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Obtaining posterior inference
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Simulating posterior distributions

Obtaining posterior inference

@ We start with a full Bayesian probability model. May be
hierarchical, involve dependent data, etc.

@ Must be possible to evaluate unnormalized posterior

p(O\y) = p(91 e ,0k|y1 yeus ,y,,).
@ e.g. In simple model y ~ p(y|@), with 8 ~ p(8) this is usual

p(6ly) < p(6,y) = p(y|0)p(6).

@ e.g. In hierarchical model y|@, T ~ p(y|@0), 8|7 ~ p(6|T),
T ~ p(T) this is

p(8;Tly) o p(8,7.,y) = p(y|6,7)p(0, ) = p(y|0)p(6|T)p(T).



Simulating posterior distributions

Monte Carlo inference

@ Sometimes it is possible to sample directly from the
posterior p(@|y) (or p(@, Tly), etc.)

0'.62,....6" % p(gly).
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Simulating posterior distributions

Monte Carlo inference

@ Sometimes it is possible to sample directly from the
posterior p(@|y) (or p(@, Tly), etc.)
0'.62,....6" % p(gly).

@ We can use empirical estimates (mean, variance,
quantiles, etc.) based on {#¥}¥_. to estimate the
corresponding population parameters.

o M1V 6% ~ E()y).

e p" quantile: where 0 < p < 1, [] integer function,
9]["’”] ~ g such that [?__ p(¢;ly)d§; = p.

e etc.
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Simulating posterior distributions

Markov chain Monte Carlo (MCMC)

@ Only very simple models are amenable to Monte Carlo
estimation of posterior inference.
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chain Monte Carlo.

e Instead of independent draws {6} from the posterior, we
obtain dependent draws.

@ Treat them the same as if they were independent though.
Ergodic theorems (Tierney, 1994, Section 3.3) provide LLN
for MCMC iterates.



Simulating posterior distributions

Markov chain Monte Carlo (MCMCQC)

@ Only very simple models are amenable to Monte Carlo
estimation of posterior inference.

@ A generalization of the Monte Carlo approach is Markov
chain Monte Carlo.

e Instead of independent draws {6} from the posterior, we
obtain dependent draws.

@ Treat them the same as if they were independent though.
Ergodic theorems (Tierney, 1994, Section 3.3) provide LLN
for MCMC iterates.

@ Let’s get a taste of some fundamental ideas behind MCMC.



Discrete state space Markov chains

Discrete state space Markov chain

@ Let S={s1,5,...,5m} be a set of m states. Without loss
of generality, we will take S = {1,2,..., m}. Note this is a
finite state space.
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finite state space.
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on S if

P(XK =il X1 xk=2 X2 X1, X0%) = P(X* = i|xkT),

where i = 1,..., m are the possible states. At time k, the
distribution of X* only cares about the previous X*~' and
none of the earlier X%, X1, ..., xk=2,



Discrete state space Markov chains

Discrete state space Markov chain

@ Let S={s1,5,...,5m} be a set of m states. Without loss
of generality, we will take S = {1,2,..., m}. Note this is a
finite state space.

@ The sequence of vectors {X¥}2° ; forms a Markov chain
on S if

P(XK =il X1 xk=2 X2 X1, X0%) = P(X* = i|xkT),

where i = 1,..., m are the possible states. At time k, the
distribution of X* only cares about the previous X*~' and
none of the earlier X%, X1, ..., xk=2,

@ If the probability distribution P(X* = i|Xk~1) doesn’t
change with time k then the chain is said to be
homogeneous or stationary. We will only discuss
stationary chains.



Discrete state space Markov chains

Transition matrix

o Let pj = P(X* = jIXk=1 = j) be the probability of the chain
going from state / to state j in one step. These values can
be placed into a transition matrix:

P11 P21 - Pmi
p_ PT2 P.22 : Pn-7,2
Pim P2m -+ Pmm
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Transition matrix

o Let pj = P(X* = jIXk=1 = j) be the probability of the chain
going from state / to state j in one step. These values can
be placed into a transition matrix:

P11 P21 - Pm,
p_ PT2 P.22 : Pn-7,2
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@ Each column specifies conditional probability distribution &
elements add up to 1.
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Discrete state space Markov chains

Transition matrix

o Let pj = P(X* = jIXk=1 = j) be the probability of the chain
going from state / to state j in one step. These values can
be placed into a transition matrix:

P11 P21 - Pmi
p_ PT2 P.22 : Pn-7,2
Pim P2m -+ Pmm

@ Each column specifies conditional probability distribution &
elements add up to 1.

@ Question: Describe the chain with each column in the
transition matrix is identical.



Discrete state space Markov chains

n-step transition matrix

@ You should verify that the transition matrix for
P(Xk = jiXk=" = i) = P(X" = j| X0 = i) (stationarity) is
given by the product P".
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Discrete state space Markov chains

n-step transition matrix

@ You should verify that the transition matrix for
P(XK = jiXk=" = i) = P(X" = j|X° = i) (stationarity) is
given by the product P".

@ This can be derived through iterative use of conditional
probability statements, or by using the
Chapman-Kolmogorov equations (which follow from
iterative use of conditional probability statements).



Discrete state space Markov chains

Initial value X°

@ Say that the chain is started by drawing X° from P(X° = j).
These probabilities specify a the distribution for the initial
value or state of the chain X°.
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Discrete state space Markov chains

Initial value X°

@ Say that the chain is started by drawing X° from P(X° = j).
These probabilities specify a the distribution for the initial
value or state of the chain X°.

@ Silly but important question: What happens when
P(X°=j)=0forj=1,2,...,m? This has implications for
choosing a starting value in MCMC.
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Discrete state space Markov chains

Example

Let p¥ be vector of probabilities P(X* = j) = pf. Let's look at
an example.

@ Three states S = {1,2,3}.
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Discrete state space Markov chains

Example

Let p¥ be vector of probabilities P(X* = j) = pf. Let's look at
an example.

@ Three states S = {1,2,3}.
@ Initial state X© distributed

P(X0 = 1) 0.3
o P(on)] _ {0.4].

P(X° = 3) 0.3

0.1 06 0.2
08 0.2 05

@ Transition matrix P = { 0.1 0.2 0.3
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Discrete state space Markov chains

Example chain

X0 =1, X" X2,..., X0 generated according to P.

Figure: X0, X',..., X0,
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Discrete state space Markov chains

Longer chain

Example: Different X° =1, X1, X2,..., X% generated
according to P.

0 20 40 60 80 100

Figure: X',..., X100,
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Discrete state space Markov chains

Limiting distribution

@ Marginal or unconditional distribution of X' is given by the
law of total probability

P(X'=))= i P(X' = jIX° = )P(X° = i).
i=1

Here, m = 3 states. In general, p* = Pp¥—'.
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Discrete state space Markov chains

Limiting distribution

@ Marginal or unconditional distribution of X' is given by the
law of total probability

m
PX'=j)=> P(X"=jX°=)P(X° =)
i=1
Here, m = 3 states. In general, p* = Pp¥—'.
@ Simply
01 06 02 0.3 0.33
p'=Pp°=| 01 02 03 04 | =1 020 |.

0.8 0.2 05 0.3 0.47
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Discrete state space Markov chains

Recursion...
P(X" =1) 0.33
(*] p1—|: P(X' =2) } :{ 0.20 }
P(X' =3) 0.47
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Discrete state space Markov chains

Recursion...

P(X" =1) 0.33
@p=| Px'=2) | = { 0.20 }
P(X" = 3) 0.47
P(X? =1) 01 06 0.2 0.33 0.25
@ pP=| Px2=2 :{ 0.1 02 03 } [ 020 | =| 0.21
P(X2 =3) 08 0.2 0.5 0.47 0.54
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Discrete state space Markov chains

Recursion...
Px'=1 1 T 033
@ p'=| pPx'=2) | =| 020 |.
| Px'=3) | [ 047
[ Px*=1) 1 T 01 o06 02 0.33 25
@ p?P=| px2=2) | =| 01 02 03 020 | =| 0.21
P(X2:3) | 08 02 05 0.47
[ Px®=1) 1 T 01 06 02 0.25 0.26
@ pP=| px¥=2) | =| 01 02 03 021 | =| 0.23
POXC = 3) | 08 02 05 0.54 0.51
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Discrete state space Markov chains

PX' =1) | 0.33
@ p'=| pPx'=2) | =| 020
| Px'=3) | [ 047
[ PX2=1) ] [ o01 06 027 03] [ 0251
@ pP=| PxX2=2) |=| 01 02 03 020 | =| 0.21
i P(X2:3) | | 0.8 02 05 | | 047 | | 0.54 |
[ Px®=1) ] T 01 06 0270257 [ 0261
@ pP=| Px®=2) | =| 01 02 03 021 | =| 0.23
| Px*=3) | 08 02 o5 || 05 | | 051 |
[ Px*=1) ] T[o01 06 027 0267 [ 026 ]
@ pt=| Px*=2) | =| 01 02 03 023 | =| 0.23
Pix*=3) | [ 08 02 o5 [[ o5t | [ o051 |
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Discrete state space Markov chains

PX' =1) | 0.33
@ p'=| pPx'=2) | =| 020
| Px'=3) | [ 047
[ PX2=1) ] [ o01 06 027 03] [ 0251
@ pP=| PxX2=2) |=| 01 02 03 020 | =| 0.21
i P(X2:3) | | 0.8 02 05 | | 047 | | 0.54 |
[ Px®=1) ] T 01 06 0270257 [ 0261
@ pP=| Px®=2) | =| 01 02 03 021 | =| 0.23
| Px*=3) | 08 02 o5 || 05 | | 051 |
[ Px*=1) ] T[o01 06 027 0267 [ 026 ]
@ pt=| Px*=2) | =| 01 02 03 023 | =| 0.23
| Px*=3) | Lo08 02 o5 || o5 | | 051 |
[ Px5=1) ] T 01 06 027 02 1 [ 026
@ p’=| Px®=2) | =| 01 02 03 023 | =| 023
P(x5=3) | |08 02 o5 ][ o5 | [ o051 |
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Discrete state space Markov chains

Pxt=1) | 0.33
@ p'=| pPx'=2) | =| 020
| Px'=3) | [ 047
[ PX2=1) ] [ 01 06 027 033 0.25 ]
@ p?P=| px2=2) | =| 01 02 03 020 | =| 0.21
i P(X2:3) | | 0.8 02 05 | | 047 | | 0.54 |
[ PX®*=1)] [ o1 06 027[ 0257 [ 0261
@ pP=| Px®=2) | =| 01 02 03 021 | =| 0.23
| =3 | [08 02 05 ]| 05 | | 051 |
[ Px*=1) ] T[o01 06 027 0267 [ 026 ]
@ p'=| Px*=2) | =| 01 02 03 023 | =| 023
| Pxt=3) | [08 02 05 ]| o051 | | 051 |
[ PX®*=1)] [ o01 06 027[ 0267 [ 0261
@ p’=| Px®=2) | =| 01 02 03 023 | =| 023
| Px5=3) | [08 02 05 ][ 051 | 0.51 |
P(X50 = 1 01 06 0.2 0.26 0.26
@ pX P(x0=2) | =| 01 02 03 023 | =| 0.23
P(X% — 3) 0.8 02 05 || 0.51 0.51
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Discrete state space Markov chains

)
)
)
P(X? =1) 01 06 02 ][ 03 1 [ 025
@ p?P=| px2=2) | =| 01 02 03 020 | =| 021 |.
P(X2 = 3) 08 02 05 || 047 | | 054 |
P(X3 =1) 01 06 02 7[ 0257 [ 026 ]
@ pP=| px¥=2) | =| 01 02 03 021 | =] 023 |.
POXA = 3) 08 02 05 || 054 | | 051 |
P(X* =1) 01 06 02 ][ 0267 [ 026
@ pt=| pxt=2) | =| 01 02 03 023 | =| 023 |.
P(X* = 3) 08 02 05 || 051 | | 051 |
P(X® =1) 01 06 02 7[ 0267 [ 026 ]
@ p’=| Px®=2) | =| 01 02 03 023 | =| 023 |.
| P(x5=3) | [08 02 05 || o5t ] | 051 |
P(X50 = 1) 01 06 021 026 0.26
@ p=| px¥0 =2 | =] 01 02 03 023 | =| 023 |.
P(X50 = 3) 08 02 05 0.51 0.51

@ p> - [ 023 } is limiting or stationary distribution of Markov
0.51

chain. Here it's essentially reached within 3 iterations!
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Discrete state space Markov chains

Starting value gets lost

Limiting distribution doesn’t care about initial value

1 0.26
@ Whenp® = | 0 [, stationary distribution p> = | 0.23
0 0.51

essentially reached within 5 iterations (within two
significant digits), but is only reached exactly at k = ~.

@ Note that stationary distribution satisfies p> = Pp>°. That
is, if XK= ~ p> then so is XX ~ p™.
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Discrete state space Markov chains

Some important notions

@ An absorbing state exists if p; = 1 for some . i.e. once Xk
enters state J, it stays there forever.
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Discrete state space Markov chains

Some important notions

@ An absorbing state exists if p; = 1 for some . i.e. once Xk
enters state J, it stays there forever.

@ If every state can be reached from every other state in
finite time the chain is irreducible. This certainly occurs
when p; > 0 for all / and j as each state can be reached
from any other state in one step!

@ Question: Can a chain with an absorbing state be
irreducible?

16/26



Discrete state space Markov chains

Positive recurrence

@ Say the chain starts at X° = i. Consider
PXK =i XK1 £ XK2 £, X240 X" £0]X° =).

This is the probability that the first return to state i occurs
at time k. State i/ is recurrent if

Zp(xk:,-,xk—1 £ X220 X240 X £iX0 =) =1.
k=1
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at time k. State i/ is recurrent if

S OPXK =i, X £ XR A XX £IXO = 1) =1.
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@ Let T; be distributed with the above probability distribution;
T; is the first return time to |.
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positive recurrent if all states are positive recurrent.
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Discrete state space Markov chains

Positive recurrence

@ Say the chain starts at X° = i. Consider
PXK =i XK1 £ XK2 £, X240 X" £0]X° =).

This is the probability that the first return to state i occurs
at time k. State i/ is recurrent if

S OPXK =i, X £ XR A XX £IXO = 1) =1.
k=1
@ Let T; be distributed with the above probability distribution;
T; is the first return time to |.
e If E(T;) < oo the state is positive recurrent. The chain is
positive recurrent if all states are positive recurrent.
@ Question: Is an absorbing state recurrent? Positive
recurrent? If so, what is E(T;)?

17/26



Discrete state space Markov chains

Periodicity

@ A state i is periodic if in can be re-visited only at regularly
spaced times. Formally, define

d(i) = g.c.d{k : (P¥); > 0}

where g.c.d. stands for greatest common divisor. i is
periodic if d(i) > 1 with period d(/).
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Discrete state space Markov chains

Periodicity

@ A state i is periodic if in can be re-visited only at regularly
spaced times. Formally, define

d(i) = g.c.d{k : (PX); > 0}
where g.c.d. stands for greatest common divisor. i is
periodic if d(i) > 1 with period d(/).

@ A state is aperiodic if d(i) = 1. This of course happens
when p; > 0 for all j and ;.

@ A chain is aperiodic if all states i are aperiodic.

18/26



Discrete state space Markov chains

What is the point?

If a Markov chain {X*}3° , is aperiodic, irreducible, and positive
recurrent, it is ergodic.

Theorem: Let {X* 172 be an ergodic (discrete time) Markov
chain. Then there exists a stationary distribution p>° such that
p° > 0fori=1,..., m, that satisfies Pp> = p> and p¥ — p>.

@ Can get a draw from p°° by running chain out a ways (from
any starting value in the state space S!). Then XX, for k
“large enough,” is approximately distributed p°°.
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Discrete state space Markov chains

Aperiodicity

@ Aperiodicity is important to ensure a limiting distribution.

1 . . . .
10 yields an irreducible, positive recurrent
chain, but both states have period 2. There is no limiting
distribution! For any initial distribution

0 _ 0
p’ = [ ggo _ ;g } = { g(;) } p* alternates between

and .
[ o3 Py

e.g.P:[0
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Discrete state space Markov chains

Positive recurrence and irreducibility

e Positive recurrence roughly ensures that {X*}°  will visit
each state / enough times (infinitely often) to reach the
stationary distribution. A state is recurrent if it can keep
happening.
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e Positive recurrence roughly ensures that {X*}°  will visit
each state / enough times (infinitely often) to reach the
stationary distribution. A state is recurrent if it can keep
happening.

@ Irreducibility disallows the chain getting “stuck” in certain
subsets of S and not being able to get out. Reducibility
would imply that the full state space S could not be
explored. Actually, if Pp> = p°° and the chain is
irreducible, then the chain is positive recurrent.
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Discrete state space Markov chains

Positive recurrence and irreducibility

e Positive recurrence roughly ensures that {X*}°  will visit
each state / enough times (infinitely often) to reach the
stationary distribution. A state is recurrent if it can keep
happening.

@ Irreducibility disallows the chain getting “stuck” in certain
subsets of S and not being able to get out. Reducibility
would imply that the full state space S could not be
explored. Actually, if Pp> = p°° and the chain is
irreducible, then the chain is positive recurrent.

@ Note that everything is satisfied when p; > 0 for all i and /!!
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Discrete state space Markov chains

[llustration

A reducible chain can still converge to its stationary distribution!

1 05 . o |1
Let P = [ 0 05 ] For any starting value, p> = [ 0 ]

Here, p¥ does converge to stationary distribution, we just don’t
have p7° > 0 fori=1,2.

22/26



Continuous state space Markov chains

Markov chain Monte Carlo

MCMC algorithms are cleverly constructed so that the posterior
distribution p(81y) is the stationary distribution of the Markov
chain!

@ Since 0 typically lives in RY, there is a continuum of states.
So the Markov chain is said to have a continuous state
space.
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Continuous state space Markov chains

Markov chain Monte Carlo

MCMC algorithms are cleverly constructed so that the posterior
distribution p(81y) is the stationary distribution of the Markov
chain!

@ Since 0 typically lives in RY, there is a continuum of states.
So the Markov chain is said to have a continuous state
space.

@ The transition matrix is replaced with a transition kernel:
P(6% € Alo*~" = x) = [, k(s|x)ds.

23/26



Continuous state space Markov chains

Continuous state spaces...

@ Notions such as aperiodicity, positive recurrence, and
irreducibility are generalized for continuous state spaces
(see Tierney, 1994). Same with ergodicity.
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Continuous state space Markov chains

Continuous state spaces...

@ Notions such as aperiodicity, positive recurrence, and
irreducibility are generalized for continuous state spaces
(see Tierney, 1994). Same with ergodicity.

@ Stationary distribution now satisfies

/Apoo(s)ds

_ /x B [ /A k(s|x)ds] p°°(X)dx

= / P(0% c Aj0*—! = x)p™(x)dx
xcRd

P=(A)
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Continuous state space Markov chains

Continuous state spaces...

@ Notions such as aperiodicity, positive recurrence, and
irreducibility are generalized for continuous state spaces
(see Tierney, 1994). Same with ergodicity.

@ Stationary distribution now satisfies

/A p™(s)ds

_ /x B [ /A k(s|x)ds] p°°(X)dx

= / P(0% c Aj0*—! = x)p™(x)dx
xcRd

P=(A)

@ Continuous time analogue to p>° = Pp.

24/26



Continuous state space Markov chains

MCMC

Again, MCMC algorithms cleverly construct k(8|6¥~") so that
p>(6) = p(6ly)!
@ Run chain out long enough and 8% approximately
distributed as p>(6) = p(0]y).
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Continuous state space Markov chains

MCMC

Again, MCMC algorithms cleverly construct k(8|6¥~") so that
p>(0) = p(6ly)!
@ Run chain out long enough and 8% approximately
distributed as p>(6) = p(0]y).
@ Whole idea is that kernel k(8|6%~") is easy to sample from
but p(0|y) is difficult to sample from.

@ Different kernels: Gibbs, Metropolis-Hastings,
Metropolis-within-Gibbs, etc.

@ We will mainly consider variants of Gibbs sampling in R
and DPpackage. WinBUGS can automate the process for
some problems; most of the compiled functions in
DPpackage use Gibbs sampling with some
Metropolis-Hastings updates. Will discuss these next...
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Continuous state space Markov chains

Simple example, finished...

Example: Back to simple finite, discrete state space example
with m = 3.

@ Run out chain X9 X', X3 ... X10000 |njtial value X°
doesn’t matter.
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Continuous state space Markov chains

Simple example, finished...

Example: Back to simple finite, discrete state space example
with m = 3.

@ Run out chain X9 X', X3 ... X10000 |njtial value X°
doesn’t matter.

@ Can estimate p° by
10000 210000 1{1}(Xk) { 0.26 ]

N

p> = 1000OZk1 /{2}(X:) =
0000 2okr® Iz (X¥)

0.22
0.52
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Continuous state space Markov chains

Simple example, finished..

Example: Back to simple finite, discrete state space example
with m = 3.

@ Run out chain X9 X', X3 ... X10000 |njtial value X°
doesn’t matter.

@ Can estimate p> by

10000 210000 I (Xk) 0.26

p> = 10000 Zk 1 Itz }(Xk) { 0.22 ]

10000 Zk 1 1{3}(Xk) 0.52

@ This is one approximation from running chain out once.
Will have (slightly) different answers each time.
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Continuous state space Markov chains

Simple example, finished..

Example: Back to simple finite, discrete state space example
with m = 3.

@ Run out chain X9 X', X3 ... X10000 |njtial value X°
doesn’t matter.

@ Can estimate p> by

10000 210000 Iy (X5) 0.26

p> = 10000 Zk 1 Itz }(Xk) { 0.22 ]

10000 Zk 1 1{3}(Xk) 0.52

@ This is one approximation from running chain out once.
Will have (slightly) different answers each time.

@ LLN for ergodic chains guarantees this approximation will
get better the longer the chain is taken out.
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