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Course logistics

Book is Categorical Data Analysis, 3rd Edition, by Alan
Agresti.

Grading based solely on homeworks (no exams), about 8
total; mostly data analyses.

Lectures will be notes taken from text & (hopefully) posted
the night before.

We will follow the text pretty much in order covering roughly
one chapter per week. Some material will be excised (e.g.
MLE approach to marginal modeling), and some will be added
(discrete survival analysis).

Sample SAS code is provided on Dr. Agresti’s website
http://www.stat.ufl.edu/∼aa/cda/cda.html, and in my
notes. There is also a link to a large PDF file with sample R

code. We will mostly fit models in SAS.
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SAS

You can either use SAS on your PC or in the computer labs, or you
can register for SAS OnDemand for Academics.

Details are in the course syllabus.
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1.1 categorical response variables

Response data considered in regression and ANOVA are
continuous. Examples:

cholesterol level (milligrams per deciliter)

lifetime of a lab rat (in weeks)

money spent on breakfast cereal (U.S. $)

A categorical variable takes on one of a (usually finite) number of
categories, or levels. Examples:

eye color (blue, brown, green, other)

political affiliation (Democrat, Republican, other)

cholesterol level (low, normal, high)

Note that a variable can be continuous or categorical depending on
how it’s defined.
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1.1.1 Response or explanatory?

Variables can be classified as a response or explanatory.

In regression models we seek to model a response as a stochastic
function of explanatory variables, or predictors.

In this course the response will be categorical and the predictors
can be categorical, continuous, or discrete.

For example, if we wanted to model political affiliation as a
function of gender and annual salary, the response would be
(Republican, Democrat, other), and the two predictors would be
annual salary (essentially continuous) and the categorical gender
(male, female).
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1.1.2 Nominal verses ordinal categorical variables

Nominal variables have no natural ordering to them. e.g. eye color
(blue, brown, other), political affiliation (Democrat, Republican,
other), favorite music type (jazz, folk, rock, rap, country,
bluegrass, other), gender (male, female).

Ordinal variables have an obvious order to them. e.g. cancer stage
(I, II, III, IV), a taste response to a new salsa (awful, below
average, average, good, delicious).

Interval variables are ordinal variables that also have a natural scale
attached to them. e.g. diastolic blood pressure, number of years of
post high school education. Interval variables are typically discrete
numbers that comprise an interval.
Read: Sections 1.1.3, 1.1.4, 1.1.5.
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1.2.1 Binomial distribution

An observation is binary if it takes on one of two values (e.g.
male/female, infected/non-infected, fail/pass). A random variable
Yi has a Bernoulli distribution with probability π if

P(Yi = 1) = π and P(Yi = 0) = 1− π.

Any binary variable can be written as Bernoulli by associating one
category with 1 and the other category with 0.
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Binomial distribution, cont.

Let Y1,Y2, . . . ,Yn be independent and identically distributed
Bernoulli random variables with probability π. Then Y =

∑n
i=1 Yi

has a binomial distribution with parameters n and π. We write this

Y ∼ bin(n, π).

Y is the number of {Y1,Y2, . . . ,Yn} that equal one. i.e. Y counts
the number of 1’s in the series Y1,Y2, . . . ,Yn.

Think of n identical experiments repeated independently of each
other. e.g. n = 5 people are randomly chosen with replacement
from all University of Carolina students and classified as
“undergraduate” (Yi = 0) or “graduate” (Yi = 1). Say we see
Y1 = 0, Y2 = 1, Y3 = 1, Y4 = 0, Y5 = 0. Then
Y = 0 + 1 + 1 + 0 + 0 = 2.
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Binomial distribution, cont.

The probability mass function of Y ∼ bin(n, π) is

P(Y = j) =

(
n
j

)
πj(1− π)n−j for j = 0, 1, . . . , n.

The mean and variance of Y is

E (Y ) = nπ, var(Y ) = nπ(1− π).

(Previous slide): If students are drawn without replacement, the
number of undergraduates Y has a hypergeometric distribution.
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1.2.2 Multinomial distribution

The binomial distribution deals with two categories. The
multinomial distribution generalizes the binomial to C categories.
Again, think of n independent trials, but now each trial i defines C
indicators yi = (yi1, . . . , yiC ) such that yij = 1 if the outcome was
the j th category, and yij = 0 otherwise.

For example, let C = 3 outcomes, so the result of any trial is one
of {1, 2, 3}. If the outcome is 1, then yi = (yi1, yi2, yi3) = (1, 0, 0).
If the outcome is 2, then yi = (0, 1, 0) and if the outcome is 3 then
yi = (0, 0, 1). Let n =

∑n
i=1 yi . Then n = (n1, . . . , nC ) gives the

counts of the number out of n falling into each category.
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Multinomial distribution, cont.

Example: Let the outcome be political affiliation. Democrat
corresponds to category 1, Republican is 2, and other is 3.

Let’s say n = 6 people are sampled randomly and we see the
categories 1,1,3,2,1,2. This corresponds to vectors y1 = (1, 0, 0),
y2 = (1, 0, 0), y3 = (0, 0, 1), y4 = (0, 1, 0), y5 = (1, 0, 0), and
y6 = (0, 1, 0). So n = (3, 2, 1), n1 = 3 Democrats, n2 = 2
Republicans, and n3 = 1 other, out of n = 6.

Note that, always, n1 + n2 + · · ·+ nC = n.
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Multinomial distribution, cont.

Let P(yij = 1) = πj . Note that π1 + π2 + · · ·+ πC = 1, so there
are C − 1 free parameters in π = (π1, . . . , πC ).
The pmf of n is given by

p(n1, . . . , nC ) =
n!

n1!n2! · · · nC !
πn11 π

n2
2 · · ·π

nC
C ,

for
∑C

j=1 nj = n and each 0 ≤ nj ≤ n. We write

n ∼ mult(n,π).

We have

E (nj) = nπj , var(nj) = nπj(1− πj), cov(nj , nk) = −nπjπk .

Marginally, nj ∼ bin(n, πj).
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1.2.3 Poisson distribution

Some counts (essentially) have no fixed upper limit. The Poisson
distribution counts events over time or space and is a limiting case
of the binomial distribution when the number of trials n approaches
infinity but events occur at a fixed rate µ (with units like
surgeries/week, earthquakes/year, spelling errors per page, etc.)
We write Y ∼ Pois(µ) with pmf

P(Y = j) =
e−µµj

j!
for j = 0, 1, 2, . . .

For Y ∼ Pois(µ) we have

E (Y ) = µ and var(Y ) = µ.
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1.2.4 Overdispersion

Overdispersion: Often the variability associated with Poisson and
binomial models is smaller than what is observed in real data.

The increased variance can be attributed to unmeasured, or
perhaps latent regressors in the model and thus the resulting count
distribution is more correctly a mixture of binomial or Poisson
distributions, with mixing weights being the proportion of outcomes
resulting from specific (unaccounted for) covariate combinations.

We will discuss testing for overdispersion in specific models and
remedies later on.
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1.2.5 Connection between multinomial and Poisson
distributions

Let Y = (Y1,Y2,Y3) be independent Poisson with parameters
(µ1, µ2, µ3).

e.g. Y1 is number of people that fly to France from Britain this
year, Y2 the number who go by train, and Y3 the number who take
a ferry. The total number of traveling n = Y1 + Y2 + Y3 is
Pois(µ1 + µ2 + µ3).

Conditional on n, the distribution of (Y1,Y2,Y3) is multinomial
with parameters n and π = (µ1, µ2, µ3)/µ+ where
µ+ = µ1 + µ2 + µ3.

This is especially useful in log-linear models, covered in Chapter 9.
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1.3.1 Maximum likelihood estimation

Let the parameter vector for a model be β = (β1, . . . , βp) where p
is the number of parameters in the model. Let the outcome
variables be random variables denoted y = (y1, . . . , yn) and the
probability model denoted

p(y1, . . . , yn|β) = p(y|β).

The likelihood of β, denoted L(β), is L(β) = p(y|β) thinking of
data y as fixed.
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MLE, cont.

For example, if n = (n1, . . . , nC ) is mult(n,π) where
π = (π1, . . . , πC ), then β = (π1, π2, . . . , πC−1) because there are
C − 1 free parameters in π.

The likelihood of β is simply the probability of seeing the response
data given β:

L(β) = p(n1, . . . , nC |β) =

(
n

n1 · · · nC

) C∏
j=1

π
nj
j .
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MLE, cont.

The maximum likelihood estimator is that value of β that
maximizes L(β) for given data:

β̂ = argmaxβ∈BL(β),

where B is the set of values β can take on.

The MLE β̂ makes the observed data as likely as possible. The
estimator turns into an estimate when data are actually seen. For
example, if c = 3 and n1 = 3, n2 = 5, n3 = 2, then
β̂ = (π̂1, π̂2) = (0.3, 0.5) and of course π̂3 = 1− (π̂1 + π̂2) = 0.2.
Then p(3, 5, 2|π1 = 0.2, π2 = 0.5) ≥ p(3, 5, 2|π1 = p1, π2 = p2) for
all values of p1 and p2.

An estimator is random (i.e. before data are collected and seen
they are random, and so then is any function of data) whereas an
estimate is a fixed, known vector (like (0.3,0.5)).
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MLE, cont.

MLEs have nice properties for most (but not all) models (p. 9):

They have large sample normal distributions:

β̂
•∼ Np(β, cov(β̂)) where cov(β̂) =

[
−E

(
∂2 logL(β)

∂βj∂βk

)]−1
p×p

.

They are asymptotically consistent: β̂ → β (in probability) as
the sample size n→∞.

They are asymptotically efficient: var(β̂j) is smaller than the
corresponding variance of other (asymptotically) unbiased
estimators.
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Example: MLE for Poisson data

Let Yi ∼ Pois(λti ) where λ is the unknown event rate and ti are
known exposure times. Assume the Y1, . . . ,Yn are independent.

The likelihood of λ is

L(λ) = p(y1, . . . , yn|λ) =
n∏

i=1

p(yi |λ) =
n∏

i=1

e−tiλ(tiλ)yi/yi !

=

[
n∏

i=1

tyii
yi !

]
e−λ

∑n
i=1 tiλ

∑n
i=1 yi = g(t, y)e−λ

∑n
i=1 tiλ

∑n
i=1 yi .

Then the log-likelihood is

L(λ) = log g(t, y)− λ
n∑

i=1

ti + log(λ)
n∑

i=1

yi .
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Poisson MLE, cont.

Taking the derivative w.r.t. λ we get

L′(λ) =
∂L(λ)

∂λ
= −

n∑
i=1

ti +
1

λ

n∑
i=1

yi .

Setting this equal to zero, plugging in Y for y, and solving for λ
yields the MLE

λ̂ =

∑n
i=1 Yi∑n
i=1 ti

.

Now
∂2L(λ)

∂λ2
= −

∑n
i=1 yi
λ2

.

Since
∑n

i=1 Yi ∼ Pois(λ
∑n

i=1 ti ), we have

−E
(
∂2L(λ)

∂λ2

)
= E

(∑n
i=1 Yi

λ2

)
=
λ
∑n

i=1 ti
λ2

=

∑n
i=1 ti
λ

.
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Poisson MLE, cont.

The variance of λ̂ is given by the “inverse” of this “matrix”

var(λ̂)
•
=

λ∑n
i=1 ti

.

The large sample normal result tells us

λ̂
•∼ N

(
λ,

λ∑n
i=1 ti

)
.

The standard deviation of λ̂ is estimated to be sd(λ̂) =
√

λ∑n
i=1 ti

.

Since we do not know λ, the standard deviation is estimated by the
standard error obtained from estimating λ by its MLE:

se(λ̂) =

√
λ̂∑n
i=1 ti

=

√ ∑n
i=1 yi

[
∑n

i=1 ti ]
2

=

√∑n
i=1 yi∑n

i=1 ti
.
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Poisson MLE, cont.

Example: Say that we record the number of adverse medical
events (e.g. operating on the wrong leg) from a hospital over
n = 3 different times: t1 = 1 week in 2014, t2 = 4 weeks in 2015,
and t3 = 3 weeks in 2016. We’ll assume that the adverse surgical
event rate λ (events/week) does not change over time and that
event counts in different time periods are independent.

Then Yi ∼ Pois(tiλ) for i = 1, 2, 3. Say we observe y1 = 0, y2 = 3,
and y3 = 1. Then λ̂ = (0 + 3 + 1)/(1 + 4 + 3) = 4/8 = 0.5
event/week, or one event every other week. Also,
se(λ̂) =

√
4/8 = 0.25.

The large sample result tells us then (before data are collected and
Y = (Y1,Y2,Y3) is random) that

λ̂
•∼ N(λ, 0.252),

useful for constructing hypothesis tests and confidence intervals.
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1.3.3 Wald, likelihood ratio, and score tests

These are three ways to perform large sample hypothesis tests
based on the model likelihood.

Wald test

Let M be a m × p matrix. Many hypotheses can be written
H0 : Mβ = b where b is a known m × 1 vector.

For example, let p = 3 so β = (β1, β2, β3). The test of H0 : β2 = 0
is written in matrix terms with M = (0, 1, 0) and b = 0. The

hypothesis H0 : β1 = β2 = β3 has M =

[
1 −1 0
0 1 −1

]
and

b =

[
0
0

]
.
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Wald test, cont.

The large sample result for MLEs is

β̂
•∼ Np(β, cov(β̂)).

So then
Mβ̂

•∼ Nm(Mβ,Mcov(β̂)M′).

If H0 : Mβ = b is true then

Mβ̂ − b
•∼ Nm(0,Mcov(β̂)M′).

So
W = (Mβ̂ − b)′[Mĉov(β̂)M′]−1(Mβ̂ − b)

•∼ χ2
m.

W is called the Wald statistic and large values of W indicate Mβ
is far away from b, i.e. that H0 is false. The p-value for
H0 : Mβ = b is given by p-value = P(χ2

m >W ).

The simplest, most-used Wald test is the familiar test that a
regression effect is equal to zero, common to multiple, logistic,
Poisson, and ordinal regression models.
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Score test

In general, the cov(β̂) is a function of the unknown β. The Wald
test replaces β by its MLE β̂ yielding ĉov(β̂). The score test
replaces β by the the MLE β̂0 obtained under the constraint
imposed by H0

β̂0 = argmaxβ∈B:Mβ=bL(β).

Let cov(β) be the asymptotic covariance for unconstrained MLE.

The resulting test statistic

S = [ ∂∂β logL(β̂0)]′[cov(β̂0)][ ∂∂β logL(β̂0)]
•∼ χ2

m.

Sometimes it is easier to fit the reduced model rather than the full
model; the score test allows testing whether new parameters are
necessary from a fit of a smaller model.
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Likelihood ratio tests

The likelihood ratio test is easily constructed and carried out for
nested models. The full model has parameter vector β and the
reduced model obtains when H0 : Mβ = b holds. A common
example is when β = (β1,β2) and we wish to test H0 : β1 = 0
(e.g. a subset of regression effects are zero). Let β̂ be the MLE
under the full model

β̂ = argmaxβ∈BL(β),

and β̂0 be the MLE under the constraint imposed by H0

β̂0 = argmaxβ∈B:Mβ=bL(β).
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LRT, cont.

If H0 : Mβ = b is true,

L = −2[logL(β̂0)− logL(β̂)]
•∼ χ2

m.

The statistic L is the likelihood ratio test statistic for the
hypothesis H0 : Mβ = b. The smallest L can be is zero when
β̂0 = β̂. The more different β̂ is from β̂0, the larger L is and the
more evidence there is that H0 is false. The p-value for testing H0

is given by p − value = P(χ2
m > L).

To test whether additional parameters are necessary, LRT tests are
carried out by fitting two models: a “full” model with all effects
and a “reduced” model. In this case the dimension m of M is the
difference in the numbers of parameters in the two models.
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LRT, cont.

For example, say we are fitting the standard regression model

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + ei

where ei
iid∼ N(0, σ2). Then β = (β0, β1, β2, β3, σ

2) and we want to
test β1 = (β2, β3) = (0, 0), that the 2nd and 3rd predictors aren’t
needed. This test can be written using matrices as

H0 :

[
0 0 1 0 0
0 0 0 1 0

]
β0
β1
β2
β3
σ2

 =

[
0
0

]
.
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LRT, cont.

The likelihood ratio test fits the full model above and computes
Lf = logLf (β̂0, β̂1, β̂2, β̂3, σ̂).

Then the reduced model Yi = β0 + β1xi1 + ei is fit and
Lr = logLr (β̂0, β̂1, σ̂) computed.

The test statistic is L = −2(Lr − Lf ); a p-value is computed as
P(χ2

2 > L). If the p-value is less than, say, α = 0.05 we reject
H0 : β2 = β3 = 0.

Of course we wouldn’t use this approximate LRT test here! We
have outlined an approximate test, but there is well-developed
theory that instead uses a different test statistic with an exact
F -distribution.
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Comments

Note that:

The Wald test requires maximizing the unrestricted likelihood.

The score test requires maximizing the restricted likelihood
(under a nested submodel).

The Likelihood ratio test requires both of these.

So the likelihood ratio test uses more information and both Wald
and Score tests can be viewed as approximations to the LRT.

However, SAS can “automatically” perform Wald tests of the form
H0 : Mβ = b in a contrast statement and so I often use Wald
tests because they’re easy to get. In large samples the tests are
equivalent.

31 / 33



1.3.4 Confidence intervals

A plausible range of values for a parameter βj (from β) is given by
a confidence interval (CI). Recall that a CI has a certain fixed
probability of containing the unknown βj before data are collected.
After data are collected, nothing is random any more, and instead
of “probability” we refer to “confidence.”

A common way of obtaining confidence intervals is by inverting
hypothesis tests of H0 : βk = b. Without delving into why this
works, a (1− α)100% CI is given by those b such that the p-value
for testing H0 : βk = b is larger than α.
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CIs, cont.

For Wald tests of H0 : βk = b, the test statistic is
W = (β̂k − b)/se(β̂k). This statistic is approximately N(0, 1) when
H0 : βk = b is true and the p-value is larger than 1− α only when
|W | < zα/2 where zα/2 is the 1− α/2 quantile of a N(0, 1)
random variable. This yields the well known CI

(β̂k − zα/2se(β̂k), β̂k + zα/2se(β̂k)).

The likelihood ratio CI operates in the same way, but the
log-likelihood must be computed for all values of b. We’ll explore
the differences between inverting Wald, Score, and LRT for
binomial data in the remainder of Chapter 1.
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