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Nice properties of multivariate normal random vectors

(]

Multivariate normal easily generalizes univariate normal.
Much harder to generalize Poisson, gamma, exponential, etc.

Defined completely by first and second moments, i.e. mean
vector and covariance matrix.

If x ~ Np(p, X), then oj; = 0 implies x; independent of x;.
a'x ~ N(a'p,a’'Xa).

Central Limit Theorem says sample means are approximately
multivariate normal.

Simple geometry makes properties intuitive.



Definition via Cramér-Wold

X is multivariate normal < a’x is normal for all a.

def'n x ~ Np(u, X) < a'x ~ N(a'p,a’Xxa) for all a € RP.

thm: If x ~ Np(p, X) then its characteristic function is

ox(t) = exp(it'p — SU'TL).

Proof: Let y = t'x. Then the c.f. of y is

oy(s) = aef E{e™} = exp{isE(y )—§s2var(y)} = exp{ist' pu— s2t Tt}

Then the c.f. of x is

b ( )def E{ /t’X} Qby( )_ exp(it'u* %t’zt).l:l

Using the c.f. we see that if X = 0 then x = p with probability
one, i.e. Np(p,0) =6,



Linear transformations of x are also normal

thm: x ~ Np(x,X), A € R9*P, and c € RY
= Ax+c ~ Ng(Ap +c, AXA).

|Proof|: Let b € RY; then b/[Ax + c] = [b’A]x + b’c. Since [b’A]x
is univariate normal by def'n, [b’A]x + b’c is also for any b. The
specific forms for the mean and covariance are standard results for
any Ax + c (Chapter 2). O

Corollary: Any subset of x is multivariate normal; the x; are
normal.

Note: you will show ¢, (t) = eith=0"t/2 for N(u,o?) in your
HW.



Normality and independence

Let x ~ Np(p, X) and x' = (x}, x5) of dimension k and p — k.

21 Xpp
. Then x
35 X } !

indep. x & C(x1,x2) = X0 = X5 =0.

[Proof]

Px(t) = 0x(t1)on(t2) = exp(itypeg + thp, — 3111t — 38T mts)
< C(x1,x2)=0.0

Also partition p/ = (p), pb) and X = [



Some results based on last two slides

Corollary: x ~ Np(pt,E) = y = T Y2(x — ) ~ N,(0,Z,) and
U=(x—p)Z Hx—p)= y’y ~ X2.
Corollary: x ~ N,(0,7) = H H ~ N(0,1) for a # 0.

thm: Let A € Rm*P, B € R™*P, and x ~ Np(p, X). Then Ax
indep. Bx < AXB’ = 0.

Last one is immediate from previous two slides by finding the

distribution of [ g ] X.

Corollary: x ~ N,(p,0?Z) and GG’ = I then Gx ~ N,(Gu, 0%T).
Also Gx indep. of (Z — G'G)x.



Conditional distribution of x5|x;

Let x ~ Np(p, X) and x’ = (x}, x5) of dimension k and p — k.

2 ):12} Let

Also partition /' = (uy, b)) and X =
p © (/1’1 /J/Z) |: 221 222

—1
X2 1 = X2 — 221211 X1.
X1 Ik 0
= _1 X
X2.1 —InX;; Iy«
P Mo — Zzlzﬁlul L0 Xy — 221):;11}:12 '

So x; indep. x21. Then x2|x1 = x21 + 221):1_11x1 has
———

2

o constant
distribution...

thm: xp[x1 ~ Np_i(pp + T E17 (x1 — ), Too — Ea1 X 11 X12).

Very usefull Mean and variance results hold for non-normal x too.



Transformations of normal data matrix

If xq, ... Xp 2 Np(pt, X), then X = [x1---x,]" is a n x p “normal

data matrix.”

General transformations are of the form AXB. An important
example is X' = [11/]X[Z], the sample mean. One can show via
c.f. that...

thm: x1, .. % 2 Np(pt, E) = % ~ Np(ps, LX),



General transformation theorem

thm: If X(n x p) is data matrix from N,(p, X) and
Y(m x q) = AXB then Y is normal data matrix <

(a) Al, =al,, fora € R, or B'/p =0, and
(b) AA" = T, some 5 € R, or B’XB = 0.

We will prove this in class. Some necessary results follow.

def’n: For any matrix X € R"™*P, let
X(1)
. - — !/ !/ /
XV = : = (X(1y> -+ -1 X(p)) €R™.

X(p)



Kronecker products

def'n Let A € R™™ and B € RP*9. Then

auuB apB -+ a1,B
A®B= 22_18 32.28 o @B € R"PXma,
anlB anZB e ant
Let x1,...,Xp i Np(pe, X). Then C(x;,xj) = d;X, so
X1 7 >0 --- 0
X2 uw 0o x --- 0
. ~ an . ) : : . : = an(1n®ual—n®z)-
Xp 7 0o 0 --- X
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Kronecker products, dist'n of X

prop: Let xq,...,X, i Np(p,X). Then

X(1) u1ly ouZn oI, -+ o1pLn

X(2) H2ln onZ, onI, -+ oIy
XV = . ~ an )

X(p) ,U,p].n O'plzn UpZIn B UPPI"

= Np(n®1, T3 L).

This is immediate from C(x(jy,x(jy) = 0L, and E(x(jy) = p;1n
and the fact that XY is a permutation matrix times the vector on
the previous slide (so it's also normal).

Corollary: X(n x p) is n.d.m. from Ny(p,X) <
XY~ Npp(p @1, ZRI,).
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Kronecker products, VIII on p. 460

prop: (B’ ® A)XY = (AXB)".

: First note that

bitA  byA - byA X(1) Z,- 1 binAx(y

(B’ ® A)XY biaA boA - bpA X(2) Zi 1 bi2Ax(j)
® = . . X . - = :

bigA  bygA -+ bygA X(p) S271 bigAx(j)

Now let’s find the jth column of A, XpxpBpxq. For any
A bBpxc the jth column of AB is Ab;). First
AXB = [Ax(y) - - Ax(p)|B. Thus the jth column of AXB is

[Ax(1) - - Ax(p)]b() = 2°F_; bijAx(;). D
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Proof of theorem

(B' @ A)XY ~ Nmg([B' ® A][n ® 1,], [B' @ A][£ ® Z,][B’ ® A]).

B'n®Al, B’XB®AA’

This uses [A® B][C® D] =AC®BD and [A®B] =A’'®@B'.
Go back to the theorem, this implies it.

In particular, if Y = XB then Y is d.m. from Ng(B'p, B’EB), as
A=T,
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Important later on in this Chapter...

thm: Xis d.m. from N,(p,X), Y = AXB, Z = CXD, then Y
indep. of Z < either (a) B’ED =0 or (b) AC' = 0.

You will prove this in your homework, see 3.3.5 (p.88).

Corollary: Let X = [X1X2] of dimensions n x k and n x (p — k).
Then X1 indep. Xo1 = Xo — X1 X;'Z 12, X1 d.m. from

Ni(pe1, X11) and Xp1 d.m. from Np_i(pen.1, X22.1) where

Poi =ty — o1 X1y and Toog = Ty — 1 X1 T

[Proof | X; = XB where B’ = [Z,0] and X.; = XD where
D' = [—Zzlzflllp_k]. Now use above theorem. O.

Corollary: x indep. S.

| Proof|: Taking A =11/ and C=H =Z, — 11,1/ in the
theorem gives X indep. HX. O.
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Wishart distribution

Note that S = X'[H]X. Quadratic functions of the form X'CX
are an ingredient in many multivariate test statistics.

def'n: M(p x p) = X’X where X(m x p) is a d.m. from N,(0, X)
has a Wishart distribution with scale matrix X and d.f. m.
Shorthand: M ~ W,(X, m).

Note that the jjth element of X’X is simply x’(i)x(j) = > p g XkiXkj-
The ijth element of xX] is xkixj. Therefore X'X = > | x)X].

Then E(M) = [Z xkxk] =57 ¥ =mE.

—_————
E(Xk)ZO
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Quadratic form involving Wishart

thm: Let B € RP*9 and M ~ W,(X, m). Then
B'MB ~ W,(B'XB, m).

| Proof|: Let Y = XB. Result 3 slides back gives us Y is d.m. from
Ng(0,B’XB). Then def’'n Wishart tells us
Y'Y = B’X’XB = B'MB ~ W,(B'XB, m). O
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Simple results that follow this theorem

Corollary: Diagonal submatrices of M (square matrices that share
part of a diagonal with M) have a Wishart distribution.

Corollary: mj; ~ X,2n0',','.
Corollary: E7Y2MEY2 ~ W,(Z,, m).

Corollary: M ~ W,,(Z,, m) and B(p x q) s.t. B'B = I then
B'MB ~ W, (Z,, m).

Corollary: M ~ W,(X,m) and as.t. aXa#0 = 2Ma 2

a’'Xa
All use different B in the theorem on the previous slide plus minor
manipulation.
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Wisharts add!

thm My ~ W,(X, my) indep. My ~ W,(X, mp) =
M+ My ~ Wp():, my + m2).

(Proof|: Let X = | X1

X2
def'n of Wishart. O

] . Then My + My = X’X. Now use the

We are just adding my more independent rows onto Xj.
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Cochran’s theorem

thm: If X(n x p) d.m. from N,(0,X) and C(n x n) is symmetric
w/ eigenvalues A1, ..., A, then

(a) X'CX 237 . \M; where My, ..., M, & W,(X,1).

(b) X'CX ~ W,(XZ,r) < C idempotent where r = trC = rankC.
(c) nS ~ Wy(X,n—1).

The spectral decomposition of C is
n

C=1[v1 Va1 ¥al = 211 Ay} Then

X'CX = S0, Xy Xy = S0, XV [y/X]. General
transformation theorem (A =+ & B = Z),) tells us that v/X is
d.m. from N,(0,X) so (a) follows from def'n Wishart. Part (b): C
idempotent = there are r \; =1 and n— r A\; =0, hence

trC= A1 +--- A, =r. Now use part (a). For part (c) note that H
is idempotent and rank n— 1. O

This is a biggie. Lots of stuff that will be used later.
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Drum roll...

If x1,...,X%, i Np(p, X) then

X~ Np(ua %Z),
nS ~ Wy(X,n—1),
and X indep. of S.

This is a generalization of the univariate p = 1 case where
2 . . .
x ~ N(u, Z) indep. of ns? ~ o2x2_;. This latter result is used to
cook up a t,_1 distribution:
X— [
—— ~th1
/752/,1 n I
by def’'n. We'll shortly generalize this to p dimensions, but first
one last result.
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Generalization of partitioning sums of squares

Here is Craig's theorem.

thm X d.m. from N,(p, X) and Cy, ..., Cy are symmetric, then
X'C1X,..., X' C,X are indep. if C,Cs =0 for all r # s.

: Let's do it for two projection matrices. Write

X'CiX = X'M;A 1AM X and X'CoX = X'MaA2A;MSX. Note
that A;A; = N; as the e-values are either 1 or 0. Theorem (slide
14) says A{M/ X indep. A,M.X &

[I\lMﬁ][/\QMIZ]/ = /\1M/1M2A2 = 0. But

0 =C;C, = MiA;MIMaAL MY, = ATMIMaA; = 0. O

This will come in handy in finding the sampling distribution of
common test statistics under Hp.
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Hotelling's T2

Recall, using obvious notation, y(%’il/) ~ t,. Used for one and
X5 /v

two-sample t tests for univariate outcomes. We'll now generalize
this distribution.

def'n: Let d ~ Ny(0,Z,) indep. M ~ W,(Z,, m). Then
md'M~1d ~ T2(p, m).

thm: Let x ~ N,(p, X) indep. M ~ W,(X, m). Then
m(x — p) M~ (x — p) ~ T?(p, m).

[Proof|: Take d* = £ %2(x — p) and M* = £~ Y/2ME /2 and
use def'n of 72, O

Corollary: x and S are sample mean and covariance from
iid
X1,...,Xp ~ Np(p, X) =

(n—=1)&x—p)SHX—p) ~ T?(p,n—1).
: Substitute M =nS, m=n—1, and x — p for \/n(x — p)

in the theorem above. O
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Hotelling's T2 is a scaled F

thm: T2(p, m) = m_miff_;_le,m—p-l—l-

To prove this we need some ingredients...

Mip My ] where
Mz My

Mi; € R?%? and My, € RPXP and a + b = p. Further, let
Maz 1 = My — Myy M7 My,

Let M ~ W,(X, m) and take M = [
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Proof, Hotelling’s T2 is a scaled F

thm: Let M ~ W, (X, m) where m > p. Then
Moo 1 ~ Wp(E22.1, m — a).

|Proof |: Let X = [X1X2], so

M1 Mp / XXy XiXo
[ M1 My XX X5Xo

Then
Moy 1 = X’2X2 — X’2X1(X'1X1)_1X1X2 = X45PX;, = X’2.1PX2‘1,

where P =T, — X1(X’1X1)_1X1 is 0.p. matrix onto C(X;)" and
X2.1|X1 = Xz — X1 X' E15. Theorem on slide 14 tells us X, 1 is
d.m. from Np(0,X2.1) (not dim. p as in the book). So Cochran’s
theorem tells us Moy 1|X1 ~ Wp(X22.1, m — a). This doesn't
depend on Xj so it's the marginal dist'n as well. O
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Proof, Hotelling’s T2 is a scaled F

lemma: If M ~ W,(X, m), m > p then

112
M~1]pp [E 1 tm—p—1

: In general, for partitioned matrices,

- —1 _ —1 —1 _
[ M;; My ] ! _ (1M11 - MpMy, |V|21)1 ! =My "M (M2 — M211M11 Myp) )
Mo M2 =M, M1 (My1 — MppM5, Mpp) 2 (Mg — M1 M " Mypp) 1

Now let M1; be upper left (p — 1) x (p — 1) submatrix of M and
myo the lower right 1 x 1 “scalar matrix.” Then, where
0201 = =,

(=" ]pp

[M*lllpp = 1/n12241 = mp1 ~ Wi(o221, m—(p—1)) = 021X p_1.0

a’M—1a

: Let A = [a(l) s a(p,l)a]. Then
N=A"IM(A 1) ~ W,(A'E(A1Y, m). So

thm: If M ~ W,(X, m), m > p then at"a an_pﬂ.

1 1 _ 1 12
N1,  [AM— A7, — aMTa =~ Fx-1aXm—p+l:

Noting that the ppth element of [A~!X(A"1)] 1 is 1

a’Xa-
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Proof, Hotelling’s T2 is a scaled F

Recall md’'M~1d ~ T2(p, m) where d ~ N,(0,Z,) indep. of

M ~ W,(Z,, m). Givend, 3 = ;54 ~ 2, (last slide).
Since this is independent of d, 5 indep. d and this is the marginal
dist'n as well.

md/M—ld_ md’d o Xf, __mp _F 0
— d'd/d'M-1d T X$n7p+l = m—pt1"pm—p+l:

Corollary: X and S are sample mean and covariance from N,(p, X)
then “2B(x — p)'STH X — p) ~ Fpnp.
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Two more distributional results

Corollary: [M|/|M +dd'| ~ B(3(m — p+1), 5).

| Proof|: For B(p x n) and C(n x p), |Z, + BC| = |Z,+ CB]|.
Since |AB| = |A||B|, we can write this as
1 1 1

_ 1 R

_ = = = . Recall
[Z,+M-T1dd’| [Z:+d'M—1d]| 1+dM-1d 1+m%p+1’:mm—!’+1

. vix/vp v 1 n un

if x ~ F,, ., then T/ ™ B( 2% ) and T ™ B( 2,5 ).

a

Corollary: d ~ Ny(0,Z,) indep. M ~ W,(Z,, m) then
d’'d(1+1/{d’'M~1d}) ~ x2 ., indep. of dM~1d.

Proof: 3 indep. d'd (last slide); both x? so their sum is indep. of
their ratio. Sum of two indep. x? is also x?; the d.f. add. O
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Two-sample Hotelling T2

Let D? = (X1 — X2)'S,;}(X1 — X2) estimate
A% = (g — py) X~ 1(u1 — W) where S, = n—iz[nlsl + LS.
Then

m: Let X; d.m. from Np(pq,X1) indep. Xo d.m. from

Np(pto, X2). If py = py and X1 = X5 then
e D? ~ T?(p,n—2).
[Proof | d =%y — % ~ Np(pq — ptp, X1 + L X5). When
[Ll Wty and Xp = 22, d ~ N,(0, cX) where ¢ = ”11”2 Also

= mS1 + mSy ~ W,(X,n +no —2) as mdependent Wisharts
w/ same scale add; cM ~ W, (cX, ny + np — 2). M indep. d as
X1,X2,S1,S2 mutually indep. Stirring all ingredients together gives
L. (n—2)d'(cM)~td ~ T?(p,n—2). O.

c
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Generalization of F statistic

We've already generalized the t for multivariate data; now it's time
for the F.

Let A ~ W,(X, m) indep. of B ~ W,(X, n) where m > p. A~}
exists a.s. and we will examine aspects of A"!B.

Note that this reduces to the ratio of indep, x? in the univariate
p =1 case.
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Generalization of F statistic

lemma: M ~ W,(X,m), m>p, = M| = [Z| T[22,

: By induction. For p=1 |M| = m ~ 0?x2,. For p > 1 let
Mji;1 be upper left (p — 1) x (p — 1) submatrix of M and my; the
lower right 1 x 1 “scalar matrix” (slide 24). The induction
hypothesis says |[M11| = |X11| H?;oz x2,_;. Slide 24 implies that
moo.1 indep. M11 and mop 1 ~ U22.1X2m—p+1- The result follows by
noting that [M| = [M11|mx.1 and |Z| = |Z11]020.1 (p. 457 or
expansion of determinant using cofactors). O

thm: Let A ~ W,(X, m) indep. of B ~ W,(X, n) where m > p
and n > p. Then ¢ = |B|/|A| x H?:l Foiti,m—it+1-
: Using the lemma

2
_17P  Xn—i __ n—i , .
Qb - H,‘:o in I‘ = 1li—0 7m_iFn71+1,m71+1.D
m—i
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Wilk's lambda

Wilk's lambda, a generalization of the beta variable, appears later
on when performing LRT:

def'n: A ~ W,(Zp, m) indep. B ~ W,(Z,,n) and m > p
A =[A|/|A+B| ~ A(p, m, n),
has a Wilk's lambda distribution with parameters (p, m, n)

thm: A ~ []7_; uj where uy, ..., u, are mutually independent and
ui ~ B(3(m+i—p), ).
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Proof Wilk's lambda in product of betas

Let X(n x p) be d.m. from N,(0,Z,), B = X’X and X; be first i
rows of X. Let M; = A + X;-X,-. Then Mg =A, M, =A + B, and
M; =M;_1 + X,'Xi-. Then

n

||V|, 1| )
\A+B| H IM;] =1«

i=1

Corollary on slide 27 implies u; ~ B(%(m +i—p),5).

The independence part takes some work...
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Characterization of independence of matrix & vector

lemma: Let W € RP*P and x € RP. If x is indep. of
(g1We1, ..., 8,Wg,) for all orthogonal G = [g; - - - gp]’ then x
indep. W.

|Proof|: The c.f. of (2Hi<itw; - i < j}is E{eWT)} where T is
symmetric. The c.f. of (x, W) is thus characterized by

dwx(T,s) = E{e"WT)eis*1 |f x indep. trWT for all symmetric
T then the c.f. factors and x indep. W.

Let A = GAG' = Y7 | \;gig! be spectral decomposition. Then

p p
trAW = tr {Z )\;g;gf-W} = Z Ai gWg; .0

i=1 i=1 :
' ' x indep. these
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Showing independence of uy, ..., u,, continued...

:d~ Ny(0,Z,) indep. M ~ Wy(Zp, m) then
d’M '~ L —F,mpi1indep. M+dd ~ W,(Z,, m+1).

: Let G = [g1 - - - 8p)’ orthogonal matrix and take

X((m+1)xp) = [ ,Xl } Here M = X|X; and d = xp41. Let
Xm+1

Y = XG, = [Xg1 ce Xgp] = [Y(l) cee Y(p)]

Then q; = g/[M + dd']g; = g/X'Xg; = HY(J-)||2. Since

YY ~ Npp(0,Z,p), Y is spherically symmetric. Define

h(Y) =y, (YY) tymi1 = d'M~1d and note that

h(Y) = h(YD) for all diagonal D. Theorem on p. 48 implies g;
indep. h(Y) for j=1,...,p. Now use lemma on previous slide. O
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Showing independence of uy, ..., u,, continued...

Theorem on last slide implies = = [M;|/|M;_1| = 1 + x}M; ;x;
indep. M;. Finally,

J
Mi+j =M, + Z xi+kxi'+k ,
——
k=1 .
u; indep. of

so for any i, u; indep. of ujt1,...,u,. O
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Two last results...

When m is large, can also use Bartlett's approximation:

~{m—3(p—n+ 1)} logA(p.m.n) x5,

def'n: A ~ W,(Zp, m) indep. B ~ W,(Z,, n) and m > p.
9(p, m, n), the largest eigenvalue of (A + B)7!B is called the
greatest root statistic with parameters (p, m, n).

MKB (p. 84) gives relationships between A(p, m, n) and 6(p, m, n)
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