
STAT 740, Fall 2017: Homework 3

1. (Calculus refresher): Let x ∼ N(µ, σ2). Use integration by parts and the following∫
xe−

1
2
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1
2
x2 ,

for some constant k to show

E(x2|x > c) = µ2 + σ2 + σ(c+ µ)
φ( c−µ

σ
)

1− Φ( c−µ
σ

)
.

2. Use the previous result along with the result for E(x|x > c) in Tim’s notes to derive the
E-M algorithm for right-censored normal data. Use your algorithm on the V.A. data
to find the MLE of µ and σ; take the log of the event times first. The following code
uses survreg to obtain the MLEs so you can verify you get the same thing. For E-M
starting values, simply use the censored data sample mean and standard deviation,
e.g. µ0 = mean(ltime) and σ0 = sd(ltime).

library(MASS) # has VA data

library(survival) # has survfit & survreg

# function to give "histogram" from right-censored data

chist=function(x,d,J){

a=min(x-(max(x)-min(x))/10000); b=max(x); J=10

delta=(b-a)/J

t=seq(a,b,length=(J+1))

f=summary(survfit(Surv(x,d)~1),times=t)

y=c(0,rep(f$surv[1:J]-f$surv[2:(J+1)],1,each=2),0)/delta

x=rep(t,1,each=2)

plot(x,y,type="l",col="blue",xlab="censored data",

ylab="density",ylim=c(0,max(y*1.1)))

}

VAs=subset(VA,prior==0)

attach(VAs)

ltime=log(stime)

f=survreg(Surv(ltime,status)~1,dist="gaussian") # the easy way!

chist(stime,status,10) # histogram

x=seq(0,600,length=1000)

lines(x,dlnorm(x,f$coef,f$scale),col="red") # plot of log-normal fit

summary(f) # MLEs of mu and sigma; compare to values you get via E-M

Extra credit: obtain the AIC treating the data as log-normal and compare to that
obtained from an exponential fit. Be careful; you need to obtained the maximized like-
lihood on the original untransformed data scale, e.g. L(µ̂, σ̂|x, δ), not L(µ̂, σ̂| log(x), δ)
to compare to exponential. Which is better? I don’t care how you get the AICs...
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3. Use either the bootstrap or direct numerical differentiation (e.g. numDeriv package)
to find the standard errors for µ̂ and σ̂ in Problem 2. Compare to those obtained from
survreg. If you use the bootstrap, a bootstrap sample is {(xi1 , δi1), . . . , (xin , δin)} for
(i1, . . . , in) ⊂ {1, . . . , n}n. That is, sample the pairs (xi, δi) randomly from all n pairs
with replacement.

4. In the notes on E-M for a finite mixture of normals, recall that by definition wi• =
wi1 + · · ·+wiJ = 1, thus w•• = n. Derive the E-M maximization step for πt+1 = wt•j/n.
First show that taking first partial derivative w.r.t. to πj gives

wt•j
πj
− wt•J

πJ
= 0,

where πJ = 1−
∑J−1

j=1 πj. Multiply both sides by πj then sum over j to show
wt

•J
πJ

= n.
Finally, solve for πj.

Hint for problem 2:

Augmented log-likelihood is

logL(µ, σ2|x, z) = −n
2

log σ2 − 1

2σ2

∑
i:δi=1

(yi − µ)2 − 1

2σ2

∑
i:δi=0

(ti − µ)2.

Taking expectation w.r.t. [{ti : δi = 0}|{yi : δi = 1}, µt, σt] gives

−n
2

log σ2 − 1

2σ2

∑
i:δi=1

(yi − µ)2 − 1

2σ2

∑
i:δi=0

Eµt,σt{(ti − µ)2}.

Note that

Eµt,σt{(ti − µ)2} = Eµt,σt{t2i − 2tiµ+ µ2} = Eµt,σt(t2i )− 2µEµt,σt(ti) + µ2.

Use the result for E(ti|ti > yi, µ
t, σt) and E(t2i |ti > yi, µ

t, σt) in the notes and in problem
1. I redid my E-M notes for censored exponential data to be more clear, just refresh your
browser.
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