
STAT 740, Fall 2017: Homework 4

1. Let x ∼ Nk(µ,Σ). Find a k × k matrix M such that the elements of y = Mx are
independent. Hint: S.V.D.

2. In the finite mixture of normals MCMC example, argue that

P (zi = j|else) =
πjφ(xi|µj, τ−1j )∑J
k=1 πkφ(xi|µk, τ−1k )

.

3. Read Prof. Charlie Geyer’s post on “one long run” linked from the course website.
Write a brief paragraph outlining Charlie’s main arguments on why one long run is
preferred over many short runs to obtain MCMC inference and diagnose “convergence.”

4. Beta regression with random effects. Beta regression is useful for responses that
live between zero and one yi ∈ (0, 1), e.g. proportions. In general,

yi ∼ beta(µiφ, (1− µi)φ), g(µi) = x′iβ.

betareg is an R package that performs beta regression for various links g(·). Briefly
read through

https://cran.r-project.org/web/packages/betareg/vignettes/betareg.pdf

(a) In the beta regression model above, what is the mean and variance of yi? Note:
φ is called the ‘precision.’ The variance changes naturally with the mean like in
binary and Poisson regression; variability decreases when µi is close to zero or
one.

(b) Install betareg and examine the dataset GasolineYield, e.g.

install.packages("betareg")

library(betareg)

data(GasolineYield)

attach(GasolineYield)

?GasolineYield

GasolineYield

f=betareg(yield~batch+temp)

summary(f)
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You can see a MLE fit of these data in Section 4.1 of the PDF file referenced

above. Let yi be the ith yield from batch bi at temp ti. Let xi = (1, ti)
′. Use

JAGS to fit the nonlinear mixed effects model

yi|β,u
ind.∼ beta

(
ex′iβ+ubiφ

1 + ex′iβ+ubi
,

φ

1 + ex′iβ+ubi

)
, i = 1, . . . , 32,

u1, . . . , u10|τ
iid∼ N(0, τ−1).

Assume β0, β1
iid∼ N(0, 105) (variance=105) independent of τ, φ

iid∼ Γ(10−5, 10−5).
Remember: JAGS uses the precision, not the variance in its normal parame-
terization. Here, g(µi) = x′iβ + ubi where g(µ) = log( µ

1−µ). Use something
like yield[i] dbeta(alpha[i],beta[i]) in your model specification. Also note
ilogit is the logistic function f(x) = ex

1+ex
.

(c) Plot estimates of µ(t) = ex
′
iβ

1+ex′β
over the range of temp values, the mean for a

typical batch with u = 0, i.e. the average yield for the median batch effect. There
are two ways to do this:

• (Quick and dirty) Use posterior mean β̂ as “plug-in” value

µ̂(t) =
ex

′
iβ̂

1 + ex′β̂
,

• (Preferred Bayes’ estimate w.r.t. squared-error loss) Find the posterior mean
of the density over a grid of temp values t

µ̃(t) = 1
M

M∑
m=1

ex
′
iβ

m

1 + ex′βm .

You can define this over a grid using a loop in JAGS and monitor them.
Then simply pull out posterior means after fitting. Obtain both estimates,
plot them, and compare them, e.g. in the JAGS model have

for(i in 1:100){

tg[i]<-200+(i-1)*250/99 # grid from 200 to 450

mu[i]<-ilogit(b[1]+b[2]*tg[i]) # mean for median batch

}
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Make sure you include "mu" in the parameters to save. If f is your fitted
JAGS object, then do f2=print(f) and then

plot(seq(200,450,length=100),f2$mean$mu,type="l")

EXTRA CREDIT: from the same fitted JAGS object, pull out the 2.5th and
97.5th percentiles of each mu and add pointwise 95% CI’s to the plot you just
made as dashed-lines.

(d) Generalize the model to regress the precision on temperature as well, i.e. φi =
eγ0+γ1ti . Which model has lower DIC? We will talk about DIC shortly, but it is
essentially a “Bayesian AIC.”

5. Recall Problem 2 in Homework 3. Run my code to fit a Bayesian version of this
model on the V.A. data in JAGS. We didn’t get to it in class yet, but it’s in my R
code examples under JAGS: censored normal data. Compare the posterior means
(or medians) to the MLEs µ̂ and σ̂. Also compare the posterior standard deviations to
the standard errors. Recall you can get both MLEs and standard errors from survreg

if weren’t able to finish Homework 3 Problems 2 & 3.
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