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A short introduction

The motivation for the writing of these functions was to offer some form of an alternative R-
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have been tested using example data sets found at the references.

As I update the versions I check for mistakes and correct them. So I would suggest you
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along with corrections or any comments, most welcome and of course required. Note also,

that I have added a log of changes so that anybody can track any changes from version to

version. Also within one single version sometimes I upload updates with corrections. The

log can be found at the end of the document, just before the references. I know even this

version needs a bit polishing and in some cases more explanation of the algorithms. These

will be done (I hope so) in time.

Feel free to contribute your own functions and you will be credited of course. If you want

the functions in a .txt or .R format please send me an e-mail. If you cannot download this

document for some reason, send me an e-mail as well.

I would like to express my gratitude to Andrew Rattray (postgraduate student at the

university of Nottingham during 2012-2013) for pointing out a mistake in the Box’s M test

code.
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1 Mean vectors

In this section we shall see many approaches for hypotheses regarding one sample and two

sample mean vectors.

1.1 Hotelling’s one-sample T2 test

We begin with the hypothesis test that a mean vector is equal to some specified vector H0 :

µ = µ0. We assume that Σ is unknown. The first approach to this hypothesis test is paramet-

rically, using the Hotelling’s T2 test Mardia et al., 1979, pg. 125-126. The test statistic is given

by

T2 =
(n − p) n

(n − 1) p
(X̄ −µ)

T
S−1 (X̄ −µ)

Under the null hypothesis, the above test statistic follows the Fp,n−p distribution. The boot-

strap version of the one-sample multivariate generalization of the simple t-test is also in-

cluded in the function. An extra argument (B) indicates whether bootstrap calibration should

be used or not. If B = 1, then the asymptotic theory applies, if B > 1, then the bootstrap p-

value will be applied and the number of re-samples is equal to (B).

hotel1T2=function(x,M,a=0.05,R=999) {

## x is the data set

## M is the hypothesised mean

## a is the significance level, set by default to 0.05 and

## R is the number of bootstrap replicates set by default to 999

x=as.matrix(x)

m=colMeans(x) ## sample mean vector

s=cov(x) ## sample covariance matrix

n=nrow(x) ## sample size

p=ncol(x) ## dimensionality of the data

d=m-M ## difference between the sample mean and the null hypothesis mean

df1=p ## degrees of freedom of the numerator of the F distribution

df2=n-p ## degrees of freedom of the numerator of the F distribution

test=as.vector( (n*(n-p))/((n-1)*p)*d%*%solve(s)%*%d ) ## test statistic

if (R==1) {

pvalue=1-pf(test,p,n-p) ## p-value of the test statistic

crit=qf(1-a,df1,df2) ## critival value of the F disitrubition

result=list(m=m,test=test,df1=df1,df2=df2,critical=crit,p.value=pvalue) }

if (R>1) { ## bootstrap calibration

1



t=rep(0,R)

m=matrix(rep(colMeans(x),n),nrow=n,byrow=TRUE) ## sample mean vector

M=matrix(rep(M,n),nrow=n,byrow=TRUE) ## mean vector under the null hypothesis

y=x-m+M ## brings the data under the null hypothesis, i.e. mean vector equal to M

for (i in 1:R) {

b=sample(1:n,n,replace=TRUE)

s1=cov(y[b,])

d1=colMeans(y[b,])-M[1,]

t[i]=(n*(n-p))/((n-1)*p)*d1%*%solve(s1)%*%d1 }

pvalue=( sum(t>test)+1 )/(R+1) ## bootstrap p-value

hist(t,xlab="bootstrapped test statistic",main=" ")

abline(v=test,lty=2,lwd=2) ## The dotted vertical line is the test statistic value

result=list(p.value=pvalue) }

result }

1.2 Hotelling’s two-sample T2 test

The fist case scenario is when we assume equality of the two covariance matrices. This is

called the two-sample Hotelling’s T2 test (Mardia et al., 1979, pg. 1391-40 and Everitt, 2005,

pg. 139). The test statistic is defined as

T2 =
n1n2

n1 + n2
(X̄1 − X̄2)

T
S−1 (X̄1 − X̄2) ,

where S is the pooled covariance matrix calculated under the assumption of equal covariance

matrices:

S =
(n1 − 1) S1 + (n2 − 1) S2

n1 + n2 − 2
.

Under H0 the statistic F given by

F =
(n1 + n2 − p − 1) T2

(n1 + n2 − 2) p

follows the F distribution with p and n1 + n2 − p − 1 degrees of freedom. Similar to the one-

sample test, an extra argument (B) indicates whether bootstrap calibration should be used or

not. If B = 1, then the asymptotic theory applies, if B > 1, then the bootstrap p-value will be

applied and the number of re-samples is equal to (B).

hotel2T2=function(x1,x2,a=0.05,R=999) {

## x1 and x2 are the multivariate samples

## a is the significance level, set by default to 0.05
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## R is the number of bootstrap replicates set by default to 999

x1=as.matrix(x1)

x2=as.matrix(x2)

p=ncol(x1) ## dimensionality of the data

n1=nrow(x1) ## size of the first sample

n2=nrow(x2) ## size of the second sample

n=n1+n2 ## total sample size

xbar1=apply(x1,2,mean) ## sample mean vector of the first sample

xbar2=apply(x2,2,mean) ## sample mean vector of the second sample

dbar=xbar2-xbar1 ## difference of the two mean vectors

v=((n1-1)*var(x1)+(n2-1)*var(x2))/(n-2) ## pooled covariance matrix

t2=(n1*n2*dbar%*%solve(v)%*%dbar)/n

test=as.vector( ((n-p-1)*t2)/((n-2)*p) ) ## test statistic

if (R==1) {

crit=qf(1-a,p,n-p-1) ## critical value of the F distribution

pvalue=1-pf(test,p,n-p-1) ## p-value of the test statistic

result=list(test=test,critical=crit,p.value=pvalue,df1=p,df2=n-p-1) }

if (R>1) { ## bootstrap calibration

z=rbind(x1,x2) ## the two samples combined in one

mc=matrix(rep(colMeans(z),n),nrow=n,byrow=TRUE) ## the combined sample mean vector

m1=matrix(rep(colMeans(x1),n1),nrow=n1,byrow=TRUE) ## first mean vector

m2=matrix(rep(colMeans(x2),n2),nrow=n2,byrow=TRUE) ## second mean vector

## the next two rows bring the mean vectors of the two sample equal to the

## combined mean and thus equal under the null hypothesis

y1=x1-m1+mc[1:n1,]

y2=x2-m2+mc[1:n2,]

t=rep(0,R)

for (i in 1:R) {

b1=sample(1:n1,n1,replace=TRUE)

b2=sample(1:n2,n2,replace=TRUE)

yb1=apply(y1[b1,],2,mean) ## sample mean vector of the first sample

yb2=apply(y2[b2,],2,mean) ## sample mean vector of the second sample

db=yb2-yb1 ## difference of the two mean vectors

vb=((n1-1)*var(y1[b1,])+(n2-1)*var(y2[b2,]))/(n-2) ## pooled covariance matrix

t2=(n1*n2*db%*%solve(vb)%*%db)/n

t[i]=as.vector( ((n-p-1)*t2)/((n-2)*p) ) }

pvalue=( sum(t>test)+1 )/ (R+1)

hist(t,xlab="bootstrapped test statistic",main=" ")

abline(v=test,lty=2,lwd=2) ## The dotted vertical line is the test statistic value
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result=list(p.value=pvalue) }

result }

1.3 Two two-sample tests without assuming equality of the covariance

matrices

In his section we will show the modified version of the two-sample T2 test in the case where

the two covariances matrices cannot be assumed to be equal.

James (1954) proposed a test for linear hypotheses of the population means when the

variances (or the covariance matrices) are not known. Its form for two p-dimensional samples

is:

T2
u = (X̄1 − X̄1)

T
S̃−1 (X̄1 − X̄1) , with S̃ = S̃1 + S̃2 =

S1

n1
+

S2

n2
.

James (1954) suggested that the test statistic is compared with 2h (α), a corrected χ2 distribu-

tion whose form is

2h (α) = χ2
(

A + Bχ2
)

,

where

A = 1 +
1

2p

2

∑
i=1

(
trS̃−1S̃i

)2

ni − 1
and

B =
1

p (p + 2)

[
1

2

2

∑
i=1

tr
(
S̃−1S̃i

)2

ni − 1
+

1

2

2

∑
i=1

(
trS̃−1S̃i

)2

ni − 1

]
.

The modified Nel and van der Merwe (1986) test is based on the quadratic form

T2
mnv = (X̄1 − X̄2)

T
Σ̂
−1

(X̄1 − X̄2) , (1.1)

where Σ̂ = Cov(X̄1 − X̄2) =
S1
n1

+ S2
n2

.

It is shown in Krishnamoorthy and Yu (2004) that T2
mnv ∼ νp

ν−p+1 Fp,ν−p+1 approximately,

where

ν =
p + p2

1
n1

{
tr
[(

S1Σ̂
)2
]
+ tr

[(
S1Σ̂

)]2}
+ 1

n2

{
tr
[(

S2Σ̂
)2
]
+ tr

[(
S2Σ̂

)]2} .

The algorithm is taken by Krishnamoorthy and Xia (2006). The R-code for both versions (with

the option for a bootstrap p-value) is the following

james=function(y1,y2,a=0.05,R=999) {
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## y1 and y2 are the two samples

## a is the significance level, set by default to 0.05

## if R==1 the James test is performed

## if R==2 the Nel and van der Merwe test is performed

## if R>2 bootstrap calculation of the p-value is performed

## 999 bootstrap re-samples are set by default

y1=as.matrix(y1)

y2=as.matrix(y2)

p=ncol(y1) ## dimensionality of the data

n1=nrow(y1) ## size of the first sample

n2=nrow(y2) ## size of the second sample

n=n1+n2 ## the toal sample size

ybar1=apply(y1,2,mean) ## sample mean vector of the first sample

ybar2=apply(y2,2,mean) ## sample mean vector of the second sample

dbar=ybar2-ybar1 ## difference of the two mean vectors

A1=cov(y1)/n1 ; A2=cov(y2)/n2

V=A1+A2 ## covariance matrix of the difference

test=as.numeric(dbar%*%solve(V)%*%dbar)

b1=solve(V)%*%A1

b2=solve(V)%*%A2

if (R==1) { ## James test

A=1+(1/(2*p))*( (sum(diag(b1)))^2/(n1-1)+(sum(diag(b2)))^2/(n2-1) )

B=(1/(p*(p+2)))*( sum(diag(b1%*%b1))/(n1-1)+sum(diag(b2%*%b2))/(n2-1)+

0.5*((sum(diag(b1)))^2/(n1-1)+(sum(diag(b2)))^2/(n2-1)) )

x2=qchisq(1-a,p)

delta=(A+B*x2)

twoha=x2*delta ## corrected critical value of the chi-square distribution

pvalue=1-pchisq(test/delta,p) ## p-value of the test statistic

result=list(test=test,correction=delta,corrected.critical.value=twoha,p.value=pvalue) }

if (R==2) { ## MNV test

low=( sum(diag(b1%*%b1))+sum(diag(b1))^2 )/n1+( sum(diag(b2%*%b2))+sum(diag(b2))^2 )/n2

v=(p+p^2)/low

test=as.numeric( ( (v-p+1)/(v*p) )*test ) ## test statistic

crit=qf(1-a,p,v-p+1) ## critical value of the F distribution

pvalue=1-pf(test,p,v-p+1) ## p-value of the test statistic

result=list(test=test,critical=crit,df1=p,df2=v-p-1,p.value=pvalue) }

if (R>2) { ## bootstrap calibration

z=rbind(y1,y2) ## the two samples combined in one

mc=matrix(rep(colMeans(z),n),nrow=n,byrow=TRUE) ## the combined sample mean vector
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m1=matrix(rep(colMeans(y1),n1),nrow=n1,byrow=TRUE) ## first mean vector

m2=matrix(rep(colMeans(y2),n2),nrow=n2,byrow=TRUE) ## second mean vector

## the next two rows bring the mean vectors of the two sample equal to the

## combined mean and thus equal under the null hypothesis

x1=y1-m1+mc[1:n1,]

x2=y2-m2+mc[1:n2,]

t=rep(0,R)

for (i in 1:R) {

b1=sample(1:n1,n1,replace=TRUE)

b2=sample(1:n2,n2,replace=TRUE)

xbar1=apply(x1[b1,],2,mean) ## sample mean vector of the first sample

xbar2=apply(x2[b2,],2,mean) ## sample mean vector of the second sample

db=xbar2-xbar1 ## difference of the two mean vectors

A1=cov(x1[b1,])/n1 ; A2=cov(x2[b2,])/n2

V=A1+A2 ## covariance matrix of the difference

t[i]=as.numeric(db%*%solve(V)%*%db) }

pvalue=( sum(t>test)+1 )/ (R+1)

hist(t,xlab="bootstrapped test statistic",main=" ")

abline(v=test,lty=2,lwd=2) ## The dotted vertical line is the test statistic value

result=list(p.value=pvalue) }

result }

1.4 MANOVA without assuming equality of the covariance matrices

James (1954) also proposed an alternative to MANOVA when the covariance matrices are not

assumed equal. The test statistic for k samples is

J =
k

∑
i=1

(x̄i − X̄)
T

Wi (x̄i − X̄) , (1.2)

where x̄i and ni are the sample mean vector and sample size of the i-th sample respectively

and Wi =
(

Si
ni

)−1
, where Si is the covariance matrix of the i-sample mean vector and X̄ is

the estimate of the common mean X̄ =
(

∑
k
i=1 Wi

)−1
∑

k
i=1 Wix̄i. We used the corrected χ2

distribution James (1954) proposed and no bootstrap calibration.

In case you do not have access to James’s paper see page 11 of this document (or send

me an e-mail). Normally one would compare the test statistic (1.2) with a χ2
r,1−α, where

r = p (k − 1) are the degrees of freedom with k denoting the number of groups and p the

dimensionality of the data. There are r constraints (how many univariate means must be

equal, so that the null hypothesis, that all the mean vectors are equal, holds true), that is
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where these degrees of freedom come from. James compared the test statistic (1.2) with a

corrected χ2 distribution instead. Let A and B be

A = 1 +
1

2r

k

∑
i=1

[
tr
(
Ip − W−1Wi

)]2

ni − 1

B =
1

r (r + 2)

k

∑
i=1





tr
[(

Ip − W−1Wi

)2
]

ni − 1
+

[
tr
(
Ip − W−1Wi

)]2

2 (ni − 1)



 .

The corrected quantile of the χ2 distribution is given as before by

2h (α) = χ2
(

A + Bχ2
)

.

maovjames=function(x,ina,a=0.05){

## x contains all the groups together

x=as.matrix(x) ## makes sure x is a matrix

ina=as.numeric(ina) ## the group indicator variable

ni=as.vector(table(ina)) ## the group sample sizes

k=max(ina) ## the number of groups

p=ncol(x) ## the dimensionality

n=nrow(x) ## the total sample size

## the objects below will be used later

me=mi=W=matrix(nrow=k,ncol=p)

t=rep(0,k)

wi=array(dim=c(p,p,k))

## the next for function calculates the

## mean vector and covariance matrix of each group

for (i in 1:k) {

mi[i,]=colMeans(x[ina==i,])

wi[,,i]=solve( var(x[ina==i,])/ni[i] )

me[i,]=mi[i,]%*%wi[,,i] }

W=apply(wi,1:2,sum)

ma=apply(me,2,sum)

mesi=ma%*%solve(W) ## common mean vector

for (i in 1:k) t[i]=(mi[i,]-mesi)%*%wi[,,i]%*%t(mi[i,]-mesi)

test=sum(t) ## the test statistic

r=p*(k-1)

t1=t2=numeric(k)

for (i in 1:k){

exa1=diag(p)-solve(W)%*%wi[,,i]
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exa2=exa1%*%exa1

t1[i]=sum(diag(exa1))

t2[i]=sum(diag(exa2)) }

A=1+1/(2*r)*sum(t1^2/(ni-1))

B=1/(r*(r+2))*sum( t2/(ni-1)+t1^2/(2*(ni-1)) )

x2=qchisq(1-a,r)

delta=(A+B*x2)

twoha=x2*delta ## corrected critical value of the chi-square distribution

pvalue=1-pchisq(test/delta,r) ## p-value of the test statistic

result=list(test=test,correction=delta,corrected.critical.value=twoha,p.value=pvalue)

result }

8



2 Covariance matrices

The first section comprises of tests regarding one or more covariance matrices.

2.1 One sample covariance test

Let’s begin with the hypothesis test that the the sample covariance is equal to some specified

covariance matrix: H0 : Σ = Σ0, with µ unknown. The algorithm for this test is taken from

Mardia et al., 1979, pg. 126-127. The test is based upon the log-likelihood ratio test. The form

of the test is

−2 log λ = ntr
{

Σ
−1
0 S

}
− n log

∣∣∣Σ−1
0 S

∣∣∣− np, (2.1)

where n is the sample size, Σ0 is the specified covariance matrix under the null hypothesis,

S is the sample covariance matrix and p is the dimensionality of the data (or the number of

variables). Let α and g denote the arithmetic mean and the geometric mean respectively of

the eigenvalues of Σ
−1
0 S, so that tr

{
Σ
−1
0 S

}
= pα and

∣∣∣Σ−1
0 S

∣∣∣ = gp, then (2.1) becomes

−2 log λ = np (α − log(g)− 1)

The degrees of freedom of the X2 distribution are 1
2 p (p + 1).

cov.equal=function(x,Sigma,a=0.05) {

## x is the data set

## Sigma is the assumed covariance matrix

## a is the significance level set by default to 0.05

x=as.matrix(x)

Sigma=as.matrix(Sigma)

p=ncol(x) ## dimensionality of the data

n=nrow(x) ## total sample size

S=cov(x) ## sample covariance matrix

## the next 2 lines construct the test statistic

mesa=solve(Sigma)%*%S

test=n*sum(diag(mesa))-n*log(det(mesa))-n*p

df=0.5*p*(p+1) ## the degrees of freedom of the chi-square distribution

pvalue=1-pchisq(test,df) ## p-value of the test statistic

crit=qchisq(1-a,df) ## critical value of the chi-square distribution

list(test=test,degres=df,p.value=pvalue,critical=crit) }
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2.2 Multi-sample covariance matrices

We will show the two versions of Box’s test for the hypothesis test of the equality of at least

two covariance matrices: H0 : Σ1 = ... = Σk. The algorithms are taken from Aitchison, 2003,

pg. 155 and Mardia et al., 1979, pg. 140.

2.2.1 Log-likelihood ratio test

At first we will see the likelihood-ratio test. This is the multivariate generalization of Bartlett’s

test of homogeneity of variances. The test has the form

−2logλ = n log |S| −
k

∑
i=1

ni log |Si| =
k

∑
i=1

ni log
∣∣∣S−1

i S
∣∣∣, (2.2)

where Si is the ith sample biased covariance matrix and S = n−1 ∑
k
i=1 niSi is the m.l.e. of

the common covariance matrix (under the null hypothesis) with n = ∑
k
i=1 ni. The degrees of

freedom of the asymptotic chi-square distribution are 1
2 (p + 1) (k − 1).

cov.likel=function(x,ina,a=0.05) {

## x is the data set

## ina is a numeric vector indicating the groups of the data set

## a is the significance level, set to 0.05 by default

x=as.matrix(x)

p=ncol(x) ## dimension of the data set

n=nrow(x) ## total sample size

k=max(ina) ## number of groups

nu=rep(0,k) ## the sample size of each group will be stored later

pame=rep(0,k)

## the next 2 "for" functions separate the k groups and extract the

## covariance matrix of each group

## the way is not the best but it works

nu=as.vector(table(ina))

mat=mat1=array(dim=c(p,p,k))

## the next 3 lines create the pooled covariance matrix

## and calculate the covariance matrix of each group

for (i in 1:k) {

mat[,,i]=((nu[i]-1)/nu[i])*cov(x[ina==i,])

mat1[,,i]=(nu[i]-1)*cov(x[ina==i,]) }

Sp=apply(mat1,1:2,sum)/n

for (i in 1:k) pame[i]=det(solve(mat[,,i])%*%Sp)

test=sum(nu*log(pame)) ## test statistic
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df=0.5*p*(p+1)*(k-1) ## degrees of freedom of the asymptotic chi-square

pvalue=1-pchisq(test,df) ## p-value of the test statistic

crit=qchisq(1-a,df) ## critical value of the chi-square distribution

list(test=test,degrees=df,critical=crit,p.value=pvalue) }

2.2.2 Box’s M test

According to Mardia et al., 1979, pg. 140, it may be argued that if ni is small, then (2.2) gives

too much weight to the contribution of S. This consideration led Box (1949) to propose the

test statistic in place of that given in (2.2). Box’s M is given by

M = γ
k

∑
i=1

(ni − 1) log
∣∣∣S−1

i Sp

∣∣∣,

where

γ = 1 − 2p2 + 3p − 1

6 (p + 1) (k − 1)

(
k

∑
i=1

1

ni − 1
− 1

n − k

)

and Si and Sp are the i-th unbiased covariance estimator and the pooled covariance matrix

respectively with

Sp =
∑

k
i=1 (ni − 1) Si

n − k

Box’s M also has an asymptotic chi-square distribution with 1
2 (p + 1) (k − 1) degrees of free-

dom. Box’s approximation seems to be good if each ni exceeds 20 and if k and p do not exceed

5 (Mardia et al., 1979, pg. 140).

cov.Mtest=function(x,ina,a=0.05) {

## x is the data set

## ina is a numeric vector indicating the groups of the data set

## a is the significance level, set to 0.05 by default

x=as.matrix(x)

p=ncol(x) ## dimension of the data set

n=nrow(x) ## total sample size

k=max(ina) ## number of groups

nu=rep(0,k) ## the sample size of each group will be stored here later

pame=rep(0,k) ## the determinant of each covariance will be stored here

## the next "for" function calculates the covariance matrix of each group

nu=as.vector(table(ina))

mat=mat1=array(dim=c(p,p,k))
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for (i in 1:k) {

mat[,,i]=cov(x[ina==i,])

pame[i]=det(mat[,,i]) ## the detemirnant of each covariance matrix

mat1[,,i]=(nu[i]-1)*cov(x[ina==i,]) }

## the next 2 lines calculate the pooled covariance matrix

Sp=apply(mat1,1:2,sum)

Sp=Sp/(n-k)

for (i in 1:k)

pamela=det(Sp) ## determinant of the pooled covariance matrix

test1=sum((nu-1)*log(pamela/pame))

gama1=(2*(p^2)+3*p-1)/(6*(p+1)*(k-1))

gama2=(sum(1/(nu-1))-1/(n-k))

gama=1-gama1*gama2

test=gama*test1 ## this is the M (test statistic)

df=0.5*p*(p+1)*(k-1) ## degrees of freedom of the chi-square distribution

pvalue=1-pchisq(test,df) ## p-value of the test statistic

crit=qchisq(1-a,df) ## critical value of the chi-square distribution

list(M.test=test,degrees=df,critical=crit,p.value=pvalue) }
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3 Regression, correlation and discriminant analysis

In this section we will present functions for correlation, multivariate regression and discrim-

inant analysis.

3.1 Correlation

3.1.1 Correlation coefficient confidence intervals and hypothesis testing using Fisher’s

transformation

Fisher’s transformation for the correlation coefficient is defined as

ẑ =
1

2
log

1 + r

1 − r
(3.1)

with inverse equal to

exp (2ẑ)− 1

exp (2ẑ) + 1

The estimated standard error of (3.1) is 1−r2√
n−3

(Efron and Tibshirani, 1993). R calculates con-

fidence intervals based in a different way and does hypothesis testing for zero values only.

The following function calculates asymptotic confidence intervals based upon (3.1), assum-

ing asymptotic normality of (3.1) and performs hypothesis testing for the true (any, non only

zero) value of the correlation.

correl=function(y,x,a=0.05,rho=0) {

## y and x are the two variables

## a is the significance level

## rho is the hypothesised correlation

y=as.vector(y)

x=as.vector(x)

n=length(x)

r=cor(y,x) ## the correlation value

zh0=0.5*log((1+rho)/(1-rho)) ## Fisher’s transformation for Ho

zh1=0.5*log((1+r)/(1-r)) ## Fisher’s transformation for H1

se=(1-r^2)/sqrt(n-3) ## standard error for Fisher’s transformation of Ho

test=(zh1-zh0)/se ### test statistic

pvalue=2*(1-pnorm(abs(test))) ## p-value

zL=zh1-qnorm(1-a/2)*se ; zH=zh1+qnorm(1-a/2)*se

fishL=(exp(2*zL)-1)/(exp(2*zL)+1) ### lower confidence limit

fishH=(exp(2*zH)-1)/(exp(2*zH)+1) ### upper confidence limit

CI=c(fishL,fishH)
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names(CI)=c(’lower’,’uper’)

list(correlation=r,p.value=pvalue,CI=CI) }

3.1.2 Non-parametric bootstrap hypothesis testing for a zero correlation coefficient

We show how to perform a non-parametric bootstrap hypothesis testing that the correlation

coefficient is zero. A good pivotal statistic is the Fisher’s transformation (3.1). Then the data

have to be transformed under the null hypothesis (ρ = 0). This is doable via the eigen-

analysis of the covariance matrix. We transform the bivariate data such that the covariance

(and thus the correlation) matrix equals the identity matrix (see the function of standardiza-

tion for more information about this). We remind that the correlation matrix is independent

of measurements and is location free. The next step is easy, we draw bootstrap samples (from

the transformed data) and every time we calculate the Fisher’s transformation. The bootstrap

p-value is calculated in the usual way (Davison and Hinkley, 1997).

boot.correl=function(x,B=999) {

## x is a 2 column matrix containing the data

## B is the number of bootstrap replications

x=as.matrix(x)

s=cov(x) ; n=nrow(x)

lam=eigen(s)$values

vec=eigen(s)$vectors

A=vec%*%diag(sqrt(lam))%*%t(vec)

z=x%*%solve(A) ## This makes the correlation matrix equal to

## the identity matrix, thus rho=0

t=rep(0,B) ; r=cor(x)[2]

test=0.5*log((1+r)/(1-r)) ## the test statistic

for (i in 1:B) {

nu=sample(1:n,replace=T)

y=z[nu,] ; rb=cor(y)[2]

t[i]=0.5*log((1+rb)/(1-rb)) }

pvalue=(sum(t>test)+1)/(B+1) ## bootstrap p-value

hist(t,xlab="bootstrapped test statistic",main=" ")

abline(v=test,lty=2,lwd=2) ## The dotted vertical line is the test statistic value

list(test=test,p.value=pvalue) }

If you want to perform a non-parametric bootstrap hypothesis for a value of the correla-

tion other than zero the procedure is similar. The data have already been transformed such

that their correlation is zero. Now instead of the zeroes in the off-diagonal values of the iden-

tity matrix you will have the value of the correlation matrix you want to test. Eigen analysis
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of the matrix is performed and the square root of the matrix is used to multiply the trans-

formed data. I could write a more general function to include all case, but I will leave this

task to you. If you do write it please send it to me and I will put it with your name of course.

3.1.3 Hypothesis testing for two correlation coefficients

The test statistic for the hypothesis of equality of two correlation coefficients is the following:

Z =
ẑ1 − ẑ2√

1/ (n1 − 3) + 1/ (n2 − 3)
,

where ẑ1 and ẑ2 denote the Fisher’s transformation (3.1) applied to the two correlation coeffi-

cients and n1 and n2 denote the sample sizes of the two correlation coefficients. The denomi-

nator is the sum of the variances of the two coefficients and as you can see we used a different

variance estimator than the one we used before. This function performs hypothesis testing

for the equality of two correlation coefficients. The result is the calculated p-value from the

standard normal distribution.

correl2=function(r1,r2,n1,n2) {

## r1 and r2 are the two correlation coefficients

## n1 and n2 are the two sample sizes

z1=0.5*log((1+r1)/(1-r1)) ## Fisher’s transformation

z2=0.5*log((1+r2)/(1-r2)) ## Fisher’s transformation

test=(z1-z2)/sqrt(1/(n1-3)+1/(n2-3)) ## test statistic

pvalue=2*(1-pnorm(abs(test))) ## p-value calculation

list(test=test,p.value=pvalue) }

3.2 Regression

3.2.1 Classical multivariate regression

In this function we assume that both the dependent and independent variables can either

be vectors or matrices. The parameters of the independent variables are estimated through

maximum likelihood estimation procedures and the final formula is the following:

B̂ =
(

XTX
)−1

XY,

where X is the set of independent variables, or the design matrix, with the first column being

the vector of 1s and Y is the multivariate (or univariate) dependent variable. The covariance

matrix of the estimated parameters is given by this formula

V̂
(
B̂
)
= Σ̂ΣΣe ⊗

(
XTX

)−1
,
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where Σ̂ΣΣe = 1
n−p YTPY with P = In − X

(
XTX

)−1
XT is the error covariance matrix. The

sample size is denoted by n, p indicates the number of independent variables + 1 and ⊗ is

the Kronecker product of two matrices.

In order to see if an observation is an outlier or leverage (influential) point several tech-

niques have been suggested in the literature. We will use a simple graphical procedure. We

will calculate the Mahalanobis distances of the residuals and of the observations in the X

space

DEi =

√
êT

i Σ̂ΣΣ
−1
e êT

i and DXi =

√
(Xi − µ̂µµX)

T
Σ̂ΣΣ
−1
XX (Xi − µ̂µµX) (3.2)

respectively, where Σ̂ΣΣe is the error covariance matrix as before and µ̂µµX and Σ̂ΣΣXX are the mean

vector and covariance matrix of the independent variables respectively (without the con-

stant). Let us denote by d the dimensionality of the dependent variables Y and by p the

dimensionality of the independent variables X. If DEi is larger than
√

χ2
d,0.975 we will say

the i-th dependent variable observation has a possible residual outlier. If DXi is larger than√
χ2

p,0.975 we will say that the i-th observation of the independent variables is a potential

leverage point. This is to help us see graphically which observations seem to influence the

regression parameters.

multivreg=function(y,x) {

## y is the dependent variable and is expected to be a matrix

## if y is a vector then the classical univariate regression

## is performed

## x contains the independent variable(s)

y=as.matrix(y)

x=as.matrix(x)

n=nrow(y) ## sample size

d=ncol(y) ## dimensionality of y

p=ncol(x) ## dimensionality of x

X=cbind(1,x) ## the design matrix

beta=solve(t(X)%*%X)%*%t(X)%*%y ## the parameters

P=diag(n)-X%*%solve(t(X)%*%X)%*%t(X)

s=(1/(n-p-1))*t(y)%*%P%*%y

sxx=cov(x) ## covariance of the independent variables

res=y-X%*%beta ## residuals

dres=sqrt(diag(res%*%solve(s)%*%t(res))) ## Mahalanobis distances of the residuals

mx=matrix(rep(colMeans(x),n),byrow=T,ncol=p)

dx=sqrt(diag((x-mx)%*%solve(sxx)%*%t(x-mx)))

plot(dx,dres,xlim=c(0,max(dx)+0.5),ylim=c(0,max(dres)+0.5),

xlab=’Mahalanobis distance of x’,ylab=’Mahalanobis distance of residuals’)
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crit.res=sqrt(qchisq(0.975,d))

crit.x=sqrt(qchisq(0.975,p))

abline(h=crit.res)

abline(v=crit.x)

resid.outliers=which(dres>crit.res)

x.leverage=which(dx>crit.x)

out.and.lever=which(dx>crit.x & dres>crit.res)

S=kronecker(solve(t(X)%*%X),s) ## covariance of the parameters

sigma=t(matrix(sqrt(diag(S)),ncol=p+1))

fitted=X%*%beta ## fitted values

colnames(fitted)=colnames(y)

colnames(sigma)=colnames(beta)=colnames(y)

rownames(beta)=rownames(sigma)=c(’Intercept’,paste(’x’, 1:p, sep=’’))

list(beta=beta,Std.errors=sigma,resid.outliers=resid.outliers,

x.leverage=x.leverage,out.and.lever=out.and.lever,fitted=fitted) }

3.2.2 k-NN regression

This is a non-parametric regression which depends only upon the distances among the inde-

pendent variables. It involves a tuning, choice of a free parameter, whatever you want to call

it. That is k, the number of nearest neighbours. Hence, k-NN stands for k nearest neighbours.

The dependent variable can be either univariate or multivariate. A cross validation algorithm

to choose the value of k is described below and after that the relevant code is given below.

1. First standardize the independent variables so that they are all in the same scale.

2. Choose a value of k.

3. Remove a number of pairs of vectors (y∗, x∗) from the sample. The x∗ is the test sample

and the remaining x observations form the training sample. Say you remove 20% of

them and so the test sample size is equal to ν.

4. Find the k closest neighbours of the test set x∗ from the training sample. That is, calcu-

late the distances, of all the remaining observations, from x∗ and take the k observations

with the smallest distance. I ma using the Euclidean distance but this can change by the

user.

5. Calculate the average of the corresponding training dependent values y. This is the

estimated value ŷ∗
i of the observed y∗

i for i = 1, . . . , ν.

6. Calculate the sum of the squared distances ∑
ν
i=1

(
ŷ∗

i − y∗
i

)2
.
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7. Repeat steps 3-6 for all observations and take the average of the squared distances from

step 6. This is the mean predicted squared error (MSPE).

8. Repeat steps 3-7 for many values of k, say from 2 to 10 (the maximum number of nearest

neighbours depends upon the sample size of course) and choose the value of k which

minimizes the MSPE.

The function knn.tune has the two following two features. At first, for all different values

of k, the training and test samples are always the same. Secondly, there is the option of seed.

If it is true, then no matter how many times we repeat the analysis, the spit between training

and test samples is always the same and thus the results will be the same. The same seed

number is used in the functions kern.tune and pcr.tune. Thus, the MSPE for all three methods

is directly comparable.

knn.tune=function(y,x,fraction=0.20,R=1000,A=10,type=’euclidean’,seed=FALSE){

## y is the multivariate (or univariate) dependent variable

## x containts the independent variables(s)

## fraction is the percentage of data to be used for testing purposes

## the remaining data belong to the training set

## it is assumed that the training set contains at least 11 observations

## R is the number of cross validations to be performed

## A is the highest number of nearest neighbours

## type is for the distance, Euclidan or Manhattan distance

y=as.matrix(y)

x=as.matrix(x)

stand=function(x) (x-mean(x))/sd(x)

X=apply(x,2,stand) ## standardize the independent variable(s)

n=nrow(y)

ind=1:n

crit=matrix(nrow=R,ncol=A-1)

num=round(fraction*n) ## test set sample size

if (type==’euclidean’) {

apostasi=as.matrix(dist(x,diag=T,upper=T,method=’euclidean’)) }

if (type==’manhattan’) {

apostasi=as.matrix(dist(x,diag=T,upper=T,method=’manhattan’)) }

## apostasi is an nxn matrix containing

## the distances of each observation from the other based on the

## independent variable(s)

## Euclidean distance is set by default

deigma=matrix(nrow=R,ncol=num)

## deigma will contain the positions of the test set
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## this is stored but not showed in the end

## the user can access it though by running

## the commands outside this function

## if seed==TRUE then the results will always be the same

if (seed==TRUE) set.seed(1234567)

for (vim in 1:R) {

est=matrix(nrow=num,ncol=ncol(y))

deigma[vim,]=sample(1:n,num)

test=y[deigma[vim,],] ## the test set dependent variables

aba=as.vector(deigma[vim,])

index=ind[-deigma[vim,]]

for (j in 1:c(A-1)) {

knn=j+1

apo=apostasi[aba,-aba]

## apo contains the distances of the test set from the others

for (k in 1:num) {

dis=cbind(apo[k,],index)

dis=dis[order(dis[,1]),] ## sorts the distances

yb=y[dis[1:knn,2],]

yb=as.matrix(yb)

est[k,]=colMeans(yb) }

crit[vim,j]=mean((test-est)^2) } }

mspe=colMeans(crit)

plot(2:knn,mspe,xlab=’Nearest neighbours’,ylab=’MSPE’,type=’b’)

chosen=which.min(mspe)+1

names(mspe)=2:knn

list(k=chosen,mspe=mspe)

The next code performs k-NN multivariate regression for a given value of k

pred.knn=function(xnew,y,x,k,type=’euclidean’){

## xnew is the new observation

## y is the multivariate dependent variable

## x contains the independent variable(s)

## k is the number of nearest neighbours to use

## type is for the distance, Euclidan or Manhattan distance

y=as.matrix(y)

x=as.matrix(x)

n=nrow(y)

xnew=as.matrix(xnew)
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if (type==’euclidean’) {

apostasi=as.matrix(dist(rbind(xnew,x),diag=T,upper=T,method=’euclidean’)) }

if (type==’manhattan’) {

apostasi=as.matrix(dist(rbind(xnew,x),diag=T,upper=T,method=’manhattan’)) }

nu=nrow(xnew)

est=matrix(nrow=nu,ncol=ncol(y))

for (i in 1:nu) {

dis=cbind(apostasi[i,-c(1:nu)],1:n)

dis=dis[order(dis[,1]),] ## sorts the distances

yb=y[dis[1:k,2],]

yb=as.matrix(yb)

est[i,]=colMeans(yb) }

est }

3.2.3 Kernel regression

Kernel regression is another form of non parametric regression. But let us see what is the

kernel. at first we will say that a good book for kernel density estimation is the Wand and

Jones (1995) one. The book might seem difficult for introduction but once you take the hand

of it, then you appreciate its value. Another very good book is by Tsybakov (2009).

The kernel function estimating the (univariate) density of a value has this form

ˆf (x; h) =
1

nh

n

∑
i=1

K

(
Xi − x

h

)
. (3.3)

An example of a kernel function is the standard normal. Thus, (3.3) can be written as

ˆf (x; h) =
1

nh
√

2π

n

∑
i=1

e
−−(Xi−x)2

2h2 . (3.4)

There are many kernel in the literature. For this reason we also use another one, which

is based on the L1 metric (also known as Manhattan, city block, taxicab metric) denoted as

Laplacian kernel by Kim and Scott (2012)

ˆf (x; h) =
c

nh

n

∑
i=1

e−
|Xi−x|

h , (3.5)

where c is the normalizing constant of the Kernel function.

So if we want an estimate of the density at a point x we use all the sample points Xi

(i = 1, . . . , n) and a smoothing parameter or bandwidth h. The h determines the smoothness

of the final estimated density. k-NN is a case of kernel regression, where the kernel is a very

simple one. If we have one independent variable, then we have only one h. If we have more
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than one independent variables (say p), the we have a p × p matrix bandwidth H. Here for

simplicity we will assume H = hIp, where Ip is the p × p identity matrix.

We want to do this kernel density estimation in the multivariate case when covariates are

present. So, we want to estimate the dependent variable values with out using any regression

coefficients. The formula to estimate the i-th dependent variable value is

m̂ (x, p, h) = eT
1

[
XT (x, p)WxX (x, p)

]−1
XT (x, p)WxY. (3.6)

Let us now see what are all these matrices. The Y is the n × q dependent variables matrix,

where q denotes the dimensionality of Y. The Wx is an n × n diagonal matrix containing the

kernel functions for all the observations

Wx = diag

{
K

(
X1 − x

h

)
, . . . K

(
Xn − x

h

)}
.

X (x, p) is a n × (p + 1) matrix of the independent variables defined as

X (x, p) =




1 X1 − x (X1 − x)2 . . . (X1 − x)p

...
...

...
...

1 Xn − x (Xn − x)2 . . . (Xn − x)p


 .

We subtract the value x from every independent variable and all the sample values. Then

we decide on the degree p of the local polynomial. For this reason kernel regression is also

called local polynomial regression. The polynomial is applied locally to each point whose

dependent variable we want to estimate.

If p = 0 then we end up with the Nadaraya-Watson estimator (Nadaraya, 1964) and (Wat-

son, 1964) and in this case (3.6) can also be written as (Tsybakov, 2009)

m̂ (x, 0, h) =
∑

n
i=1 K

(
Xi−x

h

)
Yi

∑
n
i=1 K

(
Xi−x

h

) if
n

∑
i=1

K

(
Xi − x

h

)
6= 0

and m̂ (x, 0, h) = 0 if ∑
n
i=1 K

(
Xi−x

h

)
= 0.

Finally e1 is a (p + 1)× 1 vector whose first element is 1 and all other elements are zero.

Let us go and see (3.6) without eT
1 . The resulting matrix is of (1 + p)× q. We want the first

row of this matrix and that is why we use the e1 vector.

Another key thing we have to note is the choice of the bandwidth h. Since we are in the

multivariate case the bandwidth is a q × q matrix H having many smoothing parameters if

we think that even for q = 2 we need 4 smoothing parameters. To keep it simple I made it

H = hIq, where Iq is the identity matrix. Thus the kernel functions (3.4) and (3.5) are written
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as

ˆf (x; h) =
1

nhd (2π)d/2

n

∑
i=1

e
−−‖Xi−x‖2

2h2 and ˆf (x; h) =
c

nhd

n

∑
i=1

e−
‖Xi−x‖

h

respectively, where ‖x − y‖p = ∑
d
i=1 |xi − yi|p is the Lp norm and d here stands for the di-

mensionality of the data. Since we are doing regression, note that the part which is outside

the two sums cancels out.

Standardization of the independent variables is a must I would say, and so I did here.

The next code performs local polynomial regression for a given polynomial. It estimates the

value of the dependent variable (univariate or multivariate) based on measurements from

the independent variable(s).

kern.reg=function(x,Y,X,h,r=0,type=’gauss’) {

## Y is the multivariate (or univariate) dependent variable

## X contains the independent variable(s)

## x is a specific X value

## h is the bandwidth

## r is the degree of the local polynomial.

## r is set by default to 0. This corresponds to Nadaraya-Watson estimator

## type denotes the type of kernel to be used, gauss or taxi

Y=as.matrix(Y)

X=as.matrix(X)

x=as.matrix(x)

p=ncol(X)

n=nrow(Y)

me=colMeans(X)

m=matrix(rep(me,n),byrow=T,ncol=p)

s=apply(X,2,sd)

X=(X-m)/s ## standardize the independent variable(s)

x=(x-me)/s ## standardize the x values also

x=matrix(rep(x,n),byrow=T,nrow=n)

if (type==’gauss’) z=diag( exp(-0.5*(X-x)%*%t(X-x)/h^2) )

if (type==’taxi’) z=rowSums(abs(x-X))/h

if (r==0) {

mhx=colSums(z*Y)/sum(z)

if (sum(z)==0) mhx=0 }

if (r>0) {

W=diag(z)

if (r==1) Z=X-x

if (r>1) {
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p=ncol(X)

Z=array(dim=c(n,p,r))

for (j in 1:r) Z[,,j]=(X-x)^j

Z=matrix(Z,ncol=r*p) }

X1=cbind(1,Z)

be=solve(t(X1)%*%W%*%X1)%*%t(X1)%*%W%*%Y

mhx=be[1,] }

mhx }

3.2.4 Choosing the bandwidth in kernel regression in a very simple way

My way to choose h is rather simple but it works. I use 1-fold cross validation in almost

the same manner that was described in the k-NN multivariate regression before. Instead of

choosing a value of k I choose a value of h and the algorithm contains more repetitions. But

apart from this, all the other steps are the same. The next code chooses the value of h for a

given local polynomial. This means, that one can change the order of the polynomial and see

if the MSPE is reduced.

If the option seed is true, then no matter how many times we repeat the analysis, the spit

between training and test samples is always the same and thus the results will be the same.

The same seed number is used in the functions knn.tune and pcr.tune. Thus, the MSPE for all

three methods is directly comparable.

kern.tune=function(Y,X,h,r=0,fraction=0.20,R=1000,type=’gauss’,seed=FALSE) {

## Y is the multivariate (or univariate) dependent variable

## X contains the independent variables

## h is the bandwidth

## r is the degree of the local polynomial, usually 0 or 1

## fraction denotes the percentage of observations to

## be used as the test set

## the 1-fraction proportion of the data will be the training set

## R is the number of cross validations

## type denotes the type of kernel to be used, gauss or taxi

Y=as.matrix(Y)

X=as.matrix(X)

n=nrow(Y)

msp=matrix(ncol=length(h),nrow=R)

k=round(fraction*n) ## test sample size

deigma=matrix(nrow=R,ncol=k)

## deigma will contain the positions of the test set

## this is stored but not showed in the end

23



## the user can access it though by running

## the commands outside this function

## if seed==TRUE then the results will always be the same

if (seed==TRUE) set.seed(1234567)

for (vim in 1:R) deigma[vim,]=sample(1:n,k)

for (j in 1:length(h)) {

for (i in 1:R) {

mhx=ytest=as.matrix(Y[deigma[i,],])

xtest=as.matrix(X[deigma[i,],])

ytrain=as.matrix(Y[-deigma[i,],])

xtrain=as.matrix(X[-deigma[i,],])

mhx=matrix(nrow=k,ncol=ncol(Y))

for (l in 1:k) mhx[l,]=kern.reg(xtest[l,],ytrain,xtrain,h[j],r,type)

msp[i,j]=mean((ytest-mhx)^2) } }

mspe=colMeans(msp)

names(mspe)=h

plot(h,mspe,type=’l’,xlab=’Bandwidth (h)’,ylab=’MSPE’,

main=paste(r,’order local polynomial’,sep=’ ’))

list(hopt=h[which.min(mspe)], min.mspe=min(mspe),mspe=mspe) }

3.2.5 Principal components regression

I decided to put this technique here (and not in a subsequent Section), in the regression con-

text since principal components analysis is used as a tool for regression. In some, the idea is

that one can use principal component analysis on the independent variables in a unidimen-

sional (dependent variable is univariate) regression setting. A good reason to do so is either

because there is a high number of independent variables and or because there are collinear-

ity problems. One or more variables are highly correlated other variables. This method has

however some limitations (see for example Hadi and Ling, 1998).

The algorithm to perform principal components regression can be described as follows

1. At first standardize the independent variables. This way, XTX (the n × p design matrix,

which includes the p independent variables but not the intercept term) is proportional

to the the correlation matrix for the predictor variables. This is what Jolliffe (2005) does.

The n stands for the sample size.

2. Perform eigen analysis on XTX and calculate the matrix of the eigenvectors V and the

scores Z = XV.

3. Estimate the regression coefficients by

B̂ = V
(

ZTZ
)−1

ZTy,
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where y is the vector containing the values of the dependent variable.

4. Estimate the covariance matrix of the estimated regression coefficients by

Var
(
B̂
)
= σ2V

(
ZTZ

)−1
VT,

where σ2 is the conditional variance of the dependent variable calculated from the clas-

sical multiple regression analysis based upon the given number of principal compo-

nents. It is the error variance, whose estimate is the (unbiased) mean squared error.

The key point is that we can have p different sets of estimated regression coefficients, since

we can use the first eigenvector (or principal component), the first two eigenvectors or all

of them. If we use all of them, then we end up with the same regression coefficients as if

we performed a classical multiple regression analysis. Below we provide a code to perform

principal component regression using from one to all the principal components and each time

the following objects are calculated: estimated regression coefficients, their corresponding

standard errors, mean squared error (also plotted), adjusted R2 (also plotted). Note, that the

fitted values are calculated in the usual way, multiplying the independent variables (and not

the principal component scores) by their corresponding coefficients adding the mean of the

values of the dependent variable.

pcr=function(y,x,k) {

## y is the univariate dependent variable

## x contains the independent variables

## k shows the number of components to keep

x=as.matrix(x)

y=as.vector(y)

stand=function(x) (x-mean(x))/sd(x)

m=mean(y)

y=y-m ## standardize the dependent variable

x=apply(x,2,stand) ## standardize the independent variables

n=nrow(x) ; p=ncol(x)

eigen=eigen(t(x)%*%x) ## eigen analysis of the design matrix

values=eigen$values ## eigenvalues

per=values/sum(values) ## proportion of each eigenvalue

per2=cumsum(per) ## cumulative proportion of each eigenvalue

vec=eigen$vectors ## eigenvectors, or principal components

z=x%*%vec ## PCA scores

sigma=deviance(lm(y~x))/(n-p-1) ## estimated variance

b=vec[,1:k]%*%solve(t(z[,1:k])%*%z[,1:k])%*%t(z[,1:k])%*%y ## PCA based coefficients

yhat=as.vector( m+x%*%b ) ## fitted values for each PCA model
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mse=sum((y+m-yhat)^2)/(n-k) ## mean squared error of the PCA model

r2=1-(n-1)/(n-k-1)*(1-(cor(y+m,yhat))^2) ## adjusted R squared for the PCA model

va=sigma*vec[,1:k]%*%solve(t(z[,1:k])%*%z[,1:k])%*%t(vec[,1:k]) ## covariance matrix

## of the parameters of the PCA model

vara=sqrt(diag(va)) ## standard errors of the coeffcients of the PCA model

param=cbind(b,vara)

colnames(param)=c(’beta’,’std.error’)

list(fitted=yhat,parameters=param,mse=mse,adj.rsq=round(r2,3)) }

3.2.6 Choosing the number of components in principal component regression

In the previous Section we saw how to perform principal component regression. We can

choose the number of principal components based on the maximum adjusted R2 value or the

minimized mean squared error. If no maximum or minimum is met, we can keep the number

of components after which these quantities do not change significantly. Alternatively we can

use cross validation.

1. Split the data into two sets , the training (large fraction of the sample) and the test (small

fraction of the data).

2. Perform principal component regression analysis using the training set.

3. Estimate the values of the dependent variable using the test set and thus calculate the

mean prediction error, the mean of the squared difference between the observed and

the estimated values.

4. Repeat steps 1-3 R (say 1000) times and average all mean prediction errors when 1, 2 or

all p principal components have been used.

5. Choose the number of principal components with the minimum mean prediction error

If the option seed is true, then no matter how many times we repeat the analysis, the spit

between training and test samples is always the same and thus the results will be the same.

The same seed number is used in the functions knn.tune and kern.tune. Thus, the MSPE for all

three methods is directly comparable.

pcr.tune=function(y,x,fraction=0.20,R=1000,seed=FALSE){

## y is the univariate dependent variable

## contains the independent variables

## fraction denotes the percentage of observations

## to be used as the test set

## the 1-fraction proportion of the data will be the training set

## R is the number of cross validations
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x=as.matrix(x)

y=as.vector(y)

stand=function(x) (x-mean(x))/sd(x)

x=apply(x,2,stand) ## standardize the independent variables

n=nrow(x) ; p=ncol(x)

k=round(fraction*n) ## test sample size

deigma=matrix(nrow=R,ncol=k)

## deigma will contain the positions of the test set

## this is stored but not showed in the end

## the user can access it though by running

## the commands outside this function

me=mean(y)

y=y-me ## center the dependent variable

crit=matrix(nrow=R,ncol=p)

## if seed==TRUE then the results will always be the same

if (seed==TRUE) set.seed(1234567)

for (vim in 1:R) deigma[vim,]=sample(1:n,k)

for (i in 1:R) {

yhat=ytest=y[deigma[i,]]

xtest=x[deigma[i,],]

ytrain=y[-deigma[i,]]

xtrain=x[-deigma[i,],]

eigen=eigen(t(xtrain)%*%xtrain)

vec=eigen$vectors ## eigenvectors, or principal components

z=xtrain%*%vec ## PCA scores

b=vec

for (m in 1:p){

b[,m]=vec[,1:m]%*%solve(t(z[,1:m])%*%z[,1:m])%*%t(z[,1:m])%*%ytrain

yhat=as.vector( xtest%*%b[,m] )

crit[i,m]=mean((ytest-yhat)^2) } } ## mean squared error of prediction

mspe=colMeans(crit)

names(mspe)=paste(’PC’,1:p)

plot(mspe,type=’b’,ylab=’MSPE values’,

xlab=’Number of principal components’)

list(mspe=mspe,optimal=which.min(mspe)) }

3.2.7 The spatial median and spatial median regression

The so called spatial median, is the vector δδδ which minimizes the sum ∑
n
i=1 ‖ yi − δδδ ‖

(Möttönen et al., 2010), where ‖ · ‖ is the Euclidean norm, and it has a very long history.
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Gini and Galvani (1929) and Haldane (1948) have independently considered the spatial me-

dian as a generalization of the univariate median, as Möttönen et al. (2010) informs us. For

more information you can see Möttönen et al. (2010).

The function below calculates the spatial median.

spat.med=function(x){

## contains the data

x=as.matrix(x) ; p=ncol(x) ## dimensionality of the data

medi=function(me,x) sum( sqrt(rowSums((x-me)^2)) ) ## function to calculate the median

## the we use optim to obtain the spatial median

qa=optim(rnorm(p),medi,x=x,control=list(maxit=20000))

qa=optim(qa$par,medi,x=x,control=list(maxit=20000))

qa=optim(qa$par,medi,x=x,control=list(maxit=20000))

median=qa$par

median }

If we substitute the spatial median δδδ we saw before with a linear function of covariates

we end up with the spatial median regression (Chakraborty, 2003). So then, we want to find

the B matrix of parameters which minimize the following sum

n

∑
i=1

‖ yi − Bxi ‖ .

spatmed.reg=function(y,x){

## y contains the dependent variables

## x contains the independent variable(s)

x=cbind(1,x) ## add the constant term

y=as.matrix(y) ; x=as.matrix(x)

p=ncol(x) ; d=ncol(y) ## dimensionality of x and y

z=list(y=y,x=x)

## medi is the function to peform median regression

medi=function(beta,z) {

y=z$y ; x=z$x

p=ncol(x)

be=matrix(beta,nrow=p)

est=x%*%be

sum( sqrt(rowSums((y-est)^2)) ) }

## we use optim to obtain the beta coefficients

qa=optim(rnorm(p*d),medi,z=z,control=list(maxit=20000))

qa=optim(qa$par,medi,z=z,control=list(maxit=20000))

qa=optim(qa$par,medi,z=z,control=list(maxit=20000))
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beta=matrix(qa$par,ncol=ncol(y))

list(beta=beta,fitted=x%*%beta) }

3.2.8 Multivariate ridge regression

Ridge regression in the univariate case can be described as follows: minimize the sum of the

squared residuals subject to the sum of the squared beta coefficients is less than a constant

minmize

{
n

∑
i=1

yi − α −
p

∑
j=1

β jxj

}
subject to λ

p

∑
j=1

β2
j ≤ s,

where n and p denote the sample size and the number of independent variables respectively.

If we do the derivatives by hand the formula for the beta coefficients is

β̂ββ
ridge

=
(

XTX + λIp

)−1
XTy,

where X contains the independent variables only, the first column is not the column of 1s. It

becomes clear that if λ = 0 we end up with the ordinary least squares (OLS) estimates.

The reason for ridge regression is multicollinearity. When multicollinearity among the

covariates (X), the term
(
XTX

)
will not be invertible and thus no OLS betas will be estimated.

Ridge regression is a regularised regression method because it regularises this matrix so that

it becomes invertible. Alternatively, one can use principal component regression we saw

before. The estimated betas will be biased, but at least we obtain an answer. If there is no

multicollinearity, ridge regression can still be used because ridge regression can lead to better

predicted values than the classical regression. In any case, the choice of the value of λ is the

key question.

In multivariate regression, the parameter λ becomes a matrix, but I saw that Brown and

Zidek (1980) use a scalar, so I will use a scalar also. The corresponding formula is the same,

but instead of the vectors fi and y we have matrices B and Y

B̂ridge =
(

XTX + λIp

)−1
XTY.

The next R function performs ridge regression for a given value of λ.

ridge.multivreg=function(y,x,lambda) {

## y is the dependent variable and is expected to be a matrix

## if y is a vector then the classical univariate regression

## is performed

## x contains the independent variable(s)

## lambda is the ridge regularization parameter

## if lambda=0, the classical multivariate regression is implemented
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y=as.matrix(y)

x=as.matrix(x)

n=nrow(y) ## sample size

d=ncol(y) ## dimensionality of y

p=ncol(x) ## dimensionality of x

my=matrix(rep(colMeans(y),n),ncol=d,byrow=T)

mx=matrix(rep(colMeans(x),n),ncol=d,byrow=T)

yy=y-my ## center the dependent variables

xx=x-mx ## center the independent variables

beta=solve(t(xx)%*%xx+lambda*diag(p))%*%t(xx)%*%yy ## the parameters

P=diag(n)-xx%*%solve(t(xx)%*%xx)%*%t(xx)

s=(1/(n-p))*t(yy)%*%P%*%yy

S=kronecker(solve(t(xx)%*%xx+lambda*diag(p)),s) ## covariance of the parameters

sigma=t(matrix(sqrt(diag(S)),ncol=p)) ## standard errors of the parameters

fitted=my+xx%*%beta ## fitted values

colnames(fitted)=colnames(y)

colnames(sigma)=colnames(beta)=colnames(y)

rownames(beta)=rownames(sigma)=paste(’x’, 1:p, sep=’’)

list(beta=beta,Std.errors=sigma,fitted=fitted) }

The next R function uses cross validation to choose the value of λ that minimizes the mean

squared error of prediction, in the same way we the principal component, the k-nn and the

kernel regression implemented before.

ridge.tune=function(y,x,lambda=seq(0,5,by=0.1),fraction=0.20,R=1000,seed=FALSE){

## y is the dependent variable and is expected to be a matrix

## if y is a vector then the classical univariate regression

## is performed

## x contains the independent variable(s)

## lambda is the ridge regularization parameter

## if lambda=0, the classical multivariate regression is implemented

## fraction denotes the percentage of observations

## to be used as the test set

## the 1-fraction proportion of the data will be the training set

## R is the number of repetitions

y=as.matrix(y)

x=as.matrix(x)

n=nrow(y) ## sample size

k=round(fraction*n) ## test sample size

deigma=matrix(nrow=R,ncol=k)
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crit=matrix(nrow=R,ncol=length(lambda))

## if seed==TRUE then the results will always be the same

if (seed==TRUE) set.seed(1234567)

## deigma will contain the positions of the test set

## this is stored but not showed to the user but can be

## access it though by running the commands outside this function

for (vim in 1:R) deigma[vim,]=sample(1:n,k)

for (i in 1:R) {

ytest=yhat=y[deigma[i,],]

xtest=x[deigma[i,],]

ytrain=y[-deigma[i,],]

xtrain=x[-deigma[i,],]

for (j in 1:length(lambda)) {

mod=ridge.multivreg(ytrain,xtrain,lambda[j])

my=matrix(rep(colMeans(ytest),k),nrow=k,byrow=T)

mx=matrix(rep(colMeans(xtest),k),nrow=k,byrow=T)

est=my+(xtest-mx)%*%mod$beta ## fitted values

crit[i,j]=mean(diag(t(ytest-est)%*%(ytest-est))) } }

mspe=colMeans(crit)

plot(lambda,mspe,type=’b’,xlab=expression(paste(lambda,’ values’)),

ylab=’Mean squared error of prediction’)

list(chosen=lambda[which.min(mspe)],mspe=mspe) }

3.3 Discriminant analysis

We will now show some ways of parametric discriminant analysis, namely Fisher’s method,

linear, quadratic and regularised discriminant analysis.

3.3.1 Fisher’s linear discriminant function

Fisher’s discriminant rule is a non parametric linear function. We need to find the first unit

eigenvector (usually called λ) (the eigenvector corresponding to the largest eigenvalue) of

the matrix W−1B, where W and B are the within and between sum of squares matrices re-

spectively (Mardia et al., 1979, pg. 318-320). Then we use the mean of each group and the λ

to allocate a new observation using the decision algorithm below.

Allocate an observation z to group i iff

∣∣∣λλλTz −λλλT x̄i

∣∣∣ = min
1≤j≤g

∣∣∣λλλTz −λλλT x̄j

∣∣∣

where i, j = 1, ..., g, with g indicating the number of groups.
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fisher=function(z,group) {

## z contains the data

## group denotes the groups

k=max(group) ; n=nrow(z)

d=ncol(z) ; pred=rep(0,n)

for (j in 1:n) {

x=z[-j,] ; ina=group[-j]

xbar=colMeans(x)

S=array(dim=c(ncol(x),ncol(x),k))

B1=array(dim=c(ncol(x),ncol(x),k))

mat=matrix(rep(0,d*k),nrow=d,ncol=k)

for (i in 1:k) {

S[,,i]=nrow(x[ina==i,])*cov(x[ina==i,])

B1[,,i]=nrow(x[ina==i,])*( (colMeans(x[ina==i,])-xbar)%*%t(colMeans(x[ina==i,])-xbar) )

mat[,i]=colMeans(x[ina==i,]) }

W=apply(S,1:2,sum) ## The within sum of squares

B=apply(B1,1:2,sum) ## The between sum of squares

M=solve(W)%*%B

lambda=as.vector(eigen(M)$vectors[,1]) ## Fisher’s discriminant function

w=matrix(z[j,],d,1)

like=rep(0,k)

for (m in 1:k) {

like[m]=abs(lambda%*%w-lambda%*%mat[,m]) }

pred[j]=which.min(like) } ## The predicted group

list(lambda=lambda,pred=pred) }

We have to note that in all cases the robust estimation of the covariance and or of the

location are available in within the MASS library. For the linear and quadratic discriminant

analysis that can happen automatically, by choosing the robust option. In the regularised

case, you will have to modify the estimates such that the robust estimates are obtained. An-

other option is to use the estimates obtained from the t distribution. We show how to estimate

the parameters under this model later on. In all the other cases, we leave these changes to the

interested reader.

3.3.2 k-fold cross validation for linear and quadratic discriminant analysis

The built in functions in R for linear and quadratic discriminant analysis offer 1-fold cross

validation. This function uses these built in functions to extent to the k-fold cross validation.

Thus it performs k-fold cross validation for linear or discriminant analysis. The user specifies

the value of k and then the function removes k values (test sample) at random. It performs
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discriminant analysis for the remaining n − k values (training sample) and then classifies

the test sample. This is performed by default R = 1000 and in the end an estimate of the

distribution of the error is available. Thus, we can construct 3 types of confidence intervals.

The first two use the standard approach where the standard deviation is calculated from the

R = 1000 repetitions and via the binomial distribution. The third one uses the 2.5% upper and

lower quantiles of the distribution of the error. This function is more to train the two methods

(linear and quadratic discriminant analysis) and see how well each of them performs. The

bottom line is to select one over the other.

kfold.da=function(x,ina,fraction=0.2,R=1000,method=’lda’,seed=FALSE) {

## x is the data

## ina is the group indicator variable

## fraction denotes the percentage of the sample to be used as the test sample

## R is the number of cross validations

## method denotes whether lda or qda is to be used

x=as.matrix(x)

p=numeric(R) ; n=nrow(x)

ina=as.factor(ina)

k=round(fraction*n) ## test sample size

## if seed==TRUE then the results will always be the same

if (seed==TRUE) set.seed(1234567)

for (i in 1:R) {

nu=sample(1:n,k) ; id=ina[-nu]

train=x[-nu,] ; test=x[nu,]

if (method==’lda’) {

dok=lda(train,id)

g=predict(dok,test)$class

p[i]=sum(diag(table(g,ina[nu])))/k }

if (method==’qda’) {

dok=qda(train,id)

g=predict(dok,test)$class

p[i]=sum(diag(table(g,ina[nu])))/k } }

per=mean(p)

s1=sd(p) ; s2=sqrt(per*(1-per)/R)

conf1=c(per-1.96*s1,per+1.96*s1) ## 1st way of a confidence interval

conf2=c(per-1.96*s2,per+1.96*s2) ## 2nd way of a confidence interval

## next we check if the confidence limits exceeds the allowed limits.

if (conf1[2]>1) conf1[2]=1

if (conf1[1]<0) conf1[1]=0

if (conf2[2]>1) conf2[2]=1

33



if (conf2[1]<0) conf2[1]=0

conf3=quantile(p,probs=c(0.025,0.975)) ## 3rd way of a confidence interval

list(percentage=per,conf.int1=conf1,conf.int2=conf2,conf.int3=conf3) }

3.3.3 A simple model selection procedure in discriminant analysis

We will show a simple procedure for model selection in quadratic discriminant analysis. the

R code given below is made for quadratic discriminant analysis but with a simple modifica-

tion it can be applied to linear discriminant analysis as well.

It utilizes the function kfold.da where the split is 80% and 20% for the training and the test

set respectively. The number of cross validations is set 500 and always the splits are the same.

But as I mentioned before, this input parameters can change easily within the function.

The idea is simple and similar to the stepwise variable selection in multiple regression

analysis. Below is the algorithm explained.

Algorithm for model selection in discriminant analysis

1. Perform discriminant analysis bases on one variable only. The first chosen variable is

the one with the highest estimated rate of correct classification.

2. Next, we look for the second best variable. We try all of them (now we have two vari-

ables included) and keep the variable, which combined with the first one, leads to the

highest estimated rate of correct classification.

3. We repeat step 2, adding one variable at the time.

4. We stop when the difference between two successive rates is less than or equal to a

tolerance level (taken to be 0.001 or 0.1%).

There can be two cases, a) the rate keeps increasing by adding more variables. The toler-

ance level will prevent from adding more variables than necessary. And b) the rate at some

point will decrease. The tolerance level will see the change and will terminate the process.

For this reason I use a while function.

This is a simple model selection procedure and a faster one would be via the BIC. I am

just giving a method here and my purpose is to motivate the interested reader in learning

more about it. Also to make the reader aware of the model selection process in discriminant

analysis.

select.da=function(x,ina,tol=0.001){

## x contains the data

## ina is the group indicator variable

## tol is the stopping difference between two successive rates

p=ncol(x) ; per=numeric(p)

34



## STEP 1

est=numeric(p)

z=NULL

for (j in 1:length(est)) {

z1=x[,j]

est[j]=kfold.da(z1,ina,fraction=0.2,R=500,method=’qda’,seed=TRUE)$percentage }

per[1]=max(est)

id=which.max(est)

z=cbind(z,x[,id])

z1=x[,-id]

## STEP 2

est=numeric(p-1)

for (j in 1:length(est)) {

z2=z1[,j]

est[j]=kfold.da(cbind(z,z2),ina,fraction=0.2,R=500,method=’qda’,seed=TRUE)$percentage }

per[2]=max(est)

id=which.max(est)

z=cbind(z,z1[,id])

z1=z1[,-id]

### STEP 3 AND BEYOND

i=2

while (per[i]-per[i-1]>tol) {

i=i+1

est=numeric(p-i+1)

for (j in 1:length(est)) {

z2=as.matrix(z1[,j])

est[j]=kfold.da(cbind(z,z2),ina,fraction=0.2,R=500,method=’qda’,seed=TRUE)$percentage }

per[i]=max(est)

id=which.max(est)

z=cbind(z,z1[,id])

z1=as.matrix(z1[,-id]) }

per=per[per>0]

plot(per,type=’b’,xlab=’Number of variables’,ylab=’Estimated correct rate’)

list(percentage=per,vars=z) }
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3.3.4 Box-Cox transformation in discriminant analysis

We will use the Box-Cox transformation as an additional feature which can lead to better

classification results. This power transformation is defined as

y (λ) =

{
xλ−1

λ if λ 6= 0

log x if λ = 0

}

Note that the x has to have strictly positive values if one uses the logarithm. When λ 6= 0

this is not an issue, but if there are zero values, then λ has to be strictly positive. The R code

presented below is a simple one. The first step is to apply the Box-Cox transformation for a

value of λ and then use the function kfold.da we saw before. This is repeated for a range of

values of λ and every time the estimated percentage of correct classification is saved. A plot

is also created for graphical visualization of the estimated percentage of correct classification

as a function of λ.

bckfold.da=function(x,ina,fraction=0.2,R=1000,method=’lda’,lambda,seed=FALSE) {

## x is the matrix with the data

## ina is the group indicator variable

## fraction denotes the percentage of the sample to be used as the test sample

## R is the number of cross validations

## quad denotes whether lda or qda is to be used

## lambda is the range of values for the Box-Cox transformation

x=as.matrix(x)

B=length(lambda)

percent=numeric(B)

conf1=conf2=conf3=matrix(nrow=B,ncol=2)

n=nrow(x)

k=round(fraction*n) ## test sample size

mat=matrix(nrow=R,ncol=k)

## if seed==TRUE then the results will always be the same

if (seed==TRUE) set.seed(1234567)

for (j in 1:R) mat[j,]=sample(1:n,k) ## choosing random test samples

## for every lambda the same test samples are used

for (i in 1:B) {

## the next two lines are the Box-Cox transformation depending on the value of lambda

if (lambda[i]!=0) y=(x^lambda[i]-1)/lambda[i]

if (lambda[i]==0) y=log(x)

per=numeric(R)

for (l in 1:R) {

train=y[-mat[l,],] ; test=y[mat[l,],]
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id=ina[-mat[l,]] ; ida=ina[mat[l,]]

if (method==’lda’) { ## LDA is to be used

dok=lda(train,id)

g=predict(dok,test)$class

per[l]=sum(diag(table(g,ida)))/k }

if (method==’qda’) { ## QDA is to be used

dok=qda(train,id)

g=predict(dok,test)$class

per[l]=sum(diag(table(g,ida)))/k } }

percent[i]=mean(per) ## mean estimated percentage of correct classification

s1=sd(per) ; s2=sqrt(percent[i]*(1-percent[i])/R)

conf1[i,]=c(percent[i]-1.96*s1,percent[i]+1.96*s1) ## 1st way of a confidence interval

conf2[i,]=c(percent[i]-1.96*s2,percent[i]+1.96*s2) ## 2nd way of a confidence interval

## next we check if the confidence limits exceeds the allowed limits.

if (conf1[i,2]>1) conf1[i,2]=1

if (conf1[i,1]<0) conf1[i,1]=0

if (conf2[i,2]>1) conf2[i,2]=1

if (conf2[i,1]<0) conf2[i,1]=0

conf3[i,]=quantile(per,probs=c(0.025,0.975)) } ## 3rd way of a confidence interval

names(percent)=lambda

rownames(conf1)=rownames(conf2)=rownames(conf3)=lambda

plot(lambda,percent,ylim=c(min(conf3[,1]),max(conf3[,2])),type=’b’,col=3,

xlab=expression(paste(lambda," values")),

ylab=’Estimated percentage of correct classification’)

lines(lambda,conf3[,1],lty=2,lwd=2,col=2)

lines(lambda,conf3[,2],lty=2,lwd=2,col=2)

## the plot contains the 3rd way confidence limits also

list(percentage=percent,conf.int1=conf1,conf.int2=conf2,conf.int3=conf3) }

3.3.5 Regularised discriminant analysis

Linear and quadratic discriminant analyses can be thought of as special cases of what is called

regularised discriminant analysis denoted by RDA(δ, γ) (Hastie et al., 2001). The discrimi-

nant analysis in general has a rule. Every vector z is allocated to the group for which the

density of the vector calculated using the multivariate normal is the highest. The algorithm

is as follows

• Calculate πi fi (z) for i = 1, ..., g, where g indicates the number of groups.

• allocate z to the group for which the above quantity takes the highest value.
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The fi (x) is assumed a multivariate normal and πi = ni/n, where ni is the sample size of the

i-th group and n = n1 + ... + ng is the total sample size. The πi plays the role of the prior,

thus making the rule a naive Bayes classifier. Alternatively the first step of the algorithm can

be substituted by the logarithm of the density

ξi (z) = −1

2
log |Si| −

1

2
(z − µ̂i)

T S−1
i (z − µ̂i) + log πi,

The vector z is allocated to the group with the highest value ξi (z). The idea of RDA(δ, γ) is

to substitute the covariance matrix for each group (Si) by a weighted average

Si (δ, γ) = δSi + (1 − δ) S (γ) ,

where S (γ) = γSp + (1 − γ) s2Id

and Sp is the pooled covariance matrix

Sp =
∑

g
i=1 (ni − 1) Si

n − g

The regularization of the pooled covariance matrix (Sp) is the one mentioned in Hastie et al.

(2001). They used (s2I), where s2 =
trSp

d and d is the number of dimensions. Thus we end up

with a general family of covariance matrices which is regularised by two parameters δ and

γ each of which takes values between 0 and 1. When δ = 1 then we end up with QDA, and

if δ = 0 and γ = 1 we end up with LDA. The posterior probabilities of group allocation are

calculated as follows

P
(
zi ∈ groupj

∣∣ξ j (zi)
)
=

πj f j (zi)

∑
g
l=1 πl fl (zi)

,

The code presented below accepts new observations and predicts their groups, for a given

value of γ and λ.

rda.pred=function(xnew,x,ina,gam=1,del=0) {

## xnew is the new observation

## x contains the data

## gam is between pooled covariance and diagonal

## gam*Spooled+(1-gam)*diagonal

## del is between QDA and LDA

## del*QDa+(1-del)*LDA

x=as.matrix(x) ; n=nrow(x) ; D=ncol(x)

xnew=as.matrix(xnew,ncol=D)
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nu=nrow(xnew) ## number of the new observations

ina=as.numeric(ina) ; nc=max(ina)

ng=as.vector(table(ina)/n)

est=numeric(nu)

prob=matrix(nrow=nu,ncol=nc)

Tska=Ska=sk=s=array(dim=c(D,D,nc))

t=matrix(nrow=n,ncol=nc)

ng=rep(0,nc) ; mesos=matrix(nrow=nc,ncol=D)

for (m in 1:nc) {

ng[m]=nrow(x[ina==m,])

s[,,m]=(ng[m]-1)*cov(x[ina==m,])

sk[,,m]=cov(x[ina==m,])

mesos[m,]=colMeans(x[ina==m,]) }

for (i in 1:nu) {

z=as.matrix(xnew[i,],ncol=D)

if (ncol(z)!=D) z=t(z)

Sp=apply(s,1:2,sum)/(sum(ng)-nc)

sp=rep(mean(diag(Sp)),D)

Sa=gam*Sp+(1-gam)*diag(sp)

for (m in 1:nc) {

Ska[,,m]=del*sk[,,m]+(1-del)*Sa

Tska[,,m]=solve(Ska[,,m]) }

for (j in 1:nc) {

t[i,j]=log(ng[j]/sum(ng))-0.5*log(det(2*pi*Ska[,,j]))-

0.5*(z-mesos[j,])%*%Tska[,,j]%*%t(z-mesos[j,]) }

est[i]=which.max(t[i,])

prob[i,]=exp(t[i,])/sum(exp(t[i,])) } ## the probability of classification

list(est.group=est,probability=prob,scores=t) }

3.3.6 Tuning the γ and δ parameters in regularised discriminant analysis

We now how how to tune the parameters of the regularised discriminant analysis. The idea

is similar to all the techniques we have seen in this Section.

rda.tune=function(x,ina,fraction=0.2,R=1000,gam=seq(0,1,by=0.1),del=seq(0,1,by=0.1),

seed=FALSE){

## x contains the data

## ina is the group indicator variable

## fraction denotes the percentage of the sample to be used as the test sample

## R is the number of cross validations
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## gam is between pooled covariance and diagonal

## gam*Spooled+(1-gam)*diagonal

## del is between QDA and LDA

## del*QDa+(1-del)*LDA

x=as.matrix(x)

ina=as.numeric(ina)

n=nrow(x) ## total sample size

k=round(fraction*n) ## test sample size

mat=matrix(nrow=R,ncol=k)

group=array(dim=c(length(gam),length(del),R))

s1=s2=s3=matrix(nrow=length(gam),ncol=length(del))

## if seed==TRUE then the results will always be the same

if (seed==TRUE) set.seed(1234567)

for (j in 1:R) mat[j,]=sample(1:n,k) ## choosing random test samples

for (vim in 1:R) {

test=x[mat[vim,],] ## test sample

id=ina[mat[vim,]] ## groups of test sample

train=x[-mat[vim,],] ## training sample

ida=ina[-mat[vim,]] ## groups of training sample

for (k1 in 1:length(gam)) {

for (k2 in 1:length(del)) {

g=rda.pred(test,train,ida,gam[k1],del[k2])$est.group

group[k1,k2,vim]=sum(g==id)/k } } }

percent=apply(group,1:2,mean)

su=apply(group,1:2,sd)

dimnames(percent)=dimnames(su)=list(gamma=gam,delta=del)

list(percent=percent,stand.error=su) }

3.4 Robust statistical analyses

3.4.1 Robust multivariate regression

Rousseeuw et al. (2004) proposed a robust multivariate regression which is based on robust

estimation of the joint location and scatter of the explanatory and response variables. A

preprint of their paper is available form ResearchGate. This means that we can also use this

function when we have univariate or multivariate dependent and independent variables. We

will now assume that both dependent and independent variables are multivariate (the func-

tion accepts univariate variables also). The parameters of the joint multivariate normal distri-

bution for Y (the d-dimensional dependent variable) and X (the p-dimensional independent
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variable only, the first column is NOT the vector of 1s) are as follows

µµµ = (µµµY, µµµX)
T and ΣΣΣ =

(
ΣΣΣYY ΣΣΣXY

ΣΣΣYX ΣΣΣXX

)

Rousseeuw et al. (2004) assumes that the linear model is written as Y = ααα + XB + e. Then,

the classical least squares estimators for B, ααα and Σ̂ΣΣ are given by

B̂ = Σ̂ΣΣ
−1
XXΣ̂ΣΣYX,

α̂αα = µ̂µµY − µ̂µµT
XB̂ and

Σ̂ΣΣe = ΣΣΣYY − B̂TΣΣΣXXB̂.

The same formulas appear in Johnson and Wichern (2002). The only thing we have to do

now is to use a formula to calculate robust estimates of the location vector µµµ and the scatter

matrix ΣΣΣ. The answer is the function cov.rob from the library MASS. It offers two ways, the

first one is the MCD estimator and the second the MVE estimator of the robust scatter and

location. Both of these methods require a fraction of the sample, and the optimal fraction is

around 50% (it maximises the breakdown point). Note that the function cov.rob requires at

least 18 observations.

The MCD (Minimum Covariance Determinant) estimator tries to find the fraction of the

data for which the determinant of their covariance matrix is minimized. So it tries to find a

subset whose observations are very close to one another, they are as concentrated as possi-

ble. When this subset is identified, its mean vector and covariance matrix are calculated and

that’s what we need. The MVE (Minimum Volume Ellipsoid) on the other hand tries to do

something similar. It searches for the subset whose observations form an ellipsoidal object

with volume as small as possible.

When we have the robust estimates for the joint mean vector and covariance matrix we

can get the robust estimates of B, ααα and Σ̂ΣΣ and also calculate the robust Mahalanobis dis-

tances of the independent variables and the residuals (3.2). The function rob.multivreg given

below does almost the same things as multivreg apart from the standard errors. These are not

produced.

rob.multivreg=function(y,x,method=’mcd’,quan=0.5){

## y and x are either univariate or multivariate variables

## methods can either be ’mcd’ or ’mve’

## quan is the fraction of the data to be used. The optimal value is set to 0.5

## quan might have to change. The subset size for the robust estimates must be at

## least equal to 18.

library(MASS)

y=as.matrix(y)
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x=as.matrix(x)

z=cbind(y,x)

n=nrow(z) ## sample size

d=ncol(y) ## dimensionality of y

p=ncol(x) ## dimensionality of x

robust=cov.rob(z,method=method,quantile.used=floor(quan*n)) ## robust estimates

rob.s=robust$cov

rob.sxx=rob.s[-c(1:d),-c(1:d)] ## robust covariance of the x, Sxx

rob.be=rob.s[1:d,-c(1:d)]%*%solve(rob.sxx) ## estimated betas

rob.my=robust$center[1:d] ## mean vector of y

rob.mx=robust$center[-c(1:d)] ## mean vector of x

rob.b0=rob.my-rob.mx%*%t(rob.be) ## estimated b0

rob.beta=rbind(rob.b0,t(rob.be)) ## robust betas

rob.se=cov(y)-rob.be%*%rob.sxx%*%t(rob.be) ## Error covariance

rob.res=y-cbind(1,x)%*%rob.beta ## residuals

## below are the Mahalanobis distances of the residuals

rob.dres=sqrt(diag(rob.res%*%solve(rob.se)%*%t(rob.res)))

rob.mx=matrix(rep(rob.mx,n),byrow=T)

rob.dx=sqrt(diag((x-rob.mx)%*%solve(rob.sxx)%*%t(x-rob.mx)))

crit.res=sqrt(qchisq(0.975,d))

crit.x=sqrt(qchisq(0.975,p))

plot(rob.dx,rob.dres,xlim=c(0,max(rob.dx)+0.5),ylim=c(0,max(rob.dres)+0.5),

xlab=’Robust Mahalanobis distance of x’,ylab=’Robust Mahalanobis distance of residuals’)

abline(h=crit.res)

abline(v=crit.x)

rob.residoutliers=which(rob.dres>crit.res)

rob.xleverage=which(rob.dx>crit.x)

rob.outandlever=which(rob.dx>crit.x & rob.dres>crit.res)

colnames(rob.beta)=colnames(y)

rownames(rob.beta)=c(’Intercept’,paste(’x’, 1:p, sep=’’))

rob.fitted=cbind(1,x)%*%rob.beta ## robust fitted values

list(beta.rob=rob.beta,rob.residoutliers=rob.residoutliers,

rob.xleverage=rob.xleverage,rob.outandlever=rob.outandlever,rob.fitted=rob.fitted) }

3.4.2 Robust correlation analysis and other analyses

Should someone want to estimate a robust correlation coefficient, all he has to do is calculate

the robust covariance matrix using the function cov.mcd available in the MASS library. Then,

by turning the covariance matrix into a correlation matrix (cov2cor) the job is done.

In the case of robust principal component analysis one can do the same, perform an eigen
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analysis of the robust covariance (or correlation) matrix. This idea expands to principal com-

ponents regression and discriminant analysis well.

3.4.3 Detecting multivariate outliers graphically with the forward search

The forward search is a way to identify multivariate outliers graphically. A possible mul-

tivariate outlier is an observation whose squared Mahalanobis distance is grater than the

χ2
0.975,p, where p denotes the number of dimensions. If the covariance matrix though is not

estimated robustly this can lead to the masking effect. Outliers whose effect is masked and

they are seen as not outliers. For this reason robust estimation of the covariance matrix is

necessary. The Mahalanobis distance of a multivariate observation x is given by

MD (x) = (x − µµµ)T
ΣΣΣ−1 (x − µµµ) ,

where µµµ and ΣΣΣ are the mean vector and covariance matrix.

Robust estimation of the covariance matrix on the other hand can lead to what is called

swamping effect. Outliers which are not outliers are detected as possible outliers. Filzmoser

(2005) introduced a new method of robust detection of multivariate outliers following the

idea of Gervini (2003) to increase the efficiency of the robust estimation of scatter (covariance

matrix) and location (mean vector). The method is again based on the MCD we saw in the

robust multivariate regression analysis. This method can be found in the R package mvoutlier

written by Filzmoser and Gschwandtner (2014).

The forward search (FS) is a graphical method which shows the effect of the outliers in

a graph. The reference book for this method is written by Atkinson et al. (2004). A paper

explaining nicely the steps of the algorithm is written by Mavridis and Moustaki (2008). Let

us now briefly explain the steps of the forward search.

First step of the FS

In the first step of the search a good subset must be chosen. This means that an outlier-free

subset must be found in order to provide robust estimators of some parameters. After the

subset size is determined a large number (e.g. 1000) of subsets of that size are determined.

Let n denote the number of multivariate observations and ng denote the initial subset size.

This means that there are ( n
ng
) possible subsets. Once a good subset is determined the search

consists of n − ng steps; the number of observations that will enter the initial subset.

Many ways have been suggested in the literature so as to find the best subset with which

to start the search. The MCD is used here and the fraction required is actually chosen by

the MCD and is equal to [(n + p + 1)/2], where n and p indicate the sample size and the

number of variables or dimensions, respectively and [x] means the the largest integer not
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greater than x. So, the idea is to estimate initially robust estimates of scatter and location and

then use these to calculate the Mahalanobis distances of the selected observations (based on

which the robust estimates are calculated). Then keep the ng observations with the smallest

Mahalanobis distances.

The initial subset size is another issue also. Atkinson et al. (2004) proposed a size of 3p.

However the sample size is not crucial as long as it is outlier-free. I believe that the initial

subset size should be determined taking into account the dimensions of the data matrix (both

the number of variables and the sample size). However, in the function presented here, the

default value is 20% of the sample size.

Finally, the mean and the variance of the observations in the subset are estimated. If there

are no outliers in the data, the estimates are very robust.

Second step of the FS

Given a subset of size ng observations one must find a way to progress in the search, which is

to find a way to include all the m = n − ng remaining multivariate observations. The subset

size is also called basic set (at each step its size is increased) and the set with all the other data

is called non-basic set (at each step its size is decreased). One good way is to calculate the Ma-

halanobis distances of the observations not in the initial subset from the robust estimates of

scatter and location provided by the basic set and order them from the smallest to the largest.

The observation with the smallest Mahalanobis is the one to leave the non-basic set and enter

the basic set and the estimates of scatter and location are re-estimated.

The size of basic set is now ng + 1 and there are m − 1 remaining steps of the FS and hence

m − 1 observations in the non-basic set. The Mahalanobis distances of the observations in the

non-basic set are calculated and ordered again in an ascending order and the observation with

the smallest distance enters the basic set. This procedure is repeated until all observations

from the non-basic set enter the basic set.

One observation is added at each step, but the inclusion of an outlier can cause the order-

ing of the Mahalanobis distances of the points not in the basic set to change. This change of

the data ordering during the FS is a feature of the multivariate data and not of the univariate

data as mentioned by Atkinson et al. (2004).

At this point we must say that this is the non standard FS. In the standard FS a point can

be included in the set at a step and be removed at a later step.

Third step of the FS

The last step of the FS involves monitoring some statistics of interest during the search which

are helpful in the identification of outliers or observations that have a larger effect than ex-

pected. One statistic of interest could be the minimum Mahalanobis distance of the observa-
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tions not in the basic set. If the distance is large, this is an indication that an outlier is about

to enter the basic set. If however a cluster of outliers join the set successively, these mini-

mum distances will decrease. Another way is to monitor the change between two successive

minimum Mahalanobis distances or the scaled by the determinant covariance matrices Ma-

halanobis distances (Atkinson et al., 2004).

If one’s concern lies in estimating the influence of an observation in a model (multiple

regression or factor analysis for instance) then the parameter estimates, the residuals and

other goodness of fit tests are likely to be of more interest. It is true, that even a single outlier

can cause a factor analysis model to go wrong or a test of multivariate normality to fail.

The output of the forward.ns function has two components, a) the order of entrance all the

observations and b) the minimum Mahalanobis distances of the initial step and the minimum

Mahalanobis distances as described in step 2.

forward.ns=function(z,quan=0.2){

## z contains the data

## quan is the percentage of the sample size to be used as the initial subset

## as the initial subset

z=as.matrix(z)

n=nrow(z) ## sample size

p=ncol(z) ## dimensionality

arxi=quan*n ## initial subset size

if (arxi< 0.5*p*(p+1)+1 ) arxi=0.5*p*(p+1)+1

z=cbind(1:n,z) ## this will us identify the sequence of entrance

## n the final sample we will see the order of entrance

Xmcd=cov.mcd(z[,-1],5000) ## searches amongst 5000 subsets for the best

dist=mahalanobis(z[,-1], Xmcd$center, Xmcd$cov)

names(dist)=1:n

dist=sort(dist)

b=as.integer(names(dist[1:arxi]))

ini=z[b,] ## initial subset

z3=z[-b,] ##

vim=nrow(z3) ## steps of the FS

dis=numeric(vim)

for (j in 1:c(vim-1)) {

d=numeric(nrow(z3))

for (i in 1:nrow(z3)) {

d[i]=mahalanobis(z3[i,-1],colMeans(ini[,-1]),var(ini[,-1])) }

a=which.min(d)

dis[j]=min(d)

ini=rbind(ini,z3[a,])
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z3=z3[-a,] }

z3=matrix(z3,ncol=length(z3))

ini=rbind(ini,z3)

dis[vim]=mahalanobis(z3[,-1],colMeans(ini[1:(n-1),-1]),var(ini[1:(n-1),-1]))

nama=ini[,1] ; ini=ini[,-1]

plot(dis,type=’l’)

MD=c(dist[1:arxi],dis)

names(MD)=nama

list(order=nama,MD=MD) }
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4 Some other multivariate functions

In this section we show some other functions for multivariate data, such as standardization,

a simple normality test and some other functions.

4.1 Distributional related functions

4.1.1 Standardization I

This is probably the transformation to which the term suits better. This function transforms

the data such that they have zero mean vector and the identity as the covariance matrix. We

used this function to perform hypothesis testing for zero correlation using bootstrap but did

not pay too much attention. At first we have to subtract the mean vector from the data and

then multiply by the square root of the inverse of the covariance matrix

Z = (X − µµµ)ΣΣΣ−1/2.

The key thing is to decompose the covariance matrix, using Cholesky or eigen decompo-

sition. We prefer the latter for simplicity and convenience. The spectral decomposition of the

covariance matrix (or any square matrix in general) is

ΣΣΣ = VΛΛΛVT = Vdiag
(
λ1, . . . , λp

)
VT,

where V is the matrix containing the eigenvectors, an orthogonal matrix and λ1, . . . , λp are

the p eigenvalues (the number of dimensions), where λ1 ≥ λ2 ≥ . . . ≥ λp > 0. The inverse

of ΣΣΣ and its square root can be written as

ΣΣΣ−1 = Vdiag
(

λ−1
1 , . . . , λ−1

p

)
VT and ΣΣΣ−1/2 = Vdiag

(
λ−1/2

1 , . . . , λ−1/2
p

)
VT respectively.

If the covariance matrix is not of full rank (equal to p), that is if there is at least one eigenvalue

equal to zero, it becomes clear why the inverse does not exist. Another thing to highlight is

that the number of non zero eigenvalues is equal to the rank of the matrix (or vice versa). The

following function performs this transformation using eigen decomposition of the covariance

matrix.

multivzscore=function(x) {

## x contains the data

x=as.matrix(x)

n=nrow(x) ; s=cov(x) ; p=ncol(x)

m=matrix(rep(colMeans(x),n),byrow=TRUE,ncol=p)

lam=eigen(s)$values

vec=eigen(s)$vectors
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B=vec%*%diag(1/sqrt(lam))%*%t(vec)

z=(x-m)%*%B

z }

4.1.2 Standardization II

This standardization is simply centering the variables (subtract from each variable each mean)

and then divide by its standard deviation zi =
xi−mi

si
, for i = 1, ..., p. An alternative robust

way is to use the median and the median absolute deviation instead.

zscore.1=function(x) (x-mean(x))/sd(x)

zscore.2=function(x) (x-median(x))/(median(abs(x-median(x))))

Then the apply command will do the rest.

4.1.3 Generating from a multivariate normal distribution

The previous function gives rise to a way to simulate from a multivariate normal with some

specific parameters. The idea is simple. Suppose we want to generate n values from a p-

variate normal with parameters µµµ and ΣΣΣ using the rnorm function only. The algorithm is

described below

1. Construct the eigenvalue decomposition of the covariance matrix

ΣΣΣ = Vdiag
(
λ1, . . . , λp

)
VT.

2. Take the square root of the covariance matrix ΣΣΣ1/2 = Vdiag
(

λ1/2
1 , . . . , λ1/2

p

)
VT.

3. Generate n × p values from a standard normal distribution N (0, 1).

4. Put the generated values in a matrix with n rows and p columns randomly. We will call

this matrix X.

5. Construct Y = XΣΣΣ1/2 + µµµ.

The columns in the Y matrix follow the multivariate normal with the specified parameters.

Bear in mind that the covariance matrix needs not be of full rank. The algorithm will still

work, since we do not calculate the inverse of a zero eigenvalue. Th8us zero eigenvalues are

allowed.

rand.mvnorm=function(n,mu,sigma){

## n is the sample size

## mu is the mean vector

## sigma is the covariance matrix
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## sigma does not have to be of full rank

p=length(mu)

x=matrix(rnorm(n*p),ncol=p)

m=matrix(rep(mu,n),byrow=TRUE,ncol=p)

lam=eigen(sigma)$values

vec=eigen(sigma)$vectors

B=vec%*%diag(sqrt(lam))%*%t(vec)

z=x%*%B+m

z }

4.1.4 Kullback-Leibler divergence between two multivariate normal populations

The Kullbacvk-Libler divergence (Kullback, 1997) between two multivariate normal popula-

tions in Rd is equal to

KL (MN1||MN2) =
1

2

[
tr
(

Σ
−1
2 Σ1

)
+ (µ2 −µ1)

T
Σ
−1
2 (µ2 −µ1)− log

|Σ1|
|Σ2|

− d

]
,

kl.norm=function(m1,s1,m2,s2) {

## m1 and s1 are the parameters of the first normal

## m2 and s2 are the parameters of the second normal

## this measures the distance from a MVN(m1,s1) to MVN(m2,s2)

0.5*( sum(diag(solve(s2)%*%s1))+(m2-m1)%*%solve(s2)%*%t(t(m2-m1))-

log(det(s1)/det(s2))-length(m1) ) }

4.1.5 Generation of covariance matrices

I have written a simple code to generate covariance matrices based on the Wishart distri-

bution. If Xi Np (0, ΣΣΣ), then A = ∑
n
i=1 XiX

T
i follows a p-variate Wishart distribution with

parameters nΣΣΣ and nW (ΣΣΣ, n) (Anderson, 2003). The algorithm to generate covariance matri-

ces from a Wishart distribution with expected value equal to ΣΣΣ is

1. Generate say 1000 random values Xi from a Np (0, ΣΣΣ). Note, n must be greater than p.

So, if you have more dimensions than 1000, change this number.

2. Store in an array the matrices XiX
T
i .

3. Take the average of these 1000 matrices.

The function is a bit (???) slow, so if any reader thinks or knows of a faster way, please

send me a message.
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cov.gen=function(n,Sigma){

p=ncol(Sigma) ## dimension of Sigma

sim=array(dim=c(p,p,n))

for (j in 1:n) {

A=array(dim=c(p,p,1000))

for (i in 1:1000) {

x=mvrnorm(1000,rep(0,p),Sigma) ## generate multivariate normal values

A[,,i]=t(x)%*%x/1000 } ## generate Wishart values and divide by 1000

sim[,,j]=apply(A,1:2,mean) } ## take the average of the Wishart values

sim }

4.1.6 Multivariate t distribution

The density of the multivariate t distribution is

fd (y) =
Γ
(

ν+d
2

)

Γ
(

ν
2

)
|πνΣ|1/2

[
1 + 1

ν (y − µµµ)T
ΣΣΣ−1 (y − µµµ)

] ν+d
2

, (4.1)

where the parameter ν is called degrees of freedom and the the mean vector and variance

matrix are defined as follows

E (y) = µµµ if ν > 1, otherwise undefined and

Var (y) =
ν

ν − 2
ΣΣΣ if ν > 2 otherwise undefined.

Numerical optimization is again required to estimate the parameters and we have to say

that in the special case of ν = 1, the distribution is called multivariate Cauchy. The MASS

library in R offers estimation of the mean vector and covariance matrix of this distribution for

specific degrees of freedom. We have extended the cov.trob command to incorporate the de-

grees of freedom and end up with the maximum likelihood estimates for all the parameters.

The function will return the mean location and scatter matrix of the multivariate t distribu-

tion along with the degrees of freedom (ν) and also the classical mean vector and covariance

matrix, which essentially are calculated assuming a multivariate normal.

multivt=function(y) {

## the next mvt function is for the appropriate

## degrees of freedom

## y contains the data

mvt=function(y,v) {

a=cov.trob(y,nu=v)

se=a$cov ; n=nrow(y) ; p=ncol(y)
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me=as.vector(a$center)

me=matrix(rep(me,n),byrow=T,ncol=p)

f= n*lgamma((v+p)/2)-n*lgamma(v/2)-0.5*n*p*log(pi*v)-0.5*n*log(det(se))-

0.5*(v+p)*sum(log(diag(1+(y-me)%*%solve(se)%*%t(y-me)/v)))

f }

b=optimize(mvt,c(0.9,20000),y=y,maximum=T)

df=b$maximum ; loglik=b$objective

## df is the optimal degrees of freedom

result=cov.trob(y,nu=df) ## the center and covariance matrix

## will be calculated based on the optimal degrees of freedom

list(center=result$center,covariance=result$cov,degrees.of.freedom=df,log.lik=loglik) }

4.1.7 Random values generation from a multivariate t distribution

There is a command available through the mvtnorm package for generating from a multivari-

ate t distribution with some given parameters. We also provide a function for doing that.

The basic relationship one needs to generate values from a multivariate t distribution with

parameters µµµ, ΣΣΣ and ν is the following

x = µµµ +

√
ν

χ2
ν

ΣΣΣ1/2z,

where z follows a multivariate standard normal distribution z ∼ Np

(
0, Ip

)
. So, basically, the

algorithm is the same as in the multivariate normal distribution. The difference is the extra

parameter ν.

rand.mvt=function(n,mu,sigma,v){

## n is the sample size

## mu is the mean vector

## sigma is the covariance matrix

## sigma does not have to be of full rank

## v is the degrees of freedom

p=length(mu)

x=matrix(rnorm(n*p),ncol=p)

w=sqrt(v/rchisq(n,v))

m=matrix(rep(mu,n),byrow=TRUE,ncol=p)

lam=eigen(sigma)$values

vec=eigen(sigma)$vectors

B=vec%*%diag(sqrt(lam))%*%t(vec)

z=w*x%*%B+m

z }
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4.1.8 Contour plot of the bivariate normal, t and skew normal distribution

We will provide a function to obtain the parameters of the fitted distribution, plot the bivari-

ate data and then add contour lines on the same plot. If we wish to use the skew normal

distribution we will have to use the R package sn written by Azzalini (2011). For the t dis-

tribution we require the MASS library and the function we presented before to calculate its

associated parameters.

The idea is to take a grid of points along the two axis and for each point to calculate the

value of the fitted density. Then, use the ready built-in function in R contour and that’s it.

den.contours=function(x,type=’normal’) {

## x is a bivariate dataset

## type can be either ’normal’, ’t’ or ’skewnorm’

x=as.matrix(x)

## the user must make sure he/she has bivariate data. If the data are not bivariate

## the function will not work

## the default distibution in normal, but there are other options, such as

## t and skew normal

m=colMeans(x) ## mean vector

s=cov(x) ## covariance matrix

n1=100

n2=100 ## n1 and n2 specify the number of points taken at each axis

## if for example the y axis is longer than the x axis, then you might

## want to change n2.

sa=solve(s) ## inverse of the covariance matrix

con=1/sqrt(det(2*pi*s)) ## normalizng constant of the multivariate normal

x1=seq(min(x[,1])-1,max(x[,1])+1,length=n1)

x2=seq(min(x[,2])-1,max(x[,2])+1,length=n2)

mat=matrix(nrow=n1,ncol=n2)

for (i in 1:n1) {

for (j in 1:n2) {

can=con*exp(-0.5*(c(x1[i]-m[1],x2[j]-m[2])%*%sa%*%c(x1[i]-m[1],x2[j]-m[2])))

if (abs(can)<Inf) mat[i,j]=can else mat[i,j]=NA } }

## we did this to avoid any issues with high numbers

contour(x1,x2,mat,nlevels=10,col=2,xlab=colnames(x)[1],ylab=colnames(x)[2])

points(x[,1],x[,2])

param=list(mesos=colMeans(x),covariance=var(x))

if (type==’t’) {

x=as.matrix(x)

## we will use the previous function ’multivt’ to
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## estimate the parameters of the bivariate t first

f=multivt(x)

m=f$center

s=f$covariance

v=f$degrees.of.freedom

st=solve(s)

x1=seq(min(x[,1])-1,max(x[,1])+1,length=n1)

x2=seq(min(x[,2])-1,max(x[,2])+1,length=n2)

mat=matrix(nrow=n1,ncol=n2)

for (i in 1:n1) {

for (j in 1:n2) {

ca=lgamma((v+2)/2)-lgamma(v/2)-0.5*log(det(pi*v*s))-

0.5*(v+2)*(log( 1+(c(x1[i]-m[1],x2[j]-m[2])%*%st%*%c(x1[i]-m[1],x2[j]-m[2]))/v ))

can=exp(ca)

if (abs(can)<Inf) mat[i,j]=can else mat[i,j]=NA } }

## we did this to avoid any issues with high numbers

contour(x1,x2,mat,nlevels=10,col=2,xlab=colnames(x)[1],ylab=colnames(x)[2])

points(x[,1],x[,2])

param=list(center=m,scatter=s,df=v) }

if (type==’skewnorm’) {

x=as.matrix(x)

library(sn)

para=msn.mle(y=x)$dp

x1=seq(min(x[,1])-1,max(x[,1])+1,length=n1)

x2=seq(min(x[,2])-1,max(x[,2])+1,length=n2)

mat=matrix(nrow=n1,ncol=n2)

for (i in 1:n1) {

for (j in 1:n2) {

y=c(x1[i],x2[j])

can=dmsn(y,dp=para)

if (abs(can)<Inf) mat[i,j]=can else mat[i,j]=NA } }

contour(x1,x2,mat,nlevels=10,col=2,xlab=colnames(x)[1],ylab=colnames(x)[2])

points(x[,1],x[,2])

param=para }

param }
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4.2 Matrix related functions

4.2.1 Choosing the number of principal components using SVD

We will start by explaining what is SVD. SVD stands for Singular Value Decomposition of

a rectangular matrix. That is any matrix, not only a square one in contrast to the Spectral

Decomposition (Eigenvalues and Eigenvectors, what Principal Component Analysis does).

Suppose we have a n × p matrix X. Then using SVD we can write the matrix as

X = UDVT, (4.2)

where U is an orthonormal matrix containing the eigenvectors of XXT, the V is an orthonor-

mal matrix containing the eigenvectors of XTX and D is an r × r matrix containing the r non

zero singular values d1, . . . , dr (square root of the eigenvalues) of XXT (or XTX). We remind

that the maximum rank of an n × p matrix is equal to min{n, p}. Using (4.2), each column of

X can be written as

xj =
r

∑
k=1

ukdkvjk.

This means that we can reconstruct the matrix X using less columns (if n > p) than it has.

x̃m
j =

m

∑
k=1

ukdkvjk, where m < r.

The reconstructed matrix will have some discrepancy of course, but it is the level of dis-

crepancy we are interested in. If we center the matrix X, subtract the column means from

every column, and perform the SVD again, we will see that the orthonormal matrix V con-

tains the eigenvectors of the covariance matrix of the original, the un-centred, matrix X.

Coming back to the a matrix of n observations and p variables, the question was how

many principal components to retain. We will give an answer to this using SVD to reconstruct

the matrix. We describe the steps of this algorithm below.

1. Center the matrix by subtracting from each variable its mean Y = X − m

2. Perform SVD on the centred matrix Y.

3. Choose a number from 1 to r (the rank of the matrix) and reconstruct the matrix using

(4.2). Let us denote by Ỹm the reconstructed matrix.

4. Calculate the sum of squared differences between the reconstructed and the original

values

PRESS (m) =
n

∑
i=1

p

∑
j=1

(
ỹm

ij − yij

)2
, m = 1, .., r.
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5. Plot PRESS (m) for all the values of m and choose graphically the number of principal

components.

The graphical way of choosing the number of principal components is not the best and there

alternative ways of making a decision (see for example Jolliffe, 2005). The code in R is given

below

choose.pc=function(x) {

## x contains the data

center=function(x) x-mean(x)

x=apply(x,2,center) ## center the matrix

A=svd(x) ## SVD of the centred matrix

u=A$u ; d=A$d ; v=A$v ; p=length(d)

press=rep(0,p)

for (i in 1:p) {

y=x

for (j in 1:ncol(x)) {

z=as.matrix(x[,1:i])

for (k in 1:i) z[,k]=u[,k]*d[k]*t(v[j,k]) ## reconstruction using m eigenvectors

y[,j]=rowSums(z) }

press[i]=sqrt(sum((y-x)^2)) } ## calculation of the PRESS values

plot(press,type=’b’,xlab=’Number of components’,ylab=’Error’)

list(press=press) }

4.2.2 Confidence interval for the percentage of variance retained by the first κ components

The algorithm is taken by Mardia et al., 1979, pg. 233-234. The percentage retained by the fist

κ principal components denoted by ψ̂ is equal to

ψ̂ =
∑

κ
i=1 λ̂i

∑
p
j=1 λ̂j

ψ is asymptotically normal with mean ψ and variance

τ2 =
2

(n − 1) (trΣ)2

[
(1 − ψ)2

(
λ2

1 + ... + λ2
k

)
+ ψ2

(
λ2

κ+1 + ...λ2
p

)]

=
2trΣ

2

(n − 1) (trΣ)2

(
ψ2 − 2αψ + α

)
,

where

α =
(

λ2
1 + ... + λ2

k

)
/
(

λ2
1 + ... + λ2

p

)
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and

trΣ
2 = λ2

1 + ... + λ2
p

The bootstrap version provides an estimate of the bias, defined as ψ̂boot − ψ̂ and confidence

intervals calculated via the percentile method and via the standard (or normal) method (Efron

and Tibshirani, 1993). The code below gives the option to perform bootstrap or not by making

the (B) equal to or greater than 1.

lamconf=function(x,k,a=0.05,B=999) {

## x contains the data

## k is the number of principal components to keep

## a denotes the lower quantile of the standard normal distribution

## thus 0.95\% confidence intervals are constructed

## R is the number of bootstrap replicates

x=as.matrix(x)

n=nrow(x) ; p=ncol(x)

lam=eigen(cov(x))$values ## eigenvalues of the covariance matrix

psi=sum(lam[1:k])/sum(lam) ## percentage retained by the first k components

if (B==1) {

trasu=sum(lam)

trasu2=sum(lam^2)

alpha=sum( (lam^2)[1:k] )/trasu2

t2=( (2*trasu2)*(psi^2-2*alpha*psi+alpha) )/( (n-1)*(trasu^2) )

low=psi-qnorm(1-a/2)*sqrt(t2)

up=psi+qnorm(1-a/2)*sqrt(t2)

result=list(psi=psi,lower.limit=low,upper.limit=up) }

if (B>1) { ## bootstrap version

t=rep(0,B)

for (i in 1:B) {

b=sample(1:n,n,replace=TRUE)

lam=eigen(cov(x[b,]))$values

t[i]=sum(lam[1:k])/sum(lam) }

t=sort(t)

low1=psi-qnorm(1-a/2)*sd(t)

up1=psi+qnorm(1-a/2)*sd(t)

quan=quantile(t,probs=c(a/2,1-a/2))

hist(t)

abline(v=psi,lty=2,lwd=2)

abline(v=mean(t),lty=1,lwd=3)
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legend(low1,B/10,cex=0.8,c("psi","bootstrap psi"),lty=c(2,1),lwd=c(2,3))

result=list(psi=psi,psi.boot=mean(t),est.bias=mean(t)-psi,normal.low=low1,

normal.up=up1,percetile.low=quan[1],percentile.up=quan[2]) }

result }

4.2.3 The Helmert matrix

We can chose to put another d x D matrix in the choice of F as well. A good choice could be

the Helmert sub-matrix. It is the Helmert matrix (Lancaster, 1965) with the first row deleted.

This is defined as a d × D matrix with orthonormal rows that are orthogonal to 1T
D, that is

HHT = Id and H1D = 0d. The i − th row of the matrix is defined as 1√
i(i+1)

until the i − th

column. The (i + 1)− th column is the negative sum of the i (first) elements of this row. The

next columns of this row have zeros. Note that the Helmert sub-matrix is usually used to

remove the singularity of the matrix (if the matrix has one zero eigenvalue) and it is also an

isometric transformation (the distances between two row vectors is the same before and after

the multiplication by the Helmert matrix).

An example of the form of the (D − 1)× D Helmert sub-matrix is

H =




1√
2

− 1√
2

0 0 . . . . . . 0

1√
6

1√
6

− 2√
6

0 . . . 0
...

...
...

...
...

. . .
...

...
1√

i(i+1)
. . . 1√

i(i+1)
− i√

i(i+1)
0 . . . 0

...
...

...
...

...
. . .

...
1√
dD

. . . . . . . . . . . . 1√
dD

− dD√
dD




(4.3)

The R-code for the Helmert sub-matrix is

helm=function(n) {

h=matrix(rep(0,n^2),nrow=n,ncol=n)

h[1,]=1/sqrt(n)

for (i in 2:n) {

for (j in 1:i-1)

h[i,j]=1/sqrt(i*(i-1))

h[i,j+1]=-sum(h[i,]) }

h=h[c(2:n),]

h }

What we have to do now is go to 4.4 and instead of F put the Helmert matrix
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ginv2=function(A) {

d=ncol(A)

F=helm(d)

inv=t(F)%*%solve(F%*%A%*%t(F))%*%F

inv }

We can compare the results from these two methods with the results that are produced from

the package corpcor (Schaefer et al., 2007). The disadvantage of these two alternative ways is

that they require the rank of the square matrix to be equal to its dimensions minus 1 and as

the dimensions grow large they will not work properly.

4.2.4 A pseudoinverse matrix

We will give a very simple way to evaluate a pseudoinverse matrix of a square D x D singular

matrix whose rank is n − 1. Let Γ be such a singular matrix Aitchison, 2003, pg. 99. We need

another matrix which reduces the dimensions of the matrix by one. One choice can be the

following d x D F matrix with rank equal to d.

F = [Id : −jd]. (4.4)

This is simply the identity matrix with one extra column to the right with all elements equal

to −1. Then the pseudoinverse Γ− is equal to:

Γ− = FT
(

FΓFT
)−1

F

ginv1=function(A) {

d=ncol(A)-1

F=cbind( matrix(diag(d),ncol=d),matrix(rep(-1,d),ncol=1) )

inv=t(F)%*%solve(F%*%A%*%t(F))%*%F

inv }

4.2.5 Exponential of a symmetric matrix

R does not have a built in function for the exponential of a matrix. This can be found in the

package expm (Goulet et al., 2013). We provide a simple formula for the case of a symmetric

matrix following Moler and Van Loan (2003) using the eigenvectors and the eigenvalues of

the matrix

eA = Vdiag
(

eλ1 , . . . , eλp

)
V−1,

where V is the matrix containing the eigenvectors of the matrix A, λ1, . . . , λp are the eigen-

values of A and p is the rank of A assuming it is of full rank. A nice explanation of this can
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be found at Joachim Dahl’ course webpage (slide No 10). The R code is given below

expm=function(A){

## A has to be a symmetric matrix

## the next function checks that A is symmetric

if (all(t(A)-A!=0))

expA=paste(’A is not symmetric’)

if (all(t(A)-A==0)) {

a=eigen(A)

expA=a$vectors%*%diag(exp(a$values))%*%t(a$vectors) }

expA }
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5 Compositional data

Compositional data are a special type of multivariate data in which the elements of each ob-

servation vector are non-negative and sum to a constant, usually taken to be unity. Data of

this type arise in biological settings, for instance, where the researcher is interested in the

proportion of megakaryocytes in ploidy classes. Other areas of application of compositional

data analysis include geology, where the metal composition of a rock specimen is of inter-

est; archaeometry, where the composition of ancient glasses for instance is of interest; and

economics, where the focus is on the percentage of the household expenditure allocated to

different products. Other fields are political sciences, forensic sciences, ecology and sedimen-

tology.

The main book suggested to the reader for familiarizing himself with compositional data

is Aitchison’s book (Aitchison, 2003). For more information one can look at these Lecture

notes on Compositional Data Analysis and Van Den Boogaart and Tolosana-Delgado (2013).

In mathematical terms, we can define the relevant sample space as

Sd =

{
(x1, ..., xD)|xi ≥ 0,

D

∑
i=1

xi = 1

}
, (5.1)

where d = D − 1. When D = 3, the best way to visualize them is the ternary diagram (or

a three edged pyramid when D = 4), which is essentially a triangle. If we plot the simplex

in three dimensions what we will see is a two dimensional triangle, therefore a projection

to two dimensions under the unity sum constraint is convenient. The result is the already

mentioned ternary diagram. The higher the value of the component, the closer it is to the

corresponding vertex.

5.1 Ternary plot

Suppose we have a composition X where xi = (x1, x2, x3)
T ∈ S2. The matrix X consists of

n rows and 3 columns, thus every row vector consists of 3 proportions. In order to plot the

points on a ternary diagram we need to left multiply the composition by the following matrix:

P =

[
0 1 0.5

0 0
√

3
2

]
(5.2)

The columns of (5.2) represent the vertices of an equilateral triangle in the Cartesian coor-

dinates (Schnute and Haigh, 2007). In this way the length of each side of the triangle is equal

to 1. Watson and Nguyen (1985) gave a different representation of an equilateral triangle,

in which case the barycentre lies on the origin and the height of the triangle is equal to 1,

resulting in the length of the sides being greater than 1. Viviani’s theorem concerns any point

within the triangle and the three lines from that point which are perpendicular to the sides of
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the triangle. The sum of the lengths of the lines is a fixed value, regardless of the position of

the point and is equal to the height of the triangle. Below we present the code to produce a

ternary plot.

The pair of coordinates of every composition in R2 after multiplying by the P matrix (5.2)

is given by

y = (y1, y2) =

(
x2 +

x3

2
,

x3

√
3

2

)
(5.3)

Below is the code to produce the ternary plot with the the compositional vectors plotted in

R2. The code plots the closed geometric mean (Aitchison, 1989) and the simple arithmetic

mean of the data as well. The closed geometric mean of a composition X is defined as

µ0 =

(
g1

g1 + . . . + gD
, . . . ,

gD

g1 + . . . + gD

)
, (5.4)

where

gi =
n

∏
j=1

x1/n
ij , i = 1, . . . , D.

The simple arithmetic mean is defined as

µ1 =

(
1

n

n

∑
j=1

x1j, . . . ,
1

n

n

∑
j=1

xDj

)
(5.5)

ternary=function(x,means=TRUE){

## x contains the data

x=as.matrix(x,ncol=3)

x=x/rowSums(x)

nam=colnames(x)

n=nrow(x) ; ina=rep(1,n)

## m1 is the closed geometric mean

g1=colMeans(log(x[,-1]/x[,1]))

g2=c(1,exp(g1))

m1=g2/sum(g2)

## m2 is the simple arithmetic mean

m2=colMeans(x)

x=rbind(x,m1,m2)

for (i in 1:n) { ## the next for function checks for zeros.

if (x[i,1]==0 | x[i,2]==0 | x[i,3]==0) ina[i]=3 }

b1=c(1/2,0,1,1/2)
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b2=c(sqrt(3)/2,0,0,sqrt(3)/2)

b=cbind(b1,b2)

plot(b[,1],b[,2],type="l",xlab=" ",ylab=" ",pty="s",xaxt="n",yaxt="n",bty="n")

proj=matrix(c(0,1,1/2,0,0,sqrt(3)/2),ncol=2)

d=x%*%proj

points(d[1:n,1],d[1:n,2],col=ina)

text(b[1,1],b[1,2]+0.02,nam[3],cex=1)

text(b[2:3,1],b[2:3,2]-0.02,nam[1:2],cex=1)

if (means==TRUE) { ## should the mean appear in the plot?

points(d[c(n+1),1],d[c(n+1),2],pch=2,col=2)

points(d[c(n+2),1],d[c(n+2),2],pch=3,col=3)

legend(0.57,0.9,c("closed geometric mean","arithmetic mean"),

pch=c(2,3),col=c(2,3),bg=’gray90’) }

title(main=NULL)

list(closed.geometric=m1,arithmetic=m2) }

5.2 The spatial median for compositional data

Sharp (2006) used the graph median as a measure of central tendency for compositional data.

We will provide a function to calculate the spatial median instead of the graph median. We

saw this function in Section 3.2.7. The only addition now is the additive log-ratio transforma-

tion used in compositional data.

comp.spatmed=function(x){

## x contains the data

x=as.matrix(x)

D=ncol(x) ## dimensionality of the data

y=log(x[,-D]/x[,D]) ## the additive log-ratio transformation

delta=spat.med(y)

exp(delta)/(1+exp(delta)) }

5.3 The Dirichlet distribution

The Dirichlet distribution is a distribution whose support is the simplex (5.1). The density of

the Dirichlet distribution is the following

f (x1, . . . , xD; α1, . . . , αD) =
1

B (α)

D

∏
i=1

x
αi−1
i (5.6)
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where

B (α) =
∏

D
i=1 Γ (αi)

Γ
(

∑
D
i=1 αi

) and α = (α1, . . . , αD)

In the next two section we see how to estimate the parameter of the Dirichlet distribution.

5.3.1 Estimating the parameters of the Dirichlet via the log-likelihood

The log-likelihood of the Dirichlet has the following form:

l = n log Γ

(
D

∑
i=1

αi

)
− n

D

∑
i=1

log Γ (αi) +
n

∑
j=1

D

∑
i=1

(αi − 1) log xij

The function in R is the following:

diri.mle=function(x) {

## x is the compositional data

loglik=function(param,x=x) {

n=nrow(x) ## the sample size

x=x/rowSums(x)

-( n*lgamma(sum(param))-n*sum(lgamma(param))+sum(log(x)%*%(param-1)) ) }

da=optim(runif(ncol(x),0,20),loglik,x=x,control=list(maxit=2000))

da=optim(da$par,loglik,x=x,control=list(maxit=2000))

da=optim(da$par,loglik,x=x,control=list(maxit=2000),hessian=T)

list(param=da$par,std=sqrt(diag(solve(da$hessian))),loglik=-da$value) }

Thus after generating values from a Dirichlet distribution, we can use the ”optim” func-

tion to maximize the log-likelihood. The argument ”hessian=T” calculates the hessian matrix

and the inverse of the hessian matrix serves as the observed information matrix of the pa-

rameters. This way can also be found at the package VGAM (Yee, 2010). The extra feature

offered by the package is the ability to include covariates.

An alternative form of the Dirichlet density is via the parameter φ:

f (x) =
Γ
(

∑
D
i=1 φa∗i

)

∏
D
i=1 Γ

(
φa∗i
)

D

∏
i=1

x
φa∗i −1

i , (5.7)

where φ = ∑
D
i=1 ai and ∑

D
i=1 a∗i = 1.

Maier (2011) has created and R package (DirichletReg) which performs Dirichlet estima-

tion (with or without covariates) with both parameter formulations. Furthermore, in this

parametrization he offers the possibility of modelling the parameter φ with the covariates as
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well. The relative log-likelihood is

ℓ = n log Γ (φ)−
n

∑
j=1

D

∑
i=1

log Γ (φa∗i ) +
n

∑
j=1

D

∑
i=1

(φa∗i − 1) log xij, (5.8)

The function for this parametrization (no covariates here) is given below

diriphi.mle=function(x) {

## x is the compositional data

diri=function(param,x=x) {

x=x/rowSums(x) ## makes sure the data are compositional

n=nrow(x) ## the sample size

phi=param[1] ; b=c(1-sum(param[-1]),param[-1])

if ( all(b>0) & all(b<1) & phi>0) {

f=-( n*lgamma(phi)-n*sum(lgamma(phi*b))+sum(log(x)%*%(phi*b-1)) ) }

else f=100000

f }

da=optim(c(10,colMeans(x)[-1]),diri,x=x,control=list(maxit=2000))

da=optim(da$par,diri,x=x,control=list(maxit=2000))

da=optim(da$par,diri,x=x,control=list(maxit=2000),hessian=T)

phi=da$par[1] ; a=da$par[-1]

list(phi=phi,a=a,std=sqrt(diag(solve(da$hessian))),b=phi*c(1-sum(a),a),

loglik=-da$value) }

5.3.2 Estimating the parameters of the Dirichlet distribution through entropy

We will make use of the following relationship

E [log Xi] = ψ (αi)− ψ (α0) , (5.9)

where ψ is the digamma function defined as

ψ (x) =
d

dx
log Γ (x) =

Γ′ (x)

Γ (x)
and α0 =

D

∑
i=1

αi

Instead of trying to maximize the log-likelihood of the Dirichlet distribution we will try to

solve the k simultaneous equations imposed by 5.9. If you notice, these are just the first

derivatives of the log-likelihood with respect to each of the parameters. In other words, their

are the score statistics, since the expectation is in the game. I then opened up a book I have by

Ng et al. (2011) about the Dirichlet distribution and I saw that they show that this approach

is the generalised method of moments (GMM). No matter what the method is called, we will

use the package BB (Varadhan and Gilbert, 2009).
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diri.ent=function(x){

## x is the compositional data

library(BB)

x=as.matrix(x)

x=x/rowSums(x) ## makes sure x is compositional data

n=nrow(x) ## sample size

sir=function(param) {

f=rep(0,length(param))

ma=colMeans(log(x))

for (i in 1:length(f)) {

f[i]=ma[i]-digamma(param[i])+digamma(sum(param)) }

f }

da=BBsolve(runif(ncol(x),0,20),sir,control=list(maxit=2000,tol=1e-10))

param=da$par

lik=n*lgamma(sum(param))-n*sum(lgamma(param))+sum(log(x)%*%(param-1))

list(param=param,loglik=lik) }

A disadvantage of the ”entropy style” estimation is that the log-likelihood maximization

is very stable and you can compare the results with the package VGAM (Yee, 2010).

5.3.3 Symmetric Dirichlet distribution

The symmetric Dirichlet distribution arises when all of its parameters are equal. To test this

assertion we will use the log-likelihood ratio test statistic. The relevant R code is given below

sym.test=function(x){

## x contains the data

n=nrow(x) ## the sample size

D=ncol(x) ## the dimensionality of the data

loglik=function(param,x)-( n*lgamma(sum(param))-n*sum(lgamma(param))+

sum(log(x)%*%(param-1)) )

sym=function(a,x) n*lgamma(D*a)-n*D*lgamma(a)+sum(log(x)*(a-1))

t0=optimize(sym,c(0,1000),x=x,maximum=TRUE)

t1=optim(colMeans(x)*10,loglik,x=x,control=list(maxit=2000))

t1=optim(t1$par,loglik,x=x,control=list(maxit=2000))

t1=optim(t1$par,loglik,x=x,control=list(maxit=2000))

a1=t1$par ; a0=t0$maximum

h1=-as.numeric(t1$value) ; h0=as.numeric(t0$objective)

test=2*(h1-h0)

p.value=1-pchisq(test,D-1)

list(estimated.parameters=a1,one.parameter=a0,log.lik1=h1,log.lik0=h0,
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df=D-1,test=test,p.value=p.value) }

5.3.4 Kullback-Leibler divergence between two Dirichlet distributions

We show a function to calculate the Kullback-Leibler divergence between two Dirichlet dis-

tributions. The proof of the Kullback-Leibler divergence between Dir (a) and Dir (b) is avail-

able from here (Dirichlet KL-divergence). It is a technical report written Daniel Beale from

the university of Bath. This divergence is equal to

KL (D1 (a) ‖ D2 (b)) =
D

∑
i=1

(ai − bi) [Ψ (ai)− Ψ (a0)] +
D

∑
i=1

log
Γ (bi)

Γ (ai)
+ log

Γ (a0)

Γ (b0)
,

where a0 = ∑
D
i=1 ai, b0 = ∑

D
i=1 bi and Ψ (.) is the digamma function.

KL=function(a,b) {

## KL-Divergence between Dir(a) and Dir(b)

a0=sum(a) ; b0=sum(b)

f=sum( (a-b)*(digamma(a)-digamma(a0)) )+sum(lgamma(b)-lgamma(a))+

lgamma(a0)-lgamma(b0)

f }

5.3.5 Bhattacharyya distance between two Dirichlet distributions

In Rauber et al. (2008) is mentioned that the the Kullback-Leibler divergence is inappropriate

as a divergence since it is not defined when there is a zero value. For this reason we will give

below the code to calculate the Bhattacharyya ditance between two Dirichlet distributions.

The Bhattacharyya distance between two Dirichlet distributions is defined as

JB (D1 (a) , D2 (b)) = log Γ

(
D

∑
i=1

ai + bi

2

)
+

1

2

D

∑
i=1

[log Γ (ai) + log Γ (bi)]

−
D

∑
i=1

log Γ

(
ai + bi

2

)
− 1

2

[
log Γ

(
D

∑
i=1

ai

)
+ log Γ

(
D

∑
i=1

bi

)]
(5.10)

The code to calculate (5.10) is given below

Bhatt=function(a,b) {

## Bhattacharyya distance between Dir(a) and Dir(b)

f=lgamma(0.5*sum(a+b))+0.5*sum(lgamma(a)+lgamma(b))-sum(lgamma(0.5*(a+b)))-

0.5*(lgamma(sum(a))+lgamma(sum(b)))

f }
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5.4 Contour plot of distributions on S2

In section 5.1 we showed how construct a ternary plot by making use of a matrix (5.2). In this

case, we need to do the opposite. The contour plot presented here needs parameter values.

The idea is the same as in Section 4.1.8.

5.4.1 Contour plot of the Dirichlet distribution

What the user has to do is to fit a parametric model (Dirichlet distributions for example, or

the normal, t or skew normal distribution in the log-ratio transformed data) and estimate

the parameters. Then add a couple of extra lines to all the next functions where he plots his

compositional data.

We take a grid of points in R2 and see if it lies within the triangle (or the ternary plot seen

in (5.1)). If it lies, then it comes from a composition. To find the composition we need to work

out the opposite of (5.3). The coordinates of a compositional vector in R2 taken from (5.3) are

(y1, y2) =

(
x2 +

x3

2
,

x3

√
3

2

)
.

We have the pair (y1, y2) and want to calculate (x1, x2, x3) at first. The result is





x3 = 2y2√
3

x2 = y1 − y2√
3

x1 = 1 − x2 − x3





Thus (x1, x2, x3) ∈ S2 when (y1, y2) fall within the interior of the triangle. If you plot the

ternary plot from section 5.1 you will see that the top of the triangle is located at
(

0.5,
√

3
2

)

and the other two vertices are located at (0, 0) and (1, 0) given in (5.2). Thus, the three lines

which define the triangle are

y2 = 0 with 0 ≤ y1 ≤ 1

y2 =
√

3y1 with 0 ≤ y1 ≤ 0.5

y2 =
√

3 −
√

3y1 with 0.5 ≤ y1 ≤ 1.

Thus, only the points inside the interior of the triangle come from a composition. Once we

have calculated (x1, x2, x3) from the pair of ys which lie inside the interior of the triangle we

will plug them in (5.6). In this way we will calculate the density of the Dirichlet with some

given parameter (estimated or not) at that point. We will do this for all points and in the end

we will plot the contour lines along with the triangle. The code is given below.

diri.contour=function(a,n=100) {
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## the a is the vector of parameters

## n is the number of points of each axis used

x1=seq(0.001,0.999,length=n) # coordinats of x

x2=seq(0.001,sqrt(3)/2-0.0001,length=n) # coordinates of y

mat=matrix(nrow=n,ncol=n)

beta=prod(gamma(a))/gamma(sum(a)) ## beta function

for (i in 1:c(n/2) ) {

for (j in 1:n) {

if (x2[j] < sqrt(3)*x1[i]) { ## This checks if the point lies inside the triangle

## the next three lines invert the points which lie inside the triangle

## back into the composition in S^2

w3=(2*x2[j])/sqrt(3)

w2=x1[i]-x2[j]/sqrt(3)

w1=1-w2-w3

w=c(w1,w2,w3)

can=(1/beta)*prod(w^(a-1))

if (abs(can)<Inf) mat[i,j]=can else mat[i,j]=NA }

else { mat[i,j]=NA } } }

for (i in c(n/2+1):n) {

for (j in 1:n) {

if (x2[j]<sqrt(3)-sqrt(3)*x1[i]) { ## This checks if the point lies inside the triangle

## the next three lines invert the points which lie inside the triangle

## back into the composition in S^2

w3=(2*x2[j])/sqrt(3)

w2=x1[i]-x2[j]/sqrt(3)

w1=1-w2-w3

w=round(c(w1,w2,w3),6)

can=(1/beta)*prod(w^(a-1))

if (abs(can)<Inf) mat[i,j]=can else mat[i,j]=NA }

else { mat[i,j]=NA } } }

contour(x1,x2,mat,col=3) ## contour plot

b1=c(1/2,0,1,1/2)

b2=c(sqrt(3)/2,0,0,sqrt(3)/2)

b=cbind(b1,b2)

## the next line draws the triangle in the two dimensions

points(b[,1],b[,2],type="l",xlab=" ",ylab=" ") }
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5.4.2 Log-ratio transformations

The Dirichlet distribution (5.6) is a natural parametric model on the simplex but not very

rich though. Alternative distributions are the multivariate normal and skew normal and

the multivariate t distribution. Prior to the codes for the contour plot, we will show two

transformation which allow us to map Sd onto Rd.

Aitchison (2003) suggested a log-ratio transformation for compositional data. He termed

it additive log-ratio transformation and is the generalised logistic transformation

y =

(
log

x1

xD
, . . . , log

xd

xD

)
, (5.11)

where xD indicates the last component (any other component can play the role of the common

divisor). Another log-ratio transformation also suggested by Aitchison (2003) was the centred

log-ratio transformation

y =

(
log

x1

g (x)
, . . . , log

xd

g (x)

)
, and yD = −

d

∑
k=1

yk, where (5.12)

where g (x) = ∏
D
j=1 x1/D

j is the geometric mean of the compositional vector. The additive

log-ratio transformation maps the data from Sd to Rd, in contrast to the centred log-ratio

transformation which maps the Sd onto Qd

Qd =

{
(x1, ..., xD)

T :
D

∑
i=1

xi = 0

}
.

However, if we left multiply the centred log-ratio transformation by the Helmert sub-

matrix (4.3) the result is the isometric log-ratio transformation (Egozcue et al., 2003) which

maps the data from Qd onto Rd.

z = Hy (5.13)

The multiplication by the Helmert matrix is often met in shape analysis and it was applied

also in simplex shape spaces by Le and Small (1999). It was also known to Aitchison (2003)

who knew the relationship between the covariance matrix of (5.12) and (5.13) transforma-

tions. In fact, the multiplication by the Helmert sub-matrix leads to what he called standard

orthogonal contrasts.

We will skip the technical details here and just say that the road is open now to fit mul-

tivariate distributions whose support is the whole of Rd. To be more accurate, we also need

the Jacobians of the log-ratio transformations, but in the contour plot we will not use them.

For more information the reader is addressed to Aitchison (2003) and Pawlowsky Glahn et al.

(2007). We can apply either the additive log-ratio transformation (5.11) or the isometric log-
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ratio transformation (5.13) and in the transformed data fit a multivariate distribution defined

in Rd.

5.4.3 Contour plot of the normal distribution in S2

The density of the multivariate normal is

f (y) =
e−

1
2 (y−µ)T

Σ
−1(y−µ)

|2πΣ|1/2
(5.14)

We will repeat Section 5.4.1 with the only difference that we will give the code for the contour

plot of the bivariate multivariate normal distribution. The idea is the same, we choose a grid

of points and for each pair of points we see whether it falls within the triangle. If yes, we

calculated the density of the bivariate normal at that point by plugging it at (5.14).

norm.contour=function(m,s,type=’alr’,n=100) {

## m is the mean vector of the normal

## s is the covariance matrix

## the iso parameter determines whether the additive or the isometric

## log-ratio transformation will be used. If iso=’alr’ (the default) the additive

## log-ratio transformation is used. If iso=’ilr’, the isometric log-ratio is used

## n is the number of points of each axis used

x1=seq(0.001,0.999,length=n)

x2=seq(0.001,sqrt(3)/2-0.0001,length=n)

mat=matrix(nrow=n,ncol=n)

down=((2*pi)^(-2))*(det(s)^(-0.5))

st=solve(s)

for (i in 1:c(n/2) ) {

for (j in 1:n) {

if (x2[j] < sqrt(3)*x1[i]) { ## This checks if the point lies inside the triangle

## The next 4 lines calculate the composition

w3=(2*x2[j])/sqrt(3)

w2=x1[i]-x2[j]/sqrt(3)

w1=1-w2-w3

w=c(w1,w2,w3)

if (type==’alr’) y=log(w[-3]/w[3]) ## additive log-ratio transformation

if (type==’ilr’) {

y=log(w)-mean(log(w))

y=as.vector( y%*%t(helm(3)) ) } ## isometric log-ratio transformation

can=down*exp(-0.5*(c(y[1]-m[1],y[2]-m[2])%*%st%*%c(y[1]-m[1],y[2]-m[2])))

if (abs(can)<Inf) mat[i,j]=can else mat[i,j]=NA } } }
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for (i in c(n/2+1):n) {

for (j in 1:n) {

if (x2[j]<sqrt(3)-sqrt(3)*x1[i]) { ## This checks if the point lies inside the triangle

## The next 4 lines calculate the composition

w3=(2*x2[j])/sqrt(3)

w2=x1[i]-x2[j]/sqrt(3)

w1=1-w2-w3

w=c(w1,w2,w3)

if (type==’alr’) y=log(w[-3]/w[3]) ## additive log-ratio transformation

if (type==’ilr’) {

y=log(w)-mean(log(w))

y=as.vector( y%*%t(helm(3)) ) } ## isometric log-ratio transformation

can=down*exp(-0.5*(c(y[1]-m[1],y[2]-m[2])%*%st%*%c(y[1]-m[1],y[2]-m[2])))

if (abs(can)<Inf) mat[i,j]=can else mat[i,j]=NA } } }

contour(x1,x2,mat,col=3)

b1=c(1/2,0,1,1/2)

b2=c(sqrt(3)/2,0,0,sqrt(3)/2)

b=cbind(b1,b2)

points(b[,1],b[,2],type="l",xlab=" ",ylab=" ") }

5.4.4 Contour plot of the multivariate t distribution in S2

The density of the multivariate t distribution is given in (4.1). After applying the additive

log-ratio (5.11) or the isometric log-ratio transformation (5.13) to the compositional data we

can estimate the parameters of the multivariate t distribution via numerical optimization. In

Section 4.1.6 we provided a function to perform this task.

The way to produce a contour plot of the bivariate t distribution on the simplex is similar

to the normal distribution. The code is given below.

t.contour=function(v,m,s,iso=’alr’,n=100) {

## v is the degrees of freedom

## m is the location parameter

## s is the scatter parameter

## the iso parameter determines whether the additive or the isometric

## log-ratio transformation will be used. If iso=’alr’ (the default) the additive

## log-ratio transformation is used. If iso=’ilr’, the isometric log-ratio is used

## n is the number of points of each axis used

x1=seq(0.001,0.999,length=n)

x2=seq(0.001,sqrt(3)/2-0.0001,length=n)

mat=matrix(nrow=n,ncol=n)
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st=solve(s)

for (i in 1:c(n/2) ) {

for (j in 1:n) {

if (x2[j] < sqrt(3)*x1[i]) { ## This checks if the point lies inside the triangle

## The next 4 lines calculate the composition

w3=(2*x2[j])/sqrt(3)

w2=x1[i]-x2[j]/sqrt(3)

w1=1-w2-w3

w=c(w1,w2,w3)

if (type==’alr’) y=log(w[-3]/w[3]) ## additive log-ratio transformation

if (type==’ilr’) {

y=log(w)-mean(log(w))

y=as.vector( y%*%t(helm(3)) ) } ## isometric log-ratio transformation

ca=lgamma((v+p)/2)-lgamma(v/2)-0.5*log(det(pi*v*s))-

0.5*(v+p)*(log( 1+(c(y[1]-m[1],y[2]-m[2])%*%st%*%c(y[1]-m[1],y[2]-m[2]))/v ))

can=exp(ca)

if (abs(can)<Inf) mat[i,j]=can else mat[i,j]=NA } } }

for (i in c(n/2+1):n) {

for (j in 1:n) {

if (x2[j]<sqrt(3)-sqrt(3)*x1[i]) { ## This checks if the point lies inside the triangle

## The next 4 lines calculate the composition

w3=(2*x2[j])/sqrt(3)

w2=x1[i]-x2[j]/sqrt(3)

w1=1-w2-w3

w=c(w1,w2,w3)

if (type==’alr’) y=log(w[-3]/w[3]) ## additive log-ratio transformation

if (type==’ilr’) {

y=log(w)-mean(log(w))

y=as.vector( y%*%t(helm(3)) ) } ## isometric log-ratio transformation

ca=lgamma((v+p)/2)-lgamma(v/2)-0.5*log(det(pi*v*s))-

0.5*(v+p)*(log( 1+(c(y[1]-m[1],y[2]-m[2])%*%st%*%c(y[1]-m[1],y[2]-m[2]))/v ))

can=exp(ca)

if (abs(can)<Inf) mat[i,j]=can else mat[i,j]=NA } } }

contour(x1,x2,mat,col=3)

b1=c(1/2,0,1,1/2)

b2=c(sqrt(3)/2,0,0,sqrt(3)/2)

b=cbind(b1,b2)

points(b[,1],b[,2],type="l",xlab=" ",ylab=" ") }
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5.4.5 Contour plot of the skew-normal distribution in S2

An alternative distribution which can also be used to model compositional data is the multi-

variate skew-normal distribution (Azzalini and Valle, 1996). The density of the skew-normal

distribution is

fd (y) =
2∣∣2πΩΩΩ1/2

∣∣ e
− 1

2 (y−ξξξ)ΩΩΩ−1(y−ξξξ)T

Φ
[
θθθTωωω−1 (y − ξξξ)

]
, (5.15)

where Φ (·) is the cumulative distribution of the standard normal distribution, ωωω is the diag-

onal matrix containing the square root of diag (ΩΩΩ) and

θθθT =


 δ1√

1 − δ2
1

, . . . ,
δp√

1 − δ2
d




T

.

The vector δδδ = (δ1, . . . , δd)
T contains the skewness related parameters of the variables

and each δi ∈ (−1, 1), whereas each θi spans over all R. If θ = 0, then we end up with the

multivariate normal distribution. The parameter δi is related to the i-th skewness coefficient

as well. The skew normal can only model low skewness since the skewness coefficient cannot

exceed the value 0.99527 in absolute value. Thus, for the numerical maximization of the log-

likelihood of (5.15), good initial values for the vector δ are the skewness coefficients. If any of

the coefficient exceeds the cut-off value 0.99527, in either direction, the initial starting value

is set equal to this value.

In order to fit the skew-normal distribution (5.15) to a compositional dataset we first ap-

ply either the additive log-ratio (5.11) or the isometric log-ratio transformation (5.13). Using

the transformed data we need to estimate the parameters of the skew-normal distribution.

Azzalini (2011) has created an R package, called sn which fits the skew-normal distribution.

The expected value and variance matrix of the skew-normal distribution are expressed as

follows

E (y) = ξξξ − (2/π)1/2 δδδ and Var (y) = ΩΩΩ − 2

π
δδδδδδT.

The code to produce a contour plot for the bivariate skew-normal distribution on the

simplex is given below.

skewnorm.contour=function(ksi,omega,alpha,iso=’alr’,n=100) {

## ksi is the parameter ksi

## omega is the omega parameter

## alpha is the alpha parameter

## the iso parameter determines whether the additive or the isometric

## log-ratio transformation will be used. If iso=’alr’ (the default) the additive
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## log-ratio transformation is used. If iso=’ilr’, the isometric log-ratio is used

## n is the number of points of each axis used

x1=seq(0.001,0.999,length=n)

x2=seq(0.001,sqrt(3)/2-0.0001,length=n)

mat=matrix(nrow=n,ncol=n)

for (i in 1:c(n/2) ) {

for (j in 1:n) {

if (x2[j] < sqrt(3)*x1[i]) { ## This checks if the point lies inside the triangle

## The next 4 lines calculate the composition

w3=(2*x2[j])/sqrt(3)

w2=x1[i]-x2[j]/sqrt(3)

w1=1-w2-w3

w=c(w1,w2,w3)

if (type==’alr’) y=log(w[-3]/w[3]) ## additive log-ratio transformation

if (type==’ilr’) {

y=log(w)-mean(log(w))

y=as.vector( y%*%t(helm(3)) ) } ## isometric log-ratio transformation

can=dmsn(y,xi=ksi,Omega=omega,alpha=alpha)

if (abs(can)<Inf) mat[i,j]=can else mat[i,j]=NA } } }

for (i in c(n/2+1):n) {

for (j in 1:n) {

if (x2[j]<sqrt(3)-sqrt(3)*x1[i]) { ## This if whether the point lies inside the triangle

## The next 4 lines calculate the composition

w3=(2*x2[j])/sqrt(3)

w2=x1[i]-x2[j]/sqrt(3)

w1=1-w2-w3

w=c(w1,w2,w3)

if (type==’alr’) y=log(w[-3]/w[3]) ## additive log-ratio transformation

if (type==’ilr’) {

y=log(w)-mean(log(w))

y=as.vector( y%*%t(helm(3)) ) } ## isometric log-ratio transformation

can=can=dmsn(y,xi=ksi,Omega=omega,alpha=alpha)

if (abs(can)<Inf) mat[i,j]=can else mat[i,j]=NA } } }

contour(x1,x2,mat,col=3)

b1=c(1/2,0,1,1/2)

b2=c(sqrt(3)/2,0,0,sqrt(3)/2)

b=cbind(b1,b2)

points(b[,1],b[,2],type="l",xlab=" ",ylab=" ") }
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5.5 Regression for compositional data

5.5.1 Regression using the additive log-ratio transformation

The additive log-ratio transformation (5.11) will be used for the implementation of regression

for compositional data. we could of course use the isometric log-ratio transformation (5.13)

but the interpretation of the parameters is really hard and as the dimensions increase it can

become impossible. The idea is simple. Apply the additive log-ratio transformation and then

do multivariate regression. In the end close the fitted values back into the simplex using the

inverse of the transformation.

The multivariate regression we have as option in the current function is either standard

multivariate regression (see function multivreg) or robust multivariate regression (see func-

tion rob.multivreg). Section 3.2 has more functions for multivariate regression analysis. Should

the user wish to use them, he/she can simply change the function comp.reg and incorporate

the other regression functions.

log

(
yi

yD

)
= xTβββi ⇔ log yi = log yD + xTβββi, i = 1, . . . , d (5.16)

where xT is a column vector of the design matrix X, D is the number of components, d =

D − 1, yD is the last component playing the role of the common divisor and

βββi =
(

β0i, β1i, ..., βpi

)T
, i = 1, ..., d

are the regression coefficients and where p is the number of independent variables.

We see from (5.16) that when the dependent variable is the logarithm of any component,

the logarithm of the common divisor component can be treated as an offset variable; an in-

dependent variable with coefficient equal to 1. But this is not something to worry about. The

only issue is that no zero values are allowed.

Let us now see an example in order to make this compositional regression a bit more clear.

Suppose we have the arctic lake dat from Aitchison (2003), where there are 39 measurements

of three elements, sand, silt and clay from different depths (in meters) of an arctic lake. The

logarithm of the depth is the independent variable (it’s a good idea to use the logarithm of the

independent variables, especially when these have high values). The result of the regression

is

log (sand/clay) = 9.697 − 2.743 log (depth) + e1

log (silt/clay) = 4.805 − 1.096 log (depth) + e2

We can see that the clay plays the role of the common divisor component. If the depth is 1

meter, so log 1 = 0, then we can say that the percentage of sand is higher than that of clay and
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the percentage of silt is higher than that of clay as well. The percentage of sand is also higher

than the percentage of silt (the constant term in the first line is higher than the constant term

in the second line). To find out what is the value of the composition at 1 meter of water depth

we do

C
(

e9.697, e4.805, 1
)
= (0.9925, 0.007, 50.0001) ,

where C (.) is the closure operation which means that we must divide by the sum of the

vector, so that is becomes compositional, i.e. its elements sum to 1. The negative coefficient

in the first line means that sand reduces relatively to clay as the water depth increases. The

same is true for silt relatively to clay. A good way to understand these coefficients is to plot

the logarithms of the ratios as a function of the independent variable. And then you will see

why there is a negative sign.

comp.reg=function(y,x,rob=FALSE){

## y is dependent variable, the compositional data

## x is the independent variable(s)

y=as.matrix(y)

y=y/rowSums(y) ## makes sure y is compositional data

x=as.matrix(x)

z=log(y[,-1]/y[,1]) ## alr transformation with the first component being the base

mod=multivreg(z,x) ## multivariate regression

beta=mod$beta

std.errors=mod$Std.errors

est1=mod$fitted

est2=cbind(1,exp(est1))

est=est2/rowSums(est2)

if (rob==TRUE) {

mod=rob.multivreg(z,x,method=’mcd’,quan=0.5)

beta=mod$beta.rob

std.errors=NULL

est1=mod$rob.fitted

est2=cbind(1,exp(est1))

est=est2/rowSums(est2) }

list(beta=beta,std.errors=std.errors,fitted=est) }

5.5.2 Dirichlet regression

An alternative method for regression is to use the Dirichlet distribution (5.6) and (5.7). The

second form though (5.7) is more convenient and the estimated parameters have the same

interpretation as in the additive logistic regression (5.16).
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We mentioned before that Maier (2011) has created an R package for Dirichlet regression.

For more information the reader is addressed to Maier’s report (Maier, 2014). The next func-

tion does not come to substitute Maier’s functions, by no means. Maier (2011) allows the

possibility of modelling φ as well, linking it with the same covariates, where an exponential

link is necessary to ensure that the fitted φis are always positive. We do not offer this option

here and I know it’s not the best thing to do. The reason why this function is here is for

learning purposes mainly.

The Dirichlet density (the same as in (5.7)) is

f (x) =
Γ
(

∑
D
i=1 φa∗i

)

∏
D
i=1 Γ

(
φa∗i
)

D

∏
i=1

y
φa∗i −1

i ,

where φ = ∑
D
i=1 ai and ∑

D
i=1 a∗i = 1. The link function used for the parameters (except for φ)

is

a∗1 = 1

∑
D
j=1 e

xTβββj

a∗i = exTβββi

∑
D
j=1 e

xTβββj
for i = 2, ..., D.

So, the the corresponding log-likelihood (a function of the βis) is

ℓ = n log Γ (φ)−
n

∑
j=1

D

∑
i=1

log Γ (φa∗i ) +
n

∑
j=1

D

∑
i=1

(φa∗i − 1) log yij,

The next function contains the log likelihood to be maximised, as a function of the regres-

sion parameters.

dirireg2=function(param,z=z) {

## param contains the parameter values

## z contains the compositional data and independent variable(s)

phi=param[1] ; para=param[-1]

## a small check against negative values of phi

if (phi<0) l=10000

if (phi>0) {

ya=z$ya ; xa=z$xa

## ya is the compositional data and xa the independent variable(s)

n=nrow(ya) ; d=ncol(ya)-1 ## sample size and dimensionality of the simplex

be=matrix(para,ncol=d) ## puts the beta parameters in a matrix

mu1=cbind(1,exp(xa%*%be))

ma=mu1/rowSums(mu1) ## the fitted values

l=-( n*lgamma(phi)-sum(lgamma(phi*ma))+sum(diag(log(ya)%*%t(phi*ma-1))) ) }
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## l is the log-likelihood

l }

The next function offers Dirichlet regression and produces an informative output. It is

important for the compositional data (dependent variable) to have column names otherwise

the function will not produce an output. If you do not want this, then simply remove the

lines in the codes which refer to the column names of the compositional data.

diri.reg2=function(ya,xa) {

## ya is the compositional data

ya=as.matrix(ya) ; n=nrow(ya)

ya=ya/rowSums(ya) ; xa=as.matrix(cbind(1,xa))

## the line above makes sure ya is compositional data and

## then the unit vector is added to the desing matrix

d=ncol(ya)-1 ; z=list(ya=ya,xa=xa) ## dimensionality of the simplex

rla=log(ya[,-1]/ya[,1]) ## additive log-ratio transformation

ini=solve(t(xa)%*%xa)%*%t(xa)%*%rla ## initial values based on the logistic normal

## the next lines optimize the dirireg2 function and estimate the parameter values

el=NULL

qa=optim(c(20,as.vector(t(ini))),dirireg2,z=z,control=list(maxit=4000))

el[1]=-qa$value

qa=optim(qa$par,dirireg2,z=z,control=list(maxit=4000))

el[2]=-qa$value

vim=2

while (el[vim]-el[vim-1]>0.0001) { ## the tolerance value can of course change

vim=vim+1

qa=optim(qa$par,dirireg2,z=z,control=list(maxit=4000))

el[vim]=-qa$value }

qa=optim(qa$par,dirireg2,z=z,control=list(maxit=4000),hessian=T)

phi=qa$par[1] ; para=qa$par[-1] ## the estimated parameter values

beta=matrix(para,ncol=d) ## the matrix of the betas

colnames(beta)=colnames(ya[,-1]) ## names of the matrix of betas

mu1=cbind(1,exp(xa%*%beta))

ma=mu1/rowSums(mu1) ## fitted values

s=sqrt(diag(solve(qa$hessian))) ## std of the estimated betas

std.phi=s[1] ## std of the estimated phi

S=matrix(s[-1],ncol=d) ## matrix of the std of the estimated betas

colnames(S)=colnames(ya[,-1])

V=solve(qa$hessian) ## covariance matrix of the parameters

list(loglik=-qa$value,param=ncol(xa)*d+1,phi=phi,std.phi=std.phi,

beta=t(beta),std.errors=t(S),Cov=V,fitted=ma) }
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5.5.3 OLS regression for compositional data

The next regression method is simply an OLS, like the comp.reg but applied to the raw com-

positional data, i.e. without log-ratio transforming them. This approach I saw it in Murteira

and Ramalho (2013), where they mention that B̂, the matrix of the estimated regression coeffi-

cients, is consistent and asymptotically normal. How is B̂ calculated? Simply by minimizing

the sum of squares of the residuals

n

∑
i=1

uT
i ui, where ui = yi − Gi (B) and

Gi (B) =


 1

∑
D
j=1 exT

i βββj
,

exT
i βββ2

∑
D
j=1 exT

i βββj
, . . . ,

exT
i βββd

∑
D
j=1 exT

i βββj


 ,

with yi ∈ Sd and d = D − 1, where D denotes the number of components.

The next R function offers the possibility of bootstrapping the standard errors of the betas.

If no bootstrap is selected no standard errors will be produced.

ols.compreg=function(y,x,B=1000){

## y is dependent variable, the compositional data

## x is the independent variable(s)

## B is the number of bootstrap samples used to obtain

## standard errors for the betas

## if B==1 no bootstrap is performed and no standard errors are reported

y=as.matrix(y)

y=y/rowSums(y) ## makes sure y is compositional data

x=as.matrix(cbind(1,x))

d=ncol(y)-1 ## dimensionality of the simplex

n=nrow(y) ## sample size

z=list(y=y,x=x)

reg=function(para,z){

y=z$y ; x=z$x

d=ncol(y)-1

be=matrix(para,byrow=T,ncol=d)

mu1=cbind(1,exp(x%*%be))

mu=mu1/rowSums(mu1)

sum((y-mu)^2) }

## the next lines minimize the reg function and obtain the estimated betas

ini=as.vector(t(coef(lm(y[,-1]~x[,-1])))) ## initial values

qa=optim(ini,reg,z=z,control=list(maxit=4000))

qa=optim(qa$par,reg,z=z,control=list(maxit=4000))
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qa=optim(qa$par,reg,z=z,control=list(maxit=4000))

qa=optim(qa$par,reg,z=z,control=list(maxit=4000))

beta=matrix(qa$par,byrow=T,ncol=d)

mu1=cbind(1,exp(x%*%beta))

mu=mu1/rowSums(mu1)

std.errors=NULL

if (B>1){

betaboot=matrix(nrow=B,ncol=length(ini))

for (i in 1:B){

ida=sample(1:n,n,replace=T)

yb=y[ida,] ; xb=x[ida,]

zb=list(y=yb,x=xb)

ini=as.vector(t(coef(lm(yb[,-1]~xb[,-1])))) ## initial values

qa=optim(ini,reg,z=zb,control=list(maxit=4000))

qa=optim(qa$par,reg,z=zb,control=list(maxit=4000))

qa=optim(qa$par,reg,z=zb,control=list(maxit=4000))

qa=optim(qa$par,reg,z=zb,control=list(maxit=4000))

betaboot[i,]=qa$par }

s=apply(betaboot,2,sd)

std.errors=matrix(s,byrow=T,ncol=d) }

list(beta=beta,std.errors=std.errors,fitted=mu) }
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6 Directional data

Another important field of statistics is the analysis of directional data. Directional data are

data which lie on the circle, sphere and hypersphere (sphere in more than 3 dimensions).

Some reference books include Fisher (1995) and Jammalamadaka and Sengupta (2001) for

circular data, Fisher et al. (1987) for spherical data and Mardia and Mardia (1972) and Mardia

and Jupp (2000) for directional statistics. A more recent book (for circular statistics only)

written by Pewsey et al. (2013) contains a lot of R scripts as well. We will start with circular

data and then move on to spherical and hyperspherical data. There are also some R packages,

CircStats by Lund and Agostinelli (2012), circular by Agostinelli and Lund (2011) and NPCirc

by Oliveira et al. (2013) (nonparametric smoothing methods) for circular data and movMF by

Hornik and Grn (2012) for mixtures of von Mises-Fisher distribution (circular, spherical or

hyper-spherical).

The space of directional data is such that for any vector x ∈ Rq with q ≥ 2 we have that

‖X‖ = xTx = 1. This mean that x is a unit vector since its length is 1. The space of such

vectors will be denoted by Sq−1. If q = 2, the x lies on a circle and if q = 3 it lies on the surface

of a sphere.

6.1 Circular statistics

At first we start with the circular data analysis, that is, data defined on the circle. Thus their

space is denoted by S1.

6.1.1 Summary statistics

We will show how to calculate the sample mean direction, the sample mean resultant length

and the sample circular variance.

Suppose we are given a sample of angular data u = (u1, . . . un) (angle of wind speed for

example) in degrees or radians. We will suppose that the data are in radians (we provide a

function to go from degrees to radians and backwards).

At first we have to transform the data to Euclidean coordinates (cos ui, sin ui)
T. Then we

sum them component-wise to get

C̄ =
1

n

n

∑
i=1

cos ui and S̄ =
1

n

n

∑
i=1

sin ui.

The sample circular mean,or mean direction is given by (Mardia and Jupp, 2000)

θ̄ =

{
tan−1 (S̄/C̄) if C̄ > 0

tan−1 (S̄/C̄) + π if C̄ < 0

}
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We will take the C̄ and S̄ and calculate the mean resultant length R̄ =
√

C̄2 + S̄2. The sample

circular variance is given by V = 1 − R̄ and thus 0 ≤ V ≤ 1. Bear in mind that some authors

multiply the variance by 2. The circular standard deviation is given by (−2 log R̄)
1/2

(Mardia

and Jupp, 2000). Let us now construct a (1 − α)% confidence interval for the true mean angle

µ. We can distinguish, two cases

• R̄ ≤ 2/3

θ̄ ± cos−1








2n
(

2R2 − nχ2
1,1−α

)

R2
(

4n − χ2
1,1−α

)




1/2




• R̄ > 2/3

θ̄ ± cos−1





[
n2 −

(
n2 − R2

)
exp

(
χ2

1,1−α/n
)]1/2

R





The R code with these summary measures is given below.

circ.summary=function(u,rads=F) {

## us is an angular variable

n=length(u) # sample size

if (rads==F) u=u*pi/180 ## if the data are in degrees we transform them into rads

## we transform them into Euclidean coordinates

## mesos contains the sample mean direction

C=mean(cos(u)) ; S=mean(sin(u))

Rbar=sqrt(C^2+S^2)

if (C>0) mesos=atan(S/C)

if (C<0) mesos=atan(S/C)+pi

MRL=Rbar # mean resultant length

circv=1-Rbar

circs=sqrt(-2*log(Rbar)) ## sample cicrular standard deviation

## lik is the von Mises likelihood

lik=function(k) k*sum(cos(u-mesos))-n*log(2*pi)-n*(log(besselI(k,0,expon.scaled=T))+k)

kappa=optimize(lik,c(0,10000),maximum=TRUE)$maximum ## estimated concentration (kappa)

R=n*Rbar

if (Rbar<2/3) {

fact=sqrt( 2*n*(2*R^2-n*qchisq(0.95,1))/(R^2*(4*n-qchisq(0.95,1))) )

ci=c(mesos-acos(fact),mesos+acos(fact)) }

if (Rbar>2/3) {
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fact=sqrt( n^2-(n^2-R^2)*exp(qchisq(0.95,1)/n) )/R

ci=c(mesos-acos(fact),mesos+acos(fact)) }

if (rads==F) {

mesos=mesos*180/pi

ci=ci*180/pi }

list(mesos=mesos,confint=ci,MRL=MRL,circvariance=circv,circstd=circs) }

6.1.2 Circular-circular correlation I

Jammalamadaka and R. (1988) suggested a correlation coefficient for a sample of pairs of

angular data (αi, βi) with i = 1, . . . , n. The correlation is defined as

rc =
∑

n
i=1 sin (αi − ᾱ) sin

(
βi − β̄

)
√

∑
n
i=1 sin2 (αi − ᾱ)∑

n
i=1 sin2

(
βi − β̄

) , (6.1)

where ᾱ and β̄ are the mean directions of the two samples. We saw in the previous section

how to calculate them. Jammalamadaka and Sengupta (2001) states that under a suitbale

transformation we can get asymptotic normality and thus perform the hypothesis testing of

zero correlation. If the sample size n is large enough, then under the null hypothesis that the

true correlation is zero we have that

√
n

√
λ̂02λ̂20

λ̂22

rc ∼ N (0, 1) ,

where

λ̂ij =
1

n

n

∑
i=1

sini (αi − ᾱ) sinj
(

βi − β̄
)

.

This is an asymptotic normality based test and below we provide the relevant R code.

circ.cor1=function(a,b,rads=F) {

## a and b are angular data in degrees or rads,

## by default they are in degrees

n=length(a) # sample size

deg2rad=function(deg) deg*pi/180 ## from degrees to rads

## if the data are in degrees we transform them into rads

if (rads==F) {

a=deg2rad(a)

b=deg2rad(b) }

## We calculate the mean of each vector

m1=circ.summary(a)$mesos
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m2=circ.summary(b)$mesos

up=sum(sin(a-m1)*sin(b-m2))

down=sqrt( sum(sin(a-m1)^2)*sum(sin(b-m2)^2) )

rho=up/down ## circular correlation

lam22=mean( (sin(a-m1))^2*(sin(b-m2))^2 )

lam02=mean( (sin(b-m2))^2 )

lam20=mean( (sin(a-m1))^2 )

zrho=sqrt(n)*sqrt(lam02*lam20/lam22)*rho

p.value=2*(1-pnorm(abs(zrho)))

list(rho=rho,p.value=p.value) }

6.1.3 Circular-circular correlation II

Mardia and Jupp (2000) mention another correlation of pairs of circular variables θ and φ.

They say that it is a measure of dependence between u and v, where u = (cos Θ, sin Θ)T and

v = (cos Φ, sin Φ)T. This is a squared correlation coefficient, so it only takes positive values

and is defined as

r2 =

(
r2

cc + r2
cs + r2

sc + r2
ss

)
+ 2 (rccrss + rcsrsc) r1r2 − 2 (rccrcs + rscrss) r2 − 2 (rccrsc + rcsrss) r1(

1 − r2
1

) (
1 − r2

2

) ,(6.2)

where rcc = corr (cos θ, cos φ), rcs = corr (cos θ, sin φ), rsc = corr (sin θ, cos φ), rss = corr (sin θ, sin φ),

r1 = corr (cos θ, sin θ) and r2 = corr (cos φ, sin φ).

circ.cor2=function(theta,phi,rads=F) {

## theta and phi are angular data in degrees or rads,

## by default they are in degrees

n=length(theta) # sample size

deg2rad=function(deg) deg*pi/180 ## from degrees to rads

## if the data are in degrees we transform them into rads

if (rads==F) {

theta=deg2rad(theta)

phi=deg2rad(phi) }

rcc=cor(cos(theta),cos(phi))

rcs=cor(cos(theta),sin(phi))

rss=cor(sin(theta),sin(phi))

rsc=cor(sin(theta),cos(phi))

r1=cor(cos(theta),sin(theta))

r2=cor(cos(phi),sin(phi))

up=rcc^2+rcs^2+rsc^2+rss^2+2*(rcc*rss+rcs*rsc)*r1*r2-

2*(rcc*rcs+rsc*rss)*r2-2*(rcc*rsc+rcs*rss)*r1
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down=(1-r1^2)*(1-r2^2)

rho=up/down

test=n*rho^2

p.value=1-pchisq(test,4)

list(rho=rho,p.value=p.value) }

6.1.4 Circular-linear correlation

Mardia and Jupp (2000) mention a correlation coefficient when we have a euclidean variable

(X) and a circular variable (Θ). The formula is the following

R2
xθ =

r2
xc + r2

xs − 2rxcrxsrcs

1 − r2
cs

,

where rxc = corr (x, cos θ), rxs = corr (x, sin θ) and rcs = corr (cos θ, sin θ) are the classical

Pearson sample correlation coefficients.

If X and Θ are independent and X is normally distributed then

(n − 3) R2
xθ

1 − R2
xθ

∼ F2,n−3.

Since the F distribution is asymptotic we use non parametric bootstrap to calculate the p-

value as well. In the following R function bootstrap is implemented by default.

circlin.cor=function(x,theta,rads=F) {

## x is euclidean variable

## theta is a angular variable in degrees by default

n=length(x) ## sample size

deg2rad=function(deg) deg*pi/180 ## from degrees to rads

if (rads==F) theta=deg2rad(theta)

rxc=cor(x,cos(theta)) ## x and theta correlation

rxs=cor(x,sin(theta)) ## x and sin(theta) correlation

rcs=cor(cos(theta),sin(theta)) ## cos(theta) and sin(theta) correlation

R2xt=(rxc^2+rxs^2-2*rxc*rxs*rcs)/(1-rcs^2) ## linear-circular correlation

Ft=(n-3)*R2xt/(1-R2xt) ## F-test statistic value

p.value=1-pf(Ft,2,n-3)

list(R.squared=R2xt,p.value=p.value) }

6.1.5 Regression for circular or angular data using the von Mises distribution

Fisher and Lee (1992) used the von Mises distribution (defined on the circle) to link the mean

of some angular data with a covariate. This means that the response variable is a circular
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variable and the explanatory variables are not defined on the circle.

The density of the von Mises distribution is

f (θ) =
eκ cos(θ−µ)

2π I0 (κ)
, (6.3)

where I0 (κ) denotes the modified Bessel function of the first kind and order 0 calculated at κ.

The variable θ takes any values at an interval of length 2π, µ is a real number and κ is strictly

positive.

Fisher and Lee (1992) suggested two models. The first one models the mean direction

only and the second (the mixed one) models the concentration parameter as well. In the first

example the mean direction µ is linked with the explanatory variables (X =
(
x1, . . . , xp

)T
) via

µ = α + g
(

βββTX
)

, where g (x) = 2 tan−1 (x) .

In the mixed model case the concentration parameter is also linked with the explanatory

variables via an exponential function to ensure that it stays always positive

κ = eγ+δδδTX.

The estimates of the parameters are obtained via numerical optimisation of the log-likelihood

of the von Mises distribution (6.3). We decided not to include a r function though since this

model has some numerical problems (Pewsey et al., 2013). We mention the way though so

that the reader is aware of this model also.

6.1.6 Projected bivariate normal for circular regression

Presnell et al. (1998) used the projected multivariate normal (Watson, 1983) to perform circu-

lar regression. The density of the projected normal in the circular case can be written as

f (θ) =
1

2π
e−

γ2

2

[
1 +

γ cos (θ − ω)Φ (γ cos (θ − ω))

φ (γ cos (θ − ω))

]
, (6.4)

where θ represents the angle, ω is the mean direction and Phi (.) and φ ) are the standard

normal probability and density function respectively. Following Presnell et al. (1998) we will

substitute γ cos (θ − ω) by uTµµµ in the above density (6.4) and we will write its associated

log-likelihood as

ℓ (B) = −1

2

n

∑
i=1

µµµT
i µµµi +

n

∑
i=1

log

[
1 +

uTµµµΦ
(
uTµµµ

)

φ (uTµµµ)

]
− n log (2π) ,

where µµµi = BTxi is the bivariate mean vector of the projected normal linearly linked with
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some covariates x, B is the matrix of parameters and n is the sample size. Thus, in order to

apply the projected normal bivariate linear model we must first bring the angles θi onto the

circle as ui = (cos (θi) , sin (θi)).

The matrix of the parameters is a (p + 1)× 2 matrix, where p is the number of indepen-

dents variables

B = (βββ1, βββ2) =




β01 β02

β11 β12
...

...

βp1 βp2




The µµµi lies in R2 and so the fitted angular mean is given by

θi =

[
tan−1

(
βββT

2 xi

βββT
1 xi

)
+ πI

(
βββT

1 xi < 0
)]

mod2π,

where I is the indicator function.

As for a measure of fit of the model we provide a pseudo R2 suggested by Lund (1999).

We calculate the circular correlation coefficient (6.1) between the observed and the estimated

angles and then square it. This serves as an analogue of the R2 in the classical linear models.

Actually the paper by Lund (1999) describes another type of circular regression model, which

we will not present here (at the moment) but the reader is encouraged to have a look.

spml.reg=function(y,x,rads=T){

## y is the angular depndent variable

## x contains the idnependent variable(s)

deg2rad=function(deg) deg*pi/180 ## from degrees to radians

if (rads==F) y=deg2rad(y) ## if the data are in degrees we transform them into radians

u=cbind(cos(y),sin(y)) ## bring the data onto the circle

x=cbind(1,x)

z=list(u=u,x=x)

spml=function(para,z) {

u=z$u ; x=z$x

n=nrow(u)

beta=matrix(para,ncol=2)

mu=x%*%beta

t=diag(u%*%t(mu))

l=-( -0.5*sum(diag(mu%*%t(mu)))+sum(log( 1+t*pnorm(t)/dnorm(t) ))-n*log(2*pi) )

l }

para=as.vector(coef(lm(u~x[,-1]))) ## starting values

qa=optim(para,spml,z=z,control=list(maxit=2000))
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qa=optim(qa$par,spml,z=z,control=list(maxit=2000))

qa=optim(qa$par,spml,z=z,control=list(maxit=2000),hessian=T)

log.lik=qa$value

param=qa$par

beta=matrix(param,ncol=2)

se=matrix(sqrt(diag(solve(qa$hessian))),ncol=2)

colnames(beta)=colnames(se)=c(’cosinus’,’sinus’)

rownames(beta)=rownames(se)=c(’Intercept’,colnames(x)[-1])

mu1=x%*%beta

fitted=( atan(mu1[,2]/mu1[,1])+pi*I(mu1[,1]<0) )%%(2*pi)

rsq=as.numeric(circ.cor1(theta,fitted,rads=T,R=1)$rho)^2 ## pseudo-R squared

## the fitted values are in radians

## use the next function to turn them from radians to degrees

## rad2deg=function(rad) rad*180/pi

if (ncol(x)==2) {

plot(x[,-1],y)

points(x[,-1],fitted,col=3,pch=2) }

list(fitted=fitted,parameters=beta,std.errors=se,pseudo.r2=rsq,log.lik=-log.lik) }

6.2 (Hyper)spherical statistics

We continue with (hyper)spherical data analysis. Note that these techniques can also be

applied to circular data. For example, the von Mises-Fisher distribution in two dimensions

is simply the von Mises distribution. Thus, the following functions regarding the von Mises-

Fisher distribution can also be used for the von Mises. The space here is S2 if we are on the

sphere and Sq−1 if we are on the hypersphere.

6.2.1 Change from geographical to Euclidean coordinates and vice versa

Imagine that we are given geographical coordinates and we want to perform directional sta-

tistical analysis. Say for example the coordinates of the earthquakes in some region over a

period of time. In order to apply directional statistics we need to convert them to Euclidean

(or Cartesian) coordinates (S2). So when we are given a pair of latitude and longitude in

degrees say (lat, long) the change to Euclidean coordinates is given by

u = (x, y, z) = [cos (lat) ∗ cos (long) , cos (lat) ∗ sin (long) , sin (lat)]

At first we have to transform the latitude and longitude from degrees to radians and then

apply the change to Euclidean coordinates. Note that the vector u is a unit vector (i.e.

∑
3
i=1 u2

i = 1). Thus, the u lies on the unit radius sphere.
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euclid=function(u) {

## u is a matrix of two columns

## the first column is the lattitude and the second the longitude

u=as.matrix(u)

if (ncol(u)==1) u=t(u)

u=pi*u/180 # from degrees to radians

U=cbind(cos(u[,1])*cos(u[,2]),cos(u[,1])*sin(u[,2]),sin(u[,1]))

colnames(U)=c(’x’,’y’,’z’)

## U are the cartesian coordinates of u

U }

The inverse transformation, from Euclidean coordinates to latitude and longitude is given

by u = [asin (z) , atan2 (y/x)]. And of course we have to transform back from radians to

degrees.

euclid.inv=function(U) {

## U is a 3-column matrix of unit vectors

## the cartesian coordinates

U=as.matrix(U)

if (ncol(U)==1) U=t(U)

u=cbind(asin(U[,3]),( atan(U[,2]/U[,1])+pi*I(U[,1]<0) )%%(2*pi))

u=u*180/pi

colnames(u)=c(’Lat’,’Long’)

## u is a matrix of two columns

## the first column is the lattitude and the second the longitude in degrees

u }

6.2.2 Rotation of a unit vector

Suppose we have two unit vectors a and b on the hypersphere in Rd (or Sd−1) and we wish

to move a to b along the geodesic path on the hypersphere. Amaral et al. (2007) show, that

provided ‖ aTb ‖< 1, a rotation matrix is determined in a natural way. Let

c =
b − a

(
aTb

)

‖ b − a (aTb) ‖

Define α = cos−1
(
aTb

)
∈ (0, 2π) and A = acT − aTc. The rotation matrix is then defined as

Q = Ip + sin (α)A + [cos (α)− 1]
(

aaT + ccT
)

(6.5)

Then b = Qa. The R code is given below.
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rotation=function(a,b){

## a and b are two unit vectors

## Calculates the rotation matrix

## to move a to b along the geodesic path

## on the unit sphere which connects a to b

p=length(a)

c=a-b*(a%*%t(t(b)))

c=c/sqrt(sum(c^2))

A=t(t(b))%*%c-t(t(c))%*%b

theta=acos(sum(a*b))

diag(p)+sin(theta)*A+(cos(theta)-1)*(t(t(b))%*%b+t(t(c))%*%c) }

6.2.3 Rotation matrices on the sphere

We will see how we can obtain a rotation matrix in SO(3) when we have the rotation axis

and the angle of rotation. The SO(3) space denotes the special orthogonal group of all 3 × 3

orthogonal matrices whose determinant is 1. In addition, the inverse of a rotation matrix

is equal to its transpose. Suppose we have the rotation axis ξξξ = (ξ1, ξ2), where ξ1 is the

latitude and ξ2 is the longitude and the angle of rotation θ in degrees or radians. If the

angle is expressed in degrees we turn it into radians using φ = θπ
180 . We then transform ξξξ

to the Cartesian coordinates as t = (cos ξ1 cos ξ2, cos ξ1 sin ξ2, sin ξ1). Then as Chang (1986)

mentions we construct the following matrix

A (θ) = I + sin (θ)L + (1 − cos (θ)) L,

where

L =




0 −t3 t2

t3 0 −t1

−t2 t1 0




The R code is given below.

rot.matrix=function(ksi,theta,rads=FALSE) {

## ksi is the rotation axis, where the first element is the

## lattitude and the second is the longitude

## theta is the angle of rotation

if (rads==TRUE) {

lat=ksi[1]

long=ksi[2]

the=theta }
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deg2rad=function(deg) deg*pi/180 ## from degrees to radians

if (rads==FALSE) {

lat=deg2rad(ksi[1])

long=deg2rad(ksi[2])

the=deg2rad(theta) }

t1=cos(lat)*cos(long) ; t2=cos(lat)*sin(long) ; t3=sin(lat)

L=matrix(c(0,t3,-t2,-t3,0,t1,t2,-t1,0),ncol=3)

diag(3)+L*sin(the)+L%*%L*(1-cos(the)) }

The inverse problem, when we have a rotation matrix in SO(3) and we want to find the

rotation axis and the angle of rotation (in degrees, not radians) is not difficult to do. I took the

next information from the course webpage of Howard E. Haber. Given a 3x3 rotation matrix

A we work as follows

• Calculate the angle of rotation (in radians) using the trace of A

φ = cos−1

(
tr (A)− 1

2

)

• Transform the angle from radians to degrees

θ =
180φ

π

• The rotation axis is

ξξξ =
1√

(3 − tr (A)) (1 + tr (A))
(A32 − A23, A13 − A31, A21 − A12, ) ,

where tr (A) 6= −1, 3 and subscript (ij) denotes the (i, j) entry of the matrix A.

Below is the relevant R code.

Arotation=function(A) {

## A is a 3x3 rotation matrix

tr=sum(diag(A))

rad2deg=function(rad) rad*180/pi ## from radians to degrees

rad=acos(0.5*(tr-1))

degrees=rad2deg(rad)

ksi=c(A[3,2]-A[2,3],A[1,3]-A[3,1],A[2,1]-A[1,2])/sqrt((3-tr)*(1+tr))

axis=c(rad2deg(asin(ksi[3])), rad2deg(atan2(ksi[2],ksi[1])))

axis=matrix(axis,ncol=2)

colnames(axis)=c(’latitude’,’longitude’)

list(angle=degrees,axis=axis) }

91

http://scipp.ucsc.edu/~haber/ph216/rotation_12.pdf


6.2.4 Spherical-spherical regression

Suppose we have pairs of data (ui, vi) on the sphere (the constraint for any vector x which

lies on the sphere is ∑
3
j=1 x2

j = 1) and we know that V was derived from U via a rotation

matrix A (so A belongs to SO(3))

V = AU.

We wish to estimate this rotation matrix A. Chang (1986) mentions that the estimate comes

from the least squares method. He also mentions that the solution has already been given in

closed form by Mackenzie (1957) and Stephens (1979). It is a singular value decomposition

UVT = O1ΛΛΛOT
2 ,

where O1 and O2 belong to SO(3) and ΛΛΛ is diagonal with entries λ1, λ2, λ3 satisfying λ1 ≥
λ2 ≥ |λ3| (Chang, 1986). If U is of full rank (3 in our case), the determinant of UVT is nonzero

with probability 1 and in this case A is uniquely estimated (Chang, 1986)

Â = O2OT
1

The R code is given below.

spher.reg=function(u,v,euclidean=FALSE,rads=FALSE) {

## u is the independent variable

## v is the dependent variable

## The first row of both matrices is the lattitude

## and the second is the longitude

u=as.matrix(u)

v=as.matrix(v)

n=nrow(u) ## sample size

if (euclidean==FALSE) {

if (rads==FALSE) {

u=pi*u/180 ## from degrees to radians

v=pi*v/180 } ## from degrees to radians

## the first row of both matrices is the lattitude and the second is the longitude

## the next two rows transform the data to Euclidean coordinates

U=cbind(cos(u[,1])*cos(u[,2]),cos(u[,1])*sin(u[,2]),sin(u[,1]))

V=cbind(cos(v[,1])*cos(v[,2]),cos(v[,1])*sin(v[,2]),sin(v[,1])) }

if (euclidean==TRUE) U=u ; V=v

UV=t(U)%*%V/n

b=svd(UV) ## SVD of the UV matrix

A=b$v%*%t(b$u)
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est=U%*%t(A)

list(A=A,est=est) }

Since Â is a rotation matrix, we can then use the function we saw in the previous section

(6.2.3) to calculate the rotation axis and the angle of rotation.

6.2.5 (Hyper)spherical correlation

Suppose we have two variables X ∈ Sp−1 and Y ∈ Sq−1 and we want to quantify their

dependence. We will use the covariance matrices of the two variables. Denote by S their

sample covariance

S =

(
Sxx Sxy

Syx Syy

)

Mardia and Jupp (2000) mentions that the circular-circular correlation type II we saw before

(6.2) generalizes to

r2 = tr
(

S−1
xx SxyS−1

yy Syx

)
,

provided that the block matrices Sxx and Syy are non singular. Under the H0 (independence)

nr2 ∼ χ2
pq. The R code is given below.

spher.cor=function(x,y){

## x and y are two (hyper-)spherical vaiables

x=as.matrix(x)

y=as.matrix(y)

stand=function(x) x-mean(x)

p=ncol(x) ; q=ncol(y) ## dimension of each of these two variables

x=apply(x,2,stand) ## subtract the mean

y=apply(y,2,stand) ## subtract the mean

n=nrow(x) ## sample size

s11=(t(x)%*%x)/n

s12=(t(x)%*%y)/n

s21=t(s12)/n

s22=(t(y)%*%y)/n

rsq=sum(diag(solve(s11)%*%s12%*%solve(s22)%*%s21))

test=n*rsq

pval=1-pchisq(test,p*q)

list(rsq=rsq,p.value=pval) }
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6.2.6 Estimating the parameters of the the von Mises-Fisher distribution

The von Mises-Fisher distribution is the generalization of the von Mises distribution (on the

circle) to the sphere in R3 (or S2) and the hypersphere in Rp (or Sp−1) (p > 3). Its density if

given by

fp(x; µ, κ) = Cp(κ) exp
(

κµµµTx
)

, (6.6)

where

κ ≥ 0, ‖µµµ‖ = 1 and Cp (κ) =
κp/2−1

(2π)p/2 Ip/2−1 (κ)
,

where Iv (z) denotes the modified Bessel function of the first kind and order v calculated at z.

Maximum likelihood estimation of the parameters does not require numerical optimiza-

tion of the corresponding log-likelihood. The estimated mean direction is available in closed

form given by

µ̂µµ =
x̄

‖ x̄ ‖ ,

where ‖ · ‖ denotes the Euclidean norm on Rd. The concentration parameter though needs

two steps of a truncated Newton-Raphson algorithm (Sra, 2012).

κ̂(t) = κ̂(t−1) −
Ap

(
κ̂(t−1)

)
− R̄

1 −
[
Ap

(
κ̂(t−1)

)]2 − p−1

κ̂(t−1) Ap

(
κ̂(t−1)

) , (6.7)

where

Ap

(
κ̂(t−1)

)
=

Ip/2 (κ̂)

Ip/2−1 (κ̂)
=

‖ ∑
p
i=1 xi ‖
n

= R̄, (6.8)

and Ip (κ̂) is the modified Bessel function of the first kind (see Abramowitz and Stegun

(1970)). Similarly to Sra (2012) we will set κ̂(0) =
R̄(p−R̄2)

1−R̄2 to (6.7). The variance of κ̂ is given

by (Mardia and Jupp, 2000)

var (κ̂) =

[
n

(
1 − Ap (κ̂)

κ̂
− Ap (κ̂)

2
)]−1

The modified Bessel function in R gives us the option to scale it exponentially. This means,

that it calculates this quantity instead Ip (κ̂) exp−κ̂. This is useful because when large numbers

are plugged into the Bessel function, R needs the exponential scaling to calculate the ratio of

the two Bessel functions. Note that we can use this to calculate the parameters of the von
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Mises distribution as well, since the von Mises distribution is simply the von Mises-Fisher

distribution on the circle, with p = 2.

vmf=function(x,tol=1e-7){

## x contains the data

## tol specifies the tolerance value for convergence

## when estimating the concentration parameter

x=as.matrix(x)

x=x/sqrt(rowSums(x^2))

p=ncol(x) ## dimensionality of the data

n=nrow(x) ## sample size length

p=ncol(x) ; n=nrow(x)

Apk=function(p,k) besselI(k,p/2,expon.scaled=T)/besselI(k,p/2-1,expon.scaled=T)

m1=colSums(x)

R=sqrt(sum(m1^2))/n

m=m1/(n*R)

k=numeric(4)

i=1

k[i]=R*(p-R^2)/(1-R^2)

i=2

k[i]=k[i-1]-(Apk(p,k[i-1])-R)/(1-Apk(p,k[i-1])^2-(p-1)/k[i-1]*Apk(p,k[i-1]))

while (abs(k[i]-k[i-1])>tol) {

i=i+1

k[i]=k[i-1]-(Apk(p,k[i-1])-R)/(1-Apk(p,k[i-1])^2-(p-1)/k[i-1]*Apk(p,k[i-1])) }

k=k[i]

loglik=n*(p/2-1)*log(k)-0.5*n*p*log(2*pi)-n*(log(besselI(k,p/2-1,expon.scaled=T))+k)+

k*sum(x%*%m)

vark=1/( n*(1-Apk(p,k)/k-Apk(p,k)^2) )

list(mu=m,kappa=k,vark=vark,loglik=loglik) }

Alternatively and perhaps easier, if you want to estimate the concentration parameter

κ you can solve the equation (6.8) numerically (function uniroot) and thus substitute the

Newton-Raphson algorithm from the above function. Another way is to optimize, numer-

ically, the log-likelihood with respect to κ. After calculating the mean direction, simply use

the function optimize and that’s it. If you calculate the log-likelihood with respect to κ for a

number of values of κ and then plot it, you will see its curve graphically.

6.2.7 The Rayleigh test of uniformity

The von Mises-Fisher distribution is a fundamental distribution for directional data. How-

ever, there is a simpler one, the uniform distribution on the (hyper)sphere (or circle of course).
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If the concentration parameter κ of the von Mises-Fisher distribution is 0, then we end up

with the uniform distribution. Mardia et al. (1979) and Mardia and Jupp (2000) mention the

Rayleigh test for testing the null hypothesis that κ = 0 against the alternative of κ > 0. They

mention that under the null hypothesis

npR̄2 ∼ χ2
p,

where n and p are the sample size and the number of dimensions and R̄ =
‖∑

p
i=1 xi‖
n also given

in (6.8). Mardia et al. (1979, pg. 440) mentions that the case of p = 3 was first proved by

Rayleigh (1919).

The function below offers the possibility of a parametric bootstrap calculation of the p-

value. We remind that we must simulate from a multivariate normal with the zero vector

as the mean vector and the identity as the covariance matrix. We then project the values

on to the (hyper)sphere and this results into the uniform distribution on the (hyper)sphere.

Thus we generate values from a uniform many times in order to do the parametric bootstrap

(simulating under the null hypothesis, that of uniformity).

rayleigh=function(x,B=999) {

## x contais the data in Euclidean coordinates

## B is by default equal to 999 bootstrap samples

## If B==1 then no bootstrap is performed

n=nrow(x) ## sample size

p=ncol(x) ## dimensionality

m=colSums(x)

R=sqrt(sum(m^2))/n ## the R bar

T=n*p*R^2

if (B==1) p.value=1-pchisq(T,p)

if (B>1) {

Tb=numeric(B)

for (i in 1:B) {

x=matrix(rnorm(p*n),ncol=p)

x=x/sqrt(rowSums(x^2))

mb=colSums(x)

Rb=sqrt(sum(mb^2))/n

Tb[i]=n*p*Rb^2 }

p.value=(sum(Tb>T)+1)/(B+1) }

p.value }
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6.2.8 Discriminant analysis for (hyper)spherical (and circular) data using the von Mises-

Fisher distribution

There are not many papers on discriminant analysis. We will use the von Mises-Fisher dis-

tribution to perform this analysis (Morris and Laycock, 1974) similarly to the multivariate (or

univariate) normal in Rp. The idea is simple. For each group we estimate the mean vector

and the concentration parameter and then the density of an observation is calculated for each

group. The group for which the density has the highest value is the group to which the ob-

servation is allocated. We saw the form of the von Mises-Fisher density in (6.6). To avoid any

computational overflow stemming from the Bessel function we will use the logarithm of the

density and that will be the discriminant score

δi =
p

2
log κi + κiz

Tµµµi −
1

2
log (2π)− log

[
Ip/2−1 (κi)

]
,

for i = 1, . . . , g, where g is the number of groups, κi and µµµi are the concentration parameter

and mean direction of the i-th group and z is an observation in Sp−1. At first we have to see

how well the method does. For this we have created the next R function to estimate the error

via cross validation.

vmf.da=function(x,ina,fraction=0.2,R=1000,seed=FALSE) {

## x is the data set

## ina is the group indicator variable

## fraction denotes the percentage of the sample to be used as the test sample

## R is the number of cross validations

x=as.matrix(x) ; p=ncol(x) ## p is the dimensionality of the data

per=numeric(R) ; n=nrow(x)

ina=as.numeric(ina)

frac=round(fraction*n)

g=max(ina)

mesi=matrix(nrow=g,ncol=p)

k=numeric(g)

## if seed==TRUE then the results will always be the same

if (seed==TRUE) set.seed(1234567)

for (i in 1:R) {

mat=matrix(nrow=frac,ncol=g)

est=numeric(frac)

nu=sample(1:n,frac) ; test=x[nu,]

id=ina[-nu] ; train=x[-nu,]

for (j in 1:g) {

da=vmf(train[id==j,]) ## estimates the parameters of the von Mises-Fisher

mesi[j,]=da$mu ## mean direction
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k[j]=da$k } ## concentration

for (j in 1:g) {

mat[,j]=(p/2-1)*log(k[j])+k[j]*test%*%mesi[j,]-0.5*p*log(2*pi)-

log(besselI(k[j],p/2-1,expon.scaled=T))-k[j] }

for (l in 1:frac) est[l]=which.max(mat[l,])

per[i]=sum(est==ina[nu])/frac }

percent=mean(per)

s1=sd(per) ; s2=sqrt(percent*(1-percent)/R)

conf1=c(percent-1.96*s1,percent+1.96*s1) ## 1st way of a confidence interval

conf2=c(percent-1.96*s2,percent+1.96*s2) ## 2nd way of a confidence interval

## next we check if the confidence limits exceeds the allowed limits.

if (conf1[2]>1) conf1[2]=1

if (conf1[1]<0) conf1[1]=0

if (conf2[2]>1) conf2[2]=1

if (conf2[1]<0) conf2[1]=0

conf3=quantile(per,probs=c(0.025,0.975)) ## 3rd way of a confidence interval

list(percentage=percent,sd1=s1,sd2=s2,conf.int1=conf1,conf.int2=conf2,conf.int3=conf3) }

For prediction purposes the next R function is to be used.

vmfda.pred=function(xnew,x,ina) {

## xnew is the new observation(s)

## x is the data set

## ina is the group indicator variable

x=as.matrix(x)

xnew=as.matrix(xnew)

if (ncol(xnew)==1) xnew=t(xnew)

p=ncol(x) ## p is the dimensonality of the data

ina=as.numeric(ina)

g=max(ina)

mesi=matrix(nrow=g,ncol=p)

k=numeric(g)

nu=nrow(xnew)

mat=matrix(nrow=nu,ncol=g)

est=numeric(nu)

for (j in 1:g) {

da=vmf(x[id==j,]) ## estimates the parameters of the von Mises-Fisher

mesi[j,]=da$mu ## mean direction

k[j]=da$k } ## concentration

for (j in 1:g) {
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mat[,j]=(p/2-1)*log(k[j])+k[j]*xnew%*%mesi[j,]-0.5*p*log(2*pi)-

log(besselI(k[j],p/2-1,expon.scaled=T))-k[j] }

for (l in 1:nu) est[l]=which.max(mat[l,])

list(est.group=est) }

6.2.9 Simulation from a von Mises-Fisher distribution

Wood (1994) provided a new algorithm for simulating from the von Mises-Fisher distribu-

tion. It is essentially a ejection sampling algorithm which we meet it again in Dhillon and

Sra (2003). We wrote the R code presented below based on the paper by Dhillon and Sra

(2003). The arguments of the algorithm are µµµ, k and n, the mean direction, the concentration

parameter and the sample size. The algorithm given below generates vectors from the mean

direction (0, . . . , 0, 1) and then using the rotation matrix (6.5) we transform the vectors so that

they have the desired mean direction. This algorithm works for arbitrary q in Sq.

Algorithm to simulate from the von Mises-Fisher distribution

1. p = dim (µµµ), the dimension of the data

2. ini = (0, . . . , 0, 1), the initial mean direction

3. b = −2k+
√

4k2+(p−1)2

p−1

4. x0 = 1−b
1+b

5. m = p−1
2

6. c = kx0 + (d − 1) log
(
1 − x2

0

)

7. S is a matrix with n rows and p columns

8. for i in 1 : n

• t = −1000

• u = 1

• while (t − c < log (u))

• Generate z from Beta (m, m) and u from U (0, 1)

• w = 1−(1+b)∗z
1−(1−b)∗z

• t = k ∗ w + (p − 1) ∗ log (1 − x0 ∗ w)

9. Generate v1 from Np−1

(
0, Ip−1

)
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10. v = v1
‖v1‖ . This is a uniform p − 1 dimensional unit vector

11. S[i, ] =
(√

1 − w2 ∗ v, w
)

12. Calculate the rotation matrix A using (6.5) in order to rotate the initial mean direction

from ini to µµµ

13. X=AS. The X comes from a von Mises-Fisher distribution with concentration parameter

k and mean direction µµµ.

The R code given below is a bit slower than the the function found in Hornik and Grn

(2013) but it still sees the job through and you can see what the algorithm does.

rvmf=function(n,mu,k){

## n is the sample size

## mu is the mean direction and

## k is the concentration parameter

mu=mu/sqrt(sum(mu^2)) ## the mean direction

d=length(mu) ## the dimensions

## k is the concentration parameter

## n is the sample size

ini=c(rep(0,d-1),1) ## the mean direction is set to (0,...,0,1)

b=( -2*k+sqrt(4*k^2+(d-1)^2) )/(d-1)

x0=(1-b)/(1+b)

S=matrix(nrow=n,ncol=d)

m=0.5*(d-1)

c=k*x0+(d-1)*log(1-x0^2)

for (i in 1:n) {

t=-1000

u=1

while (t-c<log(u)) {

z=rbeta(1,m,m)

u=runif(1)

w=(1-(1+b)*z)/(1-(1-b)*z)

t=k*w+(d-1)*log(1-x0*w) }

v1=mvrnorm(1,c(rep(0,(d-1))),diag(d-1))

v=v1/sqrt(sum(v1^2))

S[i,]=c(sqrt(1-w^2)*v,w) }

A=rotation(ini,mu) ## calculate the rotation matrix

## in order to rotate the initial mean direction from ini to mu

x=S%*%t(A) ## the x has direction mu

x }
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6.2.10 Simulation from a Bingham distribution

Kent et al. (2013) proposed the angular central Gaussian (ACG) distribution (Tyler, 1987) as

an envelope distribution in the rejection sampling algorithm for generating random values

from a Bingham distribution. The Bingham distribution on the (hyper)sphere Sq−1 is written

as

fbing (x) = cbinge(−xTAx) = cbing f ∗bing (x) ,

where cbing is the normalizing constant and A is a q × q symmetric matrix. The density of the

central angular distribution is

fACG (x) = cACG f ∗ACG (x) ,

where where cACG = Γ(q/2)

2πq/2 |ΩΩΩ|−1/2 is the normalizing constant and f ∗ACG (x) =
(
xTΩΩΩx

)−q/2
.

To simulate a random value from the ACG one has to generate a random value from a

multivariate normal and then normalize it such that its unit vector is 1. If y ∼ Nq (0, ΣΣΣ), then

x = y
‖y‖ follows an ACG (ΩΩΩ) with ΩΩΩ = ΣΣΣ−1.

Before we explain the algorithm of how simulate from the Bingham distribution we will

say a few tricks. First, we will obtain the eigenvalues λ1 ≥ λ2 ≥ . . . λq of the symmetric

matrix A. Then subtract the smallest eigenvalue from them all and thus we have λ′
1 ≥ λ′

2 ≥
. . . λ′

q = 0. Then form the diagonal matrix ΛΛΛ′ = diag
{

λ′
1, . . . , λ′

q

}
. As Fallaize and Kypraios

(2014) mention, if x comes from a Bingham with matrix parameter A, then y = xV comes

from a Bingham with matrix parameter ΛΛΛ, and this matrix comes from the spectral decom-

position of A = VΛΛΛVT.

The next code simulates observations from a Bingham distribution with a diagonal ma-

trix parameter say ΛΛΛ′. The input eigenvalues are the q − 1 non zero eigenvalues λ′
i for

i = 1 . . . , q− 1. So, if you right multiply the matrix containing the simulated values by VT the

transformed matrix contains the simulated values from a Bingham with a matrix parameter

A.

The constant changes only and in fact if we subtract or add the same scalar to all eigen-

values the constant is multiplied or divided respectively, by the exponential of that scalar.

One more key thing we have to highlight is that this distribution is used for modelling

axial data. This is because it has the so called antipodal symmetry. That is, the direction is

not important, the sign in other words is irrelevant in contrast to the von Mises or the von

Mises-Fisher distribution. Thus, fbing (x) = fbing (−x).

The steps to describe the rejection sampling in order to simulate from a Bingham distri-

bution are a combination of Kent et al. (2013) and of Fallaize and Kypraios (2014).

Algorithm to simulate from a Bingham distribution
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1. Set ΩΩΩ = ΩΩΩ (b) = Iq +
2
b B and M = e−0.5(q−b) (q/b)q/2.

2. Draw a u from U (0, 1) and a z from ACG (ΩΩΩ).

3. If u <
e(−zTAz)

M(zTΩΩΩz)
−q/2 accept z

4. Repeat steps 2 − 3 until the desired number of random values is obtained.

Christopher Fallaize and Theo Kypraios from the university of Nottingham have pro-

vided the following R code for simulating from a Bingham distribution. They have set b = 1,

even though it’s not the otpimal solution but as they say it works well in practice.

f.rbing=function(n,lam){

## lam contains the q-1 non negative eigenvalues

lam=sort(lam,decreasing=TRUE) ## sort the eigenvalues in desceding order

nsamp=0

X=NULL

lam.full=c(lam,0)

q=length(lam.full)

A=diag(lam.full)

SigACG.inv=diag(q)+2*A

SigACG=solve(SigACG.inv)

Ntry=0

while(nsamp < n) {

x.samp=FALSE

while(x.samp==FALSE) {

yp=mvrnorm(n=1,mu=rep(0,q),Sig=SigACG)

y=yp/sqrt(t(yp)%*%yp)

lratio=-t(y)%*%A%*%y -q/2*log(q) + 0.5*(q-1) + q/2*log(t(y)%*%SigACG.inv%*%y)

if(log(runif(1)) < lratio) {

X=c(X,y)

x.samp=TRUE

nsamp = nsamp+1 }

Ntry=Ntry+1 } }

if(n>1) X=matrix(X,byrow=T,ncol=q)

## the X contains the simulated values

## the avtry is the estimate of the M in rejection sampling

## 1/M is the probability of acceptance

list(X=X,avtry=Ntry/n) }

The next function is a more general than the previous one for a non diagonal symmetric

matrix parameter A and it calls the previous function.

102

mailto:Chris.Fallaize@nottingham.ac.uk
https://www.maths.nottingham.ac.uk/personal/tk/


rbingham=function(n,A){

p=ncol(A) ## dimensionality of A

lam=eigen(A)$values ## eigenvalues

V=eigen(A)$vectors ## eigenvectors

lam=lam-lam[p]

lam=lam[-p]

x=f.rbing(n,lam)$X ## Chris and Theo’s code

y=x%*%t(V) ## simulated data

y }

6.2.11 Simulation from a Fisher-Bingham distribution

The Fisher-Bingham distribution is written as Kent et al. (2013)

fFB (x) = cFBe(κxTµµµ−xTAx) = cFB f ∗FB (x) (6.9)

Kent et al. (2013) mentions that the Fisher-Bingham distribution (6.11) can be bounded by

a Bingham density

f ∗FB (x) ≤ e(κ−xTA(1)x) = eκe(−xTA(1)x), (6.10)

where A(1) = A + (κ/2)
(
Iq − µµµµµµT

)
. The story now is known more or less. Initially we use

the rejection sampling to generate from this Bingham distribution (see the functions f.rbing

and rbingham in the previous section). Then, we use again rejection sampling to see which of

them we will keep. We keep the simulated values for which the inequality (6.10) holds true.

The next function does something not very clever but at least fast enough. It generates

5 times the requested sample (n) from a Bingham distribution and then sees how many of

them are accepted as coming from the Fisher-Bingham distribution. I assume the accepted

ones will be more than n and so then it randomly selects n of them. Two rejection samplings

take place and that is why I did this.

fb.sim=function(n,k,m,A) {

## n is the required sample size

## k is the concentration parameter, the Fisher part

## m is the mean vector, the Fisher part

## A is the symmetric matrix, the Bingham part

q=length(m)

A1=A+k/2*( diag(q)-m%*%t(m) )

lam=eigen(A1)$values

V=eigen(A1)$vectors

lam=lam-lam[q]
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lam=lam[-q]

x=f.rbing(5*n,lam)$X

x=x%*%t(V)

u=log(runif(5*n))

ffb=k*x%*%m-diag(x%*%A%*%t(x))

fb=k-diag(x%*%A1%*%t(x))

ina=1:c(5*n)

keep=ina[u<=c(ffb-fb)]

ind=sample(keep,n)

y=x[ind,]

y }

6.2.12 Normalizing constant of the Bingham and the Fisher-Bingham distributions

The Fisher-Bingham distribution density is given by Kume and Wood (2005)

f (x|A, γγγ) =
1

c (A, γγγ)
exp

(
−xTAx +γγγTx

)
, (6.11)

where A = AT ∈ Rp×p and γγγ ∈ Rp with p denoting the number of dimensions of the

(hyper)sphere. We will follow their notation and without loss of generality work with ΛΛΛ =

diag
(
λ1, . . . , λp

)
, with 0 < λ1 ≤ . . . ≤ λp, where λi is the i-th eigenvalue of the matrix A.

The A matrix is the Bingham part. The vector γγγ =
(
γ1, . . . , γp

)
is the Fisher part.

Kume and Wood (2005) derived the saddlepoint approximations to the normalizing con-

stant of the Fisher-Bingham distribution. The Fisher and the Bingham distribution can be

considered as special cases of the aforementioned distribution. Their paper is a bit technical

and usually technical papers tend to be technical and not easy to understand at a glance. For

this reason we will try to explain, briefly, the calculations required to derive the approxima-

tion. We will follow the same notation as in their paper for consistency and convenience to

the reader purposes.

Saddlepoint approximation requires a cumulant generating function as its starting point

(Butler, 2007). In this case that is given by

Kθ (t) =
p

∑
i=1

{
−1

2
log (1 − t/λi) +

1

4

γ2
i

λi − t
− γ2

i

4λi

}
(t < λ1) . (6.12)

The first derivative of (6.12) is

K
(1)
θ (t) =

p

∑
i=1

{
1

2

1

λi − t
+

1

4

γ2
i

(λi − t)2

}
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and higher derivatives of (6.12) are given by

K
(j)
θ (t) =

p

∑
i=1

{
(j − 1)!

2

1

(λi − t)j
+

j!

4

γ2
i

(λi − t)j+1

}
.

The first order saddlepoint density approximation of fθ (α) (the fθ evaluated at a point α) is

f̂θ,1 (α) =
[
2πK̂

(2)
θ

(
t̂
)]−1/2

exp
(
K̂θ

(
t̂
)
− t̂
)

, (6.13)

where t̂ is the unique solution in (−∞, λ1) to the saddlepoint equation K̂
(2)
θ

(
t̂
)
= α and in

our case α = 1 (see the paper by Kume and Wood (2005) for more information why). In fact

the t̂ has a bounded range (it is a simple form) but we will not mention it here and t̂ can be

found accurately using numerical methods, e.g. as a root solver (available in R).

The second and third order saddlepoint density approximations of fθ (α) are given by

f̂θ,2 (1) = f̂θ,1 (1) (1 + T) and f̂θ,3 (1) = f̂θ,1 (1) exp (T) respectively, (6.14)

where T = 1
8 ρ̂4 − 5

24 ρ̂2
3, with ρ̂j =

K
(j)
θ (t̂)

[
K
(2)
θ (t̂)

]j/2 .

The Fisher-Bingham normalising constant is written as

c (λλλ, γγγ) = 2πp/2

(
p

∏
i=1

λ−1/2
i

)
fθ (1) exp

(
1

4

p

∑
i=1

γ2
i

λi

)
, (6.15)

where fθ (1) is found in Kume and Wood (2005).

The saddlepoint approximations of the Fisher-Bingham normalizing constant (6.15) are

given by

ĉ1 (λλλ, γγγ) = 21/2π(p−1)/2
[
K
(2)
θ

(
t̂
)]−1/2

[
p

∏
i=1

(
λi − t̂

)−1/2

]
exp

(
−t̂ +

1

4

p

∑
i=1

γ2
i

λi − t̂

)
,

ĉ2 (λλλ, γγγ) = ĉ1 (λλλ, γγγ) (1 + T) and ĉ3 (λλλ, γγγ) = ĉ3 (λλλ, γγγ) exp (T) .

The R function below calculates the saddlepoint approximations of the normalizing constants

of the Fisher, the Bingham and the Fisher-Bingham distribution. For the Bingham part it only

accepts the eigenvalues of the B matrix. All you need to do is give it what it needs.

In Kume and Wood (2005) there is an important property which we should take into ac-

count. On page 468 of their paper they state that ”A useful practical consequence of this equiv-

ariance property is that, when using the approximation ĉk (λ, γ) we can dispense with the restriction

that the λi be strictly positive, even though, in the saddlepoint density approximation (11), the λi do
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need to be positive”. But what is this equivariance property they are referring to? This property

states that

c (λλλ, γγγ) = c
(
λλλ + a1p, γγγ

)
ea.

So, in the case where one or possibly more eigenvalues of the B matrix are negative, if we

make them all positive, by adding a scalar a, then the final saddlepoint approximation to the

normalizing constant must by multiplied by the exponential of that scalar. This I would say

is a property which helps things a lot.

If you are a Matlab user, then you are directed to Simon Preston’s homepage. In his

section Files you can find Matlab codes to calculate the saddlepoint approximations of the

Fisher-Bingham distribution. These codes were designed for the normalizing constant of the

Fisher-Bingham distributions products of spheres and Stiefel manifolds, using Monte Carlo

methods as well (see Kume et al. (2013)). A main difference the reader must notice is that

Simon calculates the logarithm of the constant and in Kume et al. (2013) the Bingham part in

the Fisher-Bingham density does not have a minus sign (−) as in our case (see (6.11), there is

a minus sign). Furthermore, in Simon’s section Shape analysis the interested reader will find

Matlab codes for shape analysis.

fb.saddle=function(gam,lam){

## gam is the parameters of the Fisher part

## lam is the eigenvalues of the matrix of the Bingham part

lam=sort(lam) ## sorts the eigenvalues of the Bingham part

mina=min(lam)

if (mina<0) lam=lam+2*abs(mina) ## make the lambdas positive

p=length(gam) ## dimensionality of the distribution

para=c(gam,lam) ### the parameters of the Fisher-Bingham

saddle.equat=function(t,para) { ## saddlepoint equation

p=length(para)/2

gam=para[1:p] ; lam=para[-c(1:p)]

f=sum( 0.5/(lam-t)+ 0.25*(gam^2/(lam-t)^2) ) - 1

f }

low=lam[1]-0.25*p-0.5*sqrt(0.25*p^2+p*max(gam)^2) ## lower bound

up=lam[1]-0.25-0.5*sqrt(0.25+min(gam)^2) ## not the exact upper

## bound but a bit higher

ela=uniroot(saddle.equat,c(low,up),para=para,tol=1e-08)

tau=ela$root ## tau which solves the saddlepoint equation

### below are the derivatives of the cumulant generating function

kfb=function(j,gam,lam,t) {

if (j==1) kd=sum( 0.5/(lam-t)+ 0.25*(gam^2/(lam-t)^2) )
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if (j>1) kd=sum( 0.5*factorial(j-1)/(lam-t)^j+0.25*factorial(j)*gam^2/(lam-t)^(j+1) )

kd }

rho3=kfb(3,gam,lam,tau)/kfb(2,gam,lam,tau)^1.5

rho4=kfb(4,gam,lam,tau)/kfb(2,gam,lam,tau)^2

T=rho4/8-5/24*rho3^2

c1=0.5*log(2)+0.5*(p-1)*log(pi)-0.5*log(kfb(2,gam,lam,tau))-0.5*sum(log(lam-tau))-

tau+0.25*sum(gam^2/(lam-tau))

#c1=sqrt(2)*pi^(0.5*(p-1))*kfb(2,gam,lam,tau)^(-0.5)*prod(lam-tau)^(-0.5)*

exp(-tau+0.25*sum(gam^2/(lam-tau)))

c2=c1+log(1+T)

c3=c1+T

## the next multiplications brings the modification with the negative

## values in the lambdas back

if (mina<0) {

c1=c1+2*abs(mina)

c2=c2+2*abs(mina)

c3=c3+2*abs(mina) }

list(c1=c1,c2=c2,c3=c3) }

6.2.13 Normalizing constant of the Bingham and the Fisher-Bingham distributions using

MATLAB

As we mentioned before Simon Preston’s homepage contains Matlab codes for calculating the

normalizing constant of the Fisher-Bingham distribution. For those who rely more on Matlab

than R and for those who want to calculate the normalizing constant using Monte Carlo for

example or want the normalizing constant on products of spheres and stiefel manifolds and

do not know R the answer is here. Kwang-Rae Kim from the university of Nottingham helped

me create a front end with Matlab. That is, implement Matlab functions in Matlab and get

the answer using only R. The user needs to have a Matlab v6 or higher installed on his/her

computer.

At first we need to connect R with Matlab. For this reason we must download the R pack-

age R.matlab (Bengtsson, 2014). We then save the file FB.zip from Simon Preston’s home-

page into our computer. The .zip file has regular folder inside called FB norm const. Inside

FB norm const there are two folders, spheres and stiefel. we are interested in the first folder (I

do not know much about stiefel manifolds). The reader who knows can do the same as the

ones we describe below.

We take the folder spheres and save it somewhere in our computer (desktop?). You can

also unzip the FB.zip file and do the same things.

We then load the library into R and do the following steps

1. Change the working directory of R to the folder spheres.
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2. Type Matlab$startServer()

Wait until the server is open, wait. This will create three files in the folded spheres. Next

time you do the same work, delete them first. I do not think it affects next time, but just

in case.

3. Type matlab=Matlab()

4. Type isOpen=open(matlab)

5. Type isOpen (the answer should be TRUE).

We are almost there, Matlab, we have connection. Open the folder spheres to see what’s in

there. We are interested in two Matlab functions logNormConstSP and logNormConstMC. The

first uses saddlepoint approximation and the second uses Monte Carlo. I will show how to

use the first one only (the syntax for Monte Carlo is the same apart from an extra parameter,

n, the number of Monte Carlo samples) in the one sphere case only. For the case of products

of spheres see the function inside. Simon explains the arguments.

The function has this name logC = logNormConstSP(d,a,B,approxType). The argument

d is the number of dimensions, the argument a is the vector γγγ in (6.11) and the argument B

is the matrix −A in (6.11). A key thing is that in Kume et al. (2013) the Bingham part in the

Fisher-Bingham density does not have a minus sign (−) as in our case (in (6.11) there is a

minus sign). Finally approxType takes the values 1, 2 or 3 corresponding to the first (6.13),

second and third order (6.14) saddlepoint approximations. The value 4 produces a vector

with all three orders. A second key thing we must highlight is that Simon calculates the

logarithm of the constant, so the final answer should be exponentiated.

Let us calculate for example the Bingham normalizing constant. This means that γγγ = 0

and B is a matrix. We say that the eigenvalues of B are (1, 2, 3). This means that Simon’s

Matlab code needs the negative eigenvalues. Or in general, the negative of the matrix B we

have. Let us see this example. Type in R

evaluate(matlab,"logC=logNormConstSP(3,[0 0 0]’,diag([-1 -2 -3]),3);")

## Wait until the command is executed, wait.

res=getVariable(matlab,"logC")

res

You should see this

The answer is the logarithm of the third order (6.14) saddlepoint approximation to the

normalizing constant of the Bingham distribution (the vector γγγ is zero). We exponentiate the

result (exp(res$logC)) and we get the answer. Compare this answer with the answer from

the previous R function fb.saddle(c(0,0,0),c(1,2,3)).

Below we summarize the steps in two R codes. At first the user must run these commands

(copy and paste as they are) in order make the connection between the two programs.
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$logC
[ , 1 ]

[ 1 , ] 0 .6595873

a t t r ( , header )
a t t r ( , h e a d e r ) $ d e s c r i p t i o n
[ 1 ] MATLAB 5 . 0 MAT? f i l e , Platform : PCWIN64, Created on : Wed Feb 19 1 1 : 3 6 : 5 9 2014

a t t r ( , h e a d e r ) $vers ion
[ 1 ] 5
a t t r ( , h e a d e r ) $endian
[ 1 ] l i t t l e

library(R.matlab)

Matlab$startServer()

Sys.sleep(30)

matlab=Matlab()

isOpen=open(matlab)

Then the function one needs to use every time for calculating the Fisher-Bingham normal-

izing constant (using saddlepoint approximation or Monte Carlo integration) given below.

The convenience of this function is that one does not need to know the Matlab syntax. Note,

that the input parameters are the same as in the function fb.saddle. That is, put the same ma-

trix B or the eigenvalues. Inside the function, I put a minus sign (−) to agree with Simon’s

code. The parameter d is a number or a vector of length equal to the number of spheres we

have (Kume et al. (2013) calculate the normalizing constant for product of spheres, not just

one sphere). If it is a number then it contains the number of dimensions of the sphere. If it is

a vector, then it contains the dimensions of the spheres. Note, all the spheres in the case have

the same dimensions. The parameter a is the Fisher part of the Fisher-Bingham distribution

and the matrix B is the Bingham part. Do not forget to change the directory of R the folder

spheres as we said before.

FB.saddle=function(d,a,B,method="SP"){

## d is a vector of length k, where k is the number of spheres.

## if k=1 (one sphere), then d is a number showing the dimensions of the sphere

## if k=2, then we have two spheres and d=c(3,3) for example, meaning that we have two

## spheres of dimensions 3 each

## a is the gamma parameter, the Fisher part

## B is the matrix parameter, the Bingham part

## method can be either "SP" or "MC"

setVariable(matlab,d=d)

setVariable(matlab,a=a)

setVariable(matlab,B=-B)
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if (method=="SP") { ## this does saddlepoint approximation

evaluate(matlab,"logC=logNormConstSP(d,a,B,3);")

res=getVariable(matlab,"logC")

result=list(norm.const=exp(res$logC)) }

if (method=="MC") { ## this does Monte Carlo integration

evaluate(matlab,"[logC, se_logC] = logNormConstMC(d,a,B,1e+05);")

res=getVariable(matlab,"logC")

se.const=getVariable(matlab,"se_logC")

result=list(norm.const=exp(res$logC),se.norm.const=se.const$se.logC) }

result }

6.2.14 The Kent distribution on the sphere

The Kent distribution was proposed by John Kent (Kent, 1982) as a sub-model of the Fisher-

Bingham distribution on the sphere. So, I will focus on the sphere only here. It’s density

function is given by (Kent, 1982)

f (x) = c (κ, β)−1 exp

{
καααT

1 x + β

[(
αααT

2 x
)2

−
(

αααT
3 x
)2
]}

, (6.16)

where κ, β and A = (ααα1, ααα2, ααα3) are parameters that have to be estimated. Kent (1982) men-

tions that the κ ≤ 0 and β ≤ 0 represent the concentration and the ovalness of the distribution

respectively and these two parameters will be estimated via numerical maximization of the

log-likelihood. The normalizing constant in (6.16) depends upon these two parameters only

but its calculation is almost impossible up to now. For this reason we will approximate it

using the saddlepoint approximation of Kume and Wood (2005) we saw before (see Section

6.2.12). We need to suppose though that 2β < κ in order for the distribution to have the

correct behaviour. Note that if β = 0, then we have the von Mises-Fisher density. Finally A

is an orthogonal matrix where ααα1 is the mean direction or pole, ααα2 is the major axis and ααα3 is

the minor axis.

The Fisher Bingham distribution is written as

f (x) ∝ exp
(

κxTµµµ + xTAx
)

or as f (x) ∝ exp
(

κxTµµµ − xTAx
)

.

The first form is where (6.16) comes from but the second form is used in Kent et al. (2013)

and in Kume and Wood (2005). In the first case A = diag (0, β,−β). We will use the second

case, since the normalizing constant (Section 6.2.12) utilizes the second formula. In both cases

though, the normalizing constant depends upon κ and β only. The normalizing constant we

saw in Section 6.2.12 requires the γ vector and the λ vector. In the second case we need to

use γ = (0, κ, 0)T and λ = (0,−β, β)T as input values in the function fb.saddle we saw in

Section 6.2.12. In terms of Simon’s MATLAB function (see Section 6.2.13) we would specify
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γ = (0, 0, κ)T and λ = (β,−β, 0)T.

So, the log-likelihood of the Kent distribution from (6.16) is

ℓ = −n ∗ c (κ, β) + κ
n

∑
i=1

αααT
1 xi + β

[
n

∑
i=1

(
αααT

2 xi

)2
−

n

∑
i=1

(
αααT

3 xi

)2
]

. (6.17)

We will now describe the estimation the parameters of (6.16) as Kent (1982) mentions.

For the orthogonal matrix A we will mention the moment estimation. We must choose an

orthogonal matrix H to rotate the mean vector x̄ = n−1 (∑n
i=1 x1i, ∑

n
i=1 x2i, ∑

n
i=1 x3i)

T to the

north polar axis (1, 0, 0)T. So, H can be

H =




cos θ − sin θ 0

sin θ cos φ cos θ cos φ − sin φ

sin θ sin φ cos θ sin φ − cos φ


 ,

where θ and φ are the polar co-ordinates of x̄. Let B = HTSH, where S = n−1 ∑ xix
T
i . Then

choose a rotation K about the north pole to diagonalize BL, where

BL =

[
b22 b23

b32 b33

]

is the lower 2 × 2 submatrix of B, with eigenvalues l1 > l2. If we choose ψ such that

tan (2ψ) = 2b23/ (b22 − b33), ensuring that ‖ x̄ ‖> 0 and l1 > l2 then we can take

K =




1 0 0

0 cos ψ − sin ψ

0 sin ψ cos ψ


 .

The moment estimate of A is given by Ã = HK. As for the parameters κ and β we will

maximize (6.17) with respect to these two parameters. I repeat that we will use γ = (0, κ, 0)T

and λ = (0,−β, β)T as input values in the function fb.saddle we saw in Section 6.2.12. The

next R function calculates the A matrix, the κ and β and the log-likelihood and has been

tested with the data that appear in Kent (1982). Some elements in the A matrix are slightly

different, but I do not think this is an issue.

kent.mle=function(x) {

## x is the data in Euclidean coordinates

n=nrow(x) ## sample size

xbar=colMeans(x) ## mean vector

degs=euclid.inv(xbar) ## bring the mean vector to latitude and longitude

u=pi*degs/180 # from degrees to radians

theta=u[1] ; phi=u[2]
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H=matrix(c(cos(theta),sin(theta)*cos(phi),sin(theta)*sin(phi),

-sin(theta),cos(theta)*cos(phi),cos(theta)*sin(phi),0,-sin(phi),cos(phi)),ncol=3)

S=(1/n)*t(x)%*%x

B=t(H)%*%S%*%H

psi=0.5*atan( 2*B[2,3]/(B[2,2]-B[3,3]) )

K=matrix(c(1,0,0,0,cos(psi),sin(psi),0,-sin(psi),cos(psi)),ncol=3)

G=H%*%K ## The G matrix Kent describes, the A in our notation

r1=sqrt(sum(xbar^2))

lam=eigen(B[-1,-1])$values

r2=lam[1]-lam[2]

## the next function will be used to estimate the kappa and beta

mle=function(para){

## maximization w.r.t. to k and b

k=para[1] ; b=para[2]

gam=c(0,k,0)

lam=c(0,-b,b)

ckb=fb.saddle(gam,lam)$c3

g=-( -n*ckb+k*sum(x%*%G[,1])+b*sum((x%*%G[,2])^2)-b*sum((x%*%G[,3])^2) )

g }

ini=vmf(x)$k

ini=c(ini,ini/2.1) ## initial values for kappa and beta

qa=optim(ini,mle)

para=qa$par

k=para[1] ; b=para[2] ## the estimated parameters

gam=c(0,k,0)

lam=c(0,-b,b)

ckb=fb.saddle(gam,lam)$c3

## the line below calculates the log-likelihood.

l=-n*ckb+k*sum(x%*%G[,1])+b*sum((x%*%G[,2])^2)-b*sum((x%*%G[,3])^2)

para=c(k,b) ; names(para)=c(’kappa’,’beta’)

colnames(G)=c(’mean’,’major’,’minor’)

list(G=G,param=para,loglik=l) }

If we want to simulate from a Kent distribution then we have to use the fb.sim function

we saw in Section 6.2.11. The point is to suitably fix the parameter µµµ and A of (6.9). So for a

concentration parameter κ and an ovalness parameter β, we would have to specify

m=c(0,1,0)

A=diag(c(-b,0,b))

and then type in R

112



fb.sim(n,k,m,A)

Try this with some values of κ and β and then use the kent.mle function above to see the

estimates of κ and β.

6.2.15 Fisher versus Kent distribution

Kent (1982) proposed a test statistic to test whether a von Mises-Fisher distribution on the

sphere is preferable to a Kent distribution. To be honest, I did not make the test statistic.

Something is wrong, I did not get it and I made a mistake, I don’t know. For this reason I will

describe the test as I found it in Rivest (1986).

Hypothesis test of Fisher versus Kent distribution on the sphere

1. Calculate the sample mean direction µ̂µµ and the sample concentration parameter κ̂ as-

suming a von Mises-Fisher model on the sphere with x being the sample data of sample

size equal to n.

2. Calculate the orthogonal matrix

P̂ = I3 −
(e1 − µ̂µµ) (e1 − µ̂µµ)T

1 − µ̂1
,

where e1 = (1, 0, 0)T and µ̂1 is the first element of the sample mean direction. Not, that

P̂ is a symmetric matrix whose first column (or first row) is the sample mean direction

µ̂µµ.

3. Calculate z = P̂x and take y which consists of the last two columns of the z matrix

y = (z2i, z3i).

4. Calculate the two eigenvalues l1 and l2 of S = ∑
n
i=1 yiy

T
i .

5. Kent’s statistic is written as

T̂ = n

(
κ̂

2

)2 I1/2 (κ̂)

I5/2 (κ̂)
(l1 − l2)

2 .

The R function presented below offers the possibility of non parametric bootstrap as well.

fishkent=function(x,B=999){

## x contains the data

## B is by default eaual to 999 bootstrap re-samples

## If B==1 then no bootstrap is performed

n=nrow(x) ## sample size
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estim=vmf(x)

k=estim$k ## the estimated concentration parameter

## under the H0, that the Fisher distribution is true

mu=estim$mu ## the estimated mean direction under H0

e1=c(1,0,0)

P=diag(3)-(e1-mu)%*%t(e1-mu)/(1-mu[1])

y=(x%*%P)[,2:3]

lam=eigen((1/n)*(t(y)%*%y))$values

rat=besselI(k,0.5,expon.scaled=T)/besselI(k,2.5,expon.scaled=T)

T=n*(k/2)^2*rat*(lam[1]-lam[2])^2

if (B==1) p.value=1-pchisq(T,2)

if (B>1) {

Tb=numeric(B)

for (i in 1:B) {

nu=sample(1:n,n,replace=T)

estim=vmf(x[nu,])

k=estim$k ## the estimated concentration parameter

## under the H0, that the Fisher distribution is true

mu=estim$mu ## the estimated mean direction under H0

e1=c(1,0,0)

P=diag(3)-(e1-mu)%*%t(e1-mu)/(1-mu[1])

y=(x[nu,]%*%P)[,2:3]

lam=eigen((1/n)*(t(y)%*%y))$values

rat=besselI(k,0.5,expon.scaled=T)/besselI(k,2.5,expon.scaled=T)

Tb[i]=n*(k/2)^2*rat*(lam[1]-lam[2])^2 }

p.value=(sum(Tb>T)+1)/(B+1) }

p.value }

6.2.16 Contour plots of the von Mises-Fisher distribution

We provide a simple function to produce contour plots of the von Mises-Fisher distribution.

Georgios Pappas from the University of Nottingham made this possible. He explained the

idea to me and all I had to do was write the code. The con Mises-Fisher direction needs

two arguments, a mean direction (µµµ) and a concentration parameter (κ). Similar to other

distributions, the mean direction is not really important. The shape will not change if the

mean direction changes. So we only need the concentration parameter. Since this distribution

is rotationally symmetric about its mean the contours will be circles. Rotational symmetry

is the analogue of a multivariate normal with equal variance in all the variables and zero

correlations. In other words, the covariance matrix is a scalar multiple of the identity matrix.

We rewrite the density as we saw it in (6.6), excluding the constant terms, for convenience

114

mailto:Georgios.Pappas@nottingham.ac.uk


purposes.

fp(x; µ, κ) ∝ exp
(

κµµµTx
)

,

We need a plane tangent to the sphere exactly at the mean direction. The inner product of

the a unit vector with the mean direction which appears on the exponent term of the density

(6.6) is equal to an angle θ. So for points on the tangent plane we calculate this angle every

time and then calculate the density (which needs only κ now). If you did not understand this

ask a physicist, they do angles and know of manifolds in general.

Let us see this graphically now. See Figure 6.1 below. Suppose this is one slice of a quarter

of a sphere. We have a point on the sphere (A) and want to project it onto the tangent plane.

The plane is tangent to the mean direction which is the black vertical line, the segment OB.

What we want to do now, is flatten the sphere (or peel off if you prefer), so that the point A

touches the plane. The green line is the arc, OA, and the point A” on the plane corresponds

to A on the sphere. The important feature here is that the length of OA and the length of OA”

are the same. So we projected the point A on the plane in such a way that it’s arc length from

the mean direction remains the same on the plane. How much is this arc length? The answer

is equal to θ rads, where θ is the angle formed by the two radii, OB and BA.

The other case is when we project the chord of the sphere (red line) onto the plane and

in this case the point A on the sphere corresponds to point A’ on the tangent plane. In this

case, the length of OA and OA’ are the same. I believe the colours will help you identify the

relation between the point on the circle and on the tangent plane.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8
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A

O

B
θ

A’ A’’

Figure 6.1: A slice of a quarter of the sphere along with a chord and an arc. The red and
green lines indicate the projection of the point on the sphere onto the tangent plane.
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The mean direction is not important, but the angle between a point on the sphere and its

mean direction is, and we only need the concentration parameter to define our contour plots.

Similarly to the univariate case, where the relevant distance between the points and the mean

is of importance only and not the mean itself and then the variance determines the kurtosis

of the distribution. So, here the angle between the observations and the mean direction only

is important. Thus, in the plane we take lots of points and we calculate the angles from the

mean direction every time. The concentration parameter is what affect what we see.

In this case, the von Mises-Fisher distribution, the contour plots will always be circles,

because this distribution is the analogue of an isotropic multivariate normal (no correlation

and all variances equal). The higher the concentration parameter κ is, the more gathered the

circles are, and so on. Let us highlight that we peeled off the sphere here (i.e. used the green

line in Figure 6.1).

vmf.contour=function(k) {

## k is the concentration parameter

rho=pi/2 ## radius of the circular disc

x=y=seq(-rho,rho,by=0.01) ; n=length(x)

mat=matrix(nrow=n,ncol=n)

for (i in 1:n) {

for (j in 1:n) {

z=c(x[i],y[j])

if ( sum(z^2)<rho^2 ) {

theta=sqrt(sum(z^2))

xa=0.5*log(k)+k*cos(theta)-1.5*log(2*pi)-log(besselI(k,0.5,expon.scaled=T))-k

mat[i,j]=exp(xa) } } }

contour(x,y,mat) }

6.2.17 Contour plots of the Kent distribution

The Kent distribution as we saw it in (6.16) has the following formula on the sphere

f (x) = c (κ, β)−1 exp

{
καααT

1 x + β

[(
αααT

2 x
)2

−
(

αααT
3 x
)2
]}

,

The parameters κ and β are the two arguments necessary for the construction of the con-

tour plots, since as we said in the case of the von Mises-Fisher distribution, the mean direction

is not important, but the angle between it and the points is. As for the two other terms in the

exponential, they are also expressed in terms of angles (see also Kent 1982). Let us only say

that in this case we used the projection described using the red line in Figure 6.1.

We will mention two more things, first, that this function requires (whenever the Kent

distribution is involved actually) the fb.saddle function and secondly, note that when κ > β the
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distribution is unimodal as Kent (1982) mentions. If the opposite is true, then the distribution

is bimodal and has some connections with the Wood distribution Wood (1982).

kent.contour=function(k,b){

gam=c(0,k,0) ; lam=c(0,b,-b)

con=fb.saddle(gam,lam)$c3

rho=sqrt(2)

x=y=seq(-rho,rho,by=0.01) ; n=length(x)

## radius of the circular disc is 1

mat=matrix(nrow=n,ncol=n)

for (i in 1:n) {

for (j in 1:n) {

z=c(x[i],y[j])

if ( sum(z^2)<rho^2 ) {

theta=2*asin( 0.5*sqrt(sum(z^2)) )

g2x=x[i] ; g3x=y[j]

xa=k*cos(theta)+b*(g2x^2-g3x^2)-con

mat[i,j]=exp(xa) } } }

contour(x,y,mat) }

6.2.18 Lambert’s equal area projection

In order to visualize better spherical data (we are on S2) it’s not sufficient to plot in a scatter

diagram the latitude versus the longitude because of the spherical nature of the data. For this

reason we should project the sphere on the tangent plane and then plot the projected points.

This is the way maps are made, by using an azimuthial projection, to preserve distances. A

good choice is the Lambert’s (azimuthial) equal area projection. We will try to explain what

it is, but if you did not understand then see Fisher et al. (1987) who explains graphically this

one and some other projections. Figure 6.1 presented above shows the difference.

Suppose we have points on the sphere, denoted by θ (latitude) and φ (longitude). Fol-

lowing Kent (1982) we will project the points on the (half) sphere down to the tangent plane

inside a spherical disk with radius 2

z1 = ρ cos φ, z2 = ρ sin φ, (6.18)

where ρ = 2 sin θ/2. In our case, the radius is one, but if you multiply by 2 then the radius

becomes 2. So this projection corresponds to the red line in Figure 6.1.

At first, let us say something. We must rotate the data so that their mean direction is the

north pole (for convenience reasons) and then spread, open, expand the north hemisphere so

that it becomes flat (or project the points on the tangent to the north pole plane). So starting
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from two sets of points (latitude and longitude) we move on to the sphere (Euclidean coor-

dinates), then find their mean direction, rotate the data such that their mean direction is the

north pole, go back to the latitude and longitude and then apply (6.18). For the next two

functions we need the functions euclid, rotation, vmf and euclid.inv.

lambert=function(y) {

## y contains the data in degrees, lattitude and longitude

u=euclid(y) ## transform the data into euclidean coordinates

m=colMeans(u)

m=m/sqrt(sum(m^2)) ## the mean direction

b=c(0,0,1) ## the north pole towards which we will rotate the data

H=rotation(m,b) ## the rotation matrix

u1=u%*%t(H) ## rotating the data so that their mean direction is

## the north pole

u2=euclid.inv(u1) ## bring the data into degrees again

u2=pi*u2/180 ## from degrees to rads

theta=u2[,1] ; phi=u2[,2]

rho=2*sin(theta/2) ## radius of the disk is sqrt(2)

z1=rho*cos(phi) ## x coordinate

z2=rho*sin(phi) ## y coordinate

z=cbind(z1,z2) ## the Lambert equal area projected data on the disk

z }

The inverse of the Lambert projection is given by the next R function. For this one we need

to have the original mean direction towards which we will bring the back onto the sphere.

We un-project the data onto the sphere and then rotate them from the north pole to the given

mean direction. Then we transform them into latitude and longitude.

lambert.inv=function(z,mu) {

## z contains the Lambert equal area projected data

## mu is the initial mean direction to which we will

## rotate the data after bringing them on the sphere

z=as.matrix(z)

if (ncol(z)==1) z=t(z)

long=( atan(z[,2]/z[,1])+pi*I(z[,1]<0) )%%(2*pi)

lat=2*asin(0.5*sqrt(rowSums(z^2)))

u=cbind(lat,long) ## the data on the sphere in rads

u=u*180/pi ## from rads to degrees

y=euclid(u) ## the data in euclidean coordinates

## their mean direction is not exactly the north pole

b=c(0,0,1) ## the north pole from which we will rotate the data
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mu=mu/sqrt(sum(mu^2)) ## make sure that mu is a unit vector

H=rotation(b,mu) ## rotate the data so their mean direction is mu

u=y%*%t(H)

u=euclid.inv(u)

u }
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Log of changes from version to version

After a massive public demand (just one e-mail basically) I was suggested to add a log a log

of the changes in different versions or any changes I make. I started from version 3.9 (I do

not remember the previous changes).

54. 31/10/2014. Version 6.1. Addition of the James test for testing the equality of more

than 2 mean vectors without assuming equality of the covariance matrices (MANOVA

without homoscedasticity). Minor changes in the functions multivreg, rob.multivreg and

comp.reg. The argument for the betas in the list became beta instead of Beta.

53. 24/10/2014. Version 6.0. Multivariate ridge regression has been added. A way for

generating covariance matrices was also added and the two functions in the Dirichlet

regression were updated. Some minor typos were corrected.

52. 13/10/2014. Version 5.9. Addition of the spatial median and of the spatial median

regression. Addition of the spatial median for compositional data as well.

51. 8/9/2014. Version 5.8. After a break we return with corrections in the functions lambert

and lambert.inv. The mistake was not very serious, in the sense that the plot will not

change much, the relevant distances will change only. But even so, it was not the correct

transformation.

50. 28/7/2014. Version 5.8. Changes in the euclid and euclid.inv functions. The transfor-

mations inside the functions was not in accordance with what is described on the text.

Some typos in the spherical-spherical regression description are now corrected.

49. 25/7/2014. Version 5.8. Typographical changes in the circular summary and in the

projected bivariate normal sections. The codes are OK, but the descriptions had typos.

48. 2/7/2014. Version 5.8. A structural change and a correction in the diri.reg function and

name change only of multivnorm to rand.mvnorm. Increase of the the highest number

of degrees of freedom parameter in the multivt function and correction of a silly typo-

graphical mistake in the rand.mvnorm function. Addition of the rand.mvt for simulating

random values from a multivariate t distribution. Also a small change in the order of

some Sections. For some reason the rand.mvnorm would put the data in a matrix with 4

columns. So the result would always be a 4 dimensional normal. I corrected it now.

47. 29/6/2014. Version 5.7. A change in the rda.pred function. I made it faster by rearrang-

ing some lines internally. The function is the same. I also added the scores to appear as

outputs.

46. 26/6/2014. Version 5.7. Some morphological changes and addition of the Dirichlet

regression for compositional data. Addition of the forward search algorithm and the
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contour plots of the von Mises-Fisher and Kent distributions. Georgios Pappas’ help

with the contours made them possible to appear in this document.

45. 25/6/2014. Version 5.6. Addition of the model selection process in discriminant analy-

sis.

44. 23/6/2014. Version 5.5. A slight change in the ternary function, addition of a graph-

ical option. Changes in the Dirichlet estimation, I made them proper functions now.

Change in the multivreg function. There was a problem if there was one independent

variable with no name. I fixed a problem with the rob.multivreg function also. A minor

mistake fixed in the functions vmf.da and vmfda.pred which did not affect the outcome.

A constant term was wrong. The spher.reg function has become a bit broader now. Com-

positional regression is now added.

43. 16/6/2014. version 5.4. Fixation of a silly mistake in the rbingham function. The mistake

was in the second line of the code.

42. 13/6/2014. Version 5.4. Addition of the variance of the concentration parameter κ in

the vmf function.

41. 13/6/2014. Version 5.4. I fixed a mistake in the circ.summary function.

40. 13/6/2014. Version 5.4. I fixed some mistakes in the functions circ.cor1, circ.cor2, cir-

clin.cor, spher.cor. The problem was that I was not drawing bootstrap re-samples under

the null hypothesis. So I removed the bootstrap. the same was true for the rayleigh func-

tion. But in this function, I can generate samples under the null hypothesis. For this pur-

pose, parametric bootstrap is now implemented. In addition, the function circ.summary

changed and follows the directions of Mardia and Jupp (2000). A confidence interval

for the mean angle is also included now.

39. 11/6/2014. Version 5.4. Theo Kypraios spotted a mistake in the rbingham function

which has now been corrected.

38. 5/6/2014. Version 5.4. Addition of the test of Fisher versus Kent distribution on the

sphere. Some presentation changes occurred in the MLE of the von Mises-Fisher distri-

bution section.

37. 4/6/2014: Version 5.3. Addition of the Rayleigh test of uniformity. Slight changes in

the kent.mle function regarding the presentation of the results.

36. 12/5/2014: Version 5.2. Some words added about estimating the concentration param-

eter in the von Mises-Fisher distribution.
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35. 9/5/2014: Version 5.2. Editing of the Section about the simulation from a Bingham

distribution. More information is added to make it clearer and a new function is used

to simulate from a Bingham with any symmetric matrix parameter. A reordering of

some sections took place and also the addition of a function to simulate from a Fisher-

Bingham distribution and the Kent distribution on the sphere.

34. 8/5/2014: Version 5.1. Editing of the explanation of the function FB.saddle. I believe I

made some points more clear.

33. 7/5/2014: Version 5.1. Correction of a space mistake in the vmfda.pred function. A line

was not visible in the .pdf file. Correction of am mistake in the vmf function. The log-

likelihood was wrong.

32. 3/5/2014: Version 5.1 Addition of the parameter estimation in the Kent distribution

plus corrections of some typographical mistakes.

31. 10/4/2014: Version 5.0. Addition of the calculation of the log-likelihood value in the

von Mises-Fisher distribution and correction of typographical errors.

30. 2/4/2014: Version 5.0. Addition of the (hyper)spherical-(hyper)spherical correlation

and of the discriminant analysis for directional data using the von Mises-Fisher distri-

bution. Whenever the set.seed option appeared we made some modifications also. That

is, in the functions knn.tune, kern.tune, pcr.tune and rda.tune. addition of the seed option

in the functions kfold.da and bckfold.da. The function fb.saddle is slightly changed. Now

the logarithm of the Fisher-Bingham normalizing constant is calculated. This change

happened to avoid computational overflow when the constant takes high values.

29. 31/3/2014: Version 4.9 Some minor changes in the functions knn.tune and kern.tune.

28. 29/3/2014: Version 4.9. Addition of the Lambert’s equal are projection of the sphere

onto a tangent plane. Change in the regularised discriminant analysis function. Cross

validation for tuning of its parameters is now available.

27. 26/3/2014: Version 4.8. Fix of a silly mistake in the functions knn.tune and pred.knn.

26. 24/3/2014: Version 4.8. A minor correction in the function multivreg. A minor also

change related to its presentation words. Addition of the function rob.multivreg which

performs robust multivariate regression. Some presentation changes throughout the

document also.

25. 23/3/2014: Version 4.7. Minor change in the k-NN regression. Now it accepts either Eu-

clidean or Manhattan distance. Morphological change in the function correl and change

of some words in the relevant section.
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24. 21/3/2014: Version 4.7. Fix of a stupid mistake in the function vmf. The mean direction

was wrongly calculated. Interchange between the sum and the square root.

23. 21/3/2014: Version 4.7. Removal of the function for Fisher type regression for angular

response variables.

22. 20/3:2014: Version 4.7. Addition of the option to set seed in the functions knn.tune,

kern.tune and pcr.tune (previously known as pcr.fold). This allows to compare the MSPE

between these three different methods.

21. 20/3/2014: Version 4.7. Change in the functions kfold.da and bckfold.da. Correction of

the confidence limits if they happen to go outside 0 or 1. In the bckfold.da I made sure

that the same test samples are always used for the values of the power parameter λ. In

this way the estimated percentage of correct classification is comparable in a fair way.

Change of the title also. A similar change took place for the function knn.tune, so that the

MSPE for every value of the bandwidth parameter h is based on the same test samples.

This change was also made in the function pcr.fold as well. Actually in the pcr.fold this

was already happening but now the user can obtain the test samples used. The k-NN

and kernel regressions accept univariate dependent variables now.

20. 18/3/2014: Version 4.6. Correction of a foolish mistake in the functions

textiteuclid and euclid.inv. It did not handle correctly vectors and data which were not

in matrix class.

19. 17/3/2014: Version 4.6. Fix of a problem with negative eigenvalues in the Fisher-

Bingham normalizing constant.

18. 13/3/2014: Version 4.6. Addition of a second type correlation coefficient for pairs of

angular variables. The new function is circ.cor2. The old function is now called circ.cor1

and a couple of typograhical mistakes inside it are now corrected. A change in the

functions vm.reg and spml.reg. The calculation of the pseudo-R2 changed. A change in

the function circ.summary also. Minor typographical changes and removal of a few lines

in the functionden.contours which do not affect the function at all.

17. 12/3/2014: Version 4.5. Fixation of a possible problem with the column names in the

multivariate regression (function multivreg). Small changes in the function itself as well.

16. 12/3/2014: Version 4.5. Fixation of a typographical error in the description of the algo-

rithm for simulating random values from a von Mises-Fisher distribution and changing

the functions euclid and euclid.inv to include the case of vectors, not only matrices.

15. 10/3/2014: Version 4.5. Addition of the circular-linear correlation coefficient. Addi-

tion of the bootstrap calculation of the p-value in the circular correlation. Fixation of a

typographical error in the function circ.summary.
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14. 8/3/2014: Version 4.4 Addition of the Box-Cox transformation for discriminant analy-

sis. Expansion of the multivariate regression function multivreg. Some morphological

changes also.

13. 7/3/2014: Version 4.3. Addition of the L1 metric kernel in the kernel regression and

change of the names of the two kernel regression functions. Addition of some words as

well.

12. 6/3/2014: Version 4.2. Addition of one line for the column names in the functions

euclid and euclid.inv. Morphological changes in the Section of discrimination and minor

changes in the function kfold.da. Removal of the command library(MASS) from multivt

and den.contours.

11. 4/3/2014: Version 4.2. Addition of a function to generate from a multivariate normal

distribution. A change in the Nadaraya-Watson case of the kernel regression function.

A change in the variance of the coefficients in the principal component regression func-

tion. Addition of some words in the standardization section and in the hypothesis test-

ing for a zero correlation coefficient.

10. 1/3/2014: Version 4.1. Fixation of an error in the function poly.tune.

9. 27/2/2014: Version 4.1. Addition of a couple of things in the Fisher-Bingham normal-

izing constant section.

8. 19/2/2014: Version 4.1. Addition of the calculation of the Fisher-Bingham normalizing

constant by connecting R to Matlab. Kwang-Rae Kim helped a lot with this one. Also a

few changes in the introduction of the section about directional data.

7. 17/2/2014: Version 4.0. Correction in the poly.reg function (kernel regression). Some

changes also in the introduction.

6. 16/2/2014: Version 4.0. Correction in the function pcr.fold (Cross validation for prin-

cipal component regression). Instead of BIC I use now MSPE and a correction on the

centring of the dependent variable.

5. 14/2/2014: Version 4.0. Updated version with some typos corrected.

4. 14/2/2014: Version 4.0. Word changes in the Fisher-Bingham normalizing constant and

addition of one line in the function (lam=sort(lam)) and inclusion of this log of changes.

3. 13/2/2014: Version 4.0. Change of the poly.tune function. The cross-validation for the

choice of the common bandwidth h is implemented by diving the sample to test and

training sets many times. Improved cross validation. A change in the function poly.reg

also.
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2. 12/2/2014: Version 4.0. Addition of the Fisher-Bingham normalizing constant.

1. 11/2/2014: Version 3.9. Change of the Bingham random value simulation function with

the function given by Christopher Fallaize and Theo Kypraios.

125

mailto:Chris.Fallaize@nottingham.ac.uk
https://www.maths.nottingham.ac.uk/personal/tk/


References

Abramowitz, M. and Stegun, I. (1970). Handbook of mathematical functions. New York: Dover

Publishing Inc.

Agostinelli, C. and Lund, U. (2011). R package circular: Circular Statistics (version 0.4-3). CA:

Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University,

Venice, Italy. UL: Department of Statistics, California Polytechnic State University, San Luis

Obispo, California, USA.

Aitchison, J. (1989). Measures of location of compositional data sets. Mathematical Geology,

21(7):787–790.

Aitchison, J. (2003). The Statistical Analysis of Compositional Data. New Jersey: (Reprinted by)

The Blackburn Press.

Amaral, G. J. A., Dryden, I. L., and Wood, A. T. A. (2007). Pivotal bootstrap methods for

k-sample problems in directional statistics and shape analysis. Journal of the American Sta-

tistical Association, 102(478):695–707.

Anderson, T. W. (2003). An introduction to multivariate statistical analysis (3rd edition). New

Jersey: John Wiley & Sons.

Atkinson, A. C., Riani, M., and Cerioli, A. (2004). Exploring multivariate data with the forward

search. Springer.

Azzalini, A. (2011). R package sn: The skew-normal and skew-t distributions (version 0.4-17).
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