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Testing & model choice, likelihood-based

A common way to test a larger model vs. a nested sub-model is
through hypothesis testing. Three ways: Wald, score, and LRT
tests. Large-sample versions lead to χ2 test statistics.

Bootstrapped p-values do not rely on asymptotics (coming up).

Non-nested model selection is carried out through information
criteria: AIC, BIC, etc.

Other methods: LASSO, LAD, elastic net, cross-validation, best
subsets.
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Testing & model choice, Bayesian

Bayes factors compare models in a coherent way. Savage-Dickey
ratio allows computation of Bayes factors for point null
hypotheses. Can also do “usual” hypothesis test based on credible
interval (or region).

Non-nested model selection is carried out through information
criteria: DIC, WIC, etc.

Other methods: Bayesian LASSO, LPML (leave-one-out cross
validated predictive density), model averaging, reversible jump
(Green, 1995), pseudo-priors (Carlin and Chib, 1995), stochastic
search variable selection (SSVS).
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Wald, likelihood ratio, and score tests

These are three ways to perform large sample hypothesis tests
based on the model likelihood L(θ|x).

Wald test

Let M be a m × k matrix. Many hypotheses can be written
H0 : Mθ = b where b is a known m × 1 vector.

For example, let k = 3 so θ = (θ1, θ2, θ3). The test of H0 : θ2 = 0
is written in matrix terms with M = [ 0 1 0 ] and b = 0. The

hypothesis H0 : θ1 = θ2 = θ3 has M =

[
1 −1 0
0 1 −1

]
and

b =

[
0
0

]
.
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Wald test, cont.

The large sample result for MLEs is

θ̂
•∼ Nk(θ, [−∇2 log L(θ̂|x)]−1).

So then
Mθ̂

•∼ Nm(Mθ,M[−∇2 log L(θ̂|x)]−1M′).

If H0 : Mθ = b is true then

Mθ̂ − b
•∼ Nm(0,M[−∇2 log L(θ̂|x)]−1M′).

So

W = (Mθ̂ − b)′[M[−∇2 log L(θ̂|x)]−1M′]−1(Mθ̂ − b)
•∼ χ2

m.

W is called the Wald statistic and large values of W indicate Mθ
is far away from b, i.e. that H0 is false. The p-value for
H0 : Mθ = b is given by p-value = P(χ2

m >W ).

The simplest, most-used Wald test is the familiar test that a
regression effect is equal to zero, common to multiple, logistic,
Poisson, and ordinal regression models.
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Nonlinear tests

For nonlinear function g : Rk → Rm,

g(θ) =

 g1(θ)
...

gm(θ)

 ,
we have

g(θ̂)
•∼ Nm(g(θ), [∇g(θ̂)]′[−∇2 log L(θ̂|x)]−1[∇g(θ̂)]).

Let g0 ∈ Rm be a fixed, known vector.

An approximate Wald test of H0 : g(θ) = g0 has test statistic

W = (g(θ̂)−g0)′{[∇g(θ̂)]′[−∇2 log L(θ̂|x)]−1[∇g(θ̂)]}−1(g(θ̂)−g0).

In large samples W
•∼ χ2

m. Example: V.A. data.
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Score test

In general, the cov(θ̂) is a function of the unknown θ. The Wald
test replaces θ by its MLE θ̂ yielding [−∇2 log L(θ̂|x)]−1. The
score test replaces θ by the the MLE θ̂0 obtained under the
constraint imposed by H0

θ̂0 = argmaxθ∈Θ:Mθ=bL(θ|x).

Let [−∇2 log L(θ|x)]−1 be the asymptotic covariance for
unconstrained MLE.

The resulting test statistic

S = [ ∂∂θ log L(θ̂0|x)]′[−∇2 log L(θ̂0|x)]−1[ ∂∂θ log L(θ̂0|x)]
•∼ χ2

m.

Sometimes it is easier to fit the reduced model rather than the full
model; the score test allows testing whether new parameters are
necessary from a fit of a smaller model.
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Likelihood ratio tests

The likelihood ratio test is easily constructed and carried out for
nested models. The full model has parameter vector θ and the
reduced model obtains when H0 : Mθ = b holds. A common
example is when θ = (θ1,θ2) and we wish to test H0 : θ1 = 0
(e.g. a subset of regression effects are zero). Let θ̂ be the MLE
under the full model

θ̂ = argmaxθ∈ΘL(θ|x),

and θ̂0 be the MLE under the constraint imposed by H0

θ̂0 = argmaxθ∈Θ:Mθ=bL(θ|x).
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LRT, cont.

If H0 : Mθ = b is true,

L = −2[log L(θ̂0|x)− log L(θ̂|x)]
•∼ χ2

m.

The statistic L is the likelihood ratio test statistic for the
hypothesis H0 : Mθ = b. The smallest L can be is zero when
θ̂0 = θ̂. The more different θ̂ is from θ̂0, the larger L is and the
more evidence there is that H0 is false. The p-value for testing H0

is given by p − value = P(χ2
m > L).

To test whether additional parameters are necessary, LRT tests are
carried out by fitting two models: a “full” model with all effects
and a “reduced” model. In this case the dimension m of M is the
difference in the numbers of parameters in the two models.
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LRT, cont.

For example, say we are fitting the standard regression model

yi = β0 + β1xi1 + β2xi2 + β3xi3 + ei

where ei
iid∼ N(0, σ2). Then θ = (β0, β1, β2, β3, σ

2) and we want to
test θ1 = (β2, β3) = (0, 0), that the 2nd and 3rd predictors aren’t
needed. This test can be written using matrices as

H0 :

[
0 0 1 0 0
0 0 0 1 0

]
β0
β1
β2
β3
σ2

 =

[
0
0

]
.
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LRT, cont.

The likelihood ratio test fits the full model above and computes
Lf = log Lf (β̂0, β̂1, β̂2, β̂3, σ̂).

Then the reduced model Yi = β0 + β1xi1 + ei is fit and
Lr = log Lr (β̂0, β̂1, σ̂) computed.

The test statistic is L = −2(Lr − Lf ); a p-value is computed as
P(χ2

2 > L). If the p-value is less than, say, α = 0.05 we reject
H0 : β2 = β3 = 0.

Of course we wouldn’t use this approximate LRT test here! We
have outlined an approximate test, but there is well-developed
theory that instead uses a different test statistic with an exact
F -distribution.
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Comments

Note that:

The Wald test requires maximizing the unrestricted likelihood.

The score test requires maximizing the restricted likelihood
(under a nested submodel).

The Likelihood ratio test requires both of these.

So the likelihood ratio test uses more information and both Wald
and Score tests can be viewed as approximations to the LRT.

However, Wald tests of the form H0 : Mθ = b are easy to get in
both SAS and R. In large samples the tests are equivalent.
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Confidence intervals

A plausible range of values for a parameter βj (from ε) is given by
a confidence interval (CI). Recall that a CI has a certain fixed
probability of containing the unknown βj before data are collected.
After data are collected, nothing is random any more, and instead
of “probability” we refer to “confidence.”

A common way of obtaining confidence intervals is by inverting
hypothesis tests of H0 : βk = b. Without delving into why this
works, a (1− α)100% CI is given by those b such that the p-value
for testing H0 : βk = b is larger than α.
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CIs, cont.

For Wald tests of H0 : βk = b, the test statistic is
W = (β̂k − b)/se(β̂k). This statistic is approximately N(0, 1) when
H0 : βk = b is true and the p-value is larger than 1− α only when
|W | < zα/2 where zα/2 is the 1− α/2 quantile of a N(0, 1)
random variable. This yields the well known CI

(β̂k − zα/2se(β̂k), β̂k + zα/2se(β̂k)).

The likelihood ratio CI operates in the same way, but the
log-likelihood must be computed for all values of b.

Example: V.A. data.
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Non-nested models

Wald, score, and likelihood ratio tests all work for nested models.
The constraint Mθ = b implies a model that is nested in the larger
model without the constraint.

For non-nested models, model selection criteria are commonly
employed. All information criteria have a portion reflecting model
fit (that increases with the number of parameters) and a portion
that penalizes for complexity. Smaller information criteria ⇒
better model.
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AIC for model selection

The AIC (Akaike, 1974) is a widely accepted statistic for choosing
among models. The AIC is asymptotically justified as attempting
to minimize the estimated Kullback-Liebler distance between the
true probability model and several candidate models. As the true
model is often more complex than our simple statistical models,
the AIC will tend to pick larger, more complex models as more
data are collected and more is known about the true data
generating mechanism.

The AIC is
AIC = 2k − 2 log L(θ̂|x),

where k is the number of parameters in θ.
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Marginal & conditional AIC

Random effects models can be dealt with in one of two ways.

If the random effects u can be integrated out, the usual likelihood
is obtained

L(θ|x) =

∫
u∈Rp

L(θ|x,u)p(u|θ)du.

Then the (marginal) AIC is computed as usual. Here the model
“focus” is on population effects θ only. This is the default AIC
provided in lmer and glmer in the lme4 package.

Example: (board) Oneway ANOVA yij = αi + εij where αi are (a)
fixed effects, (b) random effects.
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Conditional AIC

Otherwise, the “conditional AIC” can be used which focuses on
both the fixed effects and the random effects. The conditional AIC
has a somewhat complicated definition, but its use is automated
for fitting GLMMs using glmer or lmer in the lme4 package with
the cAIC4 package. Read Saefken, Kneib, van Waveren, and
Greven (2014, Electronic J. of Statistics) for more details.

In many models the conditional AIC is 2k̂ − 2 log L(θ̂|x), where k̂
is the “effective number of parameters,” often a function of the
trace of a “hat matrix,” motivated by “effective degrees of
freedom” from the smoothing literature.
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BIC

The BIC (Schwarz, 1978) will pick the correct model as the sample
size increases (it is consistent) as long as the correct model is
among those under consideration. Since we do not know whether
the true model is among those we are considering, I tend to use
AIC and possibly err on the side of a more complex model, but one
that better predicts the actual data that we saw.

The BIC is
BIC = k log(n)− 2 log L(θ̂|x).

This penalizes for adding predictors moreso than AIC when n ≥ 8,
and so tends to give simpler models.

One troublesome aspect of the BIC is the sample size n. It is
unclear what to use for n when data are missing, censored, or
where data are highly dependent.
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Bayesian model selection: DIC

The deviance information criterion (DIC, Spiegelhalter et al., 2002)
is a Bayesian version of conditional AIC. The model deviance is
defined as S − 2 log L(θ̂|x) where S is 2 × log-likelihood under a
“saturated model” and θ̂ is a consistent estimator of θ. Typically
S is left off for model selection.

The version of DIC used by JAGS is DIC = 2k̂ − 2 log L(θ̄|x) where
θ̄ = Eθ|x{θ} and k̂ = 1

2varθ|x{−2 log L(θ|x)} are the “effective
number of parameters.”

If there are random effects then DIC = 2k̂ − 2 log L(θ̄|x, ū) where
k̂ = 1

2varθ,u|x{−2 log L(θ|x,u)}.

SAS’ DIC uses the original k̂ = −2Eθ|x{log L(θ|x)}+ 2 log L(θ̄|x).
Example: Ache hunting with and without (a) quadratic terms, (b)
random effects.
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Bayesian model selection: Bayes factors

Consider two models with likelihoods L1(θ1|x) and L2(θ2|x) and
priors π1(θ1) and π2(θ2). The marginal joint distribution of the
data x for model j is

fj(x) =

∫
θj∈Θj

Lj(θj |x)πj(θj)︸ ︷︷ ︸
f (θj ,x)

dθj .

The Bayes factor for comparing the two models is

BF12 =
f1(x)

f2(x)
.

Note: BF13 = BF12BF23 ⇒ BF’s coherently rank models.

Bayes factors can give evidence towards null! Chib has several
papers (first: Chib, 1995) on how to compute Bayes factors from
MCMC output. Lots of newer approaches in the last 10 years!
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Bayes factors

Kass & Raftery (1995, JASA) modified Jeffreys’ original scale to

BF12 Evidence strength

1 to 3 not worth more than a bare mention
3 to 20 positive

20 to 150 strong
over 150 very strong

Using p-values to bound Bayes factors. Sellke, Bayarri, and Berger
(2001) show BF ≥ −1

e p log(p) . A BF over 150 (p ≤ 0.0003) is
considered “very strong” evidence against H0 by Kass and Raftery
(1995) and “decisive” by Jeffreys (1961).

To simply achieve “strong” evidence, one needs p < 0.003. There
is a movement among statisticians to make the “new scientific
standard” to be α = 0.005 instead of 0.05 based on arguments
such as this.
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Savage-Dickey ratio for point nulls

The setup is a bit more general in Verdinelli and Wasserman
(1995), but here’s a common situation.

Let θ = (θ1,θ2) and consider testing H0 : θ2 = b vs. Ha : θ2 6= b.
Let π1(θ1) be the prior for θ1 under H0 and π12(θ1,θ2) be the
prior under Ha. If π1(θ1) = π12(θ1|θ2 = b) the Bayes factor for
comparing the nested model H0 to the alternative Ha is

BF =
πθ2|x(b)

π2(b)
,

where π2(θ2) =
∫
θ1∈Θ1

π12(θ1,θ2)dθ1. Note:
π1(θ1) = π12(θ1|θ2 = b) automatically holds under independent
priors π12(θ2,θ1) = π1(θ1)π2(θ2).
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Savage-Dickey ratio for point nulls

If [θ2|θ1, x] has a closed-form density π21(θ2|θ1, x) and an MCMC
sample is available

πθ2|x(b) ≈ 1
M

M∑
m=1

π21(b|θm
1 , x).

Otherwise, if the posterior is approximately Gaussian one can
compute µ2 = 1

M

∑M
m=1 θ

m
2 and

Σ2 = 1
M

∑M
m=1(θm

2 − µ2)(θm
2 − µ2)′ and use

πθ2|x(b) ≈ φk2(b|µ2,Σ2).

Note: like Walkd tests, only requires fitting the full model!
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Comparing two means via Savage-Dickey

y11, . . . , y1n1 |θ
iid∼ N(µ1, τ1),

y21, . . . , y2n2 |θ
iid∼ N(µ1 + δ, τ2),

where θ = (µ1, δ, τ1, τ2)′. Let µ1 ∼ N(m1, v1) indep. δ ∼ N(0, vd).

Approximate BF for testing H0 : δ = 0 vs. Ha : δ 6= 0 is

BF =
φ(0|δ̄, s2δ )

φ(0|0, vd)
,

where δ̄ = 1
M

∑M
m=1 δ

m and s2δ = 1
M

∑M
m=1(δm − δ̄)2. Can also

find [δ|µ1, τ1, τ2, y1, y2] and average over MCMC iterates for
numerator; more accurate.
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Blood flow, exercise, & high altitude

Myocardial blood flow (MBF) was measured for two groups of
subjects after five minutes of bicycle exercise. The normoxia
(“normal oxygen”) group was provided normal air to breathe
whereas the hypoxia group was provided with a gas mixture with
reduced oxygen, to simulate high altitude.
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Comment on Savage-Dickey

Note that we simply need to specify a full model. If we assume the
induced prior π1(θ1) = π12(θ1|θ2 = b) under H0 the
Savage-Dickey ratio works.

Technically don’t even have to think about the null model, but
probably should make sure induced prior makes sense in practice!

Very useful for testing, e.g. H0 : β2 = 0 in a regression model.
Alternative needs to be two-sided though.

Note: flat priors ruin Bayes factors! A flat prior pleads complete
ignorance, when, in almost all situations, something is known
about the model parameters. We know height, age, IQ, etc. are
positive and have a natural upper bound. We know correlations are
between −1 and 1. Known as “Lindley’s paradox” – look at
Wikipedia entry. Example: Ache hunting.
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Some more recent Bayesian model selection criteria

Various fixes to traditional Bayes factors to make them robust
to prior assumptions: posterior Bayes factors (Aitkin 1991),
intrinsic Bayes factors (Berger and Pericchi 1996), & fractional
Bayes factor (O’Hagan 1995). Useful for simpler classes of
models; not broadly applicable and not in widespread use.

LPML for data y = (y1, . . . , yn)′ that are independent given
(θ,u) also used for Bayesian model comparison:

LPML =
n∑

i=1

log f (yi |y−i ).

Plagued by simple but unstable estimates over the last 20+
years.
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Some more recent Bayesian model selection criteria

exp(LPML1 − LPML2) is “pseudo Bayes factor comparing
models 1 to 2. Not sensitive to prior assumptions and does
not suffer Lindley’s paradox.

WAIC (‘widely-applicable information criteria’, developed in
Watanabe, 2010) attempts to estimate the same quantity as
DIC but uses a much more stable estimate of the effective
number of parameters. WAIC and LPML are asymptotically
equivalent estimators of out-of-sample prediction error. DIC
can be viewed as an approximation to WAIC.
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Some very recent Bayesian model selection criteria

Both a stable LPML (a somewhat different version termed
‘LOO’) and WAIC are available in the loo R package; simply
need to monitor the log-likelihood (not posterior!)
contribution Li = log f (yi |θ,u) of each datum (assuming
independence given θ and/or u); see Vehtari, Gelman, &
Gabry (2017, Statistics and Computing).

DIC is automatically given in JAGS; WAIC and LPML can are
computed by the loo package from standard JAGS or STAN
output in two different ways (one simpler to code but requires
more storage, M × n).

DIC is also given by SAS, although a more primitive (and
more problematic) version than used by JAGS.

Ideal situation: use LPML (or LOO). DIC, LOO, and WAIC all
favor models with smaller values.
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Why pick one model? BMA!

Model averaging assigns weights to each model; prediction
averages over models! Let

wj = P(M = j |x) =
f (x|M = j)P(M = j)∑J

k=1 f (x|M = k)P(M = k)
,

i.e.

wj = P(M = j |x) =
fj(x)P(M = j)∑J

k=1 fk(x)P(M = k)
,

Noting that BICj consistently picks the true model, and fj(x) is
difficult to compute, the approximation

wj =
exp(−1

2BICj)∑J
k=1 exp(−1

2BICk)

has been suggested, assuming P(M = j) = 1
J .
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BMA

Consistency only happens when one of the J models is true.
Aikake actually suggested

wj =
exp(−1

2AICj)∑J
k=1 exp(−1

2AICk)
.

Assuming independence data given θj in each model, the
predictive density for a new observation is simply

f (x |x) =
J∑

j=1

wjEθ|x{f (x |θ)}.
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Sest subsets via SSVS

In regression models, we often want to know which predictors are
important. Stochastic search variable selection places “spike and
slab” priors on each coefficient; the simplest version is due to Kuo
and Mallick (1998).

Let the ith linear predictor (for logistic regression, Poisson
regression, beta regression, normal-errors regression, etc.) be

ηi = β0 + β1γ1xi1 + · · ·+ βpγpxip.

Assume some sort of prior β ∼ π(β), e.g. a g-prior, and

γ1, . . . , γp
iid∼ Bern(q).

Easily carried out in JAGS or STAN or SAS! See O’Hara and
Sillanpää (2009, Bayesian Analysis).
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SSVS

Posterior inference is summarized by a table that looks like, e.g.
when p = 3

Model Prob.

x1 x2 x3 p123
x1 x2 p12
x1 x3 p13

x2 x3 p23
x1 p1

x2 p2
x3 p3

intercept only p0

Note: basic idea extends to zero-inflated models.
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