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LLN & CLT

Recall that the strong law of large numbers implies, under general
conditions, for

X1, . . . ,Xm
iid∼ f (·),

that

ḡm = 1
m

m∑
i=1

g(Xi )
a.s.→
∫ ∞
−∞

g(x)f (x)dx︸ ︷︷ ︸
Ef [g(X )]

.

Multivariate versions work the same.

The central limit theorem with a plug-in variance helps
estimate/bound error

ḡm
•∼ N(Ef [g(X )], vm),

where vm = 1
m2

∑m
i=1[g(xi )− ḡm]2.

Example: E (X 4) for X ∼ N(1, 22).
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Quantiles

Let X1, . . . ,Xm
iid∼ f (·) with cdf F (·).

The sample quantile from a Monte Carlo sample also estimates its
population counterpart. Let Fm(x) = 1

m

∑m
i=1 I{Xi ≤ x} be the

empirical cdf.

The pth sample quantile qm satisfies F−m [qm] = p, although R uses
a weighted version in the quantile function; see
https://en.wikipedia.org/wiki/Quantile for several
alternative different definitions. Simplest is qm = X[(mp)]. Can also
replace [·] with d·e or b·c.

Asymptotically,

qm
•∼ N

(
q,

p(1− p)

mf (q)2

)
, where F (q) = p.
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Sketch of proof

Since mFm(q) ∼ binom(m,F (q)), we have

Fm(q)
•∼ N(F (q), 1

mF (q)[1− F (q)]). Consider the transformation
g(p) = F−1(p) and use the delta method:

F−1{Fm(q)} •∼ N

(
q,

F (q)[1− F (q)]

mf {F−1[F (q)]}2

)
.

noting that F−1{F (q)} = q and d
dpF

−1(p) = 1/f {F−1[F (q)]}.
Now let qm solve p = Fm(qm) and note
|qm − F−1{Fm(qm)}| a.s.→ 0, giving

qm
•∼ N

(
q,

p(1− p)

mf (q)2

)
.
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Quantiles of g(X )

Take yi = g(xi ). The sample quantile from y1, . . . , ym estimates
the corresponding population quantile of the r.v. Y = g(X ).

The Monte Carlo solution is especially easy compared to an exact
solution, which requires change-of-variables and an integral
equation!

Example: 90th percentile of X 4 from X ∼ N(1, 22).
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Probability intervals

Often interested in (a, b) s.t. P(a ≤ X ≤ b) = p. An equal-tailed
interval uses the 2.5th and 97.5th percentiles of a Monte Carlo
sample.

A highest density interval finds the (a, b) such that
P(a ≤ X ≤ b) = p and the interval length b − a is the smallest.

Highest density regions R for multivariate x satisfy P(x ∈ R) = p
and f (x1) ≥ f (x2) for x1 ∈ R and x2 /∈ R. They usually are not
“nice” shaped.

Examples for X 4 from X ∼ N(1, 22).
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Comments

Monte Carlo is a very easy way to estimate means and
quantiles of complex functions.

Need to be able to sample f (·) to use it directly!

If cannot sample from f (·) can use Markov chain Monte Carlo
(coming up).

Monte Carlo is a terrible way to solve some problems, e.g.
estimating tail probabilities.

Another alternative is importance sampling and sampling
importance resampling; can be used when cannot sample f (·)
but can sample proposal g(·), and also useful in situations like
estimating tail probabilities.

Rao-Blackwellization can also improve the Monte Carlo
estimation of integrals (more later).
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Bayesian inference

Historically, Bayesian inference relied on normal approximations,
Laplace approximations, and importance sampling.

The MCMC era was ushered in by Gelfand and Smith (1990).
They realized that earlier Markov chain methods (Metropolis et al.,
1953; Hastings, 1970; Geman and Geman, 1984; Tanner and
Wong, 1987) had much broader applicability than previously
thought. Note: although Metropolis was given the honor of the
algorithm’s name, M. Rosenbluth actually invented it.

We will use MCMC to obtain inference for posterior densities
π(θ|x), both hand-coded in R, and also using JAGS.
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