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Statistical models...

...come in all shapes and sizes!

STAT 704/705: linear models with normal errors, logistic &
Poisson regression

STAT 520/720: time series models, e.g. ARIMA

STAT 771: longitudinal models with fixed and random effects

STAT 770: logistic regression, generalized linear mixed
models, r × k tables

STAT 530/730: multivariate models

STAT 521/721: stochastic processes

et cetera, et cetera, et cetera...
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Examples from your textbook...

Censored data (Ex. 1.1, p. 2)

Zi = min{Xi , ω}, X1, . . . ,Xn
iid∼ f (x |α, β) = αβxα−1 exp(−βxα).

Finite mixture (Ex. 1.2 & 1.10, p. 3 & 11)

X1, . . . ,Xn
iid∼

k∑
j=1

pjN(µj , σ
2
j ).

Beta data

X1, . . . ,Xn
iid∼ f (x |α, β) =

Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1.

Logistic regression (Ex. 1.13, p. 15)

Yi
ind .∼ Bern

(
exp(β′xi )

1 + exp(β′xi )

)
.

More: MA(q), normal, gamma, student t, et cetera...
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Likelihood

The likelihood is simply the joint distribution of data, viewed
as a function of model parameters.

L(θ|x) = L(θ1, . . . , θk |x1, . . . , xn) = f (x1, . . . , xn|θ1, . . . , θk).

If data are independent then L(θ|x) =
∏n

i=1 fi (xi |θ) where
fi (·|θ) is the marginal pdf/pmf of Xi .

Beta data

L(α, β|x) =
n∏

i=1

Γ(α + β)

Γ(α)Γ(β)
xα−1i (1− xi )

β−1.

Logistic regression data

L(β|y) =
n∏

i=1

(
exp(β′xi )

1 + exp(β′xi )

)yi ( 1

1 + exp(β′xi )

)1−yi
.
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Two main inferential approaches...

Section 1.2: Maximum likelihood. Use likelihood “as is” for
information on θ.

Section 1.3: Bayesian. Include additional information on θ
through prior.

Methods of moments (MOM) and generalized method of
moments (GMOM) are simple, direct methods for estimating
model parameters that match population moments to sample
moments. Sometimes easier than MLE, e.g. beta data,
gamma data.

Your text introduces the Bayesian approach in Chapter 1; we
will first consider large-sample approximations.
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First derivative vector and second derivative matrix

The gradient vector (or “score vector”) of the log-likelihood are
the partial derivatives:

∇ log L(θ|x) =


∂ log L(θ|x)

∂θ1
...

∂ log L(θ|x)
∂θk

 ,
and the Hessian, i.e. matrix of second partial derivatives is
denoted:

∇2 log L(θ|x) =



∂2 log L(θ|x)
∂θ21

∂2 log L(θ|x)
∂θ1∂θ2

· · · ∂2 log L(θ|x)
∂θ1∂θk

∂2 log L(θ|x)
∂θ2∂θ1

∂2 log L(θ|x)
∂θ22

· · · ∂2 log L(θ|x)
∂θ2∂θk

...
...

. . .
...

∂2 log L(θ|x)
∂θk∂θ1

∂2 log L(θ|x)
∂θk∂θ2

· · · ∂2 log L(θ|x)
∂θ2k

 .
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Maximum likelihood & asymptotic normality

θ̂ = argmaxθ∈ΘL(θ|x).

Finds θ that makes data x as “likely” as possible.

Under regularity conditions,

θ̂
•∼ Nk(θ,Vθ), Vθ = [−E{∇2 log L(θ|X)}]−1.

Normal approximation historically extremely important; crux
of countless approaches and papers.

Regularity conditions have to do with differentiability of L(θ|x)
w.r.t. θ, support of xi not depending on θ, invertibility of
Fisher information matrix, and certain expectations are finite.
Most models we’ll consider satisfy the necessary conditions.
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How to maximize likelihood?

Problem is to maximize L(θ|x), or equivalently log L(θ|x).

Any extrema θ̂ satisfies ∇ log L(θ|x) = 0.

In one dimension this is ∂
∂θL(θ|x) = 0.

Global max if ∂2

∂θ2
log L(θ|x) < 0 for θ ∈ Θ.

Only in simple problems can we solve this directly.

Various iterative approaches: steepest descent, conjugate
gradient, Newton-Raphson, etc.

Iterative approaches work fine for moderate number of
parameters k and/or sample sizes n, but can break down
when problem gets “too big.”
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Classic examples with closed-form MLEs

X1, . . . ,Xn
iid∼ Bern(π).

Y =
∑n

i=1 Xi ∼ Bin(n, π).

Xi
ind .∼ Pois(λti ), ti is an “offset” or “exposure time.”

X1, . . . ,Xn
iid∼ N(µ, σ2).

X1, . . . ,Xn
iid∼ Np(µ,Σ).
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About your textbook...

Main focus: simulation-based approaches to obtaining
inference. More broadly useful than traditional deterministic
methods, especially for large data sets and/or complicated
models.

We will discuss non-simulation based approaches as well in a
bit more detail than your book; still used a lot and quite
important. See Gentle (2009) for complete treatment.

Your text has lots of technical points, pathological examples,
convergence theory, alternative methods (e.g. profile
likelihood), etc. We may briefly touch on these but omit
details. Please read your book!

Main focus of course: gain experience and develop intuition
on numerical methods for obtaining inference, i.e. build your
“toolbox.”
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Deterministic versus stochastic numerical methods

Deterministic methods use a prescribed algorithm to arrive at
a solution. Given the same starting values the solution they
arrive at the same answer each time.

Stochastic methods introduce randomness into an algorithm.
Different “runs” typically produce (slightly) different solutions.

We will first examine a deterministic approach to maximizing
the likelihood and obtain inference based on approximate
normality.

11 / 39



First derivative vector and second derivative matrix

The gradient vector (or “score vector”) of the log-likelihood are
the partial derivatives:

∇ log L(θ|x) =


∂ log L(θ|x)

∂θ1
...

∂ log L(θ|x)
∂θk

 ,
and the Hessian, i.e. matrix of second partial derivatives is
denoted:

∇2 log L(θ|x) =



∂2 log L(θ|x)
∂θ21

∂2 log L(θ|x)
∂θ1∂θ2

· · · ∂2 log L(θ|x)
∂θ1∂θk

∂2 log L(θ|x)
∂θ2∂θ1

∂2 log L(θ|x)
∂θ22

· · · ∂2 log L(θ|x)
∂θ2∂θk

...
...

. . .
...

∂2 log L(θ|x)
∂θk∂θ1

∂2 log L(θ|x)
∂θk∂θ2

· · · ∂2 log L(θ|x)
∂θ2k

 .
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Maximum likelihood...

The likelihood or score equations are

∇ log L(θ|x) = 0.

The MLE θ̂ satisfies these. However, a solution to these
equations may not be the MLE.

θ̂ is a local max if ∇ log L(θ|x) = 0 and ∇2 log L(θ|x) is
negative-semidefinite (has non-positive eigvenvalues).

The expected Fisher information is

In(θ) = E{[∇ log L(θ|X)][∇ log L(θ|X)]′} = −E{∇2 log L(θ|x)}.

The observed Fisher information is this quantity without the
expectation

Jn(θ) = −∇2 log L(θ|x).
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Maximum likelihood...

In large samples under regularity conditions,

θ̂
•∼ Nk(θ, In(θ)−1) and θ̂

•∼ Nk(θ, Jn(θ)−1).

Just replace the unknown θ by the MLE θ̂ in applications and
the approximations still hold.

θ̂
•∼ Nk(θ, In(θ̂)−1) and θ̂

•∼ Nk(θ, Jn(θ̂)−1).

The observed Fisher information Jn(θ̂) is easier to compute
and recommended by Efron and Hinkley (1978) when using
the normal approximation above.

14 / 39



Multivariate delta method

Once the MLE θ̂ and its approximate covariance Jn(θ̂) is obtained,
we may be interested in functions of θ, e.g. the vector

g(θ) =

 g1(θ)
...

gm(θ)

 .
The multivariate delta method gives

g(θ̂)
•∼ Nm(g(θ), [∇g(θ̂)]′J(θ̂)−1[∇g(θ̂)]).

This stems from approximate normality and the first-order Taylors

approximation

g(θ̂) ≈ g(θ) + [∇g(θ)]′(θ̂ − θ).
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Multivariate delta method

As before,

∇g(θ) =


∂g1(θ)
∂θ1

∂g2(θ)
∂θ1

· · · ∂gm(θ)
∂θ1

∂g1(θ)
∂θ2

∂g2(θ)
∂θ2

· · · ∂gm(θ)
∂θ2

...
...

. . .
...

∂g1(θ)
∂θk

∂g2(θ)
∂θk

· · · ∂gm(θ)
∂θk

 .
For univariate functions g(θ) : Rk → R

∇g(θ) =


∂g(θ)
∂θ1
∂g(θ)
∂θ2
...

∂g(θ)
∂θk

 .

Example: g(µ, σ) = µ/σ, the signal-to-noise ratio.
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Multivariate delta method: testing

We have

g(θ̂)
•∼ Nm(g(θ), [∇g(θ̂)]′J(θ̂)−1[∇g(θ̂)]).

Let g0 ∈ Rm be a fixed, known vector.

An approximate Wald test of H0 : g(θ) = g0 has test statistic

W = (g(θ̂)− g0)′{[∇g(θ̂)]′J(θ̂)−1[∇g(θ̂)]}−1(g(θ̂)− g0).

In large samples
W

•∼ χ2
m.
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Simple confidence intervals and tests

Along the diagonal of J(θ̂)−1 are the estimated variances of
θ̂1, . . . , θ̂k . Approximate 95% confidence interval for θj is

θ̂j ± 1.96
√

[J(θ̂)−1]jj .

Can test H0 : θj = t from test statistic z =
θ̂j−t√

[J(θ̂)−1]jj
.

For any function g(θ) can obtain CI and test in similar
manner using result on previous slide. For example, 95% CI is

g(θ̂)± 1.96
√

[∇g(θ̂)]′J(θ̂)−1[∇g(θ̂)].
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Univariate Newton-Raphson

In general, computing the MLE, i.e. the solution to
∇ log L(θ|x) = 0, is non-trivial except in very simple models. An
iterative method for finding the MLE is Newton-Raphson.

Want to find a zero of some univariate function g(·), i.e. an x s.t.
g(x) = 0. A first-order Taylors approximation gives
g(x1) ≈ g(x0) + g ′(x0)(x1 − x0). Setting this to zero and solving

gives x1 = x0 − g(x0)
g ′(x0)

. The iterative version is

xj+1 = xj −
g(xj )
g ′(xj )

.

I will show on the board how this works in practice. For univariate

θ, solve ∂
∂θ log L(θ|x) = 0 via θj+1 = θj −

∂
∂θ log L(θj |x)
∂2

∂θ2
log L(θj |x)

.
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R example

Bernoulli data
X1, . . . ,Xn

iid∼ Bern(π),

which is the same as

Y =
n∑

i=1

Xi ∼ Bin(n, π).

MLE π̂ directly...

MLE via Newton-Raphson...

Starting values?

Multiple local maxima? Example 1.9 (p. 10); Example 1.17
(p.19).
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Multivariate Newton-Raphson

The multivariate version applied to ∇ log L(θ|x) = 0 is

θj+1 = θj − [∇2 log L(θj |x)]−1[∇ log L(θj |x)].

Taking inverses in a terribly inefficient way to solve a linear system
of equations and instead one solves

[∇2 log L(θj |x)]θj+1 = [∇2 log L(θj |x)]θj − [∇ log L(θj |x)]

for θj+1 through either a direct decomposition (Cholesky) or
iterative (conjugate gradient) method.

Stop when ||θ̂j+1 − θ̂j || < ε for some norm || · || and tolerance ε.

||θ||1 =
∑k

i=1 |θi |, ||θ||2 =
√∑k

i=1 θ
2
i , and

||θ||∞ = maxi=1,...,k |θi |. This is absolute criterion; can also use
relative.
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Notes on Newton-Raphson

Computing the Hessian can be computationally demanding;
finite difference approximations can reduce this burden.

Steepest descent only uses the gradient ∇ log L(θ|x), ignoring
how the gradient is changing (the Hessian). May be easier to
program.

Quasi-Newton methods use approximations that satisfy “the
secant condition”; an approximation to the Hessian is built up
as the algorithm progresses using low-rank updates. Popular
version is Broyden-Fletcher-Goldfarb-Shanno (BFGS). Details
beyond scope of this course (see Sec. 6.2 in Gentle, 2009).
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Useful R functions

optim in R is powerful optimization function that performs
Nelder-Mead (only function values log L(θ|x) are used!),
conjugate gradient, BFGS (including constrained), and
simulated annealing. The ucminf package also has the stable
function ucminf for optimization and uses the same syntax as
optim. The Hessian at the maximum is provided for most
approaches.

Maple, Mathematica
(http://www.wolframalpha.com/calculators/derivative-
calculator/) can symbolically differentiate functions, so can R!
deriv is built-in and Deriv is in the Deriv package.

jacobian and hessian are numerical estimates from the
numDeriv package. The first gives the gradient, the second
the matrix of second partial derivatives, both evaluated at a
vector.
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Censored data likelihood

Consider right censored data. Event times are

T1, . . . ,Tn
iid∼ f (t),

independent of censoring times

C1, . . . ,Cn
iid∼ g(t).

We observe Yi = min{Ti ,Ci} and δi = I{Ti ≤ Ci}: δi = 1 if the
ith observation is uncensored.
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Censored data likelihood

This is not obvious, but the the joint distribution of {(Yi , δi )}ni=1 is

n∏
i=1

{f (yi )[1− G (yi )]}δi{g(yi )[1− F (yi )]}1−δi .

If we have time later we will derive this formally.

For now, note that if f (·) and g(·) do not share any parameters,
and f (·) has parameters θ, then

L(θ|y, δ) ∝
n∏

i=1

f (yi |θ)δi [1− F (yi |θ)]1−δi .
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Multivariate Newton-Raphson & delta method examples

Censored gamma data (p. 24)...

Logistic regression data (p. 15)...

Note: Tim has used optim many, many times fitting models
and/or obtaining starting values and initial covariance matrices for
random-walk Markov chain Monte Carlo (later).

Usually not necessary to program your own iterative optimization
method, but it might come up...
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Crude starting values for logistic regression...

Let’s find first-order Taylor’s approximation to logistic function.
Let g(x) = ex

1+ex ; then g ′(x) = ex

(1+ex )2
and

g(x) ≈ g(0) + g ′(0)(x − 0)⇔ ex

1 + ex
≈ 1

2 + 1
4x .

In other words,

e4x′iθ−
1
2

1 + e4x′iθ−
1
2

≈ x′iθ.

Therefore can fit usual l.s. to get Ê (Yi ) = θ̂1 + θ̂2ti and take
initial guess as θ1 = 4θ̂1 − 1

2 , θ2 = 4θ̂2.

Taylors theorem very useful!
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The Bayesian approach...

1 ...considers θ to be random, and

2 augments the model with additional information about θ
called the “prior” π(θ).

Bayes’ rule gives the posterior distribution

π(θ|x) =
f (x1, . . . , xn|θ)π(θ)

f (x1, . . . , xn)
.

Here,

f (x1, . . . , xn) =

∫
θ∈Θ

f (x1, . . . , xn|θ)︸ ︷︷ ︸
L(θ|x)

π(θ)dθ

is the marginal density of x integrating over the prior through the
model.
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Normalizing constant of posterior density f (x)

f (x) = f (x1, . . . , xn) is often practically impossible to compute, but
thankfully most information for θ is carried by the shape of the
density w.r.t. θ

π(θ|x) ∝ f (x1, . . . , xn|θ)︸ ︷︷ ︸
f (x|θ)=L(θ|x)

π(θ).

f (x) is an ingredient in a Bayes’ factor for comparing two models.

Instead of using the likelihood for inference, we use the posterior
density, which is proportional to the likelihood times the prior
π(θ|x) ∝ L(θ|x)π(θ). Note that if π(θ) is constant then we obtain
the likelihood back!

There is more similar than different between Bayesian and
likelihood-based inference. Both specify a probability model and
use L(θ|x). Bayes’ justs adds π(θ).
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Posterior inference

A common estimate of θ is the posterior mean

θ̃ =

∫
θ∈Θ

θπ(θ|x)dθ.

This is the Bayes estimate w.r.t. squared error loss (p. 13). For
θ = (θ1, . . . , θk)′ the estimate of θj w.r.t. to absolute loss is the
posterior median θ̃j , satisfying∫ θ̃j

−∞
π(θj |x)dθj = 0.5.

A 95% credible interval (L,U) satisfies P(L ≤ θj ≤ U|x) = 0.95:∫ U

L
π(θj |x)dθj = 0.95.
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Functions of parameters θ

We are often interested in functions of model parameters g(θ), in
which case the posterior mean is

g̃(θ) =

∫
θ∈Θ

g(θ)π(θ|x)dθ,

and the posterior median satisfies...something difficult to even
write down! Need to derive the distribution of g(θ) from π(θ|x).

Note that the distribution of g(θ) can be derived if θ|x is
multivariate normal or approximately multivariate normal via the
multivariate delta method.
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Bayesian inference was at a bottleneck for years...

Parameter estimates, as well as parameter intervals, are impossible
to compute directly except for very simple problems!

We need ways to approximate integrals and quantiles to move
forward!

One broadly useful approach is Markov chain Monte Carlo, which
requires simulating random variables from different distributions,
depending on the model and approach.

Simulation is also necessary to determine the frequentist operating
characteristics (MSE, bias, coverage probability) of estimators
under known conditions; many statistical papers have a
“simulations” section!

But first we’ll consider a Bayesian normal approximation...

32 / 39



Gradient and Hessian of log posterior...

log π(θ|x) = log{L(θ|x)π(θ)} − log f (x).

Last term not a function of θ, so...

∇ log π(θ|x) =


∂ log L(θ|x)π(θ)

∂θ1
...

∂ log L(θ|x)π(θ)
∂θk

 =


∂ log L(θ|x)

∂θ1
+ ∂ log π(θ)

∂θ1
...

∂ log L(θ|x)
∂θk

+ ∂ log π(θ)
∂θk

 ,
and

∇2 log π(θ|x) =



∂2 log L(θ|x)π(θ)
∂θ21

∂2 log L(θ|x)π(θ)
∂θ1∂θ2

· · · ∂2 log L(θ|x)π(θ)
∂θ1∂θk

∂2 log L(θ|x)π(θ)
∂θ2∂θ1

∂2 log L(θ|x)π(θ)
∂θ22

· · · ∂2 log L(θ|x)π(θ)
∂θ2∂θk

...
...

. . .
...

∂2 log L(θ|x)π(θ)
∂θk∂θ1

∂2 log L(θ|x)π(θ)
∂θk∂θ2

· · · ∂2 log L(θ|x)π(θ)
∂θ2

k


.
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Gradient and Hessian of log posterior...

∇ log π(θ|x) = ∇ log L(θ|x) +∇ log π(θ),

and
∇2 log π(θ|x) = ∇2 log L(θ|x) +∇2 log π(θ).

Note first part is function of data x and n, second is not.
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Normal approximation to posterior

The normal approximation for MLEs works almost exactly the
same for posterior distributions!

Let θ̂ = argmaxθ∈Θπ(θ|x) be the posterior mode (found via
Newton-Raphson or by other means). Then

θ|x •∼ Nk(θ̂, [−∇2 log π(θ|x)]−1).

Here, θ̂ is the posterior mode, but also the (approximate) posterior
mean and (componentwise) has the posterior medians.
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Poisson example

Let Xi
ind .∼ Pois(λti ), where ti is exposure time. Take the prior

λ ∼ Γ(α, β) where α and β are given. Then

L(λ|x) =
n∏

i=1

e−λti (λti )
xi

xi !
∝ e−λ

∑n
i=1 tiλ

∑n
i=1 xi ,

and
π(λ) ∝ λα−1e−βλ,

leading to

λ|x ∼ Γ

(
α +

n∑
i=1

xi , β +
n∑

i=1

ti

)
.

Here, using a conjugate prior, we have an exact, closed-form
solution. Exact Bayesian solutions are very, very rare. However,
this allows us to compare the exact posterior density to the normal
approximation for real data.

36 / 39



Ache monkey hunting

Garnett McMillan spent a year with the Ache tribe in Paraguay.
While living with them he ate the same foods they did including
armadillo, honey, tucans, anteaters, snakes, lizards, giant grubs,
and capuchin monkeys (including their brains). Garnett says
“Lizard eggs were a real treat.”

Garnett would go on extended hunting trips in the rain forest with
hunters; we consider data from n = 11 Ache hunters aged 50-59
years followed over several jungle hunting treks. Xi is the number
of capuchin monkeys killed over ti days. We’ll assume

Xi
ind .∼ Pois(λti ), i = 1, . . . , 11.

Garnett’s prior for an average number of monkeys killed over 10
days is 1, with a 95% interval of 0.25 to 4.
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Normal approximation to Challenger data

Recall the logistic regression likelihood

L(β|y) =
n∏

i=1

(
exp(β′xi )

1 + exp(β′xi )

)yi ( 1

1 + exp(β′xi )

)1−yi
.

Hanson, Branscum, and Johnson (2014) develop the prior

β ∼ N2

([
0
0

]
,

[
168.75 −2.402
−2.402 0.03453

])
for the Challenger data.
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What’s next?

Normal approximations are fairly easy to compute and wildly
useful! Newton-Raphson is an approach to finding a MLE or
posterior mode; the normal approximation also makes use of the
observed Fisher information matrix. The multivariate delta method
allows us to obtain inference for functions g(θ).

However, normal approximations break down with large numbers of
parameters in θ and/or complex models. They are also too crude
for small sample sizes and do not work for some models. We need
an all-purpose, widely applicable approach to obtained posterior
inference for Bayesian models; our main tool will be Markov chain
Monte Carlo (MCMC).

To understand MCMC we need to first discuss how to generate
random variables, then consider Monte Carlo approximations to
means and quantiles...these are our next topics.
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