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Chapter 13: Generalized Linear Mixed Models

Observations often occur in related clusters. Phrases like repeated
measures, longitudinal data, and panel data, get at the same thing:
there's correlation among observations in a cluster.

Chapter 12 dealt with an estimation procedure (GEE) that
accounted for correlation in estimating population-averaged
(marginal) effects.

This chapter models cluster correlation explicitly through random
effects, yielding a GLMM.

Let Y; = (Yi1,..., Yit;) be T; correlated responses in cluster i.
Associated with each repeated measure Yj; are fixed (population)
effects B and cluster-specific random effects u;. As usual,

i = E(Yy).
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13.1.1 Add random effects to linear predictor

In a GLMM the linear predictor is augmented to include random

effects:
g(uij) = x;B + Zju;.

for logistic regression, this is
logit P(Yj = 1) = x;;8 + Z;u;.

Note that conditional on u;,

/ /.
exijﬁJrziju,

E(Yilu) = "~
( ’J‘ i) 1_|_ex,-j,3+z,.jui
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| ask a random sample of the same n = 22 graduate students “do
you like statistics?” once a month for 4 months.

Yij=1if “yes” and Yj; = 0 if no. Here, i =1,...,30 and
j=1,...,4

Covariates might include mj;, the average mood of the student
over the previous month (mj;; = 0 is bad, m;; = 1 is good), the
degree being sought (d; = 0 doctoral, d; = 1 masters), the month
tj = j, and p; the number of homework problems assigned in STAT
770 in the previous month.

A GLMM might be

logit P(Yjj = 1) = Bo + Bimjj + Bad; + B3pj + Paj + ui.

This model assumes that log-odds of liking statistics changes
linearly in time, holding all else constant. Alternatively, we might
fit a quadratic instead or treat time as categorical. Here, u;

represents a student’s a priori disposition towards statistics.
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Interpretation

Let's compare month j 4+ 1 to month j for individual i, holding all
else (m, d, and p) constant. The difference in log odds is

(Bo + Bimjj + Bad; + B3p; + Ba(j + 1) + uj) — (Bo + Bimy + Bad; + B3p; + Baj + uj) = Ba.
Not holding everything constant we get
(Bo + Bimj jy1 + Badi + B3pjy1 + Bali + 1) + u;) — (Bo + Bimj; + Bad; + B3pj + Baj + u;)
= B1(mj jy1 — mi) + B3(pjt1 — pj) + Ba-

Either way, we are conditioning on individual 7, or the
subpopulation of all individuals with predisposition u;; i.e. everyone
“like" individual i in terms of liking statistics to begin with.

How are e, e, % and e interpreted here?
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Random effects uq,...,u,

The random effects are assumed to come from (in general) a
multivariate normal distribution

TN T Ng(0,X).

The covariance cov(u;) = X can have special structure, e.g.
exchangeability, AR(1), or be unstructured. The free elements of
Y are estimated along with 3.

@ The u; can account for heterogeneity caused by omitting
explanatory variables.

@ They can also explicitly model overdispersion, e.g.

Y; ~ Pois(\;), log Ai = X3 + ui, u; & N(0, 02).
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Logit model for binary matched pairs

Recall j = 1,2 denotes a binary covariate; for the PMA data it's

time.
logit P(Yjj =1) =a+u + pl{j =2}

Here, €P is a cluster-specific odds ratio. We further assume
i
u; ~ N(0,0?).

Example: PMA data. Although a closed form estimate of (3 exists
(see p. 494), we'll fit this in SAS using two different data
structures for illustrative purposes.

data Datal;

do ID=1 to 794; ap=1; time=0; output; ap=1; time=1; output; end;

do ID=795 to 944; ap=1; time=0; output; ap=0; time=1; output; end;
do ID=945 to 1030; ap=0; time=0; output; ap=1; time=1; output; end;
do ID=1031 to 1600; ap=0; time=0; output; ap=0; time=1; output; end;
proc logistic data=Datal; strata ID;

model ap(event=’1’)=time;
proc genmod data=Datal descending; class ID;

model ap=time / link=logit dist=bin;

repeated subject=ID / corr=exch corrw;
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Mixed model approach

On previous slide, first is conditional logistic approach from
Chapter 11, second is marginal GEE logistic approach from
Chapter 12.

Here is the GLMM approach of Chapter 13 with u; i N(0, o2):

proc nlmixed maxiter=100 gpoints=100;

parms beta0=1.0 betal=-0.556 sigma=5.2;

eta = betaO+betal*time+u; pi = exp(eta)/(1l+exp(eta));

model ap ~ binary(pi);

random u ~ normal(0,sigma*sigma) subject=ID;

estimate ’subject-specific odds at 6 months’ exp(betal);
data matched;

input case occasion response count Q@; datalines;

1 01 79 1 11 79 2 01 150 2 10 150
3 00 86 3 11 86 4 00 570 4 10 570

proc nlmixed maxiter=100 gqpoints=100;
eta = alpha + beta*occasion + u; p = exp(eta)/(1 + exp(eta));
model response ~ binary(p);
random u ~ normal(0, sigma*sigma) subject = case; replicate count;
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SAS output

Output from the first fit:

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > [t| Alpha Lower Upper Gradient
betad 1.2424 0.1857 1599 6.69 <.0001 0.05 0.8781 1.6067 -4.72E-7
betal -0.5563 0.1353 1599 -4.11 <.0001 0.05 -0.8216 -0.2910 -3.05E-7
sigma 5.1593 0.3527 1599 14.63 <.0001 0.05 4.4676 5.8510 8.779E-7
Additional Estimates
Standard
Label Estimate Error DF t Value Pr > |t| Alpha Lower
subject-specific odds at 6 months 0.5733  0.07755 1599 7.39 <.0001 0.05 0.4212

Additional Estimates
Label Upper
subject-specific odds at 6 months 0.7254

Read through 13.1.5: random effects versus conditional approach.
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13.2 Logistic normal model

A special, often-used case of the GLMM.

The logistic normal model is given by:

logit P(Yy = 1|u;) = xzB + uj, u; < N(0,02).

When ¢ = 0 we get the standard logistic regression model, when
o > 0 we account for extra heterogeneity in clustered responses
(each i is a cluster with it's own random ;).

GLMMs induce only positive correlation within observations Yj;
and Yj, within the same cluster.
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13.2.3 Connection between marginal and conditional

models

In the GEE approach, the marginal means are explicitly modeled:

i = E(Yy) = g 1 (x};8),

and correlation among (Yj1, ..., Yir,) is accounted for in the
estimation procedure.

The conditional approach models the means conditional on the
random effects:

E( Y,:,'|u,') = gil(xf-jﬁ + z;-ju,-).

The corresponding marginal mean is given by

E(Yj) = /]Rq g_l(xijﬁ + Zi'jlli)f(ui; Y)du;.
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Marginal interpretation of logistic normal

In general, this is a complicated function of 3, however for the
logistic-normal model when o is “small,” we obtain (not obvious)

E(Yj) ~ exp(cxj3)/[1 + exp(cxj3)],

where ¢ = 1/v/1+4 0.602. The marginal odds change by
approximately e’ when Xjjs is increased by unity.

Since ¢ < 1, the marginal effect is smaller than the conditional
effect, reflecting that we are averaging with respect to the
population. Note that the larger o is, the more subject-to-subject
variability there is, and the smaller the averaged effect &0s
becomes.
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Final look at PMA data

Here, ¢ = 1/+/1 + 0.6(5.16)2 = 0.24. Then e~0-5%6(024) — 0 g7.

Recall that the GEE approach yields e=%163 = 0.85: not a bad
approximation! Also recall that the conditional approach yielded

e~05%0  Severely annotated output:

The LOGISTIC Procedure, Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
time 1 -0.5563 0.1353 16.9152 <.0001

The GENMOD Procedure, Exchangeable Working Correlation
Correlation 0.7023650596
Analysis 0f GEE Parameter Estimates, Empirical Standard Error Estimates

Standard 957 Confidence

Parameter Estimate Error Limits Z Pr > |Z|
Intercept 0.3640 0.0508 0.2643 0.4636 7.16 <.0001
time -0.1633 0.0390 -0.2398 -0.0868 -4.18 <.0001

The NLMIXED Procedure, Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > [t] Alpha Lower Upper Gradient
betad 1.2424 0.1857 1599 6.69 <.0001 0.05 0.8781 1.6067 -4.72E-7
betal -0.5563 0.1353 1599 -4.11 <.0001 0.05 -0.8216 -0.2910 -3.05E-7
sigma 5.1593 0.3527 1599 14.63 <.0001 0.05 4.4676 5.8510 8.779E-7

13 /66



13.2.4 Comments

@ In epi studies, often want to compare disease prevalence
across groups. Then it's of interest to compute marginal odds
ratios and compare them.

@ Direction and significance of effects usually the same across
marginal /conditional models (e.g. PMA data).

@ The more variability that's accounted for in the conditional
model, the more we can “focus in" on the conditional effect
of covariates. This is true in any situation where we block.
This has the effect enlarging s estimates under a conditional
model.

@ When correlation is small, independence is approximately
achieved, and marginal and conditional modeling yield similar
results.

@ GLMMs are being increasingly used, in part due to the
availability of standard software to fit them!

@ Bayesian approach is also natural here.
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13.3 Binary mixed model examples

1. Opinion on legalized abortion (13.3.2)

Response sequence
Gender ~(LLI) (L,1,0) (0L1) (01,00 (L,01) (L00) (0,01) (0,00)
Male 342 26 6 21 11 32 9 356
Female 440 25 14 18 14 47 22 547

Let (Yi1, Yjz2, Yi3) be the response to three questions asked of the
same individual, “Do you support legalized abortion under three
scenarios: (1) if the family has very low income, (2) the woman is
unmarried & doesn't want to get married, (3) woman wants it for
any reason?” Yj; = 1 indicates “yes." A covariate of interest is
gender: x; = 0 for male x; = 1 for female. A logistic-normal model
Is

logit P(Yy = 1) = a+ B1l{j = 1} + Bol{j = 2} +vxi + ui, u; © N(0,0?).
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SAS data step

Within the same individual, e compares the odds of “yes”
comparing “poor” to “any reason.” e® compares odds of “yes”
comparing “single” to “any reason.” e”~"1 compares odds of
“yes" of “single" to “poor.” €7 compares odds of “yes" for
females to males. Agresti's SAS code:

data new;
input sex poor single any count;
datalines;

1

C NN NNNNN R R B R E e e

1

OCOCOCO0OORKHRLRKHOOOOHRKRK
OCORHOORHOOKRR OO
OrOrHrOHRORORORORO

1

1

342
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SAS code

data new; set new;
sex = sex-1; case
ql=1; q2=0; resp =
q1=0; q2=1; resp =
q1=0; q2=0; resp =

drop poor single any;

proc nlmixed qgpoints
parms alpha=0 bet
eta = alpha + beta
p = exp(eta)/(1 +
model resp ~ binar;
random u ~ normal(
replicate count;

added the fol

= n_;
poor; output;
single; output;
any; output;

= 50;

al=.8 beta2=.3 gamma=0 sigma=8.6;
1%ql + beta2*q2 + gammaksex + u;
exp(eta));
y(p);
0,sigma*sigma) subject = case;

lowing to get estimates of interest:

estimate ’odds: poor vs. any ’ exp(betal);
estimate ’odds: single vs. any ’ exp(beta2);
estimate ’odds: single vs. poor’ exp(beta2-betal);
estimate ’odds: female vs. male’ exp(gamma);
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Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t] Alpha Lower Upper Gradient
alpha -0.6222 0.3812 1849 -1.63 0.1028 0.05 -1.3698 0.1255 0.000588
betal 0.8358 0.1602 1849 5.22 <.0001 0.05 0.5217 1.1500  -0.0004
beta2 0.2929 0.1568 1849 1.87 0.0619 0.05 -0.01465 0.6004 0.000506
gamma 0.01272 0.4936 1849 0.03 0.9794 0.05 -0.9554 0.9809 0.000306
sigma 8.7878 0.5565 1849 15.79 <.0001 0.05 7.6964 9.8791 -0.00032
Additional Estimates
Standard

Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper
odds: poor vs. any 2.3068 0.3695 1849 6.24 <.0001 0.05 1.5821 3.0314
odds: single vs. any 1.3403 0.2102 1849 6.38 <.0001 0.05 0.9281 1.7525
odds: single vs. poor 0.5810 0.09137 1849 6.36 <.0001 0.05 0.4018 0.7602
odds: female vs. male 1.0128 0.5000 1849 2.03 0.0429 0.05 0.03226 1.9933

According to this (additive) model, there are significant differences
within individuals on how they feel about legalized abortion
depending on the circumstance. There is no significant difference
due to gender. Under which circumstance is one's position on
legalized abortion most favorable? Least?
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Interpretation of GLMM and fit of marginal model

The estimate of 6 = 8.8 is quite large relative to the magnitude of
the fixed effects (which are all less than unity). This reflects
extreme heterogeneity in subject-to-subject response clusters

(Yi1, Yi2, Yiz). 1595 of 1850 subjects answered either (0,0, 0) or
(1,1,1). Does this also jibe with what we know about abortion as
a “polarizing issue?”

Code to fit the marginal exchangeable model via GEE looks like:

data new; input sex poor single any count @Q;

datalines;

11113421110 261101 111100 32
011 61010 2101001 19100 0 356
1114402110 22101 142100 47
011 142010 182001 22200 0 457

1
2
2
H
data new; set new;

case=0; seq=_n_; * nesting case within sequence type (Y1,y2,y3);
do i=1 to count;

case=case+1;

ql=1; q2=0; resp = poor; output;

q1=0; q2=1; resp = single; output;

q1=0; q2=0; resp = any; output;

end;

drop poor single any i count;
proc genmod; class case sex seq;

model resp=ql q2 sex / dist=bin link=logit;

repeated subject=case(seq) / type=exch;
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This code makes use of nesting. Instead of having one case index
i=1,...,1850 for each individual, | have case nested within the
type of sequence (Y1, Y2, Y3), i =1,..., /(i) where j(1) = 342,
J(2) = 26, etc., j(16) = 457. This allows me to quickly get the
data into a form SAS can use in PROC GENMOD. Output:

GEE Model Information

Correlation Structure Exchangeable
Subject Effect case(seq) (1850 levels)
Number of Clusters 1850
Correlation Matrix Dimension 3
Maximum Cluster Size 3
Minimum Cluster Size 3

Exchangeable Working
Correlation

Correlation 0.8173308153
Empirical Standard Error Estimates

Standard 95, Confidence

Parameter Estimate Error Limits Z Pr > |ZI|
Intercept -0.1219 0.0607 -0.2408 -0.0030 -2.01 0.0446
ql 0.1493  0.0297 0.0911  0.2076 5.02 <.0001
q2 0.0520 0.0270 -0.0010 0.1050 1.92 0.0544
sex 1 -0.0034 0.0878 -0.1756 0.1687 -0.04 0.9688
sex 2 0.0000 0.0000 0.0000 0.0000 . .

N
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Interpretation

As before, we see attenuation of the effects towards zero in the
marginal model. From the conditional model we compute

¢=1/4/1+0.6(8.79)2 = 0.145. Note that 0.15 is not too
different from 0.12 = 0.145(0.836).

We can estimate the population ratio of odds for “poor” versus
“single” by adding the command estimate "odds poor vs.
single" q1 1 g2 -1 / exp; to the PROC GENMOD statement

yielding:
Contrast Estimate Results
Standard Chi-
Label Estimate Error Alpha Confidence Limits Square Pr > ChiSq
odds poor vs. single 0.0973 0.0275 0.05 0.0434 0.1513  12.50 0.0004

Exp(odds poor vs. single) 1.1022 0.0303 0.05 1.0443 1.1633
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2. Longitudinal study of mental health (13.3.3)

Table 12.1 (p. 456) houses data from a longitudinal study
comparing a new drug with a standard drug for treatment of
subjects suffering mental depression. n = 340 Patients were either
mildly or severely depressed upon admission into the study. At
weeks 1, 2, and 4, corresponding to j = 1,2, 3, patient i's suffering
Y;; was classified as normal Yj; = 1 or abnormal Yj; = 0. Let

si = 0,1 be the severity of the diagnosis (mild, severe) and

d; = 0,1 denote the drug (standard, new).

We treat time as a categorical predictor and fit a marginal logit
model with an exchangeable correlation structure:

data depress;

infile "c:/tim/cat/depress.txt";

input case diagnose treat time outcome; time=time+1;

proc genmod descending; class case time;
model outcome = diagnose treat time treat*time / dist=bin link=logit type3;
repeated subject=case / type=exch corrw;
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Output from marginal model

GEE Model Information

Correlation Structure

Subject Effect

Number of Clusters
Correlation Matrix Dimension

Parameter
Intercept
diagnose
treat

time

time

time
treat*time
treat*time
treat*time

Rowl
Row2
Row3

WN RN

Exchangeable
case (340 levels)
340

Working Correlation Matrix

C
1.0

011
000

-0.0034
-0.0034

Col2
-0.0034
1.0000
-0.0034

Col3
0.0034
0.0034
1.0000

Empirical Standard Error Estimates

Estimate

0.
-1.
2.
-0.
-0.
0.
-2.
-1.
0.

9812
3117
0427
9601
6207
0000

Sta

OO0 0000000

ndard
Error
1841
1453
3061
2379
2372
0000

957 Confidence

=

-1.

-

-1.
-1.

o

-2

-1.

Limi
.6203
5964
.4428
4265
0855
.0000
.8663
8602
.0000

ts
1
-1
2

-1

o

L3421
.0269
.6426
.4938
.1559
.0000
.3287
.3314
.0000

-5.
-2.

Z Pr >
.33
.03
.67
.04
.62

o A

O AAAA

1Z1

.0001
.0001
.0001

0001

.0089

.0001
.0050
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Score Statistics For Type 3 GEE Analysis

Chi-

Source DF Square Pr > ChiSq
diagnose 1 70.83 <.0001
treat 1 40.38 <.0001
time 2 15.73 0.0004
treat*time 2 29.52 <.0001

New is better than old

We see a severe diagnosis (s = 1) significantly decreases the odds
of a normal classification by a factor of 131 = 0.27.

The odds (or normal classification) ratio comparing the new drug
to the standard drug changes with time because of the interaction.
At 1 week it's €2947209 — 0,05, and week 2 it's e2:04-1.10 — 2 6,
and at 4 weeks it's 29470 = 7.7. The new drug is better, but
takes time to work.

N
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Next, a conditional, random effects model

Here, the focus is on whole populations of patients at 1, 2, and 4
weeks, and on the new drug versus the standard drug. These
interpretations are not within the individual.

We now consider a conditional analysis

logit P(Yjj=1) = a+ fisi+ fodi+ B31{j =1} + Bal{j =2}
+051{j = 1}d; + Bel{j = 2}d; + u;

where u; ~ N(0,0).

| round parameter estimates from the GEE approach to use as
starting values and fix gpoints=200 (more on this later):

proc nlmixed gpoints=200;
parms a=1 bl=-1 b2=2 b3=-1 b4=-0.5 b5=-2 b6=-1 sig=.1;
eta = atbl*diag+b2*treat+b3*ql+bd*q2+bbxql*treat+b6*q2*treat+u;
p = exp(eta)/(1+exp(eta));
model outcome ~ binary(p);
random u ~ normal(0, sig*sig) subject=case;
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NLMIXED output

The NLMIXED Procedure

AIC (smaller is better) 1176.8
Standard
Parameter Estimate Error DF t Value Pr > |t] Alpha Lower Upper Gradient
a 0.9822 0.1844 339 5.33 <.0001 0.05 0.6194 1.3450 0.000363
bl -1.3131 0.1543 339 -8.51 <.0001 0.05 -1.6165 -1.0097 0.000909
b2 2.0450 0.3129 339 6.54 <.0001 0.05 1.4296 2.6605 0.000101
b3 -0.9610 0.2313 339 -4.15 <.0001 0.05 -1.4160 -0.5060 -0.00049
b4 -0.6213 0.2256 339 -2.75 0.0062 0.05 -1.0650 -0.1775 0.000303
b5 -2.1002 0.3958 339 -5.31 <.0001 0.05 -2.8788 -1.3217  0.00004
b6 -1.0971 0.3852 339 -2.85 0.0047 0.05 -1.8548 -0.3394 -0.00046
sig 0.07027 1.1428 339 0.06 0.9510 0.05  -2.1777 2.3182 0.002123

The estimate & = 0.07 is small relative to the magnitude of the
fixed effects. Let's refit the model without the random effects part:

proc nlmixed;
parms a=1 bl=-1 b2=1 b3=-1.5 b4=-1 b5=-0.5 b6=-0.5;
eta = atbl*diag+b2*treat+b3*ql+b4d*q2+b5*ql*diag+b6*q2*diag;
p = exp(eta)/(1+exp(eta));
model outcome ~ binary(p);

giving AIC

AIC (smaller is better) 1174.8
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Independence model actually fits better

Standard
Parameter Estimate Error DF t Value Pr > [t| Alpha Lower Upper Gradient
a 0.9812 0.1809 1020 5.43 <.0001 0.05 0.6263 1.3360 0.000029
bl -1.3116 0.1462 1020 -8.97 <.0001 0.05 -1.5985 -1.0247 0.000048
b2 2.0430 0.3056 1020 6.68 <.0001 0.05 1.4432 2.6427 6.903E-6
b3 -0.9600 0.2290 1020 -4.19 <.0001 0.05 -1.4093 -0.5107 6.676E-6
b4 -0.6206 0.2245 1020 -2.76 0.0058 0.05 -1.0612 -0.1800 0.000017
b5 -2.0980 0.3893 1020 -5.39 <.0001 0.05 -2.8619 -1.3342 -4.79E-6
b6 -1.0961 0.3838 1020 -2.86 0.0044 0.05 -1.8491 -0.3431 0.000018

The AIC drops without the random effects! We have rather strong
evidence that observations within a cluster (an individual here,
taken at 1, 2, and 4 weeks) are essentially independent when
adjusted for baseline covariates.

Note that the regression coefficients are essentially the same as
those obtained from PROC GENMOD using the GEE approach.
The absence of subject-to-subject heterogeneity implies that the
marginal and conditional models are essentially the same.
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13.6 Fitting binary GLMMs in PROC NLMIXED

The general model is hierarchical:

/ /.
ind. exijﬁ—f—ziju,
Y,~j|u,~ ~ Bern | ————-+— |,
1 exijﬁ—f—ziju;

ui,...,up N Ng(0,X).

Conditional on the random effect u;, the elements in
Y; = (Yi1,..., Yir,) are independent. So the PDF of Y;|u; is

Ti x,3+zu, Yij 1 1-y;

However, the uy,...,u, are not model parameters. The model
parameters are (3, X). We need the to maximize the likelihood

(B) ) (Y1,---7Yn|5az)-
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Integrate to get likelihood

The unconditional PDF of Y; is

T; {.B-}-z’..u- ”
(exu ij ’)yu
i) = 7 7 uj )X duia
o = [ T g | i)

where p(uj|X) is a Ng(0, X) PDF. The u; is integrated out and this
is a function of (3, X) only. The likelihood is the product of these

eXiPHzi Vi

n T,'
L(B,x)= Hl/Rq H(XWZZ“ p(u;|Z)du;.

j:11+e’f

This involves n g-dimensional integrals that do not have
closed-form.
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Gauss-Hermite quadrature

PROC NLMIXED estimates the integrals (for a “current”
quasi-Newton value of (3, X)) using adaptive Gauss-Hermite
quadrature. This approach approximates the integrals above by

sums
Q

/ h(u;)p(u;|X)du; ~ Z ckh(sk),

R k=1

for arbitrary h(-) where Q is the number of quadrature points
$1,...,8¢Q and c1, ..., cq are weights. The (adaptive) quadrature
points and weights are chosen from a theory on integral
approximations; we don't need to worry about that here.
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Quasi-Newton maximization

Once the likelihood is approximated using quadrature, it is
maximized via a quasi-Newton approach. The quasi-Newton
approach does not require computing the matrix of second partial
derivatives of the log-likelihood (the Hessian); rather this is
approximated. Each iteration of the algorithm requires n integrals
to be approximated! Suffice it to say, PROC NLMIXED can take
awhile to run on large or complex data sets.

Note: there are other integral approximations SAS can use as well
as other maximization procedures. | suggest reading the SAS
documentation if you have trouble getting convergence of the
algorithm for a particular model/data.
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Tinkering with NLMIXED settings

There are two parameters to fool with when using “default”
integral-approximation and maximization, gqpoints=, the number
of quadrature points, and maxiter=, the maximum number of
quasi-Newton iterations to reach convergence criteria before you
call the proceedings off.

Good starting values for 3 and X can make or break the program,
especially for large/complex data sets. You can try to guess
starting values, or fit the model without random effects to get
starting values for 3. | will often fit the Bayesian analogue to get
starting values. Without a parms= statement in PROC NLMIXED,
SAS gives all parameters ridiculous starting values of 1.

32 /66



PMA data with default inputs

Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian
Quadrature
Quadrature Points 21

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope
1 2 1991.81355 413.0301 198.8578 -6394.57
2 3 1855.73022 136.0833 101.5574 -203.759
3 5 1789.03422 66.696 28.79417 -68.5942
4 7 1782.45627 6.577942 7.531259 -4.88277
5 9 1781.67159 0.784685 1.447956 -0.68174
6 11 1781.59067 0.080917 0.640401 -0.08338
7 13 1781.568537 0.005299 0.204654 -0.00742
8 15 1781.58502 0.000357 0.005534 -0.00061
9 17 1781.58502 5.954E-7 0.00003 -1.18E-6

NOTE: GCONV convergence criterion satisfied.

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > [t] Alpha Lower Upper Gradient
betal 1.0173 0.1473 1599 6.91 <.0001 0.05 0.7284 1.3062 0.00003
betal -0.5038 0.1281 1599 -3.93 <.0001 0.05 -0.7551 -0.2524 0.000016
sigma 4.0151 0.2289 1599 17.54 <.0001 0.05 3.5662 4.4641 0.000012
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Do defaults give good results?

Hmmm... “convergence criterion satisfied” seems to indicate
everything's okay...or is it? Let's change the default code

proc nlmixed;

eta = betaO+betal*time+u; pi = exp(eta)/(1+exp(eta));
model ap ~ binary(pi);

random u ~ normal(0,sigma*sigma) subject=ID;

by inserting starting values based on the above estimates, i.e.
adding:
parms beta0=1.0 betal=-0.5 sigma=4.0;
we obtain:
Iteration History
Iter Calls NegLogLike Diff MaxGrad Slope
1 2 1753.63996 4.813275 8.496761 -78.1419
2 4 1762.03794 1.602023 6.378326 -66.1335
3 6 1751.66363 0.374302 6.784639 -7.27555
4 7 1751.03131 0.632326 1.980297 -1.24915
5 8 1750.91441 0.116899 0.190751 -0.21179
6 10 1750.91181 0.002596 0.044956 -0.00467
7 12 1750.91179 0.000021 0.002055 -0.00004
8 14 1750.91179 8.81E-8 0.000071 -1.65E-7
Standard
Parameter Estimate Error DF t Value Pr > |t] Alpha Lower Upper Gradient
betal 1.2540 0.1890 1599 6.63 <.0001 0.05 0.8832 1.6247 0.000071
betal -0.5576 0.1355 1599 -4.12 <.0001 0.05 -0.8233 -0.2919 4.6E-6
sigma 5.2073 0.3689 1599 14.12 <.0001 0.05 4.4837 5.9309 -0.00001
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This is a bit different!

Both times we get the message “convergence criterion satisfied.”
What is happening? Answer: the likelihood is relatively flat around
the MLE! So when we try PROC NLMIXED again with

parms beta0=1.25 betal=-0.56 sigma=5.21;

the program crashes and in the log file we get:

ERROR: Quadrature accuracy of 0.000100 could not be achieved with 31 points. The achieved
accuracy was 0.000150.

We up the ante to gpoints=100 and obtain:

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope
1 4 1751.13016 0.004551 0.313641 -1.66969
2 7 1751.12844 0.001721 0.104651 -2.58751
3 10 1751.1281 0.000341 0.005987 -0.32286
4 11 1751.1281 5.023E-7 0.000027 -1.01E-6

NOTE: GCONV convergence criterion satisfied.

Standard
Parameter Estimate Error DF t Value Pr > [t| Alpha Lower Upper Gradient
betad 1.2424 0.1857 1599 6.69 <.0001 0.05 0.8781 1.6067 -0.00002
betal -0.5563 0.1353 1599 -4.11 <.0001 0.05 -0.8216 -0.2910 -0.00003
sigma 5.1593 0.3527 1599 14.63 <.0001 0.05 4.4676 5.8510 -0.00001
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An approach that usually works

Now, if we had initially fit the model using the default gpoints,
then put the resulting parameter estimates in as starting values but
increase qpoints=100, we get the MLE immediately.

Parameters
betal betal sigma NegLogLike
1 -0.5 4 1758.4624

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope
1 2 1753.6971 4.765302 8.557791 -77.9394
2 4 1752.13848 1.558616 6.244724 -64.8866
3 6 1751.78562 0.352858 6.506276 -6.96529
4 7 1751.20889 0.576736 1.629794 -1.12045
5 8 1751.12946 0.079423 0.144148 -0.14538
6 10 1751.12811 0.001356 0.030861 -0.00248
7 12 1751.1281 8.376E-6 0.000783 -0.00002

NOTE: GCONV convergence criterion satisfied.

Standard
Parameter Estimate Error DF t Value Pr > [t] Alpha Lower Upper Gradient
betal 1.2424 0.1857 1599 6.69 <.0001 0.05 0.8781 1.6067 0.000461
betal -0.5563 0.1363 1599 -4.11 <.0001 0.05 -0.8216 -0.2910 0.000783
sigma 5.1593 0.3527 1599 14.63 <.0001 0.05 4.4675 5.8510 -0.00055
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3. Clinical trial example (13.3.5)

Clinical trial with 8 centers; two creams compared to cure infection.

Response Y
Center Z = k Treatment X Success Failure Oxy (k)

1 Drug 11 25 1.2
Control 10 27

2 Drug 16 4 1.8
Control 22 10

3 Drug 14 5 4.8
Control 7 12

4 Drug 2 14 23
Control 1 16

5 Drug 6 11 oo
Control 0 12

6 Drug 1 10 0o
Control 0 10

7 Drug 1 4 2.0
Control 1 8

8 Drug 4 2 0.3
Control 6 1
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Random effect u; for each clinic

Center-to-center variability in how people respond to treatment
can be incorporated in the conditional model

logit P(Yjj =1) = o+ Bx;j + uj, ui,...,us iid N(O,az),

where xj; = 0 for drug and x;j; = 1 for control. SAS code:

data ctril;
input center$ treat s n QQ; f=n-s; treat=treat-1;
datalines;
a11136a21037 b116 20 b 222 32
c11419c¢c27 19 d12 16d21 17
el16 17e20 12 f11 11 f20 10

g21 9 hi14 6h26 7

g1l 5

data ctr2; set ctri;

do i=1 to n; if i<=s then y=1; else y=0; output; end;
proc nlmixed data=ctr2 gpoints=100;
eta=alphat+beta*treat+u;

p=exp(eta)/(1+exp(eta));

model y ~ binary(p);

random u ~ normal(0,sig*sig) subject=center;
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SAS output & interpretation

Standard
Parameter Estimate Error DF t Value Pr > |t] Alpha Lower Upper Gradient
alpha -0.4591 0.5508 7 -0.83 0.4320 0.05 -1.7616 0.8433 0.000013
beta -0.7385 0.3004 7 -2.46 0.0436 0.05 -1.4489 -0.02808 2.115E-6
sig 1.4008 0.4261 7 3.29 0.0133 0.05 0.3934 2.4083 0.000033

Within a given clinic, the odds of curing the infection is estimated
to be (significantly) 1/e70739 = 2.1 times greater on the drug
versus the control. SAS will output empirical Bayes estimates of
u1,...,us by adding out=re (or whatever you want to call the
new data set) to the random statement. Here they are:

StdErr
Obs center Effect Estimate Pred DF tValue Probt  Alpha Lower Upper
1 a u -0.09886 0.57554 7 -0.17177 0.86848 0.05 -1.45980 1.26208
2 b u 1.85011 0.60147 7 3.07598 0.01792 0.05 0.42786 3.27235
3 c u 0.99147 0.60198 7  1.64702 0.143556 0.05 -0.43199 2.41493
4 d u -1.29471 0.69606 7 -1.86006 0.10520 0.05 -2.94062 0.35121
5 e u -0.55775 0.64815 7 -0.86052 0.41800 0.05 -2.09038 0.97488
6 f u -1.60169 0.81836 7 -1.95719 0.09120 0.05 -3.53681 0.33343
7 g u -0.70444 0.76815 7 -0.91706 0.38961 0.05 -2.52081 1.11194
8 h u 1.73721 0.74864 7 2.32047 0.05336 0.05 -0.03306 3.50747

Which clinic has the best overall success? Is it signficant?
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13.4: Clustered multinomial responses

4. Insomnia study (13.4.2)

Randomized, double-blind clinical trial comparing active hypnotic
drug with placebo in insomnia patients. Response is time in
minutes to fall asleep before going to bed. Each person has

(Yi1, Yiz, xi) where Yj; = 1,2,3,4 denotes time to fall asleep at
baseline and Yj, = 1,2, 3,4 is time to fall asleep after two weeks of
treatment on one of x; = 0 placebo or x; = 1 hypnotic.

Time to falling asleep

Follow-up
Treatment Initial < 20 20 — 30 30 — 60 > 60
Active < 20 7 4 1 0
20 — 30 11 5 2 2
30 — 60 13 23 3 1
> 60 9 17 13 8
Placebo <20 7 4 2 1
20 — 30 14 5 1 0
30 — 60 6 9 18 2
> 60 4 11 14 22
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Proportional odds model random effects

This is repeated measures data on an individual with ordinal
outcomes. A natural model to consider is an extension of the
proportional odds model with a random effect that accounts for an
individual's predisposition toward insomnia:

logit P(Yjj < kluj) = ak + Bixi + Bol{j = 2} + Baxil{j = 2} + u;.

We are primarily interested in how the odds of taking less time to
get to sleep changes from drug to placebo after being treated for
two weeks (so j = 2). For x; =1,

logit P(Yi2 < k|uj) = ax + B1 + B2 + B3 + uij,
for x; = 0 we have

logit P(Y,2 < k|u,-) = ak + 2 + u;.
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Building likelihood by hand

The difference of these is

lo P(Y,‘2§k|X,':1)/P(Y,'2>k|X,':1)
P(Y,2 < k|X,' = 0)/P(Y,2 > k|X,' = 0)

}Zﬁl+ﬁ3-

The likelihood, conditional on the u;, is built from multinomial

probabilities:

where

-
~

P(Y; <1)

P(Y; <2)—P(Y; <1)
P(Y; <3)—P(Y; <2
1—P(Y; <3)

ek tB1xi+ B2 {j=2}+B3x 1{j=2}+u;

- 1+ ek +B1xi+B21{j=2}+Baxi 1 {j=2}+u; °
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Code for fitting this model, adapted from Agresti's website

data insomnia;
input case treat time outcome;
y1=0; y2=0; y3=0; y4=0;
if outcome=1 then yi=1;
if outcome=2 then H
if outcome=3 then
if outcome=4 then

datalines;
1 1 0 1
1 1 1 1
2 1 0 1
2 1 1 1
etc...
238 0 0 4
238 [ 1 4
239 0 0 4
239 0 1 4

proc nlmixed gpoints=40;
bounds i2 > 0; bounds i3 > 0;
etal = il + treat*betal + timexbeta2 + treat*timexbeta3 + u;
eta2 = il + i2 + treat*betal + timex*beta2 + treat*timexbeta3d + u;
etad = il + i2 + i3 + treatxbetal + timexbeta2 + treat*time*beta3d + u;
pl = exp(etal)/(1 + exp(etal));
p2 = exp(eta2)/(1 + exp(eta2)) - exp(etal)/(1 + exp(etal));
p3 = exp(eta3)/(1 + exp(etad)) - exp(eta2)/(1 + exp(eta2));
p4 = 1 - exp(eta3)/(1 + exp(etad));
11 = y1xlog(pl) + y2*xlog(p2) + y3*log(p3) + y4xlog(p4);
model yl1 ~ general(ll);
estimate ’interc2’ il+i2; * this is alpha_2 in model, and il is alpha_1;
estimate ’interc3’ i1+i2+i3; * this is alpha_3 in model;
estimate ’d vs p at 2 weeks ’ exp(betal+beta3);
estimate ’d vs p at baseline’ exp(betal);
random u ~ normal(0, sigmaxsigma) subject=case; 43 /66



Output

Standard
Parameter Estimate Error DF t Value Pr > [t| Alpha Lower Upper Gradient
i2 2.0050 0.1948 238 10.29 <.0001 0.05 1.6213 2.3886 0.000013
i3 2.0459 0.1942 238 10.54 <.0001 0.05 1.6634 2.4284 0.000012
i1 -3.4896 0.3588 238 -9.73 <.0001 0.05 -4.1964 -2.7828 0.000018
betal 0.05786 0.3663 238 0.16 0.8746 0.05 -0.6637 0.7795 0.000022
beta2 1.6016 0.2834 238 5.65 <.0001 0.05 1.0434 2.1598 7.11BE-7
beta3 1.0813 0.3805 238 2.84 0.0049 0.05 0.3318 1.8308 3.89E-6
sigma 1.9047 0.2314 238 8.23 <.0001 0.05 1.4489 2.3606 -7.43E-6
Additional Estimates
Standard
Label Estimate Error DF t Value Pr > [t] Alpha Lower Upper
interc2 -1.4846 0.2903 238 -5.11 <.0001 0.05 -2.0566 -0.9127
interc3 0.5613 0.2702 238 2.08 0.0388 0.05  0.02909 1.0935
d vs p at 2 weeks 3.1241 1.1456 238 2.73 0.0069 0.05 0.8674 5.3808
d vs p at baseline 1.0596 0.3881 238 2.73 0.0068 0.05 0.2950 1.8241
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Interpretation

The CI for 5175 is (0.9,5.4). We estimate the odds of falling
asleep more quickly after two weeks is 3.1 times greater under the
hypnotic for a randomly selected individual, but this is not
statistically significant. At baseline the odds ratio e’ is 1.1.

We can also look at how the odds of falling to sleep ‘earlier’
changes from baseline to two weeks later by estimating e for
placebo and €15 for treatment:

Standard

Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper
2w vs base: placebo 4.9609 1.4057 238 3.53 0.0005 0.05 2.1916 7.7301
2w vs base: drug 14.6271 4.6261 238 3.16 0.0018 0.05 5.5137 23.7404

What is happening here? Do you believe in the ‘placebo effect?’

This approach explicitly models an individual's predisposition
toward falling asleep quickly through u;.
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Another approach

Another approach simply includes Y;; as a baseline covariate and
models Yj, using the standard proportional odds model. This
would give what one could expect under the treatment given an
initial value Yj1. The SAS code

data insomnia;
input treat initial outcome count @Q;

datalines;

111 7112 4113 1114 0
12111122 5123 2124 2
1311313223133 3134 1
141 91421714313144 8
011 7012 4013 2014 1
02114022 5023 1024 0
031 6032 903318034 2
041 4042110431404 4 22
run;

proc logistic; class initial outcome / param=ref;
model outcome = initial treat initialxtreat;
freq count;

contrast ’sleep=1’ treat 1 initial*treat 1 0 O / estimate=exp;
contrast ’sleep=2’ treat 1 initial*treat 0 1 0 / estimate=exp;
contrast ’sleep=3’ treat 1 initial*treat 0 0 1 / estimate=exp;
contrast ’sleep=4’ treat 1 initial*treat 0 O O / estimate=exp;
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SAS output

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq
initial 3 49.9192 <.0001
treat 1 11.8416 0.0006
treat*initial 3 9.4082 0.0243

The odds of getting to sleep more quickly P(Yi» < k)/P(Yi2 > k)
changes with both the treatment and the initial level of
sleeplessness Yj;. Let's compare the hypnotic to the placebo across

the four levels of sleeplessness using the output from the four
contrast statements:

Contrast Rows Estimation and Testing Results

Standard Wald
Contrast Type Row Estimate Error Alpha Confidence Limits Chi-Square Pr > ChiSq
sleep=1 EXP 1 1.6963 1.2939 0.05 0.3804 7.5644 0.4800 0.4884
sleep=2 EXP 1 0.4295 0.2778 0.05 0.1209 1.5257 1.7076 0.1913
sleep=3  EXP 1 3.6747 1.5926 0.05 1.5716 8.5925 9.0185 0.0027
sleep=4  EXP 1 3.6910 1.4007 0.05 1.7544 7.7654 11.8416 0.0006

The odds of getting to sleep more quickly is significantly greater
under the treatment for initial sleeplessness categories 3 and 4

(30-60 minutes and over 60 minutes).
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GLMM example with bivariate random effects vectors

5. Poisson regression with multivariate random effects
Thall and Vail (1990) presented data from a clinical trial of n = 59
epileptic patients who were randomized to take either a new drug
d;i =1 or a placebo (d; = 0) in addition to standard chemotherapy.
Other baseline data included a; = log(age;) where age; is age in
years and b; = log(base;/4), where base; is number of seizures in
preceding 8-week period. The outcome is Yj; the number of
seizures within the following 4 2-week periods, up to 8 weeks. So
Jj=1,2,3,4. The time variable used is actually t; = 0.2(j — 2.5).
The model fit is

Yjj ~ Poisson(\j;),

where
logAjj = Bo+ Bpbi + Badi + Bpabidi + Baaj + Bvt; + ujt + upnt;
1 77 Bo
bj B ,
_ dj Ba | 4 { 1 ] { uj ]
bid; Bbd t ujp
aj Ba
tj Bv
= X,’-jﬁ + z,/-ju,-
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Model building, continued...

We further assume

u1,...,u59’;’3/v2(0’z):/\/2<[ 8 } ’ [ 011 012 ])

012 022

This assumes a log linear trend individual i's seizure rate over the
8 weeks. Specifically,

log >‘ij = fo; + (91,'Weeij7

where cov(fo;, 61;) = o12. This follows from properties of
multivariate normal distributions.
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SAS code

data seizl;

input id$ seiz visit treat age base;
age=log(age);

base=log(base/4) ;

if visit=1 then visit=-3;

if visit=2 then visit=-1;
if visit=3 then visi ;
if visit=4 then visit=3;
visit=visit/10;

datalines;
101 11 1 1 18 76
101 14 2 1 18 76
101 9 3 1 18 76
101 8 4 1 18 76
102 8 1 1 32 38
102 7 2 1 32 38
102 9 3 1 32 38
102 4 4 1 32 38
...et cetera...

238 13 1 0 22 47
238 15 2 0 22 47
238 13 3 0 22 47

4 0 22 47

238 12

;

proc nlmixed qpoints=50;

parms b_const=-1.3 b_base=0.9 b_trt=-0.9 b_basetrt=0.3 b_age=0.2

b_visit=-0.3 s11=0.25 s22=0.53 s12=0.003;

eta=b_const+b_base*base+b_trt*treat+b_age*age+b_basetrtxbase*treat
+b_age*age+b_visitxvisit+ul+u2*visit;

lambda=exp(eta) ;

model seiz ~ poisson(lambda);

random ul u2 ~ normal([0,0],[s11,s12,s22]) subject=id;
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Annotated output

Parameter Estimate SE Pr > |t] Lower Upper

b_const -1.3682 1.2007 0.2593 -3.7726 1.0363
b_base 0.8850 0.1313 <.0001 0.6221 1.1478
b_trt -0.9287 0.4022 0.0246 -1.7340 -0.1233
b_basetrt 0.3380 0.2044 0.1038 -0.07142  0.7474
b_age 0.2384 0.1768 0.1830 -0.1157 0.5924
b_visit -0.2664 0.1647 0.1113 -0.5962 0.06342
si1 0.2515  0.05879 <.0001 0.1338 0.3692
522 0.5315 0.2294 0.0241 0.07214  0.9908
s12 0.002871 0.08870 0.9743 -0.1748 0.1805
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Interpretation

Consider an individual from the population with covariates (a, b) at
time t with random effect (u1, u2). The ratio of seizure rates,
within this individual, for drug versus placebo is:

Aa, b, t,d = 1|u) _ Bo+Bpb+Ba+Boab+Baa+By t+ur+ust _ oHetfhab

A(a, b, t,d = 0|u) eBo+0pb+Baa+0But+ur+unt

Within a subject, the mean number of seizures over a 2-week
period is reduced by e~0-929+0.338log(base/4) — (0 247)base®338.

This function crosses unity between 62 and 63 baseline seizures
within the previous 8 weeks. It's about 0.5 when base = 8. So the
drug significantly reduces seizures at any visit, but the reduction
rate critically depends on the baseline seizure rate.

Would any other interactions be of interest here? How about a
visit by treatment interaction?
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Some final comments

@ 13.5 discusses multilevel modeling: different sets of random
effects at different levels of a hierarchy (e.g. a student takes a
battery of tests at a school: students within school, schools
within state, state within country).

o Agresti has G2 for GOF (deviance-based) tests when looking
at contingency tables (e.g. leading crowd example). We get
the maximized log-likelihood out of PROC NLMIXED. If
careful we might be able to get G2.

@ Did not discuss Bayesian approaches; very natural here.

@ Can check normality assumption by looking at 0y, ..., 01, but
problems with this when cluster sizes are small.
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More final comments

@ 13.6.5 discusses testing Hy : 0 =0 versus H; : 0 > 0 in a
simple model with univariate vy, ..., u, i N(0,0?). Fit the
full model with random effects compute Lf (maximized
log-likelihood), fit simpler model without random effects
o =0and get L,. Let t = —2[L, — L¢] be the LRT statistic.

The p-value for the test is p = 0.5P(x? > t).

@ 13.1.5: random intercept model not appropriate in
case-control study as clusters not randomly sampled.
Apparently there are fixes to this.

@ Note that can have model
success~binomial (trials,prob); in NLMIXED as well as
other distributions; see the documentation. Useful homework
problem 13.2.
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This is a recent SAS procedure that fits GLMM's.

@ The procedure had been available as a macro for some time.

@ GLIMMIX essentially extends the MIXED procedure to GLM's,
and in fact iteratively calls MIXED when fitting GLMM's.

@ Only normal random effects are allowed.

@ GLIMMIX uses an approximation when fitting models. The
approximation in effect replaces the intractable integral that
NLMIXED approximates (using quadrature) with a simple
linear Taylor's expansion. It's crude, but can work and it's
fast. See SAS' GLIMMIX documentation for details on
“Pseudo-likelihood Estimation Based on Linearization.” Also
described in your book in 13.6.4.
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Model notation

o The model is E{Y |y} = g 1{XB + Z~} where
v ~ Ng(0,X). Also, var{Y|y} = AY/2RAY/2 where Al/2
comes from the sampling model (e.g. Poisson, normal,
binomial) and R is a ‘marginal’ covariance matrix. For
GLMM'’s, R = ¢l and so var{Y|v} = ¢A where A is a
diagonal matrix. This is because for GLMM's, the responses
within a cluster are independent given the random effects ~.

@ GLIMMIX can also fit marginal models allowing for correlation
within a cluster (like GENMOD), but uses a different
estimation method than GENMOD with the repeated
statement. Then R has structure, e.g. exchangeability (called
compound symmetry here), AR structure, spatial structures,
and others found in PROC MIXED.

@ The learning curve is steep, although it's nice to be aware of
alternative fitting procedures if necessary!
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Ache monkey hunting

Data on the number of capuchin monkeys killed by 47 Ache
hunters over several hunting trips were recorded. There were 363
total records. I'll describe the hunting process in class; it involves
splitting into groups, chasing monkeys through the trees, and
shooting arrows straight up.

Let Y} be the number of monkey's killed by hunter i, i = 1,...,47
on trip j of length L (the trip length serves as an ‘offset’ in the
model fitting). Let A; be the hunter 's kill rate (per day).

Y;j ~ Poisson(\;Lj),

where
log \i = fBo + Bra;i + Bea? + ui,
Uy, ..., Us7 i N(O,az).
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Monkey hunting, continued...

@ Monkey hunting is dangerous.

@ We include a quadratic effect because we expect a “leveling
off" effect or possible decline in ability with age.

@ Of interest is when hunting ability is greatest. Hunting
prowess contributes to a man'’s status within the group. a; is
hunter i's age-45 years.

o An individual's kil rate is given by \ = efotBiatB2a®eu \yhere
a is the individual's age and u is their latent hunting ability.

@ One can compare the effect of age within the span of, say, 20
to 60 years, to the spread of e¥ to see which explains more of

the variability in terms of hunting ability: age or innate ability.

58 /66



Monkey hunting data step

Data sorted by trip number:

data achel;
input TRIP$ PID$ AGE nkills tripdays; ltripday=log(tripdays); age=age-45;
datalines;
C082697A 3394 31 1 4
C082697A 3327 38 0 4
C082697A 3313 39 0 4
C082697A 3220 50 0 4
C082697A 3157 56 0 4
C082697A 3146 57 0 4
C082697A 3144 58 1 4
C082697A 7089 59 1 4
C082697A 3126 60 2 4
C082697A 7085 62 1 4
C102197A 3394 31 1 3
C102197A 3327 38 0 3
C102197A 3238 48 3 3
C102197A 3220 50 0 3
C102197A 3144 58 2 3
C102197A 3086 67 0 3
...et cetera...
T120997A 3182 53 0 5
T120997A 3094 656 0 5
T121597A 3254 46 0 4
0 4

T121597A 3128 60
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Monkey hunting SAS code

With calls to genmod, nlmixed, and glimmix:

proc genmod data=achel;

class pid;

model nkills=age age*age / dist=poisson link=log offset=ltripday;
repeated subject=pid / type=exch;

proc glimmix data=achel; class pid;
model nkills = age age*age / dist=pois link=log offset=ltripday solution;
random _residual_ / subject=pid type=cs;

proc sort; by pid; run; * need to sort by subject!;
proc nlmixed gqpoints=100 data=achel;
parms bi1=-2.3 b2=0.0251 b3=-0.002 v=1.0;
eta=bl+b2*age+b3*age**2+u+ltripday;
lambda=exp(eta) ;
model nkills ~ poisson(lambda);
random u ~ normal(0,v) subject=pid;

proc glimmix data=achel; class pid;

model nkills = age age*age / dist=pois link=log offset=ltripday solution;
random intercept / subject=pid;
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GENMOD GEE output

The GENMOD Procedure

Class Levels Values

PID 47 3086 3094 3111 3126 3128 3139 3144 3146 3157 3166
3172 3182 3217 3220 3238 3240 3254 3302 3313 3316
3322 3327 3349 3371 3378 3386 3390 3394 3401 3405
3414 3416 3434 3436 3450 3465 3480 3486 3495 3525
3529 3548 3572 7032 7085 7089 8024

GEE Model Information

Correlation Structure Exchangeable
Subject Effect PID (47 levels)
Number of Clusters 47
Correlation Matrix Dimension 28
Maximum Cluster Size 28
Minimum Cluster Size 1

Exchangeable Working
Correlation

Correlation 0.2180742191
Empirical Standard Error Estimates

Standard  95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|
Intercept -2.2901 0.3266 -2.9303 -1.6500 -7.01 <.0001
AGE 0.0141  0.0257 -0.0363 0.0645 0.55  0.5840
AGE*AGE -0.0019 0.0015 -0.0049 0.0010 -1.30 0.1937
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GLIMMIX marginal output

Compare to GENMOD:
The GLIMMIX Procedure

Model Information

Response Variable nkills
Response Distribution Poisson
Link Function Log
Variance Function Default
Offset Variable ltripday
Variance Matrix Blocked By PID
Dimensions
R-side Cov. Parameters 2
Subjects (Blocks in V) 47
Max Obs per Subject 28
Covariance Parameter Estimates
Standard
Cov Parm Subject Estimate Error
cs PID 0.2730 0.1077
Residual 1.8348 0.1422
Solutions for Fixed Effects
Standard
Effect Estimate Error DF t Value Pr > |t|
Intercept -2.3253 0.2836 46 -8.20 <.0001
AGE 0.01589 0.01657 314 0.96 0.3385
AGE*AGE -0.00181 0.001374 314 -1.31 0.1898
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NLMIXED GLMM output

Parameter
bl

b2

b3

v

The NLMIXED Procedure
Specifications

Dependent Variable

Distribution for Dependent Variable
Random Effects

Distribution for Random Effects
Subject Variable

Optimization Technique

Integration Method

Dimensions
Total Observations
Subjects
Max Obs Per Subject
Parameters
Quadrature Points

Parameter Estimates

Standard
Estimate Error DF t Value Pr > [t
-2.6229 0.4515 46 -5.81 <.0001
0.03385 0.02521 46 1.34 0.1859
-0.00491 0.002280 46 -2.16 0.0364
2.1081 0.8926 46 2.36 0.0225

nkills
Poisson

u

Normal

PID

Dual Quasi-Newton
Adaptive Gaussian
Quadrature

Alpha
0.05
0.05
0.05
0.05

363
47

100

-0
-0

Lower
3.5317
.01689
.00950
0.3115

Upper
-1.7141
0.08458

-0.00033
3.9048
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GLIMMIX GLMM output

The GLIMMIX Procedure

Model Information

Response Variable nkills
Response Distribution Poisson
Link Function Log
Variance Function Default
Offset Variable ltripday

Variance Matrix Blocked By PID

Dimensions
G-side Cov. Parameters 1
Subjects (Blocks in V) 47
Max Obs per Subject 28

Covariance Parameter Estimates

Standard

Cov Parm Subject Estimate Error

Intercept PID 1.7965 0.6505

Solutions for Fixed Effects
Standard

Effect Estimate Error DF t Value Pr > |tl
Intercept -2.4222 0.4113 46 -5.89 <.0001
AGE 0.02889 0.02307 314 1.25 0.2115
AGE*AGE -0.00405 0.002079 314 -1.95 0.0525
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Comments

@ Notice the similarities in the GENMOD and GLIMMIX output
fitting (the first two) marginal models.

@ Notice the similarities in the GENMOD and GLIMMIX output
fitting (the last two) conditional GLMM models.

@ The quadratic effect is significant in the random effects
models, but not the marginal models. This often happens
when you focus on the individual.

@ One benefit of fitting conditional random effects models:
prediction is possible!
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General comments

@ Why GLIMMIX? To easily handle crossed or nested random
effects. To handle large dimensional random effects. To
jointly model counts and continuous outcomes. To avoid
waiting 3 hours for NLMIXED to converge. To fit spatial
covariance and other complex covariance structures with
GLM's that cannot be accommodated by GENMOD.

@ Why not GLIMMIX? It uses approximations which can bias
results. You don't know how biased your results actually are.
However, most models are approximations to reality to begin
with so maybe not that big of a deal.

@ Bayesian approach also natural but not as fast or easy to
implement. However, no approximations are used and
inference is exact up to Monte Carlo error.

@ There are other packages out there to perform similar
analyses.
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