Expectation-Maximization Algorithm

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 740: Statistical Computing

Expectation-Maximization algorithm

Dempster, Laird, and Rubin (1977): groundbreaking paper with 100's (1000's?) of applications.

An iterative procedure (like Newton-Raphson) to obtain MLE of $L(\theta|\mathbf{x})$ or posterior mode of $\pi(\theta|\mathbf{x})$, i.e. algorithm creates a $\mathbf{g}(\cdot)$ for iterative procedure $\theta^{t+1} = \mathbf{g}(\theta^t)$, $\mathbf{g}(\cdot) : \mathbb{R}^k \to \mathbb{R}^k$.

In what follows we'll use $L(\theta|\mathbf{x})$, but works the same for $\pi(\theta|\mathbf{x}) = L(\theta|\mathbf{x})\pi(\theta)$.

Idea & method

Introduce latent (sometimes called "missing") data (could be model parameters) \mathbf{z} so that $L(\boldsymbol{\theta}|\mathbf{x},\mathbf{z})$ is easier to maximize than $L(\boldsymbol{\theta}|\mathbf{x})$. Hope that resulting $\mathbf{g}(\cdot)$ isn't too horrible (sometimes it is). Initialize $\boldsymbol{\theta}^0$ and t=0.

- $\bullet \ \, \mathsf{E}\text{-step:} \ \, Q(\boldsymbol{\theta}|\boldsymbol{\theta}^t) = E_{\mathbf{z}|\mathbf{x},\boldsymbol{\theta}^t}\{\log L(\boldsymbol{\theta}|\mathbf{z},\mathbf{x})\}.$
- $\textbf{ 0 M-step: } \boldsymbol{\theta}^{t+1} = \operatorname{argmax}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} Q(\boldsymbol{\theta}|\boldsymbol{\theta}^t) = \mathbf{g}(\boldsymbol{\theta}^t).$

Repeat until $||\boldsymbol{\theta}^{t+1} - \boldsymbol{\theta}^t|| < \epsilon$ for some norm $||\cdot||$.

E-M success stories

- Linear mixed models (Laird & Ware, 1982); random effects "missing."
- Generalized linear mixed models; not as easy as LMM.
- Finite mixture models; component membership "missing."
- Various contingency tables arising from genetics (Tanner, 1996; Givens & Hoeting, 2013; Lange, 2010).
- Censored and/or truncated data models. Missing data are true observations.

Finite mixture models: unsupervised learning

Finite mixture of normals is often used for model-based clustering:

$$X_1,\ldots,X_n|\theta\stackrel{iid}{\sim} f(x) = \sum_{j=1}^J \pi_j \phi(x|\mu_j,\sigma_j^2).$$

Parameters are

 $\theta = (\pi_1, \dots, \pi_{J-1}, \mu_1, \dots, \mu_J, \sigma_1^2, \dots, \sigma_J^2)' \in \mathbb{R}^{3J-1}$. Direct maximization of

$$L(\boldsymbol{\theta}|\mathbf{x}) = \prod_{j=1}^{n} \sum_{j=1}^{J} \pi_{j} \phi(x_{i}|\mu_{j}, \sigma_{j}^{2})$$

is very challenging.

Component membership

Recall method of composition $X_i|\theta,z_i\sim N(\mu_{z_i},\sigma_{z_i}^2)$ conditionally, and $p(j|\theta)=P(z_i=j|\theta)=\pi_j$ marginally, gives same distribution f(x) on previous slide. Add "missing" $\mathbf{z}=(z_1,\ldots,z_n)'$ to the model to get

$$L(\boldsymbol{\theta}|\mathbf{x},\mathbf{z}) = f(\mathbf{x},\mathbf{z}|\boldsymbol{\theta}) = f(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})f(\mathbf{z}|\boldsymbol{\theta})$$

$$= \left[\prod_{i=1}^{n} \phi(x_{i}|\mu_{z_{i}},\sigma_{z_{i}}^{2})\right] \left[\prod_{i=1}^{n} p(z_{i}|\boldsymbol{\theta})\right]$$

$$= \prod_{i=1}^{n} \phi(x_{i}|\mu_{z_{i}},\sigma_{z_{i}}^{2})\pi_{z_{i}}$$

If we know **z**, maximization is almost trivial. Let $n_j = \sum_{i=1}^n I\{z_i = j\}$.

$$\hat{\mu}_{j} = \frac{1}{n_{j}} \sum_{i:z_{i}=j} x_{i}, \ \hat{\sigma}_{j}^{2} = \frac{1}{n_{j}} \sum_{i:z_{i}=j} (x_{i} - \hat{\mu}_{j})^{2}, \ \hat{\pi}_{j} = n_{j}/n.$$

Cross your fingers...

Need $E_{\mathbf{z}|\mathbf{x},\theta^t}\{\log L(\theta|\mathbf{z},\mathbf{x})\}$. Bayes' rule and conditional independence gives

$$P(z_{i} = j | \mathbf{x}, \boldsymbol{\theta}) = P(z_{i} = j | x_{i}, \boldsymbol{\theta})$$

$$= \frac{f(x_{i} | z_{i} = j, \boldsymbol{\theta}) P(z_{i} = j | \boldsymbol{\theta})}{f(x_{i} | \boldsymbol{\theta})}$$

$$= \frac{\phi(x_{i} | \mu_{j}, \sigma_{j}^{2}) \pi_{j}}{\sum_{k=1}^{J} \phi(x_{i} | \mu_{k}, \sigma_{k}^{2}) \pi_{k}} \equiv w_{ij}$$

Note that $w_{\bullet j} = w_{i1} + \cdots + w_{iJ} = 1$ and $w_{\bullet \bullet} = n$. Ignoring $\frac{1}{\sqrt{2\pi}}$,

$$E_{\mathbf{z}|\mathbf{x},\boldsymbol{\theta}^t}\{\log L(\boldsymbol{\theta}|\mathbf{z},\mathbf{x})\} = E_{\mathbf{z}|\mathbf{x},\boldsymbol{\theta}^t}\left\{\sum_{i=1}^n -\frac{1}{2}\log \sigma_{z_i}^2 - \frac{1}{2\sigma_{z_i}^2}(x_i - \mu_{z_i})^2 - \log \pi_{z_i}\right\},\,$$

where
$$\pi_{J} = 1 - \sum_{j=1}^{J-1} \pi_{j}$$
.

$E_{\mathbf{z}|\mathbf{x},\boldsymbol{\theta}^t}\{\log L(\boldsymbol{\theta}|\mathbf{z},\mathbf{x})\}...$

This expectation is

$$\sum_{i=1}^{J} \sum_{i=1}^{n} w_{ij} \left[-\frac{1}{2} \log \sigma_{j}^{2} - \frac{1}{2\sigma_{j}^{2}} (x_{i} - \mu_{j})^{2} - \log \pi_{j} \right].$$

Taking the first derivative and setting equal to zero (board) gives

$$\hat{\mu}_j = \frac{\sum_{i=1}^n w_{ij} x_i}{\sum_{i=1}^n w_{ij}}, \ \hat{\sigma}_j^2 = \frac{\sum_{i=1}^n w_{ij} (x_i - \hat{\mu}_j)^2}{\sum_{i=1}^n w_{ij}}, \ \hat{\pi}_j = \frac{1}{n} \sum_{i=1}^n w_{ij}.$$

We got lucky!

Note: in the actual algorithm $w_{ij} = w_{ij}^t$ (depend on the last θ^t) and these solutions represent θ^{t+1} ...

So algorithm is...

Initialize θ^0 (how?) and t = 0, then

Compute

$$w_{ij} = \frac{\phi(x_i | \mu_j^t, \sigma_j^{2t}) \pi_j^t}{\sum_{k=1}^{J} \phi(x_i | \mu_k^t, \sigma_k^{2t}) \pi_k^t},$$

② Set $\hat{\mu}_{j}^{t+1} = \frac{\sum_{i=1}^{n} w_{ij} x_{i}}{\sum_{i=1}^{n} w_{ij}}$, $(\hat{\sigma}_{j}^{2})^{t+1} = \frac{\sum_{i=1}^{n} w_{ij} (x_{i} - \hat{\mu}_{j}^{t+1})^{2}}{\sum_{i=1}^{n} w_{ij}}$, and $\hat{\pi}_{j}^{t+1} = \frac{1}{n} \sum_{i=1}^{n} w_{ij}$.

Repeat until $||\boldsymbol{\theta}^{t+1} - \boldsymbol{\theta}^t|| < \epsilon$.

Note this defines a $\mathbf{g}(\cdot)$ so that $\boldsymbol{\theta}^{t+1} = \mathbf{g}(\boldsymbol{\theta}^{j})$.

Multivariate version is almost the same!

$$\mathbf{x}_1, \dots, \mathbf{x}_n | \boldsymbol{\theta} \stackrel{iid}{\sim} f(\mathbf{x}) = \sum_{j=1}^J \pi_j \phi_p(\mathbf{x} | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j).$$

Initialize θ^0 and t=0, then

Compute

$$w_{ij} = \frac{\phi_p(\mathbf{x}_i|\boldsymbol{\mu}_j^t, \boldsymbol{\Sigma}_j^t)\pi_j^t}{\sum_{k=1}^J \phi_p(\mathbf{x}_i|\boldsymbol{\mu}_k^t, \boldsymbol{\Sigma}_k^t)\pi_k^t},$$

 $\text{ Set } \hat{\mu}_{j}^{t+1} = \frac{\sum_{i=1}^{n} w_{ij} \mathbf{x}_{i}}{\sum_{i=1}^{n} w_{ij}}, \ \hat{\mathbf{\Sigma}}_{j}^{t+1} = \frac{\sum_{i=1}^{n} w_{ij} (\mathbf{x}_{i} - \hat{\mu}_{j}^{t+1}) (\mathbf{x}_{i} - \hat{\mu}_{j}^{t+1})'}{\sum_{i=1}^{n} w_{ij}}, \ \text{and} \\ \hat{\pi}_{j}^{t+1} = \frac{1}{n} \sum_{i=1}^{n} w_{ij}.$

Repeat until $||\boldsymbol{\theta}^{t+1} - \boldsymbol{\theta}^t|| < \epsilon$. How many parameters?

Comments

- Need to choose starting values for θ ...any thoughts? Lange (2010) sugggests k-means clustering to start the μ_i^0 .
- How to pick J? Many people use AIC or BIC. $AIC = -\log L(\hat{\theta}|\mathbf{x}) + 2(3J-1)$ for univariate data.
- MLE not unique & multiple modes...be careful!
- I would recommend bootstrap to get SE's and/or CI's here.

Bootstrap in one slide

Here's the process; explanation of why it works will come later. Repeat $t=1,\ldots,T$ times:

- **①** Sample from a uniform distribution on the integers $\{1, \ldots, n\}$ with replacement to get indices (i_1, \ldots, i_n) .
- ② Compute the parameter of interest, maybe just $\hat{\theta}^{(t)}$, from bootstrap sample $\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_n}$.

Treat $\hat{\theta}_k^{(1)}, \dots, \hat{\theta}_k^{(T)}$ as a Monte Carlo sample from the sampling distribution of $\hat{\theta}(\mathbf{x})$.

SE of, e.g. $\hat{\theta}_k$, is simply sample standard deviation of $\hat{\theta}_k^{(1)}, \dots, \hat{\theta}_k^{(T)}$. Can get CI from percentiles of $\hat{\theta}_k^{(1)}, \dots, \hat{\theta}_k^{(T)}$.

Idea is same for any function $\mathbf{g}(\theta)$.

Louis' method

Recall to estimate variability we need the inverse of $-\nabla^2 \log L(\theta|\mathbf{x})$. A result due to Louis (1982) leads to

$$-\nabla^2 \log L(\boldsymbol{\theta}|\mathbf{x}) = -E_{\mathbf{z}|\mathbf{x},\boldsymbol{\theta}}\{\nabla^2 \log L(\boldsymbol{\theta}|\mathbf{x},\mathbf{z})\} - cov_{\mathbf{z}|\mathbf{x},\boldsymbol{\theta}}\{\nabla \log L(\boldsymbol{\theta}|\mathbf{x},\mathbf{z})\}.$$

This may be easier and/or more efficient than direct numerical differentiation of $\log L(\theta|\mathbf{x})$ or the bootstrap. It also might not.

Another method is the "supplemental EM," or SEM algorithm. See Givens & Hoeting (2013).

Censored exponential data

Censored exponential data follow

$$t_1, \ldots, t_n \stackrel{iid}{\sim} \exp(\lambda)$$
 indep. $c_1, \ldots, c_n \stackrel{iid}{\sim} h(\cdot)$.

We see $y_i = \min\{t_i, c_i\}$ and $\delta_i = I\{t_i < c_i\}$. The observed data is $\mathbf{x} = \{(y_i, \delta_i)\}_{i=1}^n$. Missing data are $\mathbf{z} = \{t_i : \delta_i = 0\}$.

Missing data are the true survival times t_i for $\delta_i=0$. When $\delta_i=0$ all we know is that $t_i\sim \exp(\lambda)$ and $t_i>y_i$. Thus, for $\delta_i=0$

$$t_i \sim f(t|t_i > y_i, \lambda) = \frac{\lambda e^{-\lambda t}}{e^{-\lambda y_i}} I\{t > y_i\}.$$

Augmented likelihood is

$$L(\lambda|\mathbf{x},\mathbf{z}) = \lambda^n \exp\left(-\lambda \sum_{i:\delta_i=1} y_i + \sum_{i:\delta_i=0} t_i\right).$$

Expected log-likelihood...

Taking expectation w.r.t. $[\{t_i: \delta_i = 0\}|\{y_i: \delta_i = 1\}, \lambda^j]$ gives

$$n \log \lambda - \lambda \left[\sum_{i:\delta_i=1} y_i + \sum_{i:\delta_i=0} E(t_i|t_i>y_i,\lambda^t) \right].$$

Note that

$$E(t_i|t_i>y_i,\lambda^j)=\int_{y_i}^{\infty}t\frac{\lambda^j e^{-\lambda^j t}}{e^{-\lambda^j y_i}}=y_i+\frac{1}{\lambda^j}.$$

So expected log-likelihood is

$$n\log \lambda - \lambda \left[\sum_{i:\delta_i=1} t_i + \sum_{i:\delta_i=0} (y_i + \frac{1}{\lambda^i})\right].$$

Thus

$$\lambda^{j+1} = n \left[\sum_{i:\delta:=1} y_i + \sum_{i:\delta:=0} (y_i + \frac{1}{\lambda^j}) \right]^{-1} = \left[\frac{1}{n} \sum_{i=1}^n \{y_i + (1 - \delta_i)/\lambda^j\} \right]^{-1}.$$

Louis' method...

Need

$$\nabla^2 \log L(\boldsymbol{\theta}|\mathbf{x},\mathbf{z}) = -\frac{n}{\lambda^2}, \ \nabla \log L(\boldsymbol{\theta}|\mathbf{x},\mathbf{z}) = \frac{n}{\lambda} - \left(\sum_{i:\delta_i=1} y_i + \sum_{i:\delta_i=0} t_i\right)$$

Need to take expectation of first and variance of second w.r.t. $[\{t_i: \delta_i=0\}|\{y_i: \delta_i=1\}, \lambda]=[\{t_i: \delta_i=0\}|\lambda]$. Since for $\delta_i=1$ we have $var(y_i|y_i, \lambda)=0$, Louis method gives

$$-\nabla^2 \log L(\lambda|\mathbf{x}) = -(-\frac{n}{\lambda^2}) - \left(\sum_{i:\delta_i=0} \frac{1}{\lambda^2}\right) = \frac{u}{\lambda^2},$$

where $u = \sum_{i=1}^{n} I\{\delta_i = 1\}$ is the number of uncensored observations.

Example: V.A. data in R.

Homework...

In your homework, you will derive the EM algorithm for censored normal data.

If $x \sim N(\mu, \sigma)$ restricted to x > c, what is E(x) and $E(x^2)$? Start with N(0, 1):

$$\int_{c}^{\infty} x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{c}^{\infty} \frac{d}{dx} [-e^{-\frac{1}{2}x^{2}}] dx = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}c^{2}} = \phi(c).$$

Where $\phi(\cdot)$ is the pdf and $\Phi(\cdot)$ is the cdf of a standard normal r.v. Note that the density of x|x>c is

$$f(x|x>c)=\frac{\phi(x)}{P(x>c)}=\frac{\phi(x)}{1-\Phi(c)},$$

so
$$E(x|x > c) = \frac{\phi(c)}{1 - \Phi(c)}$$
.

General normal

For $x \sim N(\mu, \sigma^2)$ make the change of variables $y = \frac{x - \mu}{\sigma}$, so $x = \sigma y + \mu$ and $dx = \sigma dy$.

$$\int_{c}^{\infty} x \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^{2}}(x-\mu)^{2}} dx = \int_{\frac{c-\mu}{\sigma}}^{\infty} (\sigma y + \mu) \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^{2}} dy$$
$$= \sigma \phi(\frac{c-\mu}{\sigma}) + \mu[1 - \Phi(\frac{c-\mu}{\sigma})]$$

So

$$E(x|x>c) = \mu + \sigma \frac{\phi(\frac{c-\mu}{\sigma})}{1-\Phi(\frac{c-\mu}{\sigma})}.$$

In homework 3 you will show...

$$E(x^{2}|x>c) = \mu^{2} + \sigma^{2} + \sigma(c+\mu) \frac{\phi(\frac{c-\mu}{\sigma})}{1 - \phi(\frac{c-\mu}{\sigma})}.$$