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Basic idea

We have n objects and a matrix of distances between each object;
drs is the distance between objects r and s and D = [dij ] ∈ Rn×n is
the distance matrix. Multidimensional scaling (MDS) seeks to
create points x1, . . . , xn ∈ Rk s.t. drs ≈ ||xr − xs ||. The points are
then plotted to gauge how “similar” objects or variables are, with
“like” objects/variables near each other in the plot. Often
drs = ||zr − zs || where z1, . . . , zn ∈ Rp where k << p.
Distances can be any measure of dissimilarity, e.g. actual
Euclidean distance, Mahalanobis distance, genetic distance.

Example from Marden (2013): Louis Roussos recorded data on 130
sets of individual ranks on seven sports. Each subject allocated the
numbers 1, 2, 3, 4, 5, 6, 7 to the seven sports from wanting to
participate in the most to the least. The sports are baseball,
football, basketball, tennis, cycling, swimming and jogging.
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Sports rankings

Here drs = ||z(r) − z(s)|| for 1 ≤ r , s ≤ 7 where

z(1), . . . , z(7) ∈ R130. We want to find x1, . . . , x7 ∈ R2, i.e. k = 2,
such that drs = ||z(r) − z(s)|| ≈ ||xr − xs ||. Here, the traditional
idea of objects and variables have been reversed. The n = 7 objects
are different sporting activities, and the p = 130 measurements
taken on each sport are simply 130 individual rankings.

source("http://www.stat.sc.edu/~hansont/stat730/Marden_Rcode.txt")

sportsranks

cor(sportsranks)

D=dist(t(sportsranks)) # 7 by 7 matrix Euclidean dist. between columns

The daisy function in the cluster package creates dissimilarity
matrices for mixed data: continuous and categorical (both ordinal
and nominal).
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Objects vs. variables

We have been considering data matrices X ∈ Rn×p where typically
n >> p. The matrix X has n objects, often subjects in a study, and
p variables. Think of p = 4 N/W/S/E cork weight measurements
on n = 28 trees; or p = 5 exam scores and n = 88 students. In the
first scenario we may want to have a two-dimensional map showing
relative distances, with closer meaning more “similar,” between the
four compass directions, or alternatively among the 88 trees. In the
second scenario we may want to have a map among the students,
or a map showing relative distances among the exam types.

MDS can work on either objects or variables. For example, among
students we may want to cluster the students to see if meaningful
groups arise; we would need to know the students names and other
covariate information about them for this purpose. Alternatively
we may want to know if two exam types are similar, i.e. do they
carry the same information in some sense. If we are administering
a battery of tests, and some tests carry duplicate information, we
can get rid of some of them.

Your book refers to the labels of the distance matrix as n “objects”
regardless. Note that if variables are the object of study, an
obvious similarity matrix is either S or R.
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MDS

Start with a “distance” or dissimilary matrix D = [drs ] ∈ Rn×n.
The goal is find x1, . . . , xn ∈ Rk such that D̂ = [d̂rs ] ∈ Rn×n is
close to D, where d̂rs = ||xr − xs ||. If k = 2 we can plot the
x1, . . . , xn to get a picture of relative “location” amongst the n
objects.

Note that yi = Axi + b where AA′ = Ik also satisfies
d̂rs = ||yr − ys || = ||xr − xs ||. So any solution will be
translation/rotation invariant.

Classical (metric) MDS constructs an X = [x1 · · · xn]′ ∈ Rn×p that
leads to D exactly; this is part (b) of the theorem on the next
slide. If we want to use k < p, we simply use n points obtained
from the first k columns of X instead. This is justified via PCA.
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Def’n Euclidean for D and theorem

def’n: D is Euclidean if for some p there exists x1, . . . , xn ∈ Rp s.t.
d2
rs = ||xr − xs ||2.

thm: Let A = [−1
2d

2
rs ], H = In − 1

n1n1′n, and B = HAH. D
Euclidean ⇔ B ≥ 0.

(a) If D is Euclidean, i.e. drs = ||zr − zs || where 1 ≤ r , s ≤ n,
then brs = (zr − z̄)′(zs − z̄). In matrix terms B = (HZ)(HZ)′,
hence B ≥ 0.

(b) If B ≥ 0 and rank(B) = p then write B = ΓpΛpΓ′p where
Λ = diag(λ1, . . . , λp) ∈ Rp×p and Γp = [γ(1) · · ·γ(p)] ∈ Rn×p.

Create X = [γ(1)

√
λ1 · · ·γ(p)

√
λp] ∈ Rn×p. Then D formed

from drs = x′rxs (x̄ = 0) has corresponding B.
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Proof: D Euclidean ⇒ B ≥ 0

D = [drs ] where drs = ||zr − zs ||. B = HAH where ars = −1
2d

2
rs .
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i1 · · · − 1
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Now MKB 14.2.1 implies brs = [HAH]rs = (zr − z̄)′(zs − z̄). Thus
B = (HZ)(HZ)′ so B ≥ 0.
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Proof: D Euclidean ⇐ B ≥ 0

We’ll build an X. Let p = rank B, B ≥ 0. Recall B ∈ Rn×n. Let
λ1 ≥ · · · ≥ λp > 0 be the non-zero e-values,
Λ = diag(λ1, . . . , λp) ∈ Rp×p, and Γ = [γ(1) · · ·γ(p)] ∈ Rn×p.

Take X = ΓΛ1/2 = [
√
λ1γ(1) · · ·

√
λpγ(p)]. Then

B = ΓΛ1/2Λ1/2Γ′ = XX′. So then brs = x′rxs where
X = [x1 · · · xn]′ ∈ Rn×p.
Now

||xr − xs || = x′rxr − 2x′rxs + x′sxs

= brr − 2brs + bss

= arr − 2ars + ass

= −2ars = d2
rs ,

Because brs = ā·· − ā·s − ār · + ars and aii = 0 for i = 1, . . . , n.
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How this works in practice

Since 1′nX = 01×p, the columns have mean zero. This holds
because 1n is an e-vector of B with e-value zero, orthogonal to the
columns of Γ. Thus a plot of the x1, . . . , xn has 0 at its center.

To find k-dimensional x1, . . . , xn that represent objects from D,
create A = [−1

2d
2
rs ] and form B = HAH. Take λ1 ≥ · · · ≥ λk and

Γ = [γ(1) · · ·γ(k)]. Then X = [x1 · · · xn]′ = [
√
λ1γ(1) · · ·

√
λkγ(k)].

If p = rank(B) = k then ||xr − xs || = drs , otherwise
||xr − xs || ≈ drs .

It is common to take k = 2 and plot the x1, . . . , xn in the plane
labeled by the object names. If the first two e-values eat up most
of the variability (as in PCA) the Euclidean distances ||xr − xs || in
the plane should closely coincide with the actual drs .
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Driving distance between cities in S.C.

# driving distance

# charleston

# columbia 112

# florence 110 80

# hilton head 108 164 181

# myrtle beach 94 143 70 203

# spartanburg 201 93 153 253 223

D=matrix(c( 0,112,110,108, 94,201,

112, 0, 80,164,143, 93,

110, 80, 0,181, 70,153,

108,164,181, 0,203,253,

94,143, 70,203, 0,223,

201, 93,153,253,223, 0),6,6)

f=cmdscale(D,k=2)

par(mfrow=c(1,2))

plot(f,xlab="Coord. 1",ylab="Coord 2",main="Classical MDS",type="n")

text(f,labels=c("Charleston","Columbia","Florence","Hilton Head",

"Myrtle Beach","Spartanburg"),cex=.7)

t=-pi/3; R=matrix(c(cos(t),sin(t),-sin(t),cos(t)),2,2)

plot(f%*%t(R),xlab="Coord. 1",ylab="Coord 2",main="Classical MDS",type="n")

text(f%*%t(R),labels=c("Charleston","Columbia","Florence","Hilton Head",

"Myrtle Beach","Spartanburg"),cex=.7)
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Similarity measures instead of distance

If C is a similarity matrix (larger values mean objects are more
similar or “closer”) then C = C′ and crs ≤ crr & crs ≤ css .

def’n: The standard transformation from C to D is
drs =

√
crr − 2crs + crr .

thm: If C ≥ 0 then D as defined above is Euclidean with
B = HCH. See MKB 402–403 for a proof.

In practice, one transforms C to D and then performs the classical
multidimensional scaling described thus far.

A nice similarity matrix for continuous outcomes is the sample
correlation D = R.

11 / 16



Duality between PCA and classical MDS

Take Z ∈ Rn×p where rows are p measurement values on an
object. If we wish to MDS on the n objects note the following
relationship between MDS and PCA:

thm: If D = [drs ] where drs = ||zr − zs ||, the Euclidean distance
between rows r and s of Z, then the principal coordinates
x1, . . . , xn ∈ Rk are equal to the first k principal components:
x′i = (yi1, . . . , yik). Proof is on pp. 405–406 on MKB.

Heuristically, recall the approximation zi ≈ µ + ΓkΓ′k(zi − µ).
Then

||zr −zs ||2 = (zr −zs)′(zr −zs) ≈ ||Γ′k(zr −zs)||2 =
k∑

j=1

(yrj − ysj)
2.

The points xi = (yi1, . . . , yik) ∈ Rk approximately preserve the
distances among the zi ∈ Rp.

Doesn’t matter if we consider n objects on p variables (using Z) or
p variables on n objects (using Z′). 12 / 16



Duality between PCA and classical MDS

MKB starts with D and finds a constructive approach to finding
x1, . . . xn ∈ Rq s.t. drs ≈ ||xr − xs ||. Marden (2013) starts with a
data matrix Z ∈ Rn×p and seeks the solution xi = Azi for
A ∈ Rq×p, i.e. X = ZA′, satisfying

A = argminA∈Rq×p

n∑
r=1

n∑
s=1

∣∣||zr − zs ||2 − ||Azr − Azs ||2
∣∣ .

Marden shows A′ = [γ(1) · · ·γ(q)] where Z′HZ = nS = ΓΛΓ′.
MKB (p. 405) show B = HZZ′H.

Marden then goes on to consider D arriving without a data matrix,
where MKB start.
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Sports rankings

source("http://www.stat.sc.edu/~hansont/stat730/Marden_Rcode.txt")

sportsranks

cor(sportsranks)

D=dist(t(sportsranks)) # 7 by 7 matrix Euclidean dist. between columns

par(mfrow=c(1,2))

f=cmdscale(D,k=2)

par(mfrow=c(1,2))

plot(f,xlab="Coord. 1",ylab="Coord. 2",main="Classical MDS",type="n")

text(f,labels=colnames(sportsranks),cex=.7)

library(MASS)

f=isoMDS(D) # Kruskal’s non-metric multidimensional scaling, pp. 413-415

x=f$points[,1]; y=f$points[,2]

plot(x,y,xlab="Coord. 1", ylab="Coord. 2",main="Nonmetric MDS", type="n")

text(x,y,labels=colnames(sportsranks),cex=.7)
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Non-metric approach

The classical approach thus far uses a metric, i.e. the drs are
distances between points. Kruskal (1964) considers construction of
x1, . . . , xn ∈ Rk from D based on ranks; any monotone
transformation of the distances in D gives the same answer. A
data matrix X̂ = [x1 · · · xn] with corresponding interpoint distances
d̂rs is constructed s.t. drs ≈ ||xr − xs ||.

Start with D; there are m = n(n−1)
2 distances ordered

dr1s1 ≤ · · · ≤ drmsm where ri < si . Define
D = {d̃rs : drs < duv ⇒ d̃rs ≤ d̃uv , r < s, u < v}. For a fixed q
define the stress

S2(X̂) = min
d̃∈D

∑
r<s(d̃rs − d̂rs)2∑

r<s d̂
2
rs

.

This minimization is carried out via isotonic regression, typically
using the pool adjacent violators algorithm.
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Non-metric approach

An X̂ is found to minimize S2(X), e.g. using the method of
steepest descent.

The dimension k can be picked to give reasonable stress; Kruskal
says, roughly, S ≈ 20% poor agreement, S ≈ 10% fair, S ≈ 5%
good, and S ≈ 0 perfect.

The non-metric approach can handle missing distances in D, ties,
and ordinal data. See MKB 413–415 for a partial description. The
method can be carried out via the isoMDS function in the MASS

package.
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