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Simulating posterior distributions
Discrete state space Markov chains

Continuous state space Markov chains

Obtaining posterior inference

We start with a full Bayesian probability model. May be
hierarchical, involve dependent data, etc.

Must be possible to evaluate unnormalized posterior

p(θ|y) = p(θ1, . . . , θk |y1, . . . , yn).

e.g. In simple model y ∼ p(y|θ), with θ ∼ p(θ) this is usual

p(θ|y) ∝ p(θ,y) = p(y|θ)p(θ).

e.g. In hierarchical model y|θ, τ ∼ p(y|θ), θ|τ ∼ p(θ|τ ),
τ ∼ p(τ ) this is

p(θ, τ |y) ∝ p(θ, τ ,y) = p(y|θ, τ )p(θ, τ ) = p(y|θ)p(θ|τ )p(τ ).
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Monte Carlo inference

Sometimes it is possible to sample directly from the
posterior p(θ|y) (or p(θ, τ |y), etc.):
θ1,θ2, . . . ,θM iid∼ p(θ|y).

We can use empirical estimates (mean, variance,
quantiles, etc.) based on {θk}Mk=1 to estimate the
corresponding population parameters.

M−1∑M
k=1 θk ≈ E(θ|y).

pth quantile: where 0 < p < 1, [·] integer function,
θ

[pM]
j ≈ q such that

∫ q
−∞ p(θj |y)dθj = p.

etc.
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Markov chain Monte Carlo (MCMC)

Only very simple models are amenable to Monte Carlo
estimation of posterior inference.

A generalization of the Monte Carlo approach is Markov
chain Monte Carlo.
Instead of independent draws {θk} from the posterior, we
obtain dependent draws.
Treat them the same as if they were independent though.
Ergodic theorems (Tierney, 1994, Section 3.3) provide LLN
for MCMC iterates.
Let’s get a taste of some fundamental ideas behind MCMC.
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Discrete state space Markov chain

Let S = {s1, s2, . . . , sm} be a set of m states. Without loss
of generality, we will take S = {1,2, . . . ,m}. Note this is a
finite state space.

The sequence of vectors {X k}∞k=0 forms a Markov chain
on S if

P(X k = i |X k−1,X k−2, . . . ,X 2,X 1,X 0) = P(X k = i |X k−1),

where i = 1, . . . ,m are the possible states. At time k , the
distribution of X k only cares about the previous X k−1 and
none of the earlier X 0,X 1, . . . ,X k−2.
If the probability distribution P(X k = i |X k−1) doesn’t
change with time k then the chain is said to be
homogeneous or stationary. We will only discuss
stationary chains.
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Transition matrix

Let pij = P(X k = j |X k−1 = i) be the probability of the chain
going from state i to state j in one step. These values can
be placed into a transition matrix:

P =


p11 p21 · · · pm,1
p12 p22 · · · pm,2

...
...

. . .
...

p1,m p2,m · · · pm,m

 .

Each column specifies conditional probability distribution &
elements add up to 1.
Question: Describe the chain with each column in the
transition matrix is identical.
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n-step transition matrix

You should verify that the transition matrix for
P(X k = j |X k−n = i) = P(X n = j |X 0 = i) (stationarity) is
given by the product Pn.

This can be derived through iterative use of conditional
probability statements, or by using the
Chapman-Kolmogorov equations (which follow from
iterative use of conditional probability statements).
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Initial value X 0

Say that the chain is started by drawing X 0 from P(X 0 = j).
These probabilities specify a the distribution for the initial
value or state of the chain X 0.

Silly but important question: What happens when
P(X 0 = j) = 0 for j = 1,2, . . . ,m? This has implications for
choosing a starting value in MCMC.
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Example

Let pk be vector of probabilities P(X k = j) = pk
j . Let’s look at

an example.

Three states S = {1,2,3}.

Initial state X 0 distributed

p0 =

 P(X 0 = 1)
P(X 0 = 2)
P(X 0 = 3)

 =

 0.3
0.4
0.3

 .
Transition matrix P =

 0.1 0.6 0.2
0.1 0.2 0.3
0.8 0.2 0.5

 .
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Example chain

X 0 = 1, X 1,X 2, . . . ,X 10 generated according to P.

1 2 3 4 5 6 7 8 9 10

1

2

3

Figure: X 0,X 1, . . . ,X 10.
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Longer chain

Example: Different X 0 = 1, X 1,X 2, . . . ,X 100 generated
according to P.

0 20 40 60 80 100

1

2

3

Figure: X 1, . . . ,X 100.
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Limiting distribution

Marginal or unconditional distribution of X 1 is given by the
law of total probability

P(X 1 = j) =
m∑

i=1

P(X 1 = j |X 0 = i)P(X 0 = i).

Here, m = 3 states. In general, pk = Ppk−1.

Simply

p1 = Pp0 =

 0.1 0.6 0.2
0.1 0.2 0.3
0.8 0.2 0.5

 0.3
0.4
0.3

 =

 0.33
0.20
0.47

.
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Recursion...

p1 =

 P(X1 = 1)

P(X1 = 2)

P(X1 = 3)

 =

 0.33
0.20
0.47

.

p2 =

 P(X2 = 1)

P(X2 = 2)

P(X2 = 3)

 =

 0.1 0.6 0.2
0.1 0.2 0.3
0.8 0.2 0.5

  0.33
0.20
0.47

 =

 0.25
0.21
0.54

.

p3 =

 P(X3 = 1)

P(X3 = 2)

P(X3 = 3)

 =

 0.1 0.6 0.2
0.1 0.2 0.3
0.8 0.2 0.5

  0.25
0.21
0.54

 =

 0.26
0.23
0.51

.

p4 =

 P(X4 = 1)

P(X4 = 2)

P(X4 = 3)

 =

 0.1 0.6 0.2
0.1 0.2 0.3
0.8 0.2 0.5

  0.26
0.23
0.51

 =

 0.26
0.23
0.51

.

p5 =

 P(X5 = 1)

P(X5 = 2)

P(X5 = 3)

 =

 0.1 0.6 0.2
0.1 0.2 0.3
0.8 0.2 0.5

  0.26
0.23
0.51

 =

 0.26
0.23
0.51

.

p50 =

 P(X50 = 1)

P(X50 = 2)

P(X50 = 3)

 =

 0.1 0.6 0.2
0.1 0.2 0.3
0.8 0.2 0.5

  0.26
0.23
0.51

 =

 0.26
0.23
0.51

.

p∞ =

 0.26
0.23
0.51

 is limiting or stationary distribution of Markov

chain. Here it’s essentially reached within 3 iterations!
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Simulating posterior distributions
Discrete state space Markov chains

Continuous state space Markov chains

Starting value gets lost

Limiting distribution doesn’t care about initial value

When p0 =

 1
0
0

, stationary distribution p∞ =

 0.26
0.23
0.51


essentially reached within 5 iterations (within two
significant digits), but is only reached exactly at k =∞.
Note that stationary distribution satisfies p∞ = Pp∞. That
is, if X k−1 ∼ p∞ then so is X k ∼ p∞.
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Simulating posterior distributions
Discrete state space Markov chains

Continuous state space Markov chains

Some important notions

An absorbing state exists if pii = 1 for some i . i.e. once X k

enters state i , it stays there forever.

If every state can be reached from every other state in
finite time the chain is irreducible. This certainly occurs
when pij > 0 for all i and j as each state can be reached
from any other state in one step!
Question: Can a chain with an absorbing state be
irreducible?
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Simulating posterior distributions
Discrete state space Markov chains

Continuous state space Markov chains

Positive recurrence

Say the chain starts at X 0 = i . Consider

P(X k = i ,X k−1 6= i ,X k−2 6= i , . . . ,X 2 6= i ,X 1 6= i |X 0 = i).

This is the probability that the first return to state i occurs
at time k . State i is recurrent if
∞∑

k=1

P(X k = i ,X k−1 6= i ,X k−2 6= i , . . . ,X 2 6= i ,X 1 6= i |X 0 = i) = 1.

Let Ti be distributed with the above probability distribution;
Ti is the first return time to i .
If E(Ti) <∞ the state is positive recurrent. The chain is
positive recurrent if all states are positive recurrent.
Question: Is an absorbing state recurrent? Positive
recurrent? If so, what is E(Ti)?
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Simulating posterior distributions
Discrete state space Markov chains

Continuous state space Markov chains

Periodicity

A state i is periodic if in can be re-visited only at regularly
spaced times. Formally, define

d(i) = g.c.d{k : (Pk )ii > 0}

where g.c.d. stands for greatest common divisor. i is
periodic if d(i) > 1 with period d(i).

A state is aperiodic if d(i) = 1. This of course happens
when pij > 0 for all i and j .
A chain is aperiodic if all states i are aperiodic.
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Simulating posterior distributions
Discrete state space Markov chains

Continuous state space Markov chains

What is the point?

If a Markov chain {X k}∞k=0 is aperiodic, irreducible, and positive
recurrent, it is ergodic.
Theorem: Let {X k}∞k=0 be an ergodic (discrete time) Markov
chain. Then there exists a stationary distribution p∞ such that
p∞i > 0 for i = 1, . . . ,m, that satisfies Pp∞ = p∞ and pk → p∞.

Can get a draw from p∞ by running chain out a ways (from
any starting value in the state space S!). Then X k , for k
“large enough,” is approximately distributed p∞.
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Simulating posterior distributions
Discrete state space Markov chains

Continuous state space Markov chains

Aperiodicity

Aperiodicity is important to ensure a limiting distribution.

e.g. P =

[
0 1
1 0

]
yields an irreducible, positive recurrent

chain, but both states have period 2. There is no limiting
distribution! For any initial distribution

p0 =

[
P(X 0 = 1)
P(X 0 = 2)

]
=

[
p0

1
p0

2

]
, pk alternates between[

p0
1

p0
2

]
and

[
p0

2
p0

1

]
.
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Simulating posterior distributions
Discrete state space Markov chains

Continuous state space Markov chains

Positive recurrence and irreducibility

Positive recurrence roughly ensures that {X k}∞k=0 will visit
each state i enough times (infinitely often) to reach the
stationary distribution. A state is recurrent if it can keep
happening.

Irreducibility disallows the chain getting “stuck” in certain
subsets of S and not being able to get out. Reducibility
would imply that the full state space S could not be
explored. Actually, if Pp∞ = p∞ and the chain is
irreducible, then the chain is positive recurrent.
Note that everything is satisfied when pij > 0 for all i and j !!
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Simulating posterior distributions
Discrete state space Markov chains

Continuous state space Markov chains

Illustration

A reducible chain can still converge to its stationary distribution!

Let P =

[
1 0.5
0 0.5

]
. For any starting value, p∞ =

[
1
0

]
.

Here, pk does converge to stationary distribution, we just don’t
have p∞i > 0 for i = 1,2.
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Simulating posterior distributions
Discrete state space Markov chains

Continuous state space Markov chains

Markov chain Monte Carlo

MCMC algorithms are cleverly constructed so that the posterior
distribution p(θ|y) is the stationary distribution of the Markov
chain!

Since θ typically lives in Rd , there is a continuum of states.
So the Markov chain is said to have a continuous state
space.

The transition matrix is replaced with a transition kernel:
P(θk ∈ A|θk−1 = x) =

∫
A k(s|x)ds.
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Simulating posterior distributions
Discrete state space Markov chains

Continuous state space Markov chains

Continuous state spaces...

Notions such as aperiodicity, positive recurrence, and
irreducibility are generalized for continuous state spaces
(see Tierney, 1994). Same with ergodicity.

Stationary distribution now satisfies

P∞(A) =

∫
A

p∞(s)ds

=

∫
x∈Rd

[∫
A

k(s|x)ds
]

p∞(x)dx

=

∫
x∈Rd

P(θk ∈ A|θk−1 = x)p∞(x)dx

Continuous time analogue to p∞ = Pp∞.
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Simulating posterior distributions
Discrete state space Markov chains

Continuous state space Markov chains

MCMC

Again, MCMC algorithms cleverly construct k(θ|θk−1) so that
p∞(θ) = p(θ|y)!

Run chain out long enough and θk approximately
distributed as p∞(θ) = p(θ|y).

Whole idea is that kernel k(θ|θk−1) is easy to sample from
but p(θ|y) is difficult to sample from.
Different kernels: Gibbs, Metropolis-Hastings,
Metropolis-within-Gibbs, etc.
We will mainly consider variants of Gibbs sampling in R
and DPpackage. WinBUGS can automate the process for
some problems; most of the compiled functions in
DPpackage use Gibbs sampling with some
Metropolis-Hastings updates. Will discuss these next...
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Simulating posterior distributions
Discrete state space Markov chains

Continuous state space Markov chains

Simple example, finished...

Example: Back to simple finite, discrete state space example
with m = 3.

Run out chain X 0,X 1,X 3, . . . ,X 10000. Initial value X 0

doesn’t matter.

Can estimate p∞ by

p̂∞ =

 1
10000

∑10000
k=1 I{1}(X k )

1
10000

∑10000
k=1 I{2}(X k )

1
10000

∑10000
k=1 I{3}(X k )

 =

 0.26
0.22
0.52

.

This is one approximation from running chain out once.
Will have (slightly) different answers each time.
LLN for ergodic chains guarantees this approximation will
get better the longer the chain is taken out.
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