
STAT 730 Chapter 11: Discriminant analysis

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 730: Multivariate Data Analysis

1 / 28

Basic idea

Clustering is called “unsupervised learning” in the machine learning
literature; discriminant analysis (or classification) is termed
“supervised learning.” Really discriminant analysis and
classification are slightly different actions, but they are used
interchangeably.

Now the number of groups g is known, as is the group membership
of each object. For example, in the dental data we know whether
each child is male or female (g = 2); for the iris data we know
which of the three species (g = 3) each flower belongs to. The
data are {(xi , zi)}ni=1 where xi is a vector of (initially continuous)
variables and zi tells us which group xi belongs to.

We ultimately want to classify an object with xn+1, i.e. find ẑn+1.

2 / 28

Model-based classification

By model-based, here we mean the same mixtures of Gaussian
models are used as in model-based clustering.

We will start with classification that follows a generalization of the
parametric MANOVA model:

xi
ind .∼ Np(µzi ,Σzi),

where i = 1, . . . , n and zi ∈ {1, . . . , g}. Note that the “usual”
MANOVA model occurs when Σ1 = · · · = Σg = Σ. Also note that
the z1, . . . , zn are known in contrast to clustering.

3 / 28

Marginal distribution

In the population governing {(xi , zi)}ni=1, a pair (x, z) is generated
according to the joint pdf/pmf f (x, z) = f (x|z)p(z) where
(x, z) ∈ X ×{1, . . . , g}. Define πj = P(z = j); πj is the proportion
of vectors x that come from sub-population j . By the LTP, the
marginal distribution of (an unclassified x with unknown z) is

x ∼ f (x) =

g∑
j=1

fj(x)πj ,

where fj(x) is the density of the jth sub-population.

For different covariance matrices, fj(x) = φp(x;µj ,Σj), for a
common covariance matrix fj(x) = φp(x;µj ,Σ).

4 / 28

Fitting

Let nj =
∑n

i=1 I{zi = j}; note n1 + · · ·+ ng = n. As usual,
µ̂j = 1

nj

∑
i :zi=j xi . When the covariance matrices are different,

Σ̂j = 1
nj

∑
i :zi=j(xi − µ̂j)(xi − µ̂j)

′. If Σ1 = · · · = Σg = Σ then

Σ̂ = 1
n

∑n
i=1(xi − µ̂zi)(xi − µ̂zi)

′.

Replacing population moments with sample estimates gives f̂j(x).

If the data {(xi , zi)}ni=1 are randomly drawn from the overall
population, then π̂i =

nj
n , otherwise they must be estimated in

some other way.

Unlike clustering, the zi are known; the EM algorithm is not
needed!

5 / 28

Classifying via Bayes’ rule

For an unclassified x from one of the g groups, Bayes’ rule gives us
the probability of being in group j :

P(z = j |x) =
f (x|z = j)P(z = j)

f (x)
≈

f̂j(x)π̂j∑g
s=1 f̂s(x)π̂s

.

Classification rule: Let dj(x) = f̂j(x)π̂j . Then x is classified as
coming from sub-population j when dj(x) > ds(x) for all s 6= j .
That is, an observation is estimated to belong to the group with
the highest posterior probability.

This classification scheme assumes that the cost of
misclassification is the same across all possibilities. J & W define
cjs to be the cost of saying x comes from group j when it really
comes from s. Considering the expected cost of misclassification,
they modify this rule to dj(x)csj > ds(x)cjs . Throughout MKB, the
costs for misclassification are assumed equal. MKB pp. 305–308
place classification within the realm of decision theory.

6 / 28

Linear classification rules

The simplifying case where π1 = · · · = πg yields so-called ML
discriminant rules. If Σ1 = · · · = Σg , then the ML discriminant
rule allocates x to group j instead of group k when

φp(x; µ̂j , Σ̂) > φp(x; µ̂k , Σ̂).

Taking logs, this boils down to

(µ̂j − µ̂k)Σ̂
−1{x− 1

2(µ̂j + µ̂k)} > 0.

This results in g (p − 1)-dimensional hyperplanes partitioning Rp;
each of the g regions classifies an x to one of the g groups.

This corresponds to Fisher’s linear discriminant rule, see pp.
318–320. Fisher’s rule was not originally derived considering
normality though.

7 / 28

Quadratic classification rules

If we rather assume different covariance matrices, then the ML
discriminant rule allocates x to group j instead of group k when

φp(x; µ̂j , Σ̂j) > φp(x; µ̂k , Σ̂k).

This results in a partitioning of Rp into g portions separated by
quadratic surfaces. See Marden p. 230.

Generalizing so that the π1, . . . , πg are allowed to be different, as
we first discussed, also gives linear and quadratic classification rules
that are only slightly more complex (Marden p. 225 and p. 230).

8 / 28

Classification error

An error occurs when xi is not classified correctly; recall we are
considering that the cost of misclassification is the same over all
possibilities. Let zi be the truth and ẑi be classification of xi from
a model. An estimate of the probability of misclassification is

Er = 1
n

n∑
i=1

I{zi 6= ẑi}.

This underestimates the actual error; a better estimate is the
leave-one-out, or cross-validated estimate

Ec = 1
n

n∑
i=1

I{zi 6= ẑi(i)},

where ẑi(i) is the classification for xi based on the n − 1 pairs
{(xj , zj)}j 6=i .

Using Ec instead of Er has the same spirit as using PRESS instead
of SSE in regression to estimate prediction error.

9 / 28

Cross-validated error estimate approaches

Random subsampling takes K random splits of data into
training and test portions, computes the classification error for
each split E1, . . . ,EK , and computes Es = 1

K

∑K
i=1 Ei .

K -fold cross-validation partitions data into C1 ∪ · · · ∪ CK of
sizes roughly n/K each. Use ∪j 6=iCj for training, Ci for testing

giving Ei . Ek = 1
K

∑K
i=1 Ei . Every obsrvation is predicted only

once & all obs. are used for training. Most common: K = 10.
Ec (previous slide) is K -fold using K = n.

Large K increases computation time, slightly increases variance of
misclassification estimator, but decreases bias. Small K decreases
computation time, increases bias, but decreases the variance. For
random subsampling, variance is low and bias can be moderate.
The bootstrap can also be used (although appears to be biased for
large p). Note: there are tons of papers on this. Molinaro, Simon
and Pfeiffer (2005, Bioinformatics) suggest leave-one-out cross
validation unless the computational burden is too great, then they
suggest 10-fold cross-validation.

10 / 28

Visualizing results

A common plot to look at are the first two canonical covariates
(from MANOVA) along with the classification of object i . Let
W =

∑n
i=1(xi − µ̂zi)(xi − µ̂zi)

′ and B =
∑n

i=1(µ̂zi − µ̃)(µ̂zi − µ̃)′.

Here, µ̃ = 1
n

∑n
i=1 xi . Then take aj = γ̂(j)/

√
γ̂ ′(j)Σ̂

−1
γ̂(j) where

W−1B = Γ̂Λ̂Γ̂
′
. Then yij = a′jxi is the jth canonical covariate on

the ith object. Here, j = 1, . . . ,min{g − 1, p}.

Canonical covariates maximize variability among groups in each of
p directions γ̂(1), . . . , γ̂(p), iteratively, much like PCA. A default
plot from the lda and qda functions from the MASS package
provides this type of plot.

Variation is maximized assuming Σ1 = · · · = Σg , the usual
MANOVA model.

11 / 28

Classifying gender using dental data

library(reshape) # to create data frame from dental data

library(MASS) # has lda and qda functions

library(heavy) # has dental data

data(dental)

d2=cast(melt(dental,id=c("Subject","age","Sex")),Subject+Sex~age)

names(d2)[3:6]=c("d8","d10","d12","d14")

these functions estimate pi_i using sample proportions

you can provide other pi_i if needed

f1=lda(x=as.matrix(d2[,3:6]),grouping=d2[,2],CV=T)

f1=lda(Sex~d8+d10+d12+d14,data=d2,CV=T)

f2=qda(Sex~d8+d10+d12+d14,data=d2,CV=T)

sum(f1$class!=d2$Sex)/length(d2$Sex) # CV error linear

sum(f2$class!=d2$Sex)/length(d2$Sex) # CV error quadratic

f1=lda(Sex~d8+d10+d12+d14,data=d2) # refit without CV

f2=qda(Sex~d8+d10+d12+d14,data=d2) # refit without CV

plot(f1) # uses disciminant functions

library(klaR) # provides panel of bivariate plots w/ regions

partimat(Sex~d8+d10+d12+d14,data=d2,method="lda")

partimat(Sex~d8+d10+d12+d14,data=d2,method="qda")

partimat(Sex~d8+d10+d12+d14,data=d2,method="svmlight") # needs additional installation

partimat(Sex~d8+d10+d12+d14,data=d2,method="rpart") # classification tree

12 / 28

Some extentions

The g populations need not be normal. Nonparametric estimates
f̂j(x) can be used instead of φp(x; µ̂j , Σ̂j). These include
kernel-smoothed estimates, mixtures of normals within each
population, etc. Something that has not been tried: Polya trees.
Very easy and fast to fit.

If p is too large, e.g. p > g , then one can instead use PCA and
take the first few principal components for use in model-based
classification. One can also use so-called discriminant functions,
i.e. canonical covariates from a few slides back.

We will now consider alternatives to the model-based classification
rules, and are entering the realms of machine learning and data
mining. A classic, free book is The Elements of Statistical Learning
by Hastie, Tibshirani, and Friedman. You can download the PDF
from

http://statweb.stanford.edu/~tibs/ElemStatLearn/

There is also a newer R companion book.
13 / 28

Logistic regression

When g = 2, an alternative to model-based classification is logistic
regression; assume now that zi ∈ {0, 1}. There are two
classification probabilities π(x) (z = 1) and 1− π(x) (z = 0). The
model is

log
π(x)

1− π(x)
= β0 + β′x,

where β = (β1, . . . , βp)′, commonly fit using maximum likelihood

treating zi
ind .∼ Bern{π(xi)}.

Note then, that x ∈ Rp is allocated to the z = 1 group when

β̂0 + β̂
′
x > 0: the two classification regions are separated by a

(p− 1)-dimensional hyperplane in Rp, similar to Fisher’s linear rule.

14 / 28

Logistic regression

A more powerful version is additive logistic regression

log
π(x)

1− π(x)
= β0 + g1(x1) + · · ·+ gp(xp).

This can provide nonlinear boundaries in Rp. Additive logistic
regression is available in gam. There is also locally-weighted logistic
regression and kernel logistic regression for nonlinear classification.

Logistic regression can be thought of as providing a
“nonparametric” linear discriminant rule. The model-based
approaches can be more efficient when the assumptions on f0(·)
and f1(·) are reasonable. Logistic regression makes no assumptions
on these densities and can work better when assumptions on the
densities are false.

15 / 28

π1 = P(zi = 1) and π0 = P(zi = 0)

If we use the classification as is, we are implicitly assuming that
the (xi , zi) are arriving iid from f (x, z) and π̂1 = 1

n

∑n
i=1 I{zi = 1}

estimates π1. If, instead, the true probabilities in the population
(π1, π0) are different (and known) from the proportions (π̂0, π̂1) in
the data set, we need to modify the intercept to rather be
β̃0 = β̂0 + log(π1/π0)− log(π̂1/π̂0) in our decision rule.

Groups are sampled differently from cross-sectional (iid) in the
case of rare events or planned experiments, e.g. case-control
sampling. This is also called product-binomial sampling.

16 / 28

Logistic regression with large p

The LASSO (least absolute shrinkage and selection operator) and
elastic net are two regularized regression approaches.
“Regularization” broadly means to impose contraints to solve
overparameterized problems. LASSO and elastic net both shrink
logistic regression coefficients toward zero, and both are
formulated as penalized regression. The LASSO maximizes

Lλ(β) = 1
n log

{
n∏

i=1

π(xi)
zi [1− π(xi)]1−zi

}
− λ

p∑
j=1

|βj |,

where π(x) = eβ0+β′x

1+eβ0+β′x and β = (β1, . . . , βp)′.

Often λ is chosen through k-fold cross-validation, i.e. chosen to
minimize prediction error. Typically covariates are standardized to
have unit variance before using LASSO.

17 / 28

Classifying gender using dental data

library(glmnet)

lambda=cv.glmnet(as.matrix(d2[,3:6]),d2[,2],family="binomial")$lambda.min

f=glmnet(as.matrix(d2[,3:6]),d2[,2],family="binomial")

p=predict(f,newx=as.matrix(d2[,3:6]),s=lambda,type="class")

plot(f,xvar="lambda") # log(lambda)=-2.9; only one measurement is used!

cverror=0 # cross-validated prediction error

for(i in 1:dim(d2)[1]){

lambda=cv.glmnet(as.matrix(d2[-i,3:6]),d2[-i,2],family="binomial")$lambda.min

f=glmnet(as.matrix(d2[-i,3:6]),d2[-i,2],family="binomial")

p=predict(f,newx=as.matrix(d2[i,3:6]),s=lambda,type="class")

if(d2[i,2]!=p){cverror=cverror+1}

}

cverror/dim(d2)[1]

Uses cross-validation to find λ̂. Note that LASSO can shrink
coefficients to zero! That is why it is also useful for variable
selection. It provides an “automatic” stepwise procedure. As
λ→ 0+, the usual MLE estimates from logistic regression are
obtained. Another option instead of LASSO would be a best
subset approach if p is of moderate size.

18 / 28

Boosting

Boosting is a recent classification scheme first put forth in the
machine learning literature, popularly termed AdaBoost. Friedman,
Hastie, and Tibshirani (2000) show that boosting is equivalent to a
particular additive logistic regression,

log
π(x)

1− π(x)
=

M∑
m=1

hm(x).

The hm functions have special structure (otherwise the model is
over-parameterized).

Can be performed using LogitBoost in the caTools package, ada
in the ada package. Also see the mboost package for a more
recent treatment and gbm. Logit-boost typically performs better
that AdaBoost on noisy data and/or misclassified training data.

Boosting can automatically perform “feature detection,” i.e. figure
out which elements of x are really needed to classify, whereas SVM
cannot.

19 / 28

Support vector machines

Consider data {(xi , zi)}ni=1 where zi ∈ {−1,+1}. SVM, due to V.
Vapnik, are classifiers that split a p-dimensional feature space into
two portions Rp = Rp ∪ Rn, separated by a (p − 1)-dimensional
hyperplane, each portion classifies a x falling into it as +1 or −1.
For data that are truly linearly separated, two maximally separating
parallel hyperplanes are visualized

w′x− bp = 1, w′x− bn = −1,

that separate the +1 from the −1; I’ll draw a picture. The
separating hyperplane solving w′x− b = 0 is in the middle of these
two.

Finding (w, b) reduces (not obvious) to minimizing 1
2 ||w||

2 subject
to zi (w′xi − b) ≥ 1. If the +1 and −1 points overlap, the
soft-margin classifier instead minimizes 1

2 ||w||
2 + c

∑n
i=1 ξi , where

ξi ≥ 0 with many ξi = 0, subject to zi (w′xi − b) ≥ 1− ξi .

20 / 28

Support vectors & nonlinear classification via SVM

The support vectors are those xi where ξi > 0; these are vectors
that are misclassified or close to the boundary. For points that are
linearly separated, the support vectors lie exactly on the separating
parallel hyperplanes.

Nonlinear classification proceeds by using kernel functions. Dot
products w′x are replaced by, e.g. polynomial functions
k(w, x) = (x′w)k or Gaussian functions k(w, x) = e−θ||w−x||2 .

This trick can solve very hard classification problems, such as when
the separating hyper-surface is elliptical.

SVM can do as well or better than logistic regression with fewer
features. SVM has been very successful in classifying, for example
disease using using medical imaging or genetics data.

21 / 28

Example: dental data using SVMs

This is a very simple example. You will typically want to tune the
SVM using a training data set in real applications. The function
svm can handle factors as predictors too.

library(e1071)

f=svm(Sex~d8+d10+d12+d14,data=d2) # default kernel is radial not linear!

summary(f)

plot(f,d2,d12~d14,slice=list(d8=22,d10=23))

f=svm(Sex~d8+d10+d12+d14,data=d2,kernel="linear") # classical linear SVM

summary(f)

plot(f,d2,d12~d14,slice=list(d8=22,d10=23))

22 / 28

Classification and regression trees (CART)

The linear (non-kernel) versions of logistic regression and SVM
produce a hyperplane that slices Rp into two portions, each
portion classifying one of the two groups. A method that produces
regions that are simple rectangles in Rp are classification trees.
The data are {(xi , zi)}ni=1.

The tree is grown iteratively. First, variable v1 ∈ {1, . . . , p} is
chosen to split xiv1 at value t1 yielding two portions
P0 = {i : xiv1 ≤ t1} and P1 = {i : xiv1 > t1}. Note then
{1, . . . , n} = P0∪P1. The tree now has two branches and we add a
third by picking either P0 or P1 and dividing this into two portions
similarly, i.e. using xiv2 and cutpoint t2. Say we pick P1 to split
into P1 = P10 ∪ P11. Note then that {1, . . . , n} = P0 ∪ P10 ∪ P11︸ ︷︷ ︸

P1

.

The tree has three branches; I’ll draw it on the board.

23 / 28

Example

At the kth split, there are k + 1 branches, i.e. we have partitioned
{1, . . . , n} into k + 1 sets. We have also partitioned Rp into k + 1
rectangles. The tree is given by a series of sets that have been split.
Say we split 5 times, yielding a partition with 6 portions, according
to e1 = ∅, e2 = 1, e3 = 11, e4 = 0, e5 = 110. The final tree has

{1, . . . , n} = P00 ∪ P01 ∪ P10 ∪ P1100 ∪ P1101 ∪ P111.

Let e = e1 · · · ek ; the region associated with portion Pe is

Re = Re1···ej = ∩ji=1 [{x : xvi ≤ ti , ei = 0} ∪ {x : xvi > ti , ei = 1}] .

For the example,

Rp = R00 ∪ R01 ∪ R10 ∪ R1100 ∪ R1101 ∪ R111.

Along with each split is a variable v1, . . . , vk and cutpoint
t1, . . . , tk . The splits are added sequentially to maximize a
Bernoulli likelihood.

24 / 28

How to choose the variable and cutpoint?

For any Pe = Pe1···ej ⊂ {1, . . . , n}, let
ye = ye1···ej =

∑
i∈Pe1···ej

I{zi = 1} and ne = ne1···ej =
∑

i∈Pe1···ek
1.

Let v1, . . . , vk be a series of variables chosen to split on, t1, . . . , tk
their corresponding cutoffs, and Pe1 , . . . ,Pek the associated
portions. One can argue (using conditional probability) that the
likelihood for any sequence is

L =
k∏

j=1

[
yej 0

nej 0
]
yej 0 [1−

yej 0

nej 0
]
nej 0
−yej 0 [

yej 1

nej 1
]
yej 1 [1−

yej 1

nej 1
]
nej 1
−yej 1 .

At iteration k , (ek , vk , tk) is chosen to maximize this likelihood.

The tree is typically stopped when there are only a few observations
in each branch. At this point the tree has overgrown (overfits the
data) and must be pruned. Marden suggests AIC or BIC.

25 / 28

Dental data, bagging, & random forests

f=tree(Sex~d8+d10+d12+d14,data=d2)

plot(f); text(f)

f.aic=prune.tree(f,k=4)

plot(f.aic); text(f.aic)

f.bic=prune.tree(f,k=2*log(dim(d2)[1]))

plot(f.bic); text(f.bic)

Bagging simply grows a different tree for each of several
bootstrapped (i.e. with replacement) samples. Classifications are
made by majority vote, the most frequent classification across the
boostrapped trees. A random forest is a bagged classifier, but
where only a (random) subset of the elements of x (typically of
size
√

p) are considered at each split.

Bagging can produce much better prediction, but the nice
interpretability of one tree goes out the window. Essentially
becomes a “black box” learner.

26 / 28

Logistic regression, boosting, SVM, and CART

All methods can be generalized to more than g = 2 groups,
but the most natural generalization occurs with logistic
regression (ordinal regression or generalized logits for nominal
outcomes).

Logistic regression, boosting, and CART all naturally handle
categorical predictors. However, svm seems to handle
categorical predictors as well.

Model-based approaches provide probabilies of group
membership for a given xn+1. SVM, for example, only
provides ẑn+1.

27 / 28

Other methods

There are a few other nonparametric approaches to classification
and regression.

Random forests (bagging).

Neural networks.

Gaussian process models (for classification and regression).

Others, and tweaks on existing approaches, are churned out
daily in the machine learning and statistics literature.
Mastering the domain of machine learning is a daunting task.

Scratches the surface, but gives a taste of the most popular
classifiers in use.

Many classifiers are immediately generalizable to regression
too. For example “classification and regression trees.” How
do you think CART works in a regression context?

28 / 28

