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Integration

Integration is a fundamental operation in statistics. Means,
variances, and probabilities are integrals; quantiles satify an
integral equation; and mixed model likelihoods are obtained via
integration.

Only the simplest of integrals can be easily be found in closed
form. Programs like Mathematica can symbolically integrate many
complex functions. Try

Integrate[x^2*Sin[x]]

at http://www.wolframalpha.com/.

However, many intergrals we are interested cannot be found in
closed form. We will discuss several numerical approximations to
integrals used in statistical computing.
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Direct approximations

The simplest approximation to a univariate integral is a Riemann
sum∫ b

a
f (x)dx ≈ ∆

J∑
j=1

f (xj), ∆ = b−a
J , xj = a + ∆(j − 1

2).

This version uses the midpoint of the interval.

Instead of assuming f (·) is approximately constant over
subintervals, we can instead try to approximate the function over
an interval with a simple polynomial; this leads to the trapezoidal
rule (linear approximation):∫ b

a
f (x)dx ≈ 1

2∆[f (a) + f (b)] + ∆
J−1∑
j=1

f (a + j∆),

and Simpson’s rule (quadratic, p. 137 in G & H, 2013).
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Direct methods

Integrals of the form
∫∞
−∞ f (x)g(x)dx where f (x) is a density

can be integrated over the density’s effective range for
“reasonable” functions g(x), e.g. polynomials. An effective

range is a finite interval (a, b) such that
∫ b
a f (x)dx ≈ 1.

For
∫∞
−∞ f (x)g(x)dx with density f (x), if g(x) has tails that

die down as quickly (or more quickly) than f (x), the effective
range depends on f (x)g(x), be careful!

Of course as J increases the approximations become more
accurate. There are methods for bounding the apporimxation
error for numerical integration.

Note that the Riemann sum, trapazoidal rule, and Simpson’s
rule can all be written

∫ b
a f (x)dx ≈

∑J
j=1 wj f (xj).

Example: E (X 4) for X ∼ N(1, 22).
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Quadrature

Quadrature rules also approximate the integral with a sum∫ b

a
f (x)dx ≈

J∑
j=1

wj f (xj).

Any quadrature rule picks w1, . . . ,wJ and x1, . . . , xJ to provide an
exact result for polynomials of at most degree 2J − 1. See

https://en.wikipedia.org/wiki/Gaussian_quadrature.

The nodes xj are the roots of a polynomial from a class of
orthogonal polynomials; see 142–148 in G & H.

R has integrate built-in, which calls the QUADPACK routines
QAGS and QAGI for finite and infinite intervals. Mathematica has
Integrate and NIntegrate.
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Quadrature

Integrals of the form
∫ b
a f (x)dx for intervals (a, b) for finite

(a, b) are transformed to b−a
2

∫ 1
−1 f

(
b−a
2 x + a+b

2

)
dx and

typically evaluated using Gauss-Legendre quadrature.

Integrals of the form
∫ 1
−1

1√
1−x2 g(x)dx can be evaluated via

Chebyshev-Gauss,
∫∞
0 e−xg(x)dx via Gauss-Laguerre, and∫∞

−∞ e−x
2
g(x)dx via Gauss-Hermite.

If the g(x) is highly localized relative to the weight function,
the quadrature breaks down and essentially only uses one
point/weight. Adaptive quadrature can help.

Remember: quadrature is exact for polynomials g(x) up to
degree 2J − 1. Useful for obtaining moments! Also recall
smooth functions can be approximated by polynomials via
Taylor’s (differentiable) and Weierstrass (continuous)
theorems.
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Gauss-Hermite quadrature

The most common is integration with respect to a normal density∫ ∞
−∞

g(x)φ(x |µ, σ2)dx .

fastGHQuad (univariate) and MultiGHQuad (multivariate) perform
Gauss-Hermite quadrature and multivariate versions.

fastGHQuad computes∫ ∞
−∞

g(x)e−x
2
dx ≈

J∑
j=1

wjg(xj),

you pick the number of points/weights J. Note∫ ∞
−∞

g(y) 1√
2πσ

exp{− 1
2σ2 (y−µ)2} = 1√

π

∫ ∞
−∞

g(µ+
√

2σx)e−x
2
dx .

Example: E (X 4) for X ∼ N(1, 22). What the smallest J so this is
exact?
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Generalized linear mixed models

GLMMs are one place numerical integration is often employed.

Repeated measures Bernoulli data often takes the form {(yij , xij)}
where i = 1, . . . ,m clusters and j = 1, . . . , ni repeated
measurements within a cluster. Positive correlation is induced
across the yi = (yi1, . . . , yini )

′ via random effect ui

logitP(yij = 1|ui ) = x′iβ + ui , u1, . . . , um
iid∼ N(0, σ2).

The ith likelihood contribution is

Li = p(yi |β, σ) =
∫ ∞
−∞

 ni∏
j=1

exp{(x′ijβ+u)yij}
1+exp{x′ijβ+u}


︸ ︷︷ ︸

p(yi |β,u)

1√
2πσ

exp{− 1
2σ2 u

2}︸ ︷︷ ︸
p(u|σ)

du.
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Poisson data

Consider the Ache hunting data {(mi , ti , ai )}47i=1 with
hunter-specific random effects:

mi ∼ Pois{ti exp(β0 + β1ai + ui )}, i = 1, . . . , 47.

Hunter i ’s likelihood contribution is, where xi = (1, ai )
′,

Li = p(mi |β, σ) =

∫ ∞
−∞

exp{−ex′iβ+uti}emi (x
′
iβ+u) 1√

2πσ
exp{− 1

2σ2 u
2}du.

Note that tmi

mi !
is not needed.
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How to improve Gauss-Hermite quadrature?

Note that each likelihood contribution Li consists of two portions
as functions of u: one is N(0, σ2) and the other is approximately
normal when either ni or ti are large.

The product of two Gaussians is an unnormalized Gaussian. The
multivariate version is

φd(x|µ1,Σ1)φd(x|µ2,Σ2) ∝ φd(x|V[Σ−11 µ1 + Σ−12 µ2],V),

V = [Σ−11 + Σ−12 ]−1.

This implies that G-H quadrature around the origin may not be the
most efficient/accurate approximation.
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Laplace approximations

Want to approximate
∫
θ∈Rk f (θ)dθ.

Multivariate Taylor’s theorem 2nd-order approximation:

g(θ) ≈ g(θ̂) + (θ − θ̂)[∇g(θ̂)] + 1
2(θ − θ̂)′[∇2g(θ̂)](θ − θ̂).

Take g(θ) = log f (θ) and find θ̂ such that ∇g(θ̂) = 0. Then

log f (θ) ≈ log f (θ̂)− 1
2(θ − θ̂)′[−∇2 log f (θ̂)](θ − θ̂).

Exponentiating, recognizing a multivariate normal kernel, and
integrating gives∫

θ∈Rk

f (θ)dθ ≈ f (θ̂)(2π)k/2
∣∣∣−∇2 log f (θ̂)

∣∣∣1/2 .
The more “Gaussian shaped” f (·) is, the better this approximation
works.
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Adaptive quadrature

One can combine the Laplace approximation idea with quadrature
to provide highly accurate approximations. Essentially, this method
finds θ̂ s.t. ∇ log f (θ̂) = 0 and uses the approximation

f (θ) ∝ φk(θ|θ̂, [−∇2 log f (θ̂)]−1),

to help “guide” the quadrature points.

SAS proc glimmix documentation has an excellent overview of
how this works.
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fastGHQuad for univariate integrals

In one dimension, fastGHQuad provides a function to automate
adaptive quadrature. Say we want∫ ∞

−∞
g(x)dx ,

where g(·) is somewhat Gaussian shaped. Find the mode x̂ of
g(x), e.g. d

dx log g(x̂) = 0 (perhaps via Newton-Raphson) as well

as the scale
√

1/[− d2

dx2
log g(x̂)]. Then

aghQuad(g,mode,scale,rule) approximates the integral.

rule=gaussHermiteData(1) gives a Laplace approximation,
otherwise rule=gaussHermiteData(J) for J > 1 uses
Gauss-Hermite quadrature.
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Ache Poisson regression

We’ll show for

p(mi |β, σ) =

∫ ∞
−∞

exp{−ex′iβ+uti}emi (x
′
iβ+u) 1√

2πσ
exp{− 1

2σ2 u
2}︸ ︷︷ ︸

g(u)

du,

that
d
dx log g(u) = −tiex′iβ+u + mi −

u

σ2
,

and
d2

dx2
log g(u) = −tiex′iβ+u − 1

σ2
.

Thus, for a given β, we can perform Newton-Raphson as to find ûi
via

uj = uj−1 −
−tiex′iβ+uj−1 + mi −

uj−1

σ2

−tiex′iβ+uj−1 − 1
σ2

.

Example: Ache hunting data using adaptive G-H quadrature.
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Quadrature & Laplace approximations

Laplace approximation used in SAS proc glimmix with
method=laplace; also used in the glmer function in the
lme4 package as default.

proc glimmix also implements adaptive quadrature via
method=quad(qpoints=6) using the “guiding” idea on the
previous slide. If you omit the qpoints option glimmix also
adaptively chooses the number of points/weights. qpoints=1

is equivalent to laplace, but the latter allows fitting more
general models in SAS.

glmer also can perform adaptive quadrature via, e.g.
nAGQ=100.

Quadrature is also used in SAS proc nlmixed to fit general
models with random effects.
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Quadrature and/or Laplace approximations can be used in
lower-dimensional problems but break down in moderate to
high-dimensional problems, e.g. k ≥ 5.

MCMC works well in high-dimensional problems, especially for
multi-modal likelihoods/posteriors.

INLA is an R package to fit generalized linear mixed models
(including models with spatiotemporal information) using
integrated nested Laplace approximations...very powerful and
very fast. Uses Newton-Raphson to obtain posterior mode.

BayesX is another free package to fit generalized linear mixed
models, as well as semiparametric survival models, competing
risks, etc. Allows for additive predictors, varying coefficient
models and spatially-varying random effects. R2BayesX

package allows fitting in R. Both approximate (fast) inference
and more exact (MCMC, slower) inference is possible.

Next topic: Monte Carlo integration.
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