
STAT 740, Fall 2017: Homework 5

1. Consider the Challenger data fit via logistic regression.

(a) Fit the Bayesian model under Jeffreys’ prior (p. 9 in Tim’s bootstrap notes)
using adaptive Metropolis via the adaptMCMC package. You will need to write a
function that gives the log-posterior as the log-likelihood plus the log of Jeffreys’
prior. Use a target acceptance rate of 30% and the asymptotic covariance matrix
as a starting scale, e.g.

f=logistf(y~t,family="binomial")

vcov(f) # asymptotic posterior covariance under Jeffreys’ prior

(b) Compare the bootstrapped sampling distributions (the default histogram from
ploting a boot object is fine) of β̂0 and β̂1 (see my R code) under Firth’s method
to the marginal posteriors [β0|y] and [β1|y] from a Bayesian fit using Jeffreys’
prior. Are they skewed? Are the similar?

(c) Compare the bootstrapped CIs to the Bayesian CIs.

(d) Compare the Bayesian estimate (favor the posterior median) and CI to the pe-
nalized MLE and bootstrapped CI for the relative risk in Problem 2, Homework
1, e.g.

θ =
eβ0+β136

1+eβ0+β136

eβ0+β170

1+eβ0+β170

.

How do these compare to your large sample results in the unpenalized case from
Problem 2, Homework 1?

2. For the beta regression Problem 4 of Homework 4, compare four Bayesian models via
LPML and WAIC: (a) random u1, . . . , u10 and precision φ, (b) fixed u1, . . . , u10 and
precision φ (maybe each uj could have a N(0, 104) prior?), (c) random u1, . . . , u10 and
precision φi = eγ0+γ1ti , (d) fixed u1, . . . , u10 and precision φi = eγ0+γ1ti . Just use the
loo package. Which model is best? Rank the models from best to worst, giving a
pairwise pseudo Bayes factor for each adjacent pair (three pseudo Bayes factors total).

3. Look through the paper on LOO and WAIC I posted on the course webpage. Why
does the simple “trick” (8) for estimating the conditional predictive ordinate p(yi|y−i)
fail? How does PSIS-LOO over come this? Which do the authors recommend overall
between PSIS-LOO and WAIC? Why?

4. Look at the BMA slide, first formula. For J = 2 and P (M = 1) = P (M = 2) = 1
2
,

show that the odds of [M = 1|x] vs. [M = 2|x] is the Bayes factor BF12, i.e. the Bayes
factor is the posterior odds of the two models.
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5. For the Ache hunting data, fit several models via glmer in the lme4 package, obtaining
both the marginal AIC and the conditional AIC (cAIC4 package). Fit models with
both linear and quadratic terms, and with and without random effects. Which of the
four models is preferred via the usual marginal AIC? Which is preferred by conditional
AIC?

6. Compare bootstrapped CIs for the population 90th percentile to the large sample
estimate as in the notes for (a) exp(1) data, (b) N(0, 1) data, (c) U(0, 1) data, and
(d) χ2

1 data. For sample sizes of n = 100 and n = 500 replicate M = 500 data sets
and compute coverage probabilities of the two intervales and average interval length.
Construct a table summarizing your results. Which is better?

7. Consider gamma data,

x1, . . . , xn
iid∼ f(x|α, β) =

βα

Γ(α)
xα−1 exp(−βx).

Using Jeffreys’ prior

π(α, β) ∝
√
αψ′(α)− 1

β

where ψ′(·) is the trigamma function, obtain the full conditional distribution for β|α,x.
What is this distribution? Also find the full conditional distribution for α|β,x. Outline
a component-at-a-time MCMC scheme for updating α and β where β|α,x should be
closed-form and α|β,x updated with an adaptive M-H step (see Tim’s MCMC notes,
p. 25). Suggest starting values (α0, β0) obtained from method-of-moments estimators.

Simulate gamma data of size n = 200 for values α = 20 and β = 10 and implement
your MCMC scheme. Superimpose a density estimate over the range (0, 5) on top of a
histogram of the data and the true density.
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