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Expectation-Maximization algorithm

Dempster, Laird, and Rubin (1977): groundbreaking paper with
100’s (1000's?) of applications.
An iterative procedure (like Newton-Raphson) to obtain MLE of

L(@|x) or posterior mode of 7r(0|x) i.e. algorithm creates a g(-)
for iterative procedure 8'™! = g(8%), g(-) : RX — R¥,

In what follows we'll use L(0|x), but works the same for

7(8]x) = L(6]x)7(8).
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Idea & method

Introduce latent (sometimes called “missing”) data (could be
model parameters) z so that L(0|x, z) is easier to maximize than
L(8|x). Hope that resulting g(-) isn't too horrible (sometimes it
is). Initialize 8° and t = 0.

@ E-step: Q(0|0Y) = E,x gt {log L(6]z,x)}.

@ M-step: 0" = argmaxy.o Q(0]0%) = g(6").
Repeat until ||@tF! — 8| < € for some norm || - ||.



E-M success stories

@ Linear mixed models (Laird & Ware, 1982); random effects
“missing."”

@ Generalized linear mixed models; not as easy as LMM.

@ Finite mixture models; component membership “missing.”

e Various contingency tables arising from genetics (Tanner,
1996; Givens & Hoeting, 2013; Lange, 2010).

e Censored and/or truncated data models. Missing data are
true observations.



Finite mixture models: unsupervised learning

Finite mixture of normals is often used for model-based clustering:

iid
X1, .., %00 = f(x ijqb x|uj, o?).

Parameters are

_ 2 2V 3J-1 P
0 = (71, ... 1, 4155 J1g,0%,...,09) €R . Direct
maximization of

9|X HZWJ X,|,U,J, )

Jj=1j=1

is very challenging.



Component membership

Recall method of composition Xj|6, z;i ~ N(p,,02) conditionally,
and p(j|60) = P(z; = j|@) = m; marginally, gives same distribution
f(x) on previous slide. Add “missing” z = (z1,...,z,) to the
model to get

L(O|x,z) = f(x,z|0)= f(x|z,0)f(z|0)

= [Hqﬁ(xi\uz,-,ff%)] [HP(Z:'\G)]
i=1

i=1

n
= H ¢(X" ’:LLZH 0-5,-)71-2:'
i=1

If we know z, maximization is almost trivial. Let
nj = 27:1 /{Zi :J}

~

L 1§, v, A2 1
Hj = ,TJ.ZI:Z,-:JXH K

 n i:z,-:j(Xf - ﬁj)2’ 7/T\-J = nj/n'
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Cross your fingers...

Need £, g:{log L(0|z,x)}. Bayes' rule and conditional
independence gives

P(zi =j|x,0) = P(zi =j|x,0)
f(xilzi = j,0)P(zi = j|6)

f(xi[0)

d(xilpj, o7 )
Sy (s 03k

Note that W.J‘ = Wj1 + -+ Wiy = 1 and Wee = N. Ignoring \/%?,
i=1

n
Ez|x,9t{|°g L(G‘L X)} = Ez\x,Ht {Z _% log 03,- - %%(Xi - Mz,-)2 — log 7rz,-} )

where Ty = 1-— Zj'-lz_ll Tj.



E,xo:{log L(0]z,x)} ..

This expectation is

J n

ZZ W,'j[—% |OgUJ2 - %(X,‘ - ,uj)z - |og7rj].

j=1i=1

Taking the first derivative and setting equal to zero (board) gives

n sy n (e — 11:)2
;= Doic1 WijXi o D1 WU(XI - :U’,I) PO Z Wi
] n L Yy n = y N — 7 i
Dim1 Wij Doim1 Wij i1
We got lucky!

Note: in the actual algorithm w;; = w (depend on the last 0")
and these solutions represent 811 ...



So algorithm is...

Initialize ° (how?) and t = 0, then

@ Compute
ol o
i =
Zkzl ¢(Xi’:ukv it)ﬂi
At+1 SO wix (aoverl _ i Wil —AT)?
Q Set 4:7 = Z T (O'j) = ST , and

Note this defines a g(-) so that 87! = g(&).



Multivariate version is almost the same!

iid
X1 xn|0 ~ f ZWJQZ)P X|Hp )

Initialize 8° and t = 0, then

@ Compute
op(xi 12t Tt

J A,,t ty .t
D k=1 ¢p(xl|ﬂk7 Zk)”k
@ Set it — Xk $tH X il A e

wij =

= and
1 1 Sl wi >ty Wi '
At+
n i1 Wij-
Repeat until ||@*"! — @¢|| < e. How many parameters?
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Comments

@ Need to choose starting values for 8...any thoughts? Lange
(2010) sugggests k-means clustering to start the MJQ.

@ How to pick J? Many people use AIC or BIC.
AIC = —log L(8|x) + 2(3J — 1) for univariate data.

@ MLE not unique & multiple modes...be careful!

@ | would recommend bootstrap to get SE's and/or Cl's here.
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Bootstrap in one slide

Here's the process; explanation of why it works will come later.
Repeat t =1,..., T times:
@ Sample from a uniform distribution on the integers {1,..., n}
with replacement to get indices (i1, ..., ).

(¥)

: N
@ Compute the parameter of interest, maybe just 6
bootstrap sample x;,,...,X;,.

n

, from
Treat HAE(I), e ,QA,((T) as a Monte Carlo sample from the sampling
distribution of 6(x).

SE of, e.g. O, is simply sample standard deviation of
95(1), e ,QA,((T). Can get Cl from percentiles of HAE(I), ey éfj).

Idea is same for any function g(8).
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Recall to estimate variability we need the inverse of
—~V2log L(0|x). A result due to Louis (1982) leads to

~V?log L(O|x) = — z‘x7g{V2 log L(0]x,2)} — covgix,o{V log L(8]x,2)}.

This may be easier and/or more efficient than direct numerical
differentiation of log L(@|x) or the bootstrap. It also might not.

Another method is the “supplemental EM,” or SEM algorithm.
See Givens & Hoeting (2013).
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Censored exponential data

Censored exponential data follow
iid . iid
t1,...,tnh ~ exp(\) indep. ci,...,cn ~ h(-).

We see y; = min{t;, ¢;} and §; = I{t; < ¢;}. The observed data is
x = {(yi,0i)}1_,. Missing data are z = {t; : 6; = 0}.

Missing data are the true survival times t; for §; = 0. When §; =0
all we know is that t; ~ exp(\) and t; > y;. Thus, for §; =0

ti~ f(t|ti > yi, \) = _Ay I{t >yt

Augmented likelihood is

L(Ax,z) = Aexp | —A Z yi + Z t

i:6i=1 i:6;=0
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Expected log-likelihood...

Taking expectation w.r.t. [{t; : 6; = O}|{y; : 6; = 1}, M] gives

nlog A=A | > yi+ D E(tilt > yi, \)
i:6;=1 i:6;=0

Note that

- .
. Ja—Mt
E(ti|ti>yia)\1):/ e = Vit

So expected log-likelihood is

nlog A — \ ti + ()/i+%)
i:5;=1 i:6;=0
Thus
-1 Lo -1
Nt =np '621)/,' + .620(}4' +3)| = [n ;{Yi +(1=0)/¥}
1:0j= 1:0j= 1=

15/18



Need

V2log L(0|x,2) = —)\—’72, V log L(0]x, z) Z yi+ Z tj
i:6;=1 i:0;=0

Need to take expectation of first and variance of second w.r.t.
[{ti: 6i =0}{yi: i =1} Al = [{ti: 6; = 0}|\]. Since for §; =1
we have var(y;i|lyi, A) = 0, Louis method gives

~V2log L(AX) = —(=3) — | D = | = 3%

where u =37, I{d; = 1} is the number of uncensored
observations.

Example: V.A. data in R.
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Homework...

In your homework, you will derive the EM algorithm for censored
normal data.

If x ~ N(u,0o) restricted to x > ¢, what is E(x) and E(x?)? Start
with N(0,1):

& 1o * d 1o 1o
1 —5X _ 1 AT 5X _ 1 —5Cc° __
/C x=e 2" dx = T”/c —dx[ e 2% |dx = i o(c).
Where ¢(-) is the pdf and ®(-) is the cdf of a standard normal r.v.

Note that the density of x|x > c is

_ _9x) _ _olx
fxlx > c) = P(x(>)c) = l—ED()c)’

s0 E(x|x > ¢) = 5.

17/18



General normal

For x ~ N(y, %) make the change of variables y = *>, so
x =0y + uand dx = ody.

/ 27m-e 20-2(X H) dx = /C(Uy_i,_u)\/ie 2y dy

So

E(xx>c)=p+o

In homework 3 you will show...

E(x®|x > ¢) = p? + 0% + o(c + p)
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