
STAT 730 Chapter 9: Factor analysis

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 730: Multivariate Data Analysis

1 / 15



Basic idea

Factor analysis attempts to explain the correlation among a large
number of variables using a small number of latent factors.

Example: Spearman (1904) considered children’s exam
performance in classics x1, French x2, and English x3. The

estimated correlation matrix is R =

 1 0.83 0.78
0.83 1 0.67
0.78 0.67 1

. One

can postulate a model with a common factor

x1 = µ1 + λ1f + u1

x2 = µ2 + λ2f + u2

x3 = µ3 + λ3f + u3.

In matrix terms
x = µ + Λf + u.

Here, f is the common underlying factor (overall ability) that
explains all three scores.
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The factor model

Let x ∼ (µ,Σ). The factor model is

x = µ + Λf + u,

where x ∈ Rp is the response, Λ ∈ Rp×k are the factor loadings,
f ∈ Rk are the common factors (hopefully k is small, e.g. k = 1 or
k = 2 if we’re lucky), and u is error, also called ‘specific’ or
‘unique’ factors. It is assumed

f ∼ (0,Ik), u ∼ (0,Ψ),Ψ = diag(ψ11, . . . , ψpp), C (f,u) = 0.

Note then that
V (x) = Σ = ΛΛ′ + Ψ.

This must hold if the k-factor model is true.
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Motivation from PCA

x = µ + ΓΓ′(x− µ)

= µ + [ΓkΓp−k ]

[
Γ′k

Γ′p−k

]
(x− µ)

= µ + [ΓkΓp−k ]

[
Γ′k(x− µ)

Γ′p−k(x− µ)

]
= µ + Γk︸︷︷︸

Λ

Γ′k(x− µ)︸ ︷︷ ︸
f

+ Γp−kΓ′p−k(x− µ)︸ ︷︷ ︸
u

.

This in fact approximately holds when V (u) is small, which
happens when the first k principal components explain most of the
variability. See MKB Section 9.8 (pp.275–276).

Note that under the general factor model, u is random scatter in
all directions, not necessarily orthogonal to Λf, so this is
motivation but the models are different. However, this motivation
for factor analysis leads to choosing k based on a PCA scree plot.
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Communalities

Recall V (x) = Σ = ΛΛ′ + Ψ. Thus

V (xi ) = σii =
k∑

j=1

λ2ij︸ ︷︷ ︸
h2i

+ψii .

h2i is the ith communality, the amount of variance of xi shared
with other variables through the common factors; what is left over
is the specific (or unique) variance ψii .
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Scale invariance

Let y = Cx where C is a diagonal matrix and x = µ + Λf + u is a
k-factor model as on the last slide. Then

y = Cµ + CΛf + Cu,

where V (y) = [CΛ][CΛ]′ + CΨC. The factor model thus holds for
y.

Unlike PCA, FA is unaffected by rescaling the outcomes.
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Non-uniqueness of Λ and f

Let G ∈ Rk×k s.t. GG′ = G′G = Ik and x = µ + Λf + u is a
k-factor model. Then

x = µ + [ΛG][G′f] + u.

To achieve identifiability, constraints such as Λ′Ψ−1Λ = D where
D is diagonal are used. After the factors are estimated Λ̂, they are
further rotated by G to ∆ = Λ̂G in order to maximize

φ =
k∑

i=1

p∑
j=1

(d2
ij − d̄i )

2, dij =
δij∑k
s=1 δ

2
is

, d̄j = 1
p

p∑
i=1

d2
ij .

This is called varimax rotation, developed by Kaiser (1958), and
produces loadings ∆ with a few large loadings and many near-zero
loadings. Such rotations are more interpretable, as discussed in
class for PCA. An alternative rotation is the promax, which
produces correlated factors; it is varimax followed by an oblique
(not orthogonal) Procrustes rotation.
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Exploratory vs. confirmatory FA

Near-zero loadings lead to a natural question: are they actually
zero? A researcher might have in mind one or more factors (math
ability, reading ability) and hypothesize that these factors are
related to only a subset of observed variables (division,
comprehension). Furthermore, the factors may or may not be
correlated.

Exploratory FA seeks to find out how many factors are needed and
get a rough idea of which factors highly load (are related) to
variables. There are no particular hypotheses in mind at this stage.
Confirmatory FA seeks to validate (or form) a theoretical
hypothesis. Specific (causal) regressions are stipulated and an
overall model is fit, essentially setting some loadings to zero,
forcing correlations to be zero, etc. The number of factors are
given in advance, as well as their relationship to the observed
variables. The hypothetical model is then checked for overall fit,
thereby “confirming” or “denying” a given hypothesis.
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Fitting

When Σ is unconstrained there are 1
2p(p + 1) free parameters; Λ

has kp parameters and Ψ has p. The constraint Λ′Ψ−1Λ is
diagonal eats up 1

2k(k + 1) parameters, so the total number of
“free” parameters ends up being

s = 1
2(p − k)2 − 1

2(p + k).

One wants s > 0, which will happen when k << p; s > 0 implies
that the factor model offers a simpler interpretation than allowing
Σ to be completely arbitrary.

When s > 0 the factor model can be estimated, yielding Λ̂ and Ψ̂
from data x1, . . . , xn ∈ Rp. There are two main methods:

Principal factor analysis (pp. 261–263).
Maximum likelihood (pp. 263–267) assuming

x1, . . . , xn
iid∼ Np(µ,ΛΛ′ + Ψ). The MLE approach also allows

for a the test H0 : k is adequate vs. Ha : Σ is unconstrained.
This test is described on pp. 265–268 and automatically
provided by factanal in R.
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MLE factor analysis

# Spearman’s data

R=matrix(c(1,0.83,0.78,0.83,1,0.67,0.78,0.67,1),3,3)

f=factanal(covmat=R,factors=1,rotation="varimax") # varimax, promax, or none

print(f,digits=2,cutoff=.3,sort=TRUE) # compare to bottom p. 260

# open/closed book exams

library(bootstrap)

data(scor) # note that rotation is unnecessary when k=1

plot(prcomp(scor),type="l") # k=1?

f=factanal(scor,factors=1,rotation="varimax")

print(f,digits=2,cutoff=.3,sort=TRUE) # compare to bottom p. 266

The option scores="regression" or scores="Bartlett"
produce factor scores (see MKB p. 274). Use the covmat= option
to enter a correlation or covariance matrix directly. If entering a
covariance matrix, include the option n.obs= for tests.
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Structural equation modeling

Structural equation modeling (SEM) generalizes (confirmatory)
factor analysis. The sem package was the first package to allow
the routine fitting of SEM in R; recently the lavaan (latent
variable analysis) package was introduced with much more
functionality, rivaling the commercial packages Mplus and LISREL.
Path diagrams can be created using semPlot using lavaan
modeling syntax.
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SEM

Structural equations are simply a series of related regression models
involving observed and latent variables. The distinction between
predictor and response gets blurred as variables can appear on
either side of the regression equations, although they may appear
on the “left” as a dependent variable only once. General Gaussian
covariance structures are allowed for the errors. Maximum
likelihood (based on normality) factor analysis is a special case.

SEM are constructed using a hypothesized “causal pathway” but it
is important to note that one cannot infer causation from
observational data. SEMs provide a structured means to explore
possible simple causal paths, but do not confirm their existence.
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LISREL model: measurement submodel

Jöreskog and Sörbom came up with the LISREL (linear structural
relations) model, as well as the software which is currently over
$700; the cost of Mplus is similar. Note that lavaan is free. Have
two sets of latent factors now (endogenous and exogenous),
associated with two sets of observed variables through linear
regressions. We observe (yi , xi ) on subject i . The measurement
equations are

yi = Λy fyi + uy
i ,

xi = Λx fxi + ux
i .

The latent “cause-and-effect” factors fyi and fxi are endogenous
and exogenous latent variables. In general, endogenous
(independent) variables are explained by other variables through
linear regression; these are on the left-hand side and include yi and
xi . Exogenous variables are on the right-hand side and are
(conditionally) fixed explanatory variables. In general, variables can
be either, but should appear on the left-side only once.
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LISREL model: structural submodel

The structural submodel is

fyi = By fyi + Bx fxi + um
i .

Here, By has zeros along the diagonal, ux
i ,u

y
i ,u

m
i are mutually

uncorrelated and mean-zero, and

C (x
i ,u

m
i ) = C(y

i ,u
y
i ) = C(ux

i , f
x
i ) = 0. Also, um

i
iid∼ (0,Ψ) indep.

fxi
iid∼ (0,Φ). The off-diagonals of Ψ and Φ can be non-zero

reflecting correlations among the latent endogenous and exogenous
factors.

Confirmatory FA places only uses xi and places structure on Λx as
well as Φ.

lavaan can fit much more general models. For example, note that
E (xi ) = E (yi ) = 0 above. We may also want to regress some of
the observed variables onto other observed variables, as well as
latent variables.
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Measures of model fit

χ2 simply looks at the observed and estimated covariance
matrices, yielding a p-value. However, the test may
inappropriately reject in large samples and inappropriately not
reject in small samples, so other measures of fit are often used.

The root mean square error of approximation (RMSEA) also
looks at the difference between the fitted model and observed
covariance. RMSEA ranges from 0 to 1; smaller is better.
lavaan provides a p-value for H0 : RMSEA ≤ 0.05 (want to
accept).

The standardized root mean square residual (SRMR) is yet
another discrepancy between the observed and fitted model
covariance matrices, and ranges from 0 to 1. Researchers look
for SRMR ≤ 0.08.

All of these measures are available in lavaan.

15 / 15


