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Includes many common models

The linear model (LM) encompasses many common models,
including

Multiple regression
Multi-factor, unbalanced ANOVA
ANCOVA models
Interaction models
Polynomial (i.e. response surface) models
etc.
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Benefits

Easy interpretation of regression coefficients.
Easy to fit, get tests.
Linear model is first-order approximation to general
“regression surface.”
Higher order models also “approximations.”
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The linear model
For regression data {(xi ,Yi)}ni=1 with J predictors the LM
incorporating linear effects is written

Y1
Y2
...

Yn


︸ ︷︷ ︸

n×1

=


1 x11 x12 · · · x1J
1 x21 x22 · · · x2J
...

...
...

...
...

1 xn1 xn2 · · · xnJ


︸ ︷︷ ︸

n×(J+1)


β0
β1
...
βJ


︸ ︷︷ ︸
(J+1)×1

+


ε1
ε2
...
εn


︸ ︷︷ ︸

n×1

,

or succinctly as
Y = Xβ + ε.

The error vector is assumed

ε ∼ Nn(0, 1
τ In),

and so the model parameters are β and τ .
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Bayesian adds priors for β and τ

An informative prior is often

β ∼ NJ+1(m,S) independent of τ ∼ Γ(a,b).

Let β̂ = (X′X)−1X′Y. Then full conditional distributions for Gibbs
sampling take the form

β|τ ∼ NJ+1(V[τX′Y + S−1m],V) where V = [X′Xτ + S−1]−1

τ |β ∼ Γ
(
a + 0.5n,b + 0.5||Y− Xβ||2

)
Easy to set up in R, JAGS, SAS (in GENMOD).
A flat prior corresponds to S−1 = 0 and a = b = 0.
Note: If cov(ε) = R then
β|R ∼ NJ+1(V[X′R−1Y + S−1m],V) where
V = [X′R−1X + S−1]−1.
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Eliciting priors for β and τ

Historical prior (aka “power prior”).
Ibrahim, J. and Chen, M.-H. (2000). Power prior
distributions for regression models. Statistical Science, 15,
46–60.
Data augmentation prior.
Bedrick, E., Christensen, R., and Johnson, W. (1996). A
new perspective on priors for generalized linear models.
Journal of the American Statistical Association, 91,
1450–1460.
g-prior, “default” prior.
Zellner, A. (1983). Applications of Bayesian analysis in
econometrics. The Statistician, 32, 23–34.
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Transformations of predictors

Scatterplot shows marginal relationship between
predictors and yi . Can lead to adding quadratic terms or
simple transformations, e.g. x∗i1 =

√
xi1, x∗i1 = log(xi1), etc.

Problem: can be deceptive. (Example?)
Added variable (aka partial regression) plots are more
refined, but assume remaining predictors don’t need to be
transformed.
Solution: consider J transformations simultaneously:
additive model.
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Ethanol data, R help file

Ethanol fuel was burned in a single-cylinder engine. For various
settings of the engine compression and equivalence ratio, the
emission of nitrogen oxide was recorded. Specifically, n = 88
observations on

NOx: Concentration of nitrogen oxide (NO and NO2) in
micrograms/J.
C: Compression ratio of the engine.
E: Equivalence ratio – a measure of the richness of the air
and ethanol fuel mixture.

Brinkman, N.D. (1981) Ethanol Fuel – A Single-Cylinder
Engine Study of Efficiency and Exhaust Emissions. SAE
transactions, 90, 1410–1424.
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Ethanol data in R

library(SemiPar)
data(ethanol)
pairs(ethanol)
?ethanol
attach(ethanol)
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Linear model in R

> summary(lm(NOx˜E+C)) # linear in E and C

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.559101 0.662396 3.863 0.000218
E -0.557137 0.601464 -0.926 0.356912
C -0.007109 0.031135 -0.228 0.819941
---
Residual standard error: 1.14 on 85 degrees of freedom
Multiple R-squared: 0.01095, Adjusted R-squared: -0.01232
F-statistic: 0.4707 on 2 and 85 DF, p-value: 0.6262

> summary(lm(NOx˜E+I(Eˆ2)+C)) # linear C, quadratic E

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -21.2030 1.2398 -17.102 < 2e-16 ***
E 52.4110 2.7037 19.385 < 2e-16 ***
I(Eˆ2) -29.0899 1.4782 -19.679 < 2e-16 ***
C 0.0635 0.0137 4.635 1.3e-05 ***
---
Residual standard error: 0.484 on 84 degrees of freedom
Multiple R-squared: 0.8237, Adjusted R-squared: 0.8174
F-statistic: 130.8 on 3 and 84 DF, p-value: < 2.2e-16
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Generalized linear models

For non-normal responses: yi is Bernoilli, Poisson, gamma,
& other members of the class of exponential families.
Good for analyzing count data & data with non-constant
variance without transforming response.
Linear predictor is ηi = β0 + β1xi1 + · · ·βJxiJ = x′iβ.
Specific models that people typically fit are

yi ∼ N(ηi , σ
2)

yi ∼ Poisson(ti exp(ηi ))
yi ∼ Bern{exp(ηi )/[1 + exp(ηi )]}
yi ∼ Γ(exp(ηi ), ν)
yi ∼ Mult(K , {Φ(γk + ηi ) : k = 1, . . . ,K})

Transformations of predictors more difficult...
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Bernoulli data example

From help(orings):
Motivation: explosion of USA Space Shuttle Challenger on
28 January, 1986.
Rogers commission concluded that the Challenger
accident was caused by gas leak through the 6 o-ring
joints of the shuttle.
Dalal, Fowlkes & Hoadley (1989) looked at number
distressed o-rings (among 6) versus launch temperature
(Temperture) and pressure (Pressure) for 23 previous
shuttle flights, launched at temperatures between 53oF
and 81oF.
Model: yi ∼ Bern(πi), logit(πi) = β0 + β1Ti + β2Pi .
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O-ring data variables

Data frame with 138 observations on the following 4
variables.

ThermalDistress: a numeric vector indicating wether the
o-ring experienced thermal distress
Temperature: a numeric vector giving the launch
temperature (degrees F)
Pressure: a numeric vector giving the leak-check pressure
(psi)
Flight: a numeric vector giving the temporal order of flight

Dalal, S.R., Fowlkes, E.B., and Hoadley, B. (1989). Risk
analysis of space shuttle : Pre-Challenger prediction of
failure. Journal of the American Statistical Association, 84:
945–957.
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Raw data scatterplot

ThermalDistress
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Logistic regression in DPpackage

> # linear temperature and pressure effects
> mcmc = list(nburn=2000,nsave=2000,nskip=5,ndisplay=10,tune=1.1)
> prior = list(beta0=rep(0,3), Sbeta0=diag(10000,3))
> fit3 = Pbinary(ThermalDistress˜Temperature+Pressure,link="logit",prior=prior,

mcmc=mcmc,state=state,status=TRUE)
> summary(fit3)
Bayesian parametric binary regression model

Call:
Pbinary.default(formula = ThermalDistress ˜ Temperature + Pressure,

link = "logit", prior = prior, mcmc = mcmc, state = state,
status = TRUE)

Posterior Predictive Distributions (log):
Min. 1st Qu. Median Mean 3rd Qu. Max.

-6.916000 -0.040890 -0.022730 -0.197400 -0.011160 -0.006015

Regression coefficients:
Mean Median Std. Dev. Naive Std.Error 95%HPD-Low 95%HPD-Upp

(Intercept) 8.4128601 8.2787009 5.4440859 0.1217335 -1.3493922 19.5698479
Temperature -0.1896291 -0.1853123 0.0715294 0.0015994 -0.3334473 -0.0566012
Pressure 0.0044974 0.0033455 0.0108284 0.0002421 -0.0150397 0.0262874

Acceptance Rate for Metropolis Step = 0.4344286

Number of Observations: 138
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Additive models for normal data

An additive model considers J simultaneous
transformations of each predictor

yi = β0 + f1(xi1) + f2(xi2) + · · ·+ fJ(xiJ) + ei .

One approach to modeling the f1(x1), . . . , fJ(xJ) is via
B-splines.
Penalized least-squares criterion

n∑
i=1

yi −
J∑

j=1

fj(xij)

2

︸ ︷︷ ︸
makes

∑J
j=1 fj (xij ) close to yi

+
J∑

j=1

λj

∫ bj

aj

[f ′′j (x)]2dx

︸ ︷︷ ︸
bigger λ⇒ less wiggly fj (x)

.
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B-splines widely used and wildly useful

USC statistics professors in our department that use B-splines
in their research:

Edsel Peña, Karl Gregory, Shan Huang, David Hitchcock,
Dewei Wang, John Grego, Lianming Wang, and Tim Hanson.

Tim has used B-splines (incuding Bernstein polynomials) in 10
papers over the last four years.
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B-splines

B-splines, or “basis splines” are a type of spline written

f (x) =
K∑

k=1

ξkBk (x),

where Bk (x) is the k th B-spline basis function of degree d over
the domain [a,b]. A simple nonparametric regression model is

yi = f (xi) + εi , εi
iid∼ N(0, σ2).

Note that this is written as a multiple regression model

y = Bξ + ε,

where the i th row of B is (B1(xi), . . . ,BK (xi)).
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B-splines

A B-spline includes all polynomials of the same degree or less
over [a,b]. Thus B-splines generalize polynomial regression.
For example, a B-spline of order d = 2 includes all constant
(d = 0), linear (d = 1), and quadratic (d = 2) functions over
[a,b] as special cases.

Having K too large leads to overfitting unless we shrink
adjacent elements of ξ = (ξ1, . . . , ξK )′ to be close together.
Doing so leads to a penalized B-spline.

Cardinal B-splines have equidistant knots. An alternative is to
take knots to coincide with quantiles of your predictors. A very
common method for nonparametric modeling of smooth trends
is to use penalized B-splines with equidistant knots.
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A few references

The literature of B-splines is vast. some key references related
to generalized additive (mixed) models are:

de Boor, C. (1978). A practical Guide to Splines. Springer, Berlin.

Hastie, T. & Tibshirani, R. (1986). Generalized additive models. Statistical
Science, 1, 297–318.

Gray, R.J. (1992). Flexible methods for analyzing survival data using splines,
with applications to breast cancer prognosis. Journal of the American Statistical
Association, 87, 942–951.

Eilers, P.H.C. & Marx, B.D. (1996). Flexible smoothing with B-splines and
penalties. Statistical Science, 11, 89–121.

Lang, S. & Brezger, A. (2004). Bayesian P-splines. Journal of Computational
and Graphical Statistics, 13, 183–212.
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References, more recent...

Brezger, A., Kneib, T., and Lang, S. (2005). BayesX: Analyzing Bayesian
structured additive regression models. Journal of Statistical Software, 14, 1–22.

Hennerfeind, A., Brezger, A., & Fahrmeir, L. (2006). Geoadditive survival
models. Journal of the American Statistical Association, 101, 1065–1075.

Kneib, T. (2006). Mixed Model Based Inference in Structured Additive
Regression. Ph.D. Thesis, Munich University.

Krivobokova, T. (2007). Theoretical and Practical Aspects of Penalized Spline
Smoothing. Ph.D. Thesis, der Universität Bielefeld

Krivobokova, T., Kneib, T., & Claeskens, G. (2010). Simultaneous confidence
bands for penalized spline estimators. Journal of the American Statistical
Association, 105, 852–863.

Kneib, T., Konrath, S. & Fahrmeir, L. (2011). High-dimensional structured
additive regression models: Bayesian regularisation, smoothing and predictive
performance, Applied Statistics, 60, 51-70.
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Basis “mother”

A B-spline is a linear combination of basis functions (the “B” in
B-spline). Quadratic B-spline basis function on [0,3]:

φ(x) =


0.5x2 0 ≤ x ≤ 1
0.75− (x − 1.5)2 1 ≤ x ≤ 2
0.5(3− x)2 2 ≤ x ≤ 3
0 otherwise

 .

The basis functions are just shifted, shrunk/stretched versions
of these.
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K basis functions

Want K basis functions, typically K = 20.
Without detail, k th basis function for predictor j is

Bjk (x) = φ

(
x − aj

∆j
+ 3− k

)
, ∆j =

bj − aj

K − 2
.

Here aj = max{x1j , x2j , . . . , xnj} and
bj = min{x1j , x2j , . . . , xnj}.
So (aj ,bj) is the range of the jth predictor in the data.
For ethanol data, xi1 ∈ (0.535,1.232).
Next slide is {B11(x), . . . ,B1,20(x)} for ethanol
xi1 ∈ (0.535,1.232).
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K = 20 quadratic basis functions over xi1 ∈ (a1,b1)

0.535 0.8835 1.232

0.1

0.3

0.5

0.7

Example: B-spline basis by hand and using splines package.
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Enforcing the same level of smoothness over the curve

The j th predictor fj(x) =
∑K

k=1 ξjkBjk (x).
Main idea: Use lots of basis functions (e.g. K = 20 or
more), but penalize fj(x) for being too “wiggly.”
This puts constraints on the ξ1, . . . , ξJ .
Common approach: penalize second derivative (how much
slope can change) over range of the predictor.
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Second order random walk prior

For equispaced, quadratic (& cubic) B-splines,∫ bj

aj

|f ′′j (x)|2dx = ||D2ξj∆j ||2.

Here,

D2 =



1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
0 0 1 −2 1 · · · 0
.
.
.

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

0 0 0 0 1 −2 1

 ∈ R(K−2)×K
,

is second order difference penalty matrix.
Let ξj = (ξj1, . . . , ξjK )′ B-spline coefficients for predictor j .
Prior is D2ξj ∼ NK−2(0, 1

λj
IK−2).

Gives “2nd order random walk prior.” As λj becomes large,
f ′′j (x) is forced toward zero, and fj(x) becomes linear.
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Penalized likelihood, one predictor

Byaesian analysis via random walk prior entirely equivalent
to penalized likelihood, except that λ is estimated from the
data. Otherwise λ can be chosen via simple
rules-of-thumb, arguments involving effective df, or
cross-validation.
For one predictor minimize

||y− Bξ||2 + λ||D2ξj∆j ||2.

Estimating τ is separate.
Recall λ→∞⇒ f (x) = β̂0 + β̂1x .
Example: NOx vs. E, penalized and unpenalized for
different λ.
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First order random walk prior

A first order random walk prior is given by
D1ξj ∼ NK−1(0, 1

λj
IK−1), where

D1 =



1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
0 0 1 −1 · · · 0
.
.
.

.

.

.
.
.
.

. . .
. . .

.

.

.
0 0 0 · · · 1 −1

 ∈ R(K−1)×K
,

Encourages all pairs of adjacent basis functions to have
the same degree of “nearness” to each other.
When λj is large, adjacent basis functions are forced closer
and f ′j (x) is forced toward zero, yielding fj(x) is constant.
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Reduced-rank normal prior on {ξj}

Either prior implies the improper prior (Speckman and Sun,
2003; Kneib, 2006)

p(ξj |λj) ∝ λ
(K−o)/2
j exp(−0.5λjξ

′
j [D
′
oDo]ξj),

where o = 1 for 1st order and o = 2 for 2nd order random
walk.
Prior is informative in some directions, but not others: not
informative in the space spanned by the null vectors of
penalty matrix D′oDo.
What are these vectors for D1 and D2? What does this
imply?
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Additive normal-errors model with J predictors

The j th additive function is fj(x) =
∑K

k=1 ξjkBjk (x).
The j th matrix of B-spline basis evaluations at the
observed predictors is

Bj =


Bj1(x1j ) Bj2(x1j ) · · · BjK (x1j )
Bj1(x2j ) Bj2(x2j ) · · · BjK (x2j )

...
...

. . .
...

Bj1(xnj ) Bj2(xnj ) · · · BjK (xnj )

 ∈ Rn×K .

The full conditional distributions for β0, ξ1, . . . , ξJ and τ are
closed form! Gibbs sampling easy. Alternatively, the model
can be written slightly differently and fit in JAGS or any
mixed-model software...
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Mixed model representation for 2nd order prior

Kneib (2006) gives mixed model representation of the prior
that explicitly makes use of “noninformative” and
“informative” directions. Also see Eilers and Marx (2010).
Accumulate J constant terms into one overall intercept β0.
Let e = (1,2, . . . ,K )′. Write coefficients ξj as mixed model
with variance component λj :

ξj = β0 + βj(e− K
2 )Zbj , Z = D′2(D2D′2)−1,

where p(βj) ∝ 1 independent of bj ∼ NK−2(0, 1
λj

IK−2).

Easy to code in JAGS!
Implies D2ξj ∼ NK−2(0, 1

λj
IK−2) but separates out linear &

non-linear portions.
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Thus the model is

Y = Xβ + (B1Zb1 + · · ·+ BJZbJ) + ε

= Xβ + [B1 · · ·BJ ][IJ ⊗ Z]b + ε,

where
bj |λ

⊥∼ NK−2(0, 1
λj

IK ).

Example: is coming up for Ache hunting data; first need to
discuss GAMs.
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λ = 1,0.25,0.04,0.01: prior draws of f1(x1)

This is the “wiggly part” about the linear trend β1x1.

0.8835 1.232

-100

100

0.8835 1.232

-100

100
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-100
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-100

100
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Additive model: ethanol data

Want to fit additive, normal errors model:

yi = β0 + f1(Ei) + f2(Ci) + ei ,

where
yi is NOx (nitrogen oxides).
Ei is equivalence ratio.
Ci is compression ratio of the engine.
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DPpackage PSgam function for R

library(DPpackage); library(lattice)
data(ethanol); attach(ethanol); plot(ethanol)
# Additive model with additive E and C functions
prior=list(taub1=0.01,taub2=0.01,beta0=rep(0,1),Sbeta0=diag(100,1),tau1=0.001,tau2=0.001)
mcmc =list(nburn=2000,nsave=2000,nskip=199,ndisplay=500)
fit2 =PSgam(formula=ethanol$NOx˜ps(E,C,k=18,degree=2,pord=2),

family=gaussian(identity),prior=prior,mcmc=mcmc,ngrid=50,state=NULL,status=TRUE)
plot(fit2)

We will run this one.
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Model LPML
ηi = β0 + f1(Ei) −28.5
ηi = β0 + f1(Ei) + f2(Ci) −5.8
ηi = β0 + f1(Ei) + β2Ci −7.2
ηi = β0 + f1(Ei) + βCi −6.0

Models with transformed Ei and some version of Ci predict
best.
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Output of summary

> summary(fit2)

Bayesian semiparametric generalized additive model using P-Splines

Call:
PSgam.default(formula = ethanol$NOx ˜ ps(ethanol$E, ethanol$C,

k = 18, degree = 2, pord = 2), family = gaussian(identity),
prior = prior, mcmc = mcmc, state = NULL, status = TRUE,
ngrid = 50)

Posterior Predictive Distributions (log):
Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.21000 -0.13540 0.25140 -0.06642 0.36990 0.45030

Model’s performance:
Dbar Dhat pD DIC LPML
-5.079 -20.087 15.008 9.929 -5.845

Parametric component:
Mean Median Std. Dev. Naive Std.Error 95%HPD-Low 95%HPD-Upp

(Intercept) 1.8513673 1.8511907 0.0410706 0.0009184 1.7726287 1.9345199
phi 0.0561522 0.0554392 0.0096374 0.0002155 0.0380783 0.0749396

Penalty parameters:
Mean Median Std. Dev. Naive Std.Error 95%HPD-Low 95%HPD-Upp

ps(ethanol$E) 0.1142265 0.0948515 0.0749338 0.0016756 0.0271463 0.2504989
ps(ethanol$C) 0.0118754 0.0056149 0.0270512 0.0006049 0.0006712 0.0348543

Number of Observations: 88 42 / 49
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Generalized additive models

Means are parameterized:
Generalized linear model: ηi = β0 + β1xi1 + · · ·+ βJxiJ .
Generalized additive model: ηi = β0 + f1(xi1) + · · ·+ fJ(xiJ).
As before, model f1(x1), . . . , fJ(xJ) via penalized B-splines.
Fitting proceeds via Gamerman’s (1997) approach for
GLMM.
Can be fit in DPpackage PSgam or in BayesX.
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O-ring data: additive model

library(DPpackage)
# help(PSgam) gives function description
data(orings); attach(orings)
# additive effects in both temperature and pressure
# number of basis functions is 20, simple pairwise difference prior, 2nd order gives error
prior<-list(taub1=0.01,taub2=0.01,beta0=rep(0,1),Sbeta0=diag(100,1))
mcmc <- list(nburn=2000,nsave=2000,nskip=5,ndisplay=10)
fit1<-PSgam(formula=ThermalDistress˜ps(Temperature,Pressure,k=18,degree=2,pord=1),

family=binomial(logit),prior=prior,
mcmc=mcmc,ngrid=30,
state=NULL,status=TRUE)
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Add random effects to model...

ηi =
J∑

j=1

fj(xij) + z′iugi , u1, . . . ,uG
⊥∼ Nd (0,Σ).

gi ∈ {1, . . . ,G} is group indicator.
As before, model f1(x1), . . . , fJ(xJ) via penalized B-splines.
Results in a generalized linear additive model (GAMM).
Can fit in BayesX. Spatial structure can be incorporated.
Example: Ache capuchin monkey hunting in JAGS &
BayesX.
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