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Outline

o Generalized linear models
© Additive model for normal data

e Generalized additive mixed models



Generalized linear models Bayesian linear model
Functional form of predictor
Non-normal data

Includes many common models

The linear model (LM) encompasses many common models,
including

@ Multiple regression

@ Multi-factor, unbalanced ANOVA

@ ANCOVA models

@ Interaction models

@ Polynomial (i.e. response surface) models
@ efc.



Generalized linear models Bayesian linear model
Functional form of predictor
Non-normal data

Benefits

@ Easy interpretation of regression coefficients.
@ Easy to fit, get tests.

@ Linear model is first-order approximation to general
“regression surface.”

@ Higher order models also “approximations.”



Generalized linear models Bayesian linear model
Functional form of predictor
Non-normal data

The linear model

For regression data {(x;, Y;)}/_; with J predictors the LM
incorporating linear effects is written

Ys 1 X1 X2 - Xy Bo €1
Y2 1T X1 X2 o0 Xy B €2
= . + . s
Yn 1 Xmt Xp2 0 Xpy By €n
—— —— Y=
nxA nx(J+1) (J+1)x1 nx1

or succinctly as
Y=X3+e.

The error vector is assumed
€ ~ Np(0, 11p),

and so the model parameters are 3 and .



Generalized linear models Bayesian linear model
Functional form of predictor
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Bayesian adds priors for 3 and

An informative prior is often
B ~ Ny 1(m,S) independent of 7 ~ I'(a, b).

Let 3 = (X’X)~'X'Y. Then full conditional distributions for Gibbs
sampling take the form

@ 37 ~ Ny 1(V[X'Y +S~'m], V) where V = [X'Xr +S~']~"
o 7|3 ~T (a+0.5nb+0.5|Y — Xg|?)

@ Easy to set up in R, JAGS, SAS (in GENMOD).

@ A flat prior correspondsto S~' =0and a= b = 0.

@ Note: If cov(e) = R then
BIR ~ Ny 1(VX'R'Y + S~ 'm], V) where
V=XR'X+S 1"
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Eliciting priors for 3 and 7

@ Historical prior (aka “power prior”).

@ Ibrahim, J. and Chen, M.-H. (2000). Power prior
distributions for regression models. Statistical Science, 15,
46-60.

@ Data augmentation prior.

@ Bedrick, E., Christensen, R., and Johnson, W. (1996). A
new perspective on priors for generalized linear models.
Journal of the American Statistical Association, 91,
1450—-1460.

@ g-prior, “default” prior.

@ Zellner, A. (1983). Applications of Bayesian analysis in
econometrics. The Statistician, 32, 23—-34.
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Transformations of predictors

@ Scatterplot shows marginal relationship between
predictors and y;. Can lead to adding quadratic terms or
simple transformations, e.g. x; = /X1, X;; = log(x;1), etc.

@ Problem: can be deceptive. (Example?)

@ Added variable (aka partial regression) plots are more
refined, but assume remaining predictors don’t need to be
transformed.

@ Solution: consider J transformations simultaneously:
additive model.
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Ethanol data, R help file

Ethanol fuel was burned in a single-cylinder engine. For various
settings of the engine compression and equivalence ratio, the
emission of nitrogen oxide was recorded. Specifically, n = 88
observations on

@ NOx: Concentration of nitrogen oxide (NO and NO2) in
micrograms/J.
@ C: Compression ratio of the engine.

@ E: Equivalence ratio — a measure of the richness of the air
and ethanol fuel mixture.

@ Brinkman, N.D. (1981) Ethanol Fuel — A Single-Cylinder
Engine Study of Efficiency and Exhaust Emissions. SAE
transactions, 90, 1410-1424.
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Ethanol data in R

library (SemiPar)
data (ethanol)
pairs (ethanol)
?ethanol

attach (ethanol)
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Linear model in R

> summary (1m(NOx“E+C)) # linear in E and C

Coefficients:
Estimate Std. Error t value Pr(>|t]|
(Intercept) 2.559101 0.662396 3.863 0.000218
E -0.557137 0.601464 -0.926 0.356912
c -0.007109 0.031135 -0.228 0.819941
Residual standard error: 1.14 on 85 degrees of freedom
Multiple R-squared: 0.01095, Adjusted R-squared: -0.01232
F-statistic: 0.4707 on 2 and 85 DF, p-value: 0.6262

> summary (Im(NOx "E+I(E"2)+C)) # linear C, quadratic E

Coefficients:
Estimate Std. Error t value Pr(>|t|

(Intercept) -21.2030 1.2398 -17.102 < 2e-16 **x
E 52.4110 2.7037 19.385 < 2e-16 xxx
I(E"2) -29.0899 1.4782 -19.679 < 2e-16 #*x*
c 0.0635 0.0137 4.635 1.3e-05 xxx

Residual standard error: 0.484 on 84 degrees of freedom
Multiple R-squared: 0.8237, Adjusted R-squared: 0.8174
F-statistic: 130.8 on 3 and 84 DF, p-value: < 2.2e-16
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Generalized linear models

@ For non-normal responses: y; is Bernoilli, Poisson, gamma,
& other members of the class of exponential families.
@ Good for analyzing count data & data with non-constant
variance without transforming response.
@ Linear predictor is 1, = 8o + B1Xi1 + - - fuXiy = X;3.
@ Specific models that people typically fit are
o yi ~ N(nj,0?)
e y; ~ Poisson(tjexp(n;))
o y; ~ Bern{exp(n;)/[1 + exp(ni)]}

o Yy~ I'(exp(n;),v)
o yi~ Mult(K,{®(v +mi):k=1,...,K})

@ Transformations of predictors more difficult...
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Non-normal data

Bernoulli data example

From help (orings):

@ Motivation: explosion of USA Space Shuttle Challenger on
28 January, 1986.

@ Rogers commission concluded that the Challenger
accident was caused by gas leak through the 6 o-ring
joints of the shuttle.

@ Dalal, Fowlkes & Hoadley (1989) looked at number
distressed o-rings (among 6) versus launch temperature
(Temperture) and pressure (Pressure) for 23 previous
shuttle flights, launched at temperatures between 53°F
and 81°F.

@ Model: Vi~ Bern(w,-), |Ogit(7T,') = Bo+ BT + PP
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O-ring data variables

@ Data frame with 138 observations on the following 4
variables.
e ThermalDistress: a numeric vector indicating wether the
o-ring experienced thermal distress
e Temperature: a numeric vector giving the launch
temperature (degrees F)
e Pressure: a numeric vector giving the leak-check pressure
Si
° fzplig)ht: a numeric vector giving the temporal order of flight
@ Dalal, S.R., Fowlkes, E.B., and Hoadley, B. (1989). Risk
analysis of space shuttle : Pre-Challenger prediction of
failure. Journal of the American Statistical Association, 84:
945-957.
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Raw data scatterplot
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Logistic regression in DPpackage

> # linear temperature and pressure effects

> mcme = list (nburn=2000,nsave=2000,nskip=5,ndisplay=10,tune=1.1

> prior = list (betaO=rep(0,3), SbetaO=diag(10000,3))

> fit3 = Pbinary(ThermalDistress Temperature+Pressure,link="logit",prior=prior,

mcmc=mcmc, state=state, status=TRUE)
> summary (£it3)
Bayesian parametric binary regression model

Call:

Pbinary.default (formula = ThermalDistress ~ Temperature + Pressure,
link = "logit", prior = prior, mcmc = mcmc, state = state,
status = TRUE)

Posterior Predictive Distributions (log):
Min. 1st Qu. Median Mean 3rd Qu. Max.
-6.916000 -0.040890 -0.022730 -0.197400 -0.011160 -0.006015

Regression coefficients:

Mean Median Std. Dev. Naive Std.Error 95%HPD-Low 95%HPD-Upp
(Intercept) 8.4128601 8.2787009 5.4440859 0.1217335 -1.3493922 19.5698479
Temperature -0.1896291 -0.1853123 0.0715294 0.0015994 -0.3334473 -0.0566012
Pressure 0.0044974 0.0033455 0.0108284 0.0002421 -0.0150397 0.0262874
Acceptance Rate for Metropolis Step = 0.4344286

Number of Observations: 138
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The model
Additive model for normal data Penalized B-spline for each predictor
Bayesian model & examples

Additive models for normal data

@ An additive model considers J simultaneous
transformations of each predictor

Yi = Bo + fi(xi1) + B(Xi2) + - - + fy(xiy) + €.

@ One approach to modeling the fi(x1), ..., f;(xy) is via
B-splines.
@ Penalized least-squares criterion

2
n J J by
2
S =g+ [ eorar.
i=1 j=1 j=1 g
makes Z}; fi(xj) close to y; bigger X => less wiggly f;(X)

17/49



The model
Additive model for normal data Penalized B-spline for each predictor
Bayesian model & examples

B-splines widely used and wildly useful

USC statistics professors in our department that use B-splines
in their research:

Edsel Pena, Karl Gregory, Shan Huang, David Hitchcock,
Dewei Wang, John Grego, Lianming Wang, and Tim Hanson.

Tim has used B-splines (incuding Bernstein polynomials) in 10
papers over the last four years.
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B-splines

B-splines, or “basis splines” are a type of spline written

K
) = 3 &Bi(x),
k=1

where B(x) is the kth B-spline basis function of degree d over
the domain [a, b]. A simple nonparametric regression model is

yi = f(x) + e, e " N(O,02).
Note that this is written as a multiple regression model
y =B + €,
where the ith row of B is (B1(X;), ..., Bk(X;)).
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B-splines

A B-spline includes all polynomials of the same degree or less
over [a, b]. Thus B-splines generalize polynomial regression.
For example, a B-spline of order d = 2 includes all constant
(d =0), linear (d = 1), and quadratic (d = 2) functions over
[a, b] as special cases.

Having K too large leads to overfitting unless we shrink
adjacent elements of £ = (&1, ..., k)’ to be close together.
Doing so leads to a penalized B-spline.

Cardinal B-splines have equidistant knots. An alternative is to

take knots to coincide with quantiles of your predictors. A very
common method for nonparametric modeling of smooth trends
is to use penalized B-splines with equidistant knots.
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A few references

The literature of B-splines is vast. some key references related
to generalized additive (mixed) models are:

de Boor, C. (1978). A practical Guide to Splines. Springer, Berlin.

Hastie, T. & Tibshirani, R. (1986). Generalized additive models. Statistical
Science, 1, 297-318.

Gray, R.J. (1992). Flexible methods for analyzing survival data using splines,
with applications to breast cancer prognosis. Journal of the American Statistical
Association, 87, 942—-951.

Eilers, PH.C. & Marx, B.D. (1996). Flexible smoothing with B-splines and
penalties. Statistical Science, 11, 89—121.

Lang, S. & Brezger, A. (2004). Bayesian P-splines. Journal of Computational
and Graphical Statistics, 13, 183-212.
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References, more recent...

@ Brezger, A., Kneib, T., and Lang, S. (2005). BayesX: Analyzing Bayesian
structured additive regression models. Journal of Statistical Software, 14, 1-22.

@ Hennerfeind, A., Brezger, A., & Fahrmeir, L. (2006). Geoadditive survival
models. Journal of the American Statistical Association, 101, 1065-1075.

@ Kneib, T. (2006). Mixed Model Based Inference in Structured Additive
Regression. Ph.D. Thesis, Munich University.

@ Krivobokova, T. (2007). Theoretical and Practical Aspects of Penalized Spline
Smoothing. Ph.D. Thesis, der Universitat Bielefeld

@ Krivobokova, T., Kneib, T., & Claeskens, G. (2010). Simultaneous confidence
bands for penalized spline estimators. Journal of the American Statistical
Association, 105, 852—-863.

@ Kneib, T, Konrath, S. & Fahrmeir, L. (2011). High-dimensional structured
additive regression models: Bayesian regularisation, smoothing and predictive
performance, Applied Statistics, 60, 51-70.
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Penalized B-spline for each predictor
Bayesian model & examples

Additive model for normal data

Basis “mother”

A B-spline is a linear combination of basis functions (the “B” in
B-spline). Quadratic B-spline basis function on [0, 3]:

0.5x2 0<x<1
075 (x-15)2 1<x<2
2X) =9 0.5(3 - x)? 2<x<3
0 otherwise

The basis functions are just shifted, shrunk/stretched versions
of these.
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K basis functions

@ Want K basis functions, typically K = 20.
@ Without detail, kth basis function for predictor j is

x—a,-

)

Bj(X):¢< +3—k>,Aj:
@ Here a; = max{xy;, Xpj, ..., Xp;} and

bj = min{X1j, X2jy+ v - ,an}.
@ So (&, by) is the range of the jth predictor in the data.
@ For ethanol data, x;; € (0.535,1.232).

@ Next slide is {By1(x), ..., B1 20(x)} for ethanol
Xj1 € (0535, 1 232)
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K = 20 quadratic basis functions over x;; € (ay, by)

|

sssss

Example: B-spline basis by hand and using splines package.
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Enforcing the same level of smoothness over the curve

e The jth predictor fi(x) = S5, €xBi(x).
@ Main idea: Use lots of basis functions (e.g. K = 20 or
more), but penalize f;(x) for being too “wiggly.”

@ This puts constraints on the &4, ..., &,.

@ Common approach: penalize second derivative (how much
slope can change) over range of the predictor.
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Second order random walk prior

@ For equispaced, quadratic (& cubic) B-splines,

b;
/ 1#/(x) 2ax = [|Da&; 2.
a

l

@ Here,
1 -2 1 0 o0 0
o 1 —2 1 o0 0
0 0 1 -2 1 ... 0
D, — € RK—2)XK_
o o o o0 1 -2 1

is second order difference penalty matrix.

o Let&; = (§1,...,¢) B-spline coefficients for predictor j.
Prior is D2£_/ ~ NK72(07 )\leKfz).

@ Gives “2nd order random walk prior.” As \; becomes large,
f'(x) is forced toward zero, and f;(x) becomes linear.
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Penalized likelihood, one predictor

@ Byaesian analysis via random walk prior entirely equivalent
to penalized likelihood, except that ) is estimated from the
data. Otherwise X can be chosen via simple
rules-of-thumb, arguments involving effective df, or
cross-validation.

@ For one predictor minimize
ly — BE|? + Al|D2g;A 2.

@ Estimating 7 is separate.

@ Recall A = oo = f(x) = fo + By x.

@ Example: NOx vs. E, penalized and unpenalized for
different .
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First order random walk prior

@ A first order random walk prior is given by
D1£j ~ NK_1 (0, )\lle_1 ), where

o
1 —1 0 o .- 0
0 1 -1 0 - 0
D, = 0 0 1 =1 .. 0 e RK=1)xK
0 0 o0 - 1 -1

@ Encourages all pairs of adjacent basis functions to have
the same degree of “nearness” to each other.

@ When ), is large, adjacent basis functions are forced closer
and zj-’(x) is forced toward zero, yielding f;(x) is constant.
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Reduced-rank normal prior on {¢;}

@ Either prior implies the improper prior (Speckman and Sun,
2003; Kneib, 2006)

P&;1) o A2 exp(—0.5)€/[D,DoJE)),
where o = 1 for 1st order and o = 2 for 2nd order random

walk.

@ Prior is informative in some directions, but not others: not
informative in the space spanned by the null vectors of
penalty matrix D/,D,.

@ What are these vectors for D; and D>? What does this
imply?
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Additive normal-errors model with J predictors

@ The jth additive function is fi(x) = S5, €xBik(x)-

@ The jth matrix of B-spline basis evaluations at the
observed predictors is

Bji(x1j) Bp(xi)) -+ Bi(xy)
Bji(xg)) Bp(x) -+ Bil(xy) oK
Bi1 (%)  Bp(Xny) -+ Bi(Xny)

@ The full conditional distributions for gy, &4,...,&, and = are
closed form! Gibbs sampling easy. Alternatively, the model
can be written slightly differently and fit in JAGS or any
mixed-model software...
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Mixed model representation for 2nd order prior

@ Kneib (2006) gives mixed model representation of the prior
that explicitly makes use of “noninformative” and
“informative” directions. Also see Eilers and Marx (2010).

@ Accumulate J constant terms into one overall intercept 3g.

@ Lete=(1,2,...,K)". Write coefficients &; as mixed model
with variance component \;:

& = Bo+ Bi(e — §)Zb;, Z=D,(D,D5) ",

@ where p(5;) « 1 independent of b; ~ Nx_»(0, AleK_g).

@ Easy to code in JAGS!

@ Implies D2&; ~ Nk _2(0, )\lle_g) but separates out linear &
non-linear portions.
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Bayesian model & examples

Thus the model is

Y = X8+ (BiZby +---+ByZb,) + €
= XB+[B1---BJ[ly®Z]b +e,

where N
bj|A ~ Nk_2(0, %}.'K)-

Example: is coming up for Ache hunting data; first need to
discuss GAMs.
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A=1,0.25,0.04,0.01: prior draws of f;(x1)

This is the “wiggly part” about the linear trend 31 xy.
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Additive model: ethanol data

Want to fit additive, normal errors model:
Yi = PBo+ f(E) + B(C) + e,

where
@ y; is NOx (nitrogen oxides).
@ E;is equivalence ratio.
@ C;is compression ratio of the engine.
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DPpackage psgam function for R

library (DPpackage); library(lattice)
data (ethanol); attach(ethanol); plot (ethanol)
# Additive model with additive E and C functions
prior=list (taubl=0.01,taub2=0.01,betal=rep(0,1),Sbetal=diag(100,1),taul=0.001,tau2=0.001)
mcme =1list (nburn=2000, nsave=2000,nskip=199,ndisplay=500)
fit2 =PSgam(formula=ethanol$NOx ps (E,C,k=18,degree=2, pord=2),
family=gaussian (identity), prior=prior, mcmc=mcmc, ngrid=50, state=NULL, status=TRUE)
plot (fit2)

We will run this one.
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Bayesian model & examples
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Bayesian model & examples

Trace of ps(ethanol$E) Density of ps(ethanol$E)
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ps(ethanol$E)

Additive model for normal data

The model
Penalized B-spline for each predictor
Bayesian model & examples
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Bayesian model & examples
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Bayesian model & examples

Model LPML
ni = Bo + f(Ei) —28.5
ni=Bo+ H(E)+HR(C) -58
ni = Bo + f(E;) + B2C; —-7.2
ni = Bo + fH(E;) + Be, —6.0

Models with transformed E; and some version of C; predict
best.
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Output of summary

> summary (£it2)
Bayesian semiparametric generalized additive model using P-Splines

Call:

PSgam.default (formula = ethanol$NOx ~ ps(ethanol$E, ethanol$C,
k = 18, degree = 2, pord = 2), family = gaussian(identity),
prior = prior, mcmc = mcmc, state = NULL, status = TRUE,
ngrid = 50)

Posterior Predictive Distributions (log):
Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.21000 -0.13540 0.25140 -0.06642 0.36990 0.45030

Model’s performance:
Dbar Dhat pD DIC LPML
-5.079 -20.087 15.008 9.929 -5.845

Parametric component:

Mean Median Std. Dev. Naive Std.Error 95%HPD-Low 95%HPD-Upp
(Intercept) 1.8513673 1.8511907 0.0410706 0.0009184 1.7726287 1.9345199
phi 0.0561522 0.0554392 0.0096374 0.0002155 0.0380783 0.0749396

Penalty parameters:

Mean Median Std. Dev. Naive Std.Error 95%HPD-Low 95%HPD-Upp
ps (ethanol$E) 0.1142265 0.0948515 0.0749338 0.0016756 0.0271463 0.2504989
ps (ethanol$C) 0.0118754 0.0056149 0.0270512 0.0006049 0.0006712 0.0348543

Number of Observations: 88 42/49
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Generalized additive models

Means are parameterized:
@ Generalized linear model: n; = Gy + B1Xj1 + -+ - + ByXiy.
@ Generalized additive model: n; = By + f1(Xj1) + - - - + f5(Xiy)-
@ As before, model fi(x1), ..., f;(xy) via penalized B-splines.

@ Fitting proceeds via Gamerman’s (1997) approach for
GLMM.

@ Can be fit in DPpackage PSgam or in BayesX.
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O-ring data: additive model

library (DPpackage)
# help(PSgam) gives function description
data (orings); attach (orings)
# additive effects in both temperature and pressure
# number of basis functions is 20, simple pairwise difference prior, 2nd order gives error
prior<-list (taubl=0.01,taub2=0.01,betal=rep(0,1),Sbetal=diag(100,1))
mcme <—- list (nburn=2000,nsave=2000,nskip=5,ndisplay=10)
fitl<-PSgam(formula=ThermalDistress ps(Temperature,Pressure, k=18, degree=2,pord=1),
family=binomial (logit),prior=prior,
mcmce=mcmc, ngrid=30,
state=NULL, status=TRUE)
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Generalized additive models

Generalized additive mixed models (Rl ECR RN i FCE e el

Add random effects to model...

J
1
ni=Y_fi(xj) +2ZUg, U1,...,ug~ Ny(0,X).
j=1

@ g € {1,...,G} is group indicator.

@ As before, model fi(x1),. .., f;(xy) via penalized B-splines.
@ Results in a generalized linear additive model (GAMM).

@ Can fit in BayesX. Spatial structure can be incorporated.

@ Example: Ache capuchin monkey hunting in JAGS &
BayesX.
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