 = Sy as in section 2.1. Under Hy,
p = po and the MLE of ¥ is Y (X; — po)(X; — o)™ /n by the same argument as in
section 2.1. However, Prop. 9 shows that this may be written in the form Sy + dd*
where d = \/n(X — po). Moreover, the second term in (2.4) under Hy is —3 >,(X; —
X)TSyHX; — X) = —2tr{Sg " >,(Xs — X)(X; — X)T} = —24r{S; "' So} = —%2, and
the identical calculation holds under Hy. Therefore, the second term in (2.4) cancels in
calculating W, leaving us with

W = nlog|Sy + dd”| — nlog|Sy|

2.6
= nlog(1+d¥'S;'d), (2:6)

where in going from the first line in (2.6) to the second, we have used the determinantal
identity |I, + BC| = |I,, + CB|, which holds whenever B is a p x n matrix and C'isan xp

matrix. In this case we have applied this identity with p =1, B = dTS; /%, ¢ = §; /4,
Sy 1/2 being the positive-definite symmetric square root of Sy 1 which exists because S
is itself symmetric and positive definite with probability 1.

The conclusion of (2.6) is that the likelihood ratio test depends on the value of d* S *d.
However, except for the change of normalizing constant from n — 1 to n, this is the same

as
T? = n(X — po)S™HX ~ po),
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Hotelling’s T? statistic which was defined in Chapter 1. Therefore, the conclusion of the
likelihood ratio argument is that we should reject Hy if T? is greater than some critical
value c¢. Prop. 8 combined with Prop. 10 shows that under Hy,

"TP 2R

(n—1)p e =0

so (2.7) may be used in determining the critical value ¢ corresponding to a given size of
test a.

Remark 3. The final result may also be written in the form

n—p
p

(X — 10)TSy " (X — po) ~ Fypp under Hy,

which is preferred by some authors, e.g. Mardia, Kent and Bibby (1979), p. 126.

Case III. Testing Hy : ¥ = ¥y against H; : X # ¥y, when ¥, is given and p is
unknown. (The case where p is known is very similar and not worth treating as a separate
case.)

In this case, if we substitute the MLE X for u, we get the profile log likelihood for ¥
(ignoring constants)

N n n _
(%) = =3 log || — Ztr(57"S0). (2.8)

Under Hy, we simply substitute ¥ = ¥, into (2.8). Under H;, we estimate = S as
shown in section 2.1, leading to

e n n_ o n n
£, %) = —5 108 |So| — §tr(50 1So) = —3 log [So| — 71)

Therefore, the likelihood ratio statistic in this case reduces to
W = —nlog|X5'So| — np +n tr(35"So).

However, if A1, ..., A, are the eigenvalues of 3 15y, then by the same reasoning as in section
2.1, we get

W=n) (A—1-logh). (2.9)
=1

Equation (2.9) shows that the exact distribution of the likelihood ratio statistic may in
principle be calculated as an exercise in the distribution of the eigenvalues of ¥ 1S, where
nSp ~ Wp[Xo,n—1]. The distribution does not depend on ¥y, because by matrix similarity,
the eigenvalues of n¥; 'Sy are the same as those of n¥; Y 25025 Y ?, whose distribution is
Wp(I,,n — 1] by Corollary 2 of chapter 1. In practice, however, the distribution is rather
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complicated so a practical alternative is to use the asymptotic theory, approximating the
null distribution of W by x2, where v = p(p + 1)/2 is the number of free parameters in 3.

2.3 The union-intersection principle

The basic idea is illustrated by Case I from section 2.2, i.e. test Hy : p = o assuming
> known.

For any a € RP such that a’a = 1, we can consider the directional hypothesis Hy(a) :
a®p = aT po. The real hypothesis of interest, Hy is the intersection of all the univariate
hypotheses Hy(a).

Suppose z2 is some (squared) statistic for Ho(a), such that we reject Ho(a) whenever
z2 > ¢ for some ¢ > 0. It is usual, though not essential, to try to define 22 in such a way
that the null distribution is the same for every a. The union-intersection principle is that
we reject Hy if 22 > ¢ for at least one value of a. Thus the rejection region for H is the
union of rejection regions for the individual Hy(a) hypotheses.

Of course the constant ¢ must be adjusted to account for the simultaneous testing
aspect of this procedure, and this means that the effective test statistic is max, 22, with
the rejection constant c at level a being chosen so that Pr{max, z2 > ¢} = a when Hj is

true.

One feature of the union-intersection test which makes it different from the likelihood
ratio test is that in cases where the procedure results in rejection of Hy, we can identify
the set of all a such that 22 > ¢ as the set of directions in which the null hypothesis is
rejected. This may be valuable for deciding what to do next, e.g. what alternative models
to fit after the original hypothesis has been rejected.

With these preliminaries, let us now consider what actually happens in Case 1. For
fixed a, the natural procedure is to define y; = a® (X;—puo) which, under the null hypothesis,
has a normal distribution with mean 0 and variance a” ¥a. Therefore, the natural squared

test statistic is .
o ng? _ nlla”(X — o)l

¢ aTYq alYa

with a null x? distribution. However, the Cauchy-Schwartz inequality

[a®(X — po)|I* = [|a™SY2 - 72X — po)||? < a"Sa- (X — o) 'ETHX — po)

shows that B B
max 22 =n(X — o)X — wo). (2.9)

a: aTa=1

Thus we end up, by a different route, with exactly the same test statistic as in (2.5), and
as there, the null distribution is exactly x2.
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Now let us consider the union-intersection principle applied to Case II from Section
2.2, testing Hy : pu = po with ¥ unknown. In the case the univariate hypothesis Hy(a) :
a® 1 = a® pg is usually handled through a student’s ¢ statistic, in squared form

o nlla"(X — o)

e alSa

with S the usual sample covariance matrix. By the same reasoning as above,

max 22 =n(X — po)TSTHX — wo),

a: aTa=1

which is Hotelling’s T2 statistic. In this case, therefore, we are again led to the same test
statistic as for the likelihood ratio procedure.

Now consider Case III: test Hy : ¥ = ¥y with g unknown. In this case, we get
something different from the likelihood ratio procedure. The natural univariate hypothesis
is Var{y;} = a”Xoa which suggests the test statistic

aTSA
alYoa’

2=(n-1)

whose null distribution for fixed a is x2. For a two-sided alternative hypothesis, we reject
whenever 22 is too small or too large. The natural union-intersection analog, then, is to
define

PAREES Irtin 22, 2B = mgng,
rejecting Hy when z(t) < ¢; or 2(3) > ¢, for suitable ¢1, cp. If we rewrite a = Eal/Zb and
hence aT Sa/a” ¥pa = bTEal/QSEal/g/bTb, we see that the maximum and minimum of 22
are attained when b is one of the eigenvectors of ¥ 126 Yo 1/ 2, and in that case, equal the

corresponding eigenvalues. However, the two matrices X, 1/2g Yo /2 and Yo 1S are similar
and therefore have the same eigenvalues. Therefore, the union-intersection test is to reject
Hy when

min{Aq, ..., Ap} < ¢ or max{Ai, ..., A\p} > cg,

where M1, ..., A, are the eigenvalues of X5'S. This is different from the likelihood ratio test
but has one thing in common, namely, that it depends on the eigenvalues of X 15, As
with the LRT, however, the exact distribution of the test statistic is complicated.

2.4 One-way MANOVA

The principles of the LRT and UIT may be applied to a whole range of multivariate
testing problems; Mardia et al. (1979) have many examples. To give one example of the
kind of problem they can be applied to, we consider here the problem of testing for equality
in several multivariate normal means with common unknown covariance matrix. This is
the one-way multivariate analysis of variance problem, usually abbreviated to MANOVA.
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Suppose we have K groups of observations and Xy, ~ MV Ny[ug, Y] in the k’th group.
Here Xy; is the 7’th observation from the £’th group. We assume there are nj observations
in the k’th group and n = ny+...+nx observations altogether. The most usual formulation
of a null hypothesis is Hy : @1 = ... = px against the alternative Hy that pq, ..., ux are
not all equal.

Let Xj. = >, Xyi/n, denote the sample mean of the k’th group and X.. =
>k 2; Xki/n the overall mean of the observations. As with the univariate ANOVA prob-
lem, we have a decomposition

ZZ sz - Xk:z - X)T

2.10
_an X = X)X = X)T DY (Kb — X)) (Xni — X)) T, (210
ki

whose proof we omit ((2.10) generalizes Prop. 9 from Chapter 1).

We derive a test following the likelihood ratio principle. The log likelihood may be
written

n 1
t=—3log |3 - Ezk:zi:(in — i) TSN (X ki — paa)- (2.11)

Under Hj, the common p1, ..., ux are estimated by X.. and the covariance matrix by
So ={> > ;(Xki — X..)(Xr; — X..)T}/n, as in the single-sample problem. Under Hy, it
is fairly easy to check that yy is estimated by Xj. and ¥ by the pooled sample covariance
matrix, S1 = {d_p > ;(Xki — Xk.)(Xki — Xg.)T}/n. Under both Hy and Hy, the second
term in (2.11) reduces to —np/2, so the likelihood ratio statistic is

S0
151

W =nlog —
However, the ANOVA decomposition (2.10) leads to
SO = Sl + Ba

where e ) ) )
B=>Y “E(Xp - X)X - X.)".
k

Modulo constants, the LRT statistic is |Sy + B|/|S1| = [1 4+ Sy 'B|. If Ay, ..., A, are the
eigenvalues of S; !B, the test statistic is

U=

i

(1+ Xi). (2.12)

P
=1
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(2.12) is equivalent to the Wilks statistic for this problem. There are, however, several
other test statistics which may be defined in terms of the eigenvalues of ST ! B. The union-
intersection procedure in this case leads to a test based on max{\;}, also known as Roy’s
statistic. Other widely used test statistics are

YA (Lawley-Hotelling),
SN/ (14 N) (Pillai),
[TA/(1+X) (Roy-Gnanadesikan-Srivastava).

Power comparisons among these different tests do not point towards a single best test.
Splus allows a choice among the Wilks, Pillai, Lawley-Hotelling and Roy procedures.

2.5 Two-way MANOVA

We consider the most basic form of two-way ANOVA procedure, where there are ¢
treatments and ¢ blocks and one multivariate observations for each treatment-block com-
bination. The most usual model in this situation is

Xij=pt+ai+Bi+e; 1<i<t 1<j<c (2.13)

in which e;; are independent MV N, [0, ¥] vectors and we impose the constraints ) . a; =

Zjﬁj:o

A standard problem in this field is to test the null hypothesis of no treatment effect
in a situation which allows for the existence of a block effect. This therefore suggests the
hypothesis

H(): a1:...:at:0,

against the alternative H; that the «; are not all equal. A basic result, exactly analogous
with one-dimensional ANOVA calculations, is the identity

DY (X — X)Xy — X )T
=Y D) AKX =X )+ (X ;- X))+ (Xij — Xi. — X+ X))
. {(Xz — X) + (XJ - X ) + (Xij — Xz — X.j + X)

ZCZ(X‘—X)(X-—X +tZX ~ X)X, - X)T (2.14)

+ZZ Xy — Xi— X5 +X)( i — X

We may write (2.14) in the form
T=H+B+R,
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where T is the total sum of squares and products matrix (SSPM), H is the treatment SSPM,
B is the blocks SSPM, and R is the residual SSPM. The corresponding decomposition of

degrees of freedom is
m-1)=0t-1)+0b-1)+(n—-t—>b+1).

Hence we have the MANOVA table:

Source d.f. SSPM
Treatments t—1 H
Blocks c—1 B
Residual n—t—c+1 R
Total n—1 T

The likelihood ratio test statistic in this situation reduces to
R 1
A= ——7—= —_—
|H + R H 1+ )’

where A1, ..., A, are the eigenvalues of R™'H. Note that in the notation used earlier, the
likelihood ratio statistic is W = —nlog A, but in practice, the A statistic (also called Wilks’
Lambda) is more widely used.

However, as with one-way MANOVA, there are several alternative statistics. Each of
the alternatives mentioned at the end of section 2.4 applies here as well, except that they
are defined in terms of the eigenvalues of R~1H.

Distributional approximations

Suppose H is the treatment SSPM and R the residual SSPM, with degrees of freedom
h and r respectively.

Direct application of the asymptotic theory for likelihood ratio tests would imply that
W = —nlog A has an approximate X,le distribution.

The Bartlett correction is a general method of improving the convergence of a like-
lihood ratio statistic to its limiting x? distribution. In the present context it reduces

to
( p—h+1
—_— 7"_7

5 ) log A ~ Xi,- (2.15)

There is a further refinement due to C.R. Rao:

1—AYh agb—¢

INV ph ~ L'ph,ab—c- (2.16)
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Here

p—h+1 p?h? — 4 ph —2
:’["—7, b: ) Cc= .
2 p?+h2—-5 2

In some cases, there are exact results:

1-A r—p+1
h = 1, any p, A : z NFP,T'—p-i-la
1—\/K.r—p+1
VA p
1-vVA r—1 .
JA 5 2h,2(r—1)-

h = 2; any p, ~ F2p,2(r—p—|—1)a (217)

p =2, any h,

2.6 Multivariate regression

The standard multivariate regression model is
Y=XB+U,

where Y is a n X p data matrix (in other words, each of the n rows of Y represents an
independent MV N vector), X is a n X ¢ matrix of known regressors, B is a ¢ X p matrix
of unknown coefficients, and

Uy
Uy

U= , Ui ~ MV N,[0,X] (independent).

T

The log likelihood for this problem is
1
UB.Y) = —g log |2 - Str{(Y - XB)S~'(Y - XB)"}.

Define
P=1-XXTX)'xT.
The maximum likelihood estimators are
B=(XxXTx)x"y,
5

|

1
~YTpy.
n

Also let U =Y — XB = PY, so that UUT = n3.
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Distributional results:
(a) B is unbiased for B.
(b) E{U} = 0.

(c) B, U are each multivariate normally distributed.

(d) B is independent of U and hence also of .

(e) Cov{@ij, Bke} = 0j49ik, Where I;ij, b are generic entries of B, oj¢ is the (j,£) entry of
¥ and g is the (i, k) entry of the matrix G = (XT X)L

(f) n¥ ~ W[, n — q).
Note that, as a consequence of (), ¥ is biased, but n¥/(n — ¢) is unbiased.
The proofs of (a)—(f) are omitted.
2.7 Example

Fisher’s iris data is a famous data due to R.A. Fisher (1936) and subsequently dis-
cussed by many other authors, including Mardia, Kent and Bibby (1979). The data consist
of the measurement of four quantitites on each of 50 iris plants of each of three types. The
data from the first four plants of each type are shown in Table 2.1.

Iris setosa Iris versicolour Iris virginica
X1 Xs X3 X4 X1 Xs X3 X4 X1 Xs X3 X4
5.1 3.5 1.4 0.2 7.0 3.2 4.7 1.4 6.3 3.3 6.0 2.5
4.9 3.0 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9
4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3.0 5.9 2.1
4.6 3.1 1.5 0.2 5.5 2.3 4.0 1.3 6.3 2.9 5.6 1.8

Table 2.1. Beginning of Fisher’s iris data; measurements are sepal length (X7), sepal
width (X3), petal length (X3), petal width (X4) on speciments of each of three types of
iris.

Probably the simplest way to handle this in SPlus is to input the data in the form of a
150 x 4 matrix iris, the first fifty rows corresponding to type A (iris setosa), the next fifty
to type B (iris versicolour) and the remainder to type C (iris virginica). The commands

type<-factor(rep(LETTERS[1:3],c(50,50,50)))
iris.df<-data.frame(iris,type)

form a data frame called iris.df which consists of the four columns of iris together with
a label type which is the letter A for the first 50 rows, B for the next 50, and C for the
rest.

23



6.5

6.0

mean of X1

55

5.0

mean of X3

A,,

type

Factors

A,,

type

Factors

mean of X2

mean of X4

34

3.2

3.0

2.8

2.0

15

1.0

0.5

B,

type

Factors

A,,

type

Factors

Fig. 2.1. Result of plot.design applied to iris data.
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The command
plot.design(iris.df)

produces a plot of the means for each of the four variables, labelled according to each of
the three types. The command

plot.factor(iris.df)

creates a more informative boxplot for each variable, again classified by type. The results
of these plots are shown in Figures 2.1 and 2.2. The plots make it obvious that there are
large differences among the three types.

Given this information, it is hardly necessary to test whether the three types are
significantly different, but to illustrate the use of the MANOVA tests, we shall do that.
The Splus commands

mi<-manova(iris type,iris.df)
m2<-summary (m1)
for(i in c("p","w","h","r"))print(m2,test=1i)

perform the MANOVA calculations and print out the results of the four tests, respectively
Pillai, Wilks, Hotelling-Lawley and Roy.

Df Pillai Trace approx. F num df  den df P-value
type 2 1.1919 53.4665 8 290 0
Residuals 147

Df Wilks Lambda approx. F num df  den df P-value
type 2 0.0234 199.1453 8 288 0
Residuals 147

Df Hotelling-Lawley approx. F num df  den df P-value
type 2 32.4773 580.5321 8 286 0
Residuals 147

Df Roy Largest approx. F num df  den df P-value
type 2 32.192 1166.957 4 145 0

Residuals 147

As an illustration of how these calculation are performed, consider the Wilks test
statistic A = .0234. In this case h = 2 and r = 147, so (2.17) shows that F = (1 —
v.0234) - 144/(+/.0234 - 4) = 199.3 (199.1 after correction for rounding error) and the
degrees of freedom of the F statistic are 2p = 8 and 2(r — p + 1) = 288. The result is of
course massively significant, as are the other three test statistics.
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3. PRINCIPAL COMPONENTS
3.1 Introduction

The method of principal components is a technique for extracting linear combinations
from multivariate data which capture most of the variability in the data. It is used in
numerous different ways. One interpretation is that it is largely a descriptive technique
— given a large array of high-dimensional data which we do not know what to do with,
a principal components analysis (PCA) will help us identify key components which can
then be subjected to more detailed examination. Another application is to the formation of
indices, e.g. given annual statistics of crimes committed in a number of different categories,
how can we best combine the different numbers into an overall index of criminal behavior?
A third interpretation is that PCA is a dimension reduction technique to be applied prior
to some other form of analysis. For example, one way to reduce the dimensionality of
a multiple regression problem is to perform an initial PCA on the regressor variables,
followed by an ordinary multiple regression on some of the leading components. This is
called principal components regression.

The usual procedure is as follows. Suppose X is a p-dimensional vector with covariance
matrix ¥. The first principal component is a linear combination g7 X, for some vector g
which satisfies g7¢g = 1, which is chosen to maximize the variance among all such linear
combinations. In other words, we find g to maximize g7 ¥g subject to g7g = 1. If the
solution is g = g1, then g7 X is called the first principal component of X.

If we want to go beyond the first PC, we then repeat the optimization in the space
orthogonal to g;: find g, to maximize g2 ¥g, such that g3 go = 1, g¥'g; = 0. Then g3 X is
the second principal component.

The process continues iteratively: suppose g1, ..., gx—1 are given, for some k£ < p, then
find g to maximize g,rngk subject to gggk =1, g,{gj =0 for yj=1,...,k—1. Then g,{X
is the k’th principal component. In principle we could go on to find all p PCs, though in
practice it is usual to stop after selecting enough PCs to capture most of the variability in
the data — how many is one of the questions we shall be discussing (section 3.3).

Now we show how to calculate g1, g2,... Let G be an orthogonal matrix such that
GTYG = D, where D is a diagonal matrix with diagonal entries ordered so that A\; >
A2 > ... > A, > 0. We can always find such a representation, because X is symmetric and
non-negative definite. Let g be the k’th column of G. So g is a norm-one eigenvector of
> with eigenvalue \g.

Claim: These g;’s are the solution of the optimization problem described above.
Moreover, the principal components g7 X, g1 X, ..., gf; X are uncorrelated, and the sum of
their variances is the sum of the variances of the individual components of X.
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Proof of claim. The eigenvectors {gx, 1 < k < p} form a complete orthonormal basis
in RP, so for any g € R?, there exist constants ci, ..., ¢, such that g = >, cxgr. Then

P
> " ckcegh ge = Z Ch»

||
M=

k=1 4¢=1

p P
9789 =" ckcugi Lo

k=1 ¢=1

p P p
=2 ckegigire =) Micq-
k=1 4¢=1
Since the {\;} are ordered, g7%g < A1 >, ¢ = Ay, with equality if ¢ = ... = ¢, = 0. This

proves that g; has the property of maximizing g7 ¥g subject to g7g = 1. It is the unique
solution, up to changes of sign, if A\; > Ay, but we have not excluded the possibility that
A1 = A2 in which case the solution is not unique.

To get the second PC, we restrict attention to g = )_, crgr which are orthogonal to
g1, in other words, for which ¢; = 0. But then, an extension of the same reasoning shows
that gTXg < g Y i = Ao, with equality if ¢5 = ... = ¢, = 0. This proves that go solves
the equation for the second PC, and is unique if A\; > Ay > A3. We proceed in similar
fashion to derive the third, fourth, and subsequent PCs.

The PCs are orthogonal, because for k # £, g,ergg = Agg,{ge = 0 by orthogonality of
the gr’s, and the k’th PC has variance g,ngk = )\kg,rfgk = MAg. Finally, the sum of the
variances of the PCs is ), Ay = tr(D) = tr(X), which is the sum of the variances of the
individual components of X. With this, the proof of the claim is completed.

The above has been presented as if it all applied to the population covariance matrix
X. In practice, we usually don’t know 32, and have to estimate it by the sample covariance
matrix S based on a sample of n values of X. The preceding operations are then performed
on S instead of ¥ to produce the sample PCs. One side comment here is that for a
continuous probability distribution with nondegenerate ¥, the sample covariance matrix
S has distinct eigenvalues with probability 1, so the sample PCs are uniquely defined even
though the population PCs may not be. In the case of multivariate normal data, there is a
rich sampling theory of how well the sample gi’s and A\;’s approximate the corresponding
population values (see, e.g., Mardia, Kent and Bibby (1979), Theorem 8.3.3, page 230), but
it is more usual in practice to treat PCA as largely a data-descriptive technique without
giving particular attention to sampling issues. In SPlus, the sample covariance matrix is
the one created with divisor n rather than n — 1 (in the notation of chapter 2, Sy rather
than S).

3.2. PCA based on the correlation matrix.

The description in section 3.1 assumes we are performing PCA on the population
covariance matrix ¥ or its sample counterpart S. One difficulty associated with this is
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that the problem is not scale invariant — if the original data were lengths measured in
inches and weights measured in pounds, and if we then changed the scales of measurement
to centimeters and kilograms, the PCs and the corresponding A;’s would change. A way
to avoid this difficulty is to rescale the problem prior to computing the PCs, so that each
component of X had either population variance or sample variance equal to 1. This is,
of course, equivalent to replacing ¥ or S by the corresponding correlation matrix. Thus,
an alternative way of proceeding is via the correlation matrix instead of the covariance
matrix.

There are arguments both for and against doing this. The problem just mentioned
— lack of invariance to changes in the units of measurement — is one argument very
commonly made in favor of using the correlation matrix. On the other hand, the PCs
may be more meaningful if expressed on the scale of the original data. If the variables X
consisted, for example, of turnover in dollars by the different sections of a large company,
the effect of using the correlation matrix would be to give sections with a small turnover
as much weight as those with very large turnover. Given that all the variables are here
measured on the same scale, there is no need to standardize prior to performing the PCA.
If the company were an international company with turnover measured in local currencies,
it would make sense to standardize all the amounts by converting them to a common
currency, but this is easily done, and a quite different operation from standardizing all the
turnovers to have variance 1. Which form of PCA we should use — covariance-based or
correlation-based — depends very much on the individual application.

3.3. Deciding how many PCs to include.

To reduce the dimensionality of the problem, we would like to restrict attention to the
first £k PCs, where k£ is much less than p, but to avoid losing too much of the variability
in the original data, we would also like to choose this so that the proportion of variance
explained by the first £ PCs, which may be expressed as

_)\1+---+)\k

- ’ 3.1
A+t A (3:1)

(7

is close to 1. The question is, how should we choose k£ to balance these two criteria?
Three methods are widely proposed.

1. The “screeplot”: plot the ordered A against £ and decide visually when the plot
has flattened out. The name comes from an analogy with rocks on a mountain — the initial
part of the plot, in which Ay is decreasing rapidly with £, is like the side of a mountain,
while the flat portion, in which each Ag is only slightly smaller than its predecessor \;_1,
is like the rough scree at the bottom. The task of the data analyst is to decide when the
“scree” begins.

2. Choose k so that ¥, > c, for some arbitrary cutoff c. For some reason, everybody
uses ¢ = 0.9 when applying this rule. Presumably this is no less arbitrary than the
convention that all tests of signficance should be based on o = .05.
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3. Kaiser’s rule: exclude all PCs with eigenvalues less than the overall average of the
eigenvalues (which, in the case of a correlation-based PCA, is always 1). This rule also
seems to be arbitrary, e.g. we could with no less logic set the cutoff at twice, or half, or
0.9354 times, the mean eigenvalue. (In fact it seems to be widely believed that Kaiser’s rule
leads to the inclusion of too few PCs, whereas the screeplot often tempts one to include
too many. This would seem to be an argument in favor of using a smaller multiplying
factor than 1 in Kaiser’s rule.)

4. Formal tests of significance (discussed in more detail by Mardia, Kent and Bibby
(1979)). If the population eigenvalues are Aq,..., A, and the corresponding sample eigen-
values are 5\1, ...,5\1,, one’s first thought is to test whether Ay, = ... = A, = 0, but this
does not actually make sense, because if the null hypothesis were satisfied, then the pop-
ulation distribution is contained entirely within a k-dimensional subspace and therefore
the same would be true of any sample (in other words, under the null hypothesis, we
would have 5\k+1 =..= 5\p = 0 with probability 1). So instead, one possibility is to test
Hy : Ag41 = ... = Ap (without requiring that the common value being 0), presumably
on the grounds that if the sample eigenvalues are indistinguishable from some common
number there is no significance in the individual values. A test for this hypothesis is to
form the algebraic and geometric means

A1+ oo+ Ap
apg =

p—Fk 9o = (j\k+1...5\p)1/(1’_k),

and then construct

—2log A =n(p—k)log 20
9o

Approximate distributional results under Hy:

(a) The usual x? approximation to a likelihood ratio test,

(P—k+2)(p—k—-1)
2 7

n(p — k) log ? ~x2, v= (3.2)
0

(b) The Bartlett correction: replace n in (3.2) with

, 2p+11
n =n-— .

6

These results assume multivariate normality, and they are only valid as stated for
the covariance-based version of PCA, not the correlation-based version. In practice, many
data analysts who view PCA as primarily a descriptive technique do not want to make
assumptions of multivariate normality, and the asymptotic nature of the above results is
cited as further reason for distrusting them. Therefore, in practice, the simple data-based
methods for choosing k are used much more than the formal test just described.
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3.4. Principal components in regression

Consider a regression model of the form
p .
Yi = Zﬂjx?) + €, (3-3)
J=1

in which {e;} satisfy the usual assumptions (for example, uncorrelated, mean 0, common

variance) but there are a large number p of possible regressors {xiy )}. The idea of PC
regression is to use PCA to reduce the number of regressors prior to fitting a model of the
form (3.3).

A further reason for doing this is that since the PCs are orthogonal, the X matrix
in the transformed regression problem will be orthogonal, thus avoiding all the problems
which often arise in regression analysis due to multicollinearity. Indeed, PC regression is
sometimes cited as an alternative to ridge regression, which has also been proposed as a
way of dealing with multicollinearity in high-dimensional regression analysis, but which
goes about the problem in a quite different way.

The main problem posed by this approach is, once again, the selection of which PCs
to include. The methods proposed in section 3.3 can of course be applied, but there
are additional possibilities based on the correlation between the PCs and the dependent
variable y;. We can, for example,

(a) Order the PCs according to their sample variances, choosing some k such that we
ignore all PCs after the k’th — this is the procedure of section 3.3,

(b) Order the PCs according to their correlations with y, again choosing a cutoff &,

(c) A compromise between (a) and (b), in which we order A; > ... > )\, as usual and then
test in reverse order for the significance of gg X)), gg_lX (@), ..., stopping a soon as
one is significant (Jolliffe’s rule).

(d) Another strategy entirely is to use the y;’s in defining the components, for exam-
. 2
ple, defining tgl) = Zj xgj)cj with weights cg-l) such that ch-l) = 1, to maximize
the sample correlation between {y;} and {tgl)}, then choosing t§2) =>; 37,52)63' with
2
> 05-2) = 1 to maximize the correlation with {y;} among all linear combinations or-

thogonal to {tl(l)}, and so on, followed by ordinary least squares regression of y; on

tgl),tz@, ... This is, however, really a quite different method, known as partial least
squares regression, but also one which has been studied widely in recent years.
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3.5 Implementation in SPlus

SPlus provides a good implementation of PCA. As an illustration, we shall discuss
it for a table of data taken from Mardia et al. (1979), partly reproduced in Table 3.1.
The table represents scores of 88 students on five Mathematics examinations, arranged in
rough order or merit. The first four and the last four students’ scores are shown.

Vectors Mechanics Algebra Analysis Statistics
7 82 67 67 81
63 78 80 70 81
75 73 71 66 81
55 72 63 70 68
5 30 44 36 18
12 30 32 35 21
5 26 15 20 20
0 40 21 9 14

Table 3.1. Scores of students on five Mathematics examinations.

A sample SPlus program is as follows:

exams<-matrix(scan(file=’exams.dat’) ,byrow=T,ncol=>5)
nr<-length(exams[,1])

dimnames (exams)<-1list(1:nr,c("Vectors","Mechanics","Algebra",
"Analysis","Statistics"))

exams . prc<-princomp (exams,cor=F)

print (summary (exams.prc,loadings=T))

screeplot (exams.prc)

screeplot (exams.prc,style=’lines’)

plot(loadings (exams.prc))
exams.eigen<-exams.prc$sdev’ 2
print(sqrt(mean(exams.eigen)))

pr<-predict (exams.prc)
plot(1:88,pr[,1],x1ab=’Student’,ylab=’Component 1)
plot(1:88,pr[,2],x1ab=’Student’,ylab=’Component 2°’)
plot(1:88,pr[,3],xlab="Student’,ylab=’Component 3’)
plot(1:88,pr[,4],xlab="Student’,ylab=’Component 4’)
exam2<-matrix(scan(file=’exam2.dat’) ,byrow=T,ncol=>5)
print(predict(exams.prc,newdata=exam?2))

biplot (exams.prc)

Line 1 inputs the data, and lines 2—4 define the variable names. (Note: In reality lines
3 and 4 are typed as one line, but are spread over two here to fit on the page.) Line 5
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is then the main command to set up the PCA and store the results in exams.prc. The
option cor=F (the default) means that the PCA is based on the covariance matrix; cor=T
would choose the correlation matrix. Line 6 prints a summary which at minimum shows
the successive values of the components standard deviations (i.e. \/Ag, the proportion of
variance accounted for by the k’th component), and the cumulative proportions (the v
values of (3.1)). The option loadings=T also prints the factor loadings, i.e. the components
of the g vectors which therefore show what each of the five original variables contributed
to each of the PCs. Lines 7 and 8 demonstrate a screeplot, both in its default form which
represents the screeplot as a bar diagram, and with style=’1ines’ which represents it
as an ordinary scatterplot joined by lines. Line 9 forms a bar diagram plot of each of
the factor loadings. Lines 10 and 11 compute and print the mean eigenvalue, used in
Kaiser’s criterion. Line 12 forms a set of “prediction scores”, in other words, computing
the value of each PC for each student in the sample. Lines 13-16 plot the first four
prediction scores. Lines 17-18 show how to extend the analysis to include new subjects:
with an additional data set of six students in the file exam2.dat, it shows the scores for the
new students, computed using the PCs from the original data. Finally, line 19 illustrates
another graphical device, the biplot.

Figures 3.1-3.4 show the screeplots, the component loadings plots, the plots of pre-
diction scores and the biplots.

The screeplots show that the variances are small after the first two PCs, and the ¢y >
.9 criterion is almost satisfied for £ = 2. The standard deviations of the five components
are 26.06, 14.14, 10.13, 9.15, 5.64, with a root mean square value of 14.81, so Kaiser’s
criterion would tell us to ignore everything after the first PC, which does not seem the
right interpretation in this instance. From Fig. 3.2, we can see that the first PC is
close to an average of all five examinations, and the corresponding prediction plot (top
graph in Fig. 3.3) reflects that the order of the students is virtually unchanged by using
the first PC as a summary score. The second component shows negative weightings in
vectors and mechanics, positive weightings in analysis and statistics, with a small positive
weighting in algebra. This therefore seems to reflect a contrast between skills in applied
mathematics and the more analytical skills needed for analysis and statistics. The loadings
for components 3-5 do not have any such simple interpretation and may simply reflect the
noise left over in the series after subtracitng the first two components. This is another
reason for not considering PCs beyond the first two.

As an example of the interpretation of the second PC, the second plot of Fig. 3.3 shows
that students numbered 23 and 28 scored particularly highly in component 2, reflecting
that they performed very well on the analysis and statistics papers. In trying to rank
the students overall, some would argue that very good performance on one part of the
syllabus was worthy of more credit than a flat overall performance. Of course, a similar
interpretation would apply to students who had outlying low scores in PC2, in this case,
that they were very strong in applied mathematics.

The biplot (Fig. 3.4) is another useful device for visualizing the interaction between
the first two PCs, obtained by plotting the first two PCs for each student as a scatterplot.
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In this case the scatterplot does not show any particular structure, but it could be useful,
for instance, for detecting a nonlinear relationship. The (linear) correlation between the
first two components must be 0, this being part of the construction of PCs. Also shown on
the biplot are the loadings of the first two PCs for each of the five original variables, which
serves to reinforce the message given by Fig. 3.2, concerning the relationship among the
five variables.

Sometimes one does not have the full data matrix available but it already summarized
in the form of a covariance matrix. SPlus also provides for the computation of a PCA in
this case. Suppose the sample covariance matrix has been computed and stored as the
file examcov.dat. The following commands will compute the PCA, and print out the
component standard deviations and loadings:

examcov<-matrix(scan(file=’examcov.dat’) ,byrow=T,ncol=5)
cov.obj<-list(cov=examcov,center=c(0,0,0,0,0))
exams.prc<-princomp(covlist=cov.obj,cor=F)

print (summary (exams.prc,loadings=T))

Year 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
Homicide 529 455 555 456 487 448 477 491 453 434 492 459 504 510
Wounding 5258 5619 5980 6187 6586 7076 8433 o774 10945 12707 14391 16197 16430 18655

Homosexual offences 4416 4876 5443 5680 6357 6644 6196 6327 5471 5732 5240 5605 4866 5435
Heterosexual offences 8178 9223 9026 10107 9279 9953 10505 11900 11823 13864 14304 14376 14788 14722

Breaking and entering 92839 95946 97941 88607 75888 74907 85768 105042 131132 133962 151378 164806 192302 219318

Robbery 1021 800 1002 980 812 823 965 1194 1692 1900 2014 2349 2517 2483
Larceny 301078 355407 341512 308578 285199 295035 323561 360985 409388 445888 489258 531430 588566 635627
Fraud 25333 27216 27051 27763 26267 22966 23029 26235 29415 34061 36049 39651 44138 45923

Receiving stolen goods 7586 9716 9188 7786 6468 7016 7215 8619 10002 10254 11696 13777 15783 17777

Injury to property 4518 4993 5003 5309 5251 2184 2559 2965 3607 4083 4802 5606 6256 6935
Forgery 3790 3378 4173 4649 4903 4086 4040 4689 5376 5598 6590 6924 7816 8634
Blackmail 118 74 120 108 104 92 119 121 164 160 241 205 250 257
Assault 20844 19963 19056 17772 17379 17329 16677 17539 17344 18047 18801 18525 16449 15918
Malicious damage 9477 10359 9108 9278 9176 9460 10997 12817 14289 14118 15866 16399 16852 17003
Revenue laws 24616 21122 23339 19919 20585 19197 19064 19432 24543 26853 31266 29922 34915 40434
Alcohol laws 49007 55229 55635 55688 57011 57118 63289 71014 69864 69751 74336 81753 89709 89149
Indecent exposure 2786 2739 2598 2639 2587 2607 2311 2310 2371 2544 2719 2820 2614 2777
Motor theft 3126 4595 4145 4551 4343 4836 5932 7148 9772 11211 12519 13050 14141 22896

Table 3.2. Recorded offences in Great Britain from 1950-1963.

As a second example of PCA, consider the data in Table 3.2, taken from Chatfield
and Collins (1980). This consists of numbers recorded for 18 different types of crime over
14 years in Britain. The interest here may be in such questions as how to develop an
overall index of criminal behaviour, though Chatfield and Collins cast doubt on whether
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PCA is really useful for answering this kind of question in the present context. The wide
disparity in numbers of events in different crime categories more or less forces us to use the
correlation-based form of PCA, though in itself this is questionable because it exaggerates
the importance of some crimes with comparatively small numbers.

The SPlus commands for this data set are similar to those for the examination scores
data set. Having created a 14 x 18 data matrix crime, the PCA was performed with the
command

crime.prc<-princomp(crime,cor=T)

The only real difference from the sequence of commands used for the examinations
data set is the one used to compute the loadings plot (Fig. 3.6), which has to be more
customized because of the greater number of variables. The command

plot(loadings(crime.prc) ,variables=1:4,nbars=18)

creates a plot for all 18 variables for the first four PCs. The four plots resulting, corre-
sponding to Figs. 3.1-3.4 for the examinations data, are shown in Figs. 3.5-3.8 for the
crimes data.

In this case the standard deviations of the leading PCs are 3.59, 1.65, 0.98, 0.83, 0.57,...
Since this PC is based on a correlation matrix, Kaiser’s criterion leads automatically to 1 as
the cutoff value, which would mean keeping only the first two PCs. The ¢ > .9 criterion
is satisfied for k£ = 3, while visual inspection of the screeplot in Fig. 3.5 might lead one
to adopt an even more conservative criterion, based on k£ about 6 or 7. The meaning of
the individual PCs is hard to interpret. Component 1 seems to be close to an average
of all the variables, but with some variables (notably, assualt and homosexual offences)
receiving negative weights, which presumably means that the trend in these crimes was in
the opposite direction to the others over the years in question. Component 2 seems also to
reflect the contrast between homosexual offences and some of the others; component 3 is
dominated by the homicide variable. It is hard to see whether these have any real meaning
beyond implying that the overall trend be broken down into two components as suggested
by the first two plots in Fig. 3.7. Finally, Fig. 3.8 suggests that as time has evolved, the
pattern of crime has traced an interesting nonlinear curve through the space defined by
the first two PCs, but again, what this means is far from clear.
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4. FACTOR ANALYSIS
4.1 Introduction

Factor analysis is an alternative to principal components analysis with which it is
often confused, though the underlying principles behind the two methods are completely
different. Like PCA, the objective is to “explain” the data in terms of a relatively small
number of components, now known as factors. Unlike PCA, which is basically a model-
free descriptive technique, factor analysis is model-based and its credibility depends a
lot both on the model itself, and the extent to which a reasonable interpretation can be
placed on the factors which are identified. The subject has a somewhat checkered history,
having originally been developed by social scientists and in particular by psychologists
interested in the measurement of intelligence, and this fact together with the tendency
to apply the model in all circumstances regardless of its appropriateness gave the whole
subject something of a tarnished image among statisticians (see Chatfield and Collins
(1980) for considerable expansion on this theme). However, the trend in statistics research
generally over the last twenty years has been much more towards the development of
models containing latent variables, together with modern methods of model fitting and
model checking based on Bayesian statistics and Monte Carlo methods. The use of state-
space models based on the Kalman filter in time series analysis is one example of this
trend, and indeed the basic model for factor analysis ((4.1) or (4.2) below) is reminiscent
of the “measurement” equation in Kalman filtering. In this chapter, largely following
Mardia, Kent and Bibby (1979), we shall adopt a traditional approach to the subject —
in particular, all the inferential theory is based on the multivariate normal distribution
— but it is worth keeping in mind that there are many possibilities for generalizing the
models using modern statistical methods.

In a simple one-factor model, letting z; denote the i’th component of a p-dimensional
vector of dependent observations on an individual, we write

x; = N f + uy, 1< <p. (4.1)

Here f (the factor) is a univariate random variable defined for each individual, Ay, ..., A, are
constant weights known as factor loadings, and u, ..., u, are independent random variables
which could be interpreted as measurement errors.

The generalization of (4.1) to k factors, including also a non-zero mean, is

k
$i=Z)\ijfj+ui+ui, 1 <1 <p, (4.2)
=1

in which fi,..., fr are k factors which may, without loss of generality, be assumed to be
uncorrelated random variables of mean 0 and variance 1, uy, ..., u, are uncorrelated random
errors of mean 0 and variances 11, ..., %, (also, the u’s are uncorrelated with the f’s), and
p1, ---, bp are arbitrary constants.
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We also write (4.2) in vector notation as
X=Af+u+p, (4.3)

in which f (kx 1), u (px 1) and p (p x 1) are vectors and A is a p x k matrix of constants
known as factor loadings. In (4.3), we assume f and u both have mean 0, and covariance
matrices I, (the k£ x k identity matrix) and ¥ respectively, and Cov(f,u)=0. Here ¥ is a
diagonal matrix with diagonal entries v, ..., ¥p.

As a consequence of (4.3), we have
Cov(X) =% = AAT + U, (4.4)

so another way of stating the problem is to say that we are going to investigate when a
covariance matrix may represented in the form (4.4). If we further assume that the data
are multivariate normal, such models can be estimated and tested within the framework
of likelihood theory, as we shall see.

Another way of interpreting (4.2) is to say that

Var{z; — u;} = Var{d _\;jf;} =Y _ N
7 7 (4.5)
= h% say

so that the portion of the variance of x; which is “explained” by the common factors is a
constant h? known as a communality.

4.2 Uniqueness and invariance properties

One of the problems we noted with PCA was that the analysis was not invariant to
scale changes. In FA, this is not a problem: the model is invariant to scale changes, modulo
obvious corresponding scale changes to the factor loadings and the variances of the random
€rrors.

To see this, suppose X has covariance matrix (4.4) and Y = C'X where C'is a diagonal
matrix with diagonal entries cy, ..., c,. Then

Cov{Y} = CZC = (CA)(CA)T + CTC

which is also of the form (4.4) with A replaced by CA and ¥ by the new diagonal matrix
C?¥. In other words, the factor loading );; is replaced by ¢;A;; and the i’th component
error variance 1; by c?¢;. Neither the number (or interpretation) of the factors nor the
fit (or lack of fit) of the model is changed by these rescalings, so for all practical purposes,
the scale of the data does not matter. This is quite different from PCA.
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However, the invariance of the model to certain transformations also has a negative
feature, in that it means the model is not, as we have specified it so far, uniquely defined.
Suppose (4.4) holds, and let G be any orthogonal matrix. Then

> =AGGTAT + ¥ = (AG)(AG)T + U,

in other words, we may replace A by AG without changing the model. Another way of
stating this is that the model is unchanged by rotating the factors in k-dimensional space.

In view of this, we need to specify some additional constraints to make the model
uniquely defined. Three possibilities are

(i) Fix ATU~IA to be a diagonal matrix,

(ii) Fix ATD™A to be a diagonal matrix, where D is the diagonal matrix with diagonal
entries 011, ..., 0pp, the variances of the original random variables,

(iii) The warimax criterion, of which more later.

(i) and (ii) are largely mathematical constraints whose sole purpose is to make the
problem uniquely defined — it can be shown that either such condition is achievable and
that it does serve to define A uniquely — while (iii) is a condition more commonly used
in practice. In particular, SPlus performs FA based on the varimax criterion.

One consequence of (i) or (ii) is that since a k x k matrix has k(k — 1)/2 independent
off-diagonal entries, either of these constraints has the effect of fixing that number of
parameters. Thus, the number of free parameters in A is pk — k(k — 1)/2, and the degrees
of freedom restricted by the model are

We usually assume s > 0; otherwise, the model is underdetermined, and in any case,
there is not much point in employing a dimension reduction technique if the net effect is
to increase the number of parameters which need to be estimated. The practical effect of
s > 0 is that it restricts the value of k; for example, in p = 5 dimensions, we need k < 2;
if p =10, then k <5 (k = 6 leads to s = 0 in this case).

4.3 Parameter estimation

There are two widely used methods for estimating the factor loadings and );’s, the
principal factor method and the method of maximum likelihood. Of the two, principal
factor analysis is more intuitive and not tied to any particular distributional assumption,

whereas maximum likelihood specifically assumes a multivariate normal distribution. On
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the other hand, when the multivariate normal assumption is reasonable, MLE may be
expected to be a superior approach.

For the first part of this section, we describe principal factor analysis. Having noted
earlier that the problem is invariant under scale changes, there is no loss of generality in
assuming that the analysis is based on the correlation matrix rather than the covariance
matrix. (In other words, we might as well use the correlation matrix because if we want
to report the results for a different scaling we can quickly derive them from the results for
the correlation matrix. This is a different situation from PCA, where analysis based on
the correlation matrix is often used, but is a quite different analysis from the one based
on the covariance matrix.) Let the sample correlation matrix be R with entries (r;;).

First, we estimate the communalities h? in a possibly ad hoc way. Two possible
estimators are

(a) ?zf is the squared multiple correlation coefficient between z; and the other p — 1
variables,

(b) h? = max;; ry|.

It follows that 1 — ﬁf is an estimator of 1;, so we form the matrix R — o by replacing
each diagonal entry of R by the corresponding h?.

The second step of the analysis is to decompose
X P
R-¥ =) anmip (4.7)
i=1

where {a;} are the eigenvalues of R — ¥ and {74} are orthonormal eigenvectors. Without,
loss of generality we order {a;} so that a1 > a2 > ... > a,.

Note that (4.7) is a principal components analysis performed on the matrix R — 0.
This explains the name of the method.

Given that R and ¥ are only estimates and not the true population covariance ma-
trices, at this stage, there is no guarantee that a, > 0. However, we are going to assume
that ar > 0, where k is the number of factors being fitted: if this condition is violated, we
either need to use another estimator for h? or else abandon the k-factor model.

The third step of the analysis is to set ax41 = ... = ap = 0 in (4.7), to identify A;, the
’th column of the matrix A, with /a;v(;), and to re-estimate 1, ...,4, as the diagonal

entries of the matrix ¥ = R — Y25 3T,
Next, we describe the maximum likelihood method (MLE).
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Assuming multivariate normality, the log likelihood for % (after maximizing with
respect to p) may be written as

logL = —g log |X| — gtr(E_IS)

where n is the sample size and S is the sample covariance matrix. (In the notation of
chapter 2, for a literal maximum likelihood approach S should be Sy, the sample covariance
matrix using n rather than n—1 in the denominator, though we shall ignore that distinction
here.) We then define

F(AT) =tr(Z718) —log |[Z7S| —p, T =AAT + 7T, (4.8)

so that the maximum likelihood problem becomes to choose A and ¥ to minimize F(A, V)
(the minimum possible value being 0, when ¥ = §).

We can also write F'(A, ¥) in the form p(a—log g—1), where a and g are the arithmetic
and geometric means of the eigenvalues of ¥715.

One feature that makes the MLE approach computationally feasible is that when
¥ is known, minimization of F' with respect to A can be performed analytically. This
is due to Joreskog and the algorithm is described in detail in Mardia, Kent and Bibby.
Thus, the numerical optimization part of the procedure requires only an optimization in p
dimensions, and this is feasible for most practical applications.

One advantage of the maximum likelihood approach is that we can also perform a
test for the adequacy of the k-factor model (but still assuming multivariate normality).
Consider the hypothesis Hy that the k-factor model is correct, against the alternative that
Y. is unrestricted. The log likelihood ratio statistic is

L A
2log =X = nF (A, ¥), (4.9)
Ly

where F' is given by (4.8) and f&, ‘il, are the MLEs. This has the usual asymptotic theory:

(i) As sample size n — oo, the distribution of (4.9) is asymptotically x2, where s is the
number of degrees of freedom specified in (4.6).

(ii) The Bartlett correction: in (4.9), replace n by n’, where in this case

2p+5 2k

6 3

/
n=n—1-—

This gives a better approximation to x2 than (i). Mardia, Kent and Bibby (1979)
suggest that method (ii) gives an adequate approximation if n > p + 50.
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4.4 Other features
4.4.1 Fizing the rotation

In section 4.2 we mentioned the problem of fixing the rotation of the factors and
described two artificial criteria. More widely used in practice is the Varimax principle, due
to Kaiser (1958). This is an attempt to define the factors in such as way that, as far as
possible, the loadings on each factor are concentrated on a small number of the original
variables. More precisely, the method specifies A = AG = (0;;) as follows:

Let dij = 6i/hi, dj =Y d;;/p, then choose G' and hence A to maximize
6= (@ —dp)? =3 > dij-p) 4.

4.4.2 Estimating factor scores

Having estimated the factor loadings A and the residual variances ¥, we still need a
method for estimating the vector of factor scores f associated with the observations X on
a specific individual, when the two are related by (4.3) (for simplicity, we assume p = 0
here).

Mardia, Kent and Bibby (1979) suggest two solutions to this problem. One of them
effectively treats f as a fixed vector of constants and performs a generalized least squares
analysis to produce the estimate

f= (AT A IATT1X, (4.10)

However, they also present an alternative “Bayesian” approach in which the prior distri-
bution f ~ MV N[0, I] is taken into account, to produce the estimate

f*= I + AT A IATO 1 X, (4.11)
Elementary properties of these two estimators include
E{f|f}=1.
E{f*| [} = (I + ATUT'A)TIATUTAS,

B{(/-H(f-HT}=@ATs A,
E{(f* = N =N} =T+ ATTTA)

(4.12)

Thus f is conditionally unbiased as an estimator of f, whereas f* is biased. On the other
hand, f* has uniformly smaller mean squared error. This led Mardia, Kent and Bibby to
conclude that there was no clear-cut choice between the two estimators.
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Nevertheless, it seems to the present writer that f* is the better motivated estimator.
Equation (4.3) is reminiscent of the observation equation in the Kalman filter (where f is
the unknown state of the system and X the observation) and in that case, it is standard
to calculate the conditional mean of f given X. Applying the same logic here, we write
the joint covariance matrix of f and X in the form

1, AT
A AANT+ 3% )

and noting that the means of X and f are both 0, we calculate the conditional mean (Prop.
3 from chapter 1) as
E{f | X} = AT(AAT + )X, (4.13)

with conditional variance Ij, — AT (AAT 4+ %)~ TA.
However, we also note the formula (Mardia, Kent and Bibby 1979, p. 459)
(A+ BCD)™'=A"'— A'B(C™*+ DA 'B)"'DA™, (4.14)

applicable when, say, Aisnxn, Bisnxgq, Cis ¢xqand D is ¢ xn. When n is much bigger
than ¢ and when A is easily invertible (especially, this applies if A is diagonal) then (4.14)
greatly simplifies the calculation of the inverse. The proof of (4.14) follows by multiplying
both sides by A+ BCD and then performing elementary manipulations on the right hand
side.

Applying (4.14) with A=3%, B=A, C =1, D= AT, we have
(AAT + ) 1 =271 —u AT + ATE7IA)"IA TS,

and after a few further manipulations it is easily checked that (4.13) agrees with (4.11),
and that the conditional variance is the same as that given in (4.12). This confirms that
f* is the conditional mean of f given X in the multivariate normal distribution, and this
seems to speak in its favor as practical estimator.

4-4.3 Relations between FA and PCA

The introduction to this chapter emphasized the contrasts between factor analysis
and principal components analysis, but it needs to be pointed out that there are also
many common features to the two methods. Given a random vector X, PCA creates
an orthogonal matrix I' such that ¥ = I'"X is a vector of uncorrelated observations.
If the coordinates of Y are ranked in descending order of variance, we may decide to
retain only the first k coordinates of Y. Writing Y7 = (YT YJ') where Y; and Y are
vectors of dimensions k£ and p — k respectively, and performing a corresponding partition
of '=(I'y Ty), we have

X - FY - F1Y1 +1—‘2}/2
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which might be thought of as a partition of X into a k-dimensional “signal” and a “noise”
component.

On the other hand, in factor analysis, we have the decomposition
X =Af+u,

also representing a k-dimensional “signal” plus “noise”, but with a rather different inter-
pretation of the noise. Specifically, in factor analysis the decomposition is determined by
a definite model, whereas in principal components analysis the decomposition is entirely
data-based.

A further point is that the principal factors method of estimating a FA model works
by calculating a PCA on the sample correlation matrix, after subtracting initial estimates
of the noise variances {1;}. When the noise variances are small, the two methods may be
expected to produce almost the same answer.

Thus in spite of the differences in both the assumed model and the method of calcula-
tion, it can be seen that both methods have the same ultimate objective of approximating
a p-dimensional vector by one concentrated in a k-dimensional subspace, and the choice
between them may well depend on to what extent one is willing to make the additional
modeling assumptions which FA requires.

4.5 Implementation in SPlus

As an example of the implementation of factor analysis in SPlus, here is a sample
program to perform FA on the examinations data set discussed in Chapter 3:

motiv()

# Perform FA on exams data
exams<-matrix(scan(file=’exams.dat’),byrow=T,ncol=5)
nr<-length(exams[,1])

dimnames (exams)<-1list(l:nr,c("vec","mech","alg","anal","stat"))
exams .fa<-factanal (exams,factors=1)

print(exams.fa)

print (summary(exams.fa))

exams .fa<-factanal (exams,factors=1,method="mle")
print (exams.fa)

print (summary (exams.fa))
plot(1:88,exams.fa$scores[,1])

exams.fa<-factanal (exams,factors=2)

print (exams.fa)

print (summary(exams.fa))

exams.fa<-factanal (exams,factors=2,method="mle")
print(exams.fa)
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print (summary (exams.fa))
biplot(exams.fa)
plot(1:88,exams.fa$scores[,1])
plot(1:88,exams.fa$scores[,2])
plot(loadings(exams.fa))

This program performs factor analysis with either 1 or 2 factors, by both the principal
factors method (the default) and by MLE. As an example of the output, here is part of
what is produced by the last two print statements (exams.fa and summary(exams.fa)
under the two-factor model with MLE fit):

Sums of squares of loadings:

Factoril Factor2
1.790119 1.353543

The number of variables is 5 and the number of observations is 88

Test of the hypothesis that 2 factors are sufficient
versus the alternative that more are required:

The chi square statistic is 0.07 on 1 degree of freedom.
The p-value is 0.785

Importance of factors:

Factoril Factor2
SS loadings 1.7901191 1.3535427
Proportion Var 0.3580238 0.2707085
Cumulative Var 0.3580238 0.6287323

The degrees of freedom for the model is 1.
Uniquenesses:

vec mech alg anal stat
0.465897 0.4190561 0.1885692 0.3517931 0.4310229

Loadings:
Factorl Factor2
vec 0.270 0.679
mech 0.360 0.672
alg 0.743 0.509
anal 0.740 0.317
stat 0.698 0.286

The results under the principal factor method are very similar — for example, in the
two-factor model the uniquenesses are .471, .412, .198, .349 and .423 and the loadings are
(.271, .354, .734, 742, .704) for factor 1, (.675, .680, .513, .319, .285) for factor 2.
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Note that the results just quoted include a test that the two-factor model is sufficient,
reporting a p-value of .785 (in other words, two factors are sufficient). In fact, a corre-
sponding test for a one-factor model produces the p-value of .124, suggesting that this is
also sufficient. The test results are produced only under the MLE method.

Finally, Figs. 4.1-4.3 show the output of the plots produced within the above program.

The interpretation of these results is similar to the interpretation of the PCAs in
chapter 3, though not identical. Even for a one-factor model, the factor scores (Fig. 4.1(a))
look rather different from the leading principal component (top plot of Fig. 3.3) — the
latter almost entirely preserve the original order of the students whereas the factor scores
create a somewhat different ordering. A biplot of the two-factor model (Fig. (4.1(b)) again
shows a clustering of the subjects with “vec” and “mech” having very similar factor scores,
and similarly for “stat” and “anal”. In the factor loadings (Fig. 4.3), it can be seen that
factor 1 concentrates its weights on “alg”, “anal” and “stat”, while factor 2 gives biggest
weight to “vec” and “mech”. Thus the factors appear to be giving weight to contrasting
skills. One clear difference between PCA and FA in this context is that, whereas the PCs
come out in order of decreasing variance, the factors are equally weighted (factors 1 and
2 in Figs. 4.2 and 4.3 are completely interchangeable). This partly explains why the first
PC is almost the mean of the five scores and the second PC a contrast between the two
groups of subjects, whereas in FA, the two factors are rotated in such a way that each
factor appears to be giving primary weight to one of the two groups of subjects.
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Fig. 4.1. Top plot (a): Plot of factor scores for one-factor model, MLE method. Bottom
plot (b): Biplot for the two-factor model, MLE method.
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Scores of the two factors in the two-factor model, MLE method.

95



Factorl

06 -

0.2 -

alg anal stat mech vec

Factor2

06 -

02 -

0.0 -

vec mech alg anal stat

Fig. 4.3. Loadings for the two-factor model, MLE method.

26



5. CLUSTER ANALYSIS

Cluster analysis refers to a body of techniques concerned with grouping multidimen-
sional data points into clusters of similar observations. The methods range from ones which
are entirely ad hoc, not based on any statistical model or even much apparent application
of any kind of statistical reasoning, to those which use well-defined models with all the
usual paraphernalia of maximum likelihood estimation, testing for the number of clusters,
etc., though even in model-based cases, unlike some of the other multivariate methods we
have described, it is far from clear what types of models are appropriate and there are
many different forms of cluster analysis depending on the models considered.

In this chapter we consider the two main approaches to cluster analysis, the largely
model-free hierarchical clustering algorithms, followed by model-based approaches.

5.1 Hierarchical Clustering
Fig. 5.1 is an artifical data set due to Ruspini (1970), also discussed by Kaufman and

Rousseeuw (1990). A plot of the (two-dimensional) data set reveals at least four apparent
clusters.

150 -
o, 8 oe o ® .
100 Cl.
> ,.. .
® -. N ..ocﬁ
50 1 * . .
0 T T T T : T T T
0 20 40 60 80 100 120
X

Fig. 5.1. Scatterplot of the Ruspini data.

A hierarchical clustering algorithm operates by starting from a single “cluster” cov-
ering all the data, and then successively splitting into smaller clusters according one of
several criteria which we discuss in more detail below. One way to represent the result of
this process is as a dendogram (Fig. 5.2).
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Num. =z Y Num. =z Y Num. =z Y
1 4 53 26 41 150 o1 98 124
2 ) 63 27 38 145 52 99 119
3 10 29 28 38 143 93 99 128
4 9 7 29 32 143 54 101 115
) 13 49 30 34 141 55 108 111
6 13 69 31 44 156 56 110 111
7 12 88 32 44 149 o7 108 116
8 15 75 33 44 143 58 111 126
9 18 61 34 46 142 59 115 117
10 19 65 35 47 149 60 117 115
11 22 74 36 49 152 61 70 4
12 27 72 37 50 142 62 7 12
13 28 76 38 93 144 63 83 21
14 24 58 39 52 152 64 61 15
15 27 35 40 95 155 65 69 15
16 28 60 41 54 124 66 78 16
17 30 92 42 60 136 67 66 18
18 31 60 43 63 139 68 o8 13
19 32 61 44 86 132 69 64 20
20 36 72 45 85 115 70 69 21
21 28 147 46 85 96 71 66 23
22 32 149 47 78 94 72 61 25
23 35 153 48 74 96 73 76 27
24 33 154 49 97 122 74 72 31
25 38 151 50 98 116 75 64 30

Table 5.1. Ruspini data.

In the dendogram, the vertical scale on the left of the plot represents distance. Here,
the distance between two clusters is defined as the minimum (Euclidean) distance between
any two points in the cluster — as we shall see, there are a number of other definitions of
distance between clusters but this is the one being used here.

For ease in interpreting the dendogram, the original data points are replotted using
different plotting symbols, in Fig. 5.3.

The top horizontal bar, which corresponds to a distance of 44.9, represents the initial
separation into two clusters — this separates the points marked + or x in Fig. 5.3 from
the others. The next horizontal bar, at distance 40.5, separates the +’s from the x’s. The
third horizontal bar, at distance 24.0, separates the top half of the data into two clusters,
with the squares and diamonds forming one cluster, and the triangles, octagons and stars
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5.2. Dendogram for the Ruspini data, hierarchical clustering, single linkage method.
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the others. At this point, therefore, the four visually obvious clusters in the data have
been identified by the algorithm. After that, the picture becomes more complicated. The
fourth horizontal bar is at distance 19.0, and separates the stars from the triangles and
octagons. Further horizontal bars occur at 13.6, 13.4, 13.0,..., until finally at distance 1.4,
all 75 points lie in separate clusters. We could stop anywhere along the way, defining a
critical distance d* say, with the interpretation that two clusters whose distance apart is
less than d* are considered a single cluster. Thus, for example, setting d* = 20 leads to
exactly four clusters; d* = 15 creates five clusters. The SPlus commands required to create
these plots are

x<-matrix(scan(file=’ruspini.dat’),ncol=2,byrow=T)
y<-dist(x,metric="euclidean")
y1<-hclust (y,method="connected")

plclust(yl)
og o [m]
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Fig. 5.3. Scatterplot of the Ruspini data with different plotting symbols.

Here, the first line reads the data into a matrix x, and the second creates a distance
vector y. If x has n rows and 1 < i < 57 < n, the distance between the 72’th and j’th

rows of z is the {n(z -1) - # +J - i}’th entry of y. The distance here is the usual

Euclidean distance between two vectors but we could also specify metric="manhattan"
(the sum of absolute differences of the components of the two rows) or metric="binary"
(the proportion of non-zero elements that the two vectors do not have in common). The
third line applies the hierarchical clustering algorithm using the “connected” method (i.e.
using the minimum distance between the points of two clusters to define the distance
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between the cluster — this is also called single link clustering) and the fourth line draws
the dendogram.

Apart from the single link clustering algorithm just mentioned, there are a number
of other hierarchical clustering algorithms based on different distance measures between
clusters:

e Average distance method ("average" in SPlus) — the distance between two clusters
is the average of the distances between the members of the clusters;

e Complete linkage method ("compact" in SPlus) — the distance between two clusters
is the maximum of the individual distances between points of the cluster;

e Centroid method (not implemented as part of the SPlus hclust algorithm described
above, but it is available through the mclust algorithm described in the next section,
where it is given by the option method="centroid") — the distance between two clusters
is the distance between their centroids;

e Sum of squares method (also known as Ward’s method, or the trace method:
method="sum of squares" or method="trace" within the mclust algorithm) — this
splits clusters in a way which minimizes the total within-cluster sum of squares.

As an example, Figs. 5.4 and 5.5 show dendograms for the Ruspini data that arise
from the average distance and complete linkage methods. The average distance method
agrees with the single linkage method for the first five clusters. According to the complete
linkage method, the first three clusters are the same (the +’s, the x’s and the rest), but
then it splits the squares in Fig. 5.3 from the rest of the top half of the plot — in other
words, the three points labelled with diamonds, formerly part of the left-hand cluster, and
now in the right-hand cluster. The next step then separates the diamonds and the triangles
to form one cluster, while the octagons and stars form another, and so on.
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Fig. 5.4. Dendogram for the Ruspini data, hierarchical clustering, average distance
method.
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Fig. 5.5. Dendogram for the Ruspini data, hierarchical clustering, complete linkage
method.
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As a second example of these methods, consider the data in Table 5.2, taken from
Kaufman and Rousseeuw (1990) and earlier Rousseeuw and Leroy (1987). They show
the logarithmic temperature and logarithmic light intensity of a group of 47 stars in the
direction of the constellation Cygnus. Fig. 5.6 shows a scatterplot of these data, in which
the direction of the x axis is reversed in accordance with a common convention for this
type of plot, known as the Hertzsprung-Russell diagram.

Num. =z Y Num. =z Y Num. =z Y

1 4.37  5.23 17 4.23 3.94 33 4.45 5.22
2 4.56 0.74 18 4.42 4.18 34 3.49 6.29
3 4.26 4.93 19 4.23 4.18 35 4.23 4.34
4 4.56 5.74 20 3.49 5.89 36 4.62 5.62
) 4.30 5.19 21 4.29 4.38 37 4.53 5.10
6 4.46 5.46 22 4.29 4.22 38 4.45 5.22
7 3.84  4.65 23 4.42 4.42 39 4.53 5.18
8 4.57  5.27 24 4.49 4.85 40 4.43 5.07
9 4.26 9.57 25 4.38 5.02 41 4.38 4.62
10 4.37  5.12 26 4.42 4.66 42 4.45 5.06
11 3.49 5.73 27 4.29 4.66 43 4.50 5.34
12 4.43 5.45 28 4.38 4.90 44 4.45 5.34
13 4.48 5.42 29 4.22 4.39 45 4.55 5.54
14 4.01 4.05 30 3.48 6.05 46 4.45 4.98
15 4.29 4.26 31 4.38 4.42 47 4.42 4.50
16 4.42 4.58 32 4.56 5.10

Table 5.2. Astronomical data. Data are logarithmic surface temperature (x) and loga-
rithmic light intensity (y) of 47 stars.

Initial inspection of the data shows two very obvious clusters, with four stars on the
right hand side (so-called red giants) displaying completely different characteristics to the
rest of the plot, all of which are “main sequence” stars. The dendogram in Fig. 5.7, which
is again based on hierarchical clustering with a single-linkage model, clearly shows this
split (any d* between .46 and .78 results in a two-cluster separation) but also reveals a
finer structure as the separation distance d* is lowered, creating more clusters.

The average link method (Fig. 5.8, top) also shows the same initial split of the data,
but the complete link method (Fig. 5.8, bottom) is different — here the initial split forms
two large clusters and it is only at the next step that the four red giant stars are identified
as a separate cluster.

Another feature of these methods that has not been mentioned is the initial scaling of
the data — changing the relative scales of the different components will obviously affect

the calculation of distances and hence the results of the analysis, so in practice, one should
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take care to ensure that all the components display about the same amount of variability
on the chosen scale. In the astronomical example, for instance, the total range of data on
the y scale is about twice that on the x scale, so there might be a case for rescaling here.

From these examples, it should be clear that there is a lot of arbitrariness about
hierarchical clustering algorithms. There is no statistical theory to support which of these
gives the “right” answer, and they should largely be thought of as crude data-analytic
techniques. Probably their main virtue is in processing higher-dimensional data, when
they might help to identify features of the data which crude inspection would not reveal.
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Fig. 5.6. Hertzsprung-Russell diagram based on 47 stars.
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5.2 Model-based clustering

The second broad strategy in cluster analysis is to assume some specific model, for
example, that the observed data consist of a mixture of G multivariate normal distributions
with different means and covariance matrices. We can then consider both how to allocate
the observations optimally to the G groups, and also how to select the appropriate value of
G when this is unknown. These techniques have been developed in a number of papers, for
instance Scott and Symons (1971), Symons (1981) and in particular the paper of Banfield
and Raftery (1993), which tied together a number of earlier methods and also proposed
an approximate Bayes factor approach to estimating G. In more recent work, Richardson
and Green (1997) proposed a fully Bayesian implementation using Markov chain Monte
Carlo methods, but this is beyond the scope of the present discussion.

As a simple statement of the problem (following Mardia, Kent and Bibby (1979)),
suppose we have G clusters labelled C;, Cs,...,Cg, and an assignment function vy where
~v; = k means that the i’th observation is assigned to the k’th group. If the G' groups have
population densities f(z;0k), 1 < k < G, reflecting that the groups are all described by
the same parametric family f but with different parameters 64, ..., 0¢q, then the likelihood
of the model parameters is defined by

L(v,01,..0c) = [[ fla;61) [] Fx;02)-. [ f(=:00). (5.1)

zeCy zeCy zeCq

In the multivariate normal case, we have 0 = (ug, Xk), where pg and i are the mean
and covariance matrix of the k’th group. Given the allocation rule ~, we estimate uj and
Yk in the obvious way, using the sample mean and covariance matrix in the £’th group. If
the k’th group contains nj observations and has sample covariance matrix Sk, then (5.1)
reduces to

G
L(v,01,...,06) o [T I1Sk]™/2. (5.2)
k=1

Given @G, the optimal allocation 4 is therefore the one which maximizes (5.2). In practice,
calculating 4 exactly would involve searching over all G™ possible allocations of the n
points into G' groups, an impossible task when 7 is large, but the optimization is usually
performed approximately using a hierarchical algorithm similar to the ones described in
section 5.1. The difference is that (5.2) now defines a specific optimization criterion in
place of the distance-based methods used earlier. Whether that is an improvement is, of
course, open to debate.

The foregoing is called the unconstrained model, because there are no constraints on
the pg and Xy values. In practice, a number of constraints are employed, for example that
the ¥, matrices are all the same. In that case, the maximum likelihood estimator of ¥y is

G — _
W= > k=1 2icc, (Xi — Xi) (X — Xk)T’
n
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with obvious notation, e.g. X denotes the mean of all the observations in the k’th group.
The maximum likelihood allocation is then that which minimizes |W|.

Within the same context, we might consider testing for a single cluster, for example,
by defining a null hypothesis that v; = ... = ,, against that alternative that they are not
all equal. The MLE of ¥ under the null hypothesis is

i (X — X) (X — X)T

T = = ,
n

and the likelihood ratio test statistic is then

210g§—; = nlog{m&x%}
but even in this simple form, the discrete maximization over v frustrates the usual asymp-
totic theory so the distribution of this test statistic is intractible except by simulation. This
intractability, along with the difficulty in more complicated situations of even defining a
suitable hypothesis to test, means that in this field, standard hypothesis tests tend not to
be used very much. Instead there has grown an extensive literature using Bayesian ideas,
in particular Bayes factors.

We have already mentioned two possible forms of assumption about the ¥; matrices:
that they are unconstrained, or that they are all the same. The latter is also called
the determinant rule in view of the |W| optimality criterion. Another possibility is to
assume X = o,%Ip so that all the clusters are approximately spherical in shape, but with
scaling constants o which may either be the same or different. When they are all the
same the method is equivalent to Ward’s method described in the previous section. Other
possibilities are that the Y are all constrained to be the same shape but with different
orientations; again, the scaling constants may either be the same for all clusters or different.
In this context, two covariance matrices may be said to be of the same shape if they have
the same ratios of eigenvalues Aa/A1, ..., Ap/A1 where A\; > Ay > ... > ), are the ordered
eigenvalues. SPlus allows the user to specify these ratios; for example taking all \;/A; = 0.2
for 1 = 2,...,p is recommended as a reasonable compromise between forcing the clusters
to be spherical and allowing them to become extremely thin and elongated. The different
possibilities may be summarized in the following table (based on Banfield and Raftery
1993):

Criterion Distribution Orientation Size Shape
Ward Spherical N/A Same Same
Spherical Spherical N/A Same Same
Determinant Ellipsoidal Same Same Same

S Ellipsoidal Different Same Same

S* Ellipsoidal Different Different Same
Unconstrained  Ellipsoidal Different Different Different

Table 5.3. Different model criteria implemented in SPlus.
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It remains to discuss the selection of number of clusters G. Banfield and Raftery (1993)
proposed an approzimate weight of evidence (AWE) criterion, as follows. It is based on
the idea of a Bayes factor, which is defined as the ratio of posterior distributions of two
models when the ratio of prior distributions is ignored. For the Bayes factor between two
models containing G and G + 1 clusters, when the model with G + 1 clusters is formed
from the model with G clusters by splitting one cluster into two, the approximate Bayes
factor Bg @41 is given by

—2log Bg,g+1 ® Ag — {g + 10g(pnG,G+1)} 20¢, (5.3)
where Ag is the log likelihood ratio between the models with G and G + 1 clusters, p
is the dimension, ng,g+1 is the number of observations in the merged cluster, and dg is
the degrees of freedom (difference between the number of parameters in the G-cluster and
(G + 1)-cluster models). By adding (5.3) over G = 1,2, ..., we compute an approximation
to 2log Bg, where Bg is the approximate Bayes factor of the model with G clusters against
the model with 1 cluster. The value of 2log Bg is then called the approximate weight of
evidence or AWE.

As pointed out by Banfield and Raftery, the whole calculation leading to the AWE
involves a number of simplifying approximations and therefore it should not be treated too
literally. What typically happens is that AWE rises rapidly with G when G is small, then
levels off and remains approximately constant for several values of G. These values of G
can then all be thought of as equally justified under the model; parsimony would suggest
that one of the smaller values of GG, within this group that have about the same AWE,
should be chosen.

Banfield and Raftery also consider an extension which allows for noise in the form of
occasional outlying observations which do not belong to any cluster. This is included in
their model in the form of an additional Poisson process which is uniform over the space
of observation.

Implementation in SPlus

The main function for model-based clustering is mclust. Unlike the hclust function,
which takes a distance matrix as its input, mclust uses the data matrix directly. A typical
call to the function is

x1<-mclust (x,method="sum" ,noise=F)

in which Ward’s (sum of squares) method is applied to the data matrix x with no noise.
To add Poisson noise, use noise=T. Other method options include "spherical", "de-
terminant", "S", "S*" and "unconstrained", to correspond to the different criteria in
Table 5.3. Also permitted as part of the mclust command are the various hierarchical
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criteria mention in section 5.1, namely "centroid", "group average link", "farthest
neighbor" and "nearest neighbor". Abbreviations of these methods are allowed.

As an example, a typical call to the S* method is
x4<-mclust (x,method="S*" ,noise=F,shape=c(1,rep(0.2, (dim(x) [2]-1))))

in which the shape specifies the ratio of eigenvalues referred to earlier, that A\p/A; = 0.2
for all k£ > 1.

A typical dendogram plot resulting from the call to mclust is
plclust(x1$tree)

though unlike the dendogram resulting from hclust, the vertical scale of the plot does not
use exact distances (a point in favor of the hclust method).

Finally, we can plot the AWE for the number of clusters, e.g.
plot(1:10,x1$awe[1:10] ,x1ab="Number of clusters",ylab="awe")
to plot the AWE for G =1, ..., 10.

As an example, Fig. 5.9 shows the AWE plots for four of the model-based clustering
criteria, Ward’s method without noise (a), Ward’s method with noise (b), the spherical
method without noise (c¢) and the S* method without noise (d). The dendograms are not
shown since at least as far as the fourth cluster, they agree with the single linkage clustering
in the cases of models (a), (b) and (c), and with complete linkage clustering in the case of
model (d). In all four cases, inspection of the AWE plots by the criteria discussed earlier
suggest that the plots level off at G = 4 clusters, supporting the four-cluster conclusion.
However it should be pointed out that the conclusion is not quite so simple if one looks at
the detailed numbers — for example, in method (a) the AWE rises by 16 between G = 4
and G = 5, and in method (b), the rise over the same interval is 21. Since AWE is being
calculated on a scale which makes it comparable with log-likelihood values (or AIC, BIC,
etc.) one might feel that such differences should not be ignored.

For the astronomical data, we show the dendograms and AWE plots for Ward’s method
without noise (Fig. 5.10) and for the spherical method (Fig. 5.11). In the case of Fig.
5.10, the first few AWE values are 0, 48, 100, 109, 104,..., suggesting the need for at least
three clusters and maybe four. On the other hand, for Fig. 5.11 the AWE values begin 0,
—2, —13, —46,..., suggesting no need for any clusters at all (or in other words, the data are
consistent with one big cluster). Given results like these from the model-based approach,
the reader would be entitled to ask whether the supposed ad hockery of the hierarchical
clustering approach was such a bad thing after all.
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Fig. 5.9. AWE plots for the Ruspini data based on four models, (a) Ward’s method
without noise, (b) Ward’s method with noise, (c) spherical method, (d) S* method.
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Fig. 5.10. Dendogram and AWE for the astronomical data, model-based clustering,
Ward’s method.

73



40

30 o

20 —

10 +

m [ ]
2 100 A

-150 A

T T T T T

2 4 6 8 10

Number of clusters

Fig. 5.11. Dendogram and AWE for the astronomical data, model-based clustering,
spherical method.
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5.3 Other clustering procedures

Besides the procedures which have been described, there are many other clustering
algorithms which have been implemented in SPlus. For example, the mclass function may
be used to classify objects using the output of mclust. Following that, mreloc may be
used to look for improvements in the model-based criteria based on iterative relocation
of elements. The kmeans algorithms follows a different approach to re-allocation, due to
Hartigan (1975). Other procedures include clorder (reordering the leaves of the tree),
cutree (creating groups from hierarchical clustering), labclust (labelling the leaves of
the tree) and subtree (extracting part of a tree). All of these are described in the SPlus
documentation.

Finally, we should mention that the book by Kaufman and Rousseeuw (1990) has de-

scribed a completely different approach to clustering, whose routines are also implemented
as part of an SPlus library.
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