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Contingency tables & their distributions

Let X and Y be categorical variables measured on an a subject
with I and J levels respectively.

Each subject sampled will have an associated (X ,Y ); e.g.
(X ,Y ) = (female, Republican). For the gender variable X , I = 2,
and for the political affiliation Y , we might have J = 3.

Say n individuals are sampled and cross-classified according to
their outcome (X ,Y ). A contingency table places the raw number
of subjects falling into each cross-classification category into the
table cells. We call such a table an I × J table.

If we relabel the category outcomes to be integers 1 ≤ X ≤ I and
1 ≤ Y ≤ J (i.e. turn our experimental outcomes into random
variables), we can simplify notation: nij is the number of
individuals who are X = i and Y = j .
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Abstract contingency table

In the abstract, a contingency table looks like:

nij Y = 1 Y = 2 · · · Y = J Totals
X = 1 n11 n12 · · · n1J n1+
X = 2 n21 n22 · · · n2J n2+

...
...

...
. . .

...
...

X = I nI1 nI2 · · · nIJ nI+
Totals n+1 n+2 · · · n+J n = n++

If subjects are randomly sampled from the population and
cross-classified, both X and Y are random and (X ,Y ) has a
bivariate discrete joint distribution. Let πij = P(X = i ,Y = j), the
probability of falling into the (i , j)th (row,column) in the table.
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Example of 3× 3 table

From Chapter 2 in Christensen (1997) we have a sample of n = 52
males aged 11 to 30 years with knee operations via arthroscopic
surgery. They are cross-classified according to X = 1, 2, 3 for injury
type (twisted knee, direct blow, or both) and Y = 1, 2, 3 for
surgical result (excellent, good, or fair-to-poor).

nij Excellent Good Fair to poor Totals
Twisted knee 21 11 4 36
Direct blow 3 2 2 7
Both types 7 1 1 9

Totals 31 14 7 n = 52

with theoretical probabilities:

πij Excellent Good Fair to poor Totals
Twisted knee π11 π12 π13 π1+
Direct blow π21 π22 π23 π2+
Both types π31 π32 π33 π3+

Totals π+1 π+2 π+3 π++ = 1
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2.1.2 Marginal probabilities

The marginal probabilities that X = i or Y = j are

P(X = i) =
J∑

j=1

P(X = i ,Y = j) =
J∑

j=1

πij = πi+.

P(Y = j) =
I∑

i=1

P(X = i ,Y = j) =
I∑

i=1

πij = π+j .

A “+” in place of a subscript denotes a sum of all elements over
that subscript. We must have

π++ =
I∑

i=1

J∑
j=1

πij = 1.

The counts have a multinomial distribution n ∼ mult(n,π) where
n = [nij ]I×J and π = [πij ]I×J . What is (n1+, . . . , nI+) distributed?
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Product multinomial table

Often the marginal counts for X or Y are fixed by design. For
example in a case-control study, a fixed number of cases (e.g.
people w/ lung cancer) and a fixed number of controls (no lung
cancer) are sampled. Then a risk factor or exposure Y is compared
among cases and controls within the table. This results in a
separate multinomial distribution for each level of X ; more on this
on slide 14. Another example is a clinical trial, where the number
receiving treatment A and the number receiving treatment B are
both fixed.

For the I multinomial distributions, the conditional probabilities of
falling into Y = j must sum to one for each level of X = i :

J∑
j=1

πj |i = 1 for i = 1, . . . , I .
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Clinical trial example

The following 2× 3 contingency table is from a report by the
Physicians’ Health Study Research Group on n = 22, 071
physicians that took either a placebo or aspirin every other day.

Fatal attack Nonfatal attack No attack
Placebo 18 171 10,845
Aspirin 5 99 10,933

Here we have placed the probabilities of each classification into
each cell:

Fatal attack Nonfatal attack No attack
Placebo π1|1 π2|1 π3|1
Aspirin π1|2 π2|2 π3|2

The row totals n1+ = 11, 034 and n2+ = 11, 037 are fixed and thus
π1|1 + π2|1 + π3|1 = 1 and π1|2 + π2|2 + π3|2 = 1.

Want to compare probabilities in each column.
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2.1.3 Sensitivity and specificity

Diagnostic tests indicate the presence or absence of a disease or
infection. Tests are typically imperfect, i.e. there is positive
probability of incorrectly diagnosing a subject as not infected when
they are in fact infected and vice-versa.

Let D+ or D− be the true infection/disease status and T + or T−
be the result of a diagnostic test.

sensitivity = P(T + |D+).

specificity = P(T − |D−).

8 / 25



2× 2 table

Let π11 = P(T +,D+), π12 = P(T +,D−), π21 = P(T−,D+),
π22 = P(T−,D−). Let subjects be randomly sampled from the
population so that π11 + π12 + π21 + π22 = 1. Then sensitivity is
given by

Se = P(T + |D+) = P(T +,D+)/P(D+) = π11/π+1

and specificity is

Sp = P(T − |D−) = P(T−,D−)/P(D−) = π22/π+2.

To get MLEs for sensitivity and specificity, simply replace each πij
by its MLE π̂ij = nij/n where nij is the number falling into
category (i , j) and n = n++.

If n1 = n+1 and n0 = n+2 are fixed ahead of time, we have product
multinomial sampling. The MLEs are exactly the same.
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Example: Rapid strep test

Sheeler et al. (2002) describe a modest prospective trial of
n = 232 individuals complaining of sore throat who were given the
rapid strep (streptococcal pharyngitis) test T . The true status of
each individual D was determined by throat culture.

A 2× 2 contingency table looks like

D+ D− Total
T+ 44 4 48
T− 19 165 184
Total 63 169 232
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Estimating sensitivity, specificity, and prevalence

D+ D− Total
T+ 44 4 48
T− 19 165 184
Total 63 169 232

An estimate of Se is Ŝe = P̂(T + |D+) = 44
63 = 0.70.

An estimate of Sp is Ŝp = P̂(T − |D−) = 165
169 = 0.98.

The estimated prevalence of strep among those complaining
of sore throat P(D+) is P̂(D+) = 63

232 = 0.27.
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2.1.4 Independence

When (X ,Y ) are jointly distributed, X and Y are independent if

P(X = i ,Y = j) = P(X = i)P(Y = j) or πij = πi+π+j .

Let
πi |j = P(X = i |Y = j) = πij/π+j

and
πj |i = P(Y = j |X = i) = πij/πi+.

Then independence of X and Y implies

P(X = i |Y = j) = P(X = i) and P(Y = j |X = i) = P(Y = j).

The probability of any given column response is the same for each
row. The probability for any given row response is the same for
each column.
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2.1.5 Poisson, binomial, multinomial sampling

Let nij be the cell count in the (i , j)th classification.

Poisson sampling assumes nij
ind .∼ Poisson(µij). Then

p(n|µ) = L(µ) =
I∏

i=1

J∏
j=1

e−µijµ
nij
ij /nij !.

The sample size n = n++ is random.
When n = n++ is fixed but the row ni+ and column n+j totals are
not we have multinomial sampling and

p(n|π) = L(π) = n!
I∏

i=1

J∏
j=1

π
nij
ij /nij !.
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Product multinomial sampling

Finally, sometimes row (or column) totals are fixed ahead of time
(e.g. sampling n1+ = women and n2+ men and asking them if they
smoke). Then we have product multinomial sampling. Agresti
prefers using ni = ni+ for simplicity.

Fox a fixed X = i , there are J counts (ni1, ni2, . . . , niJ) adding to
ni+ and this vector is multinomial. Since there are I values of
covariate X , we have I independent multinomial distributions, or
the product of I mult(ni ,π|i ) distributions where
π|i = (π1|i , . . . , πJ|i ).

p(n|π) = L(π) =
I∏

i=1

ni !
J∏

j=1

π
nij
j |i /nij !.

Note: under product multinomial sampling, only conditional
probabilities πj |i can be estimated. To estimate πij requires
information on the πi+ occurring naturally.
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2.1.6 Seat belt example

Mass. Hwy. Dept. to study seat belt use Y (yes, no) and fatality
(fatal, not fatal) X of crashes on the Mass. Turnpike.
Could just analyze data as they arise naturally. Then

nij
ind .∼ Pois(µij). Poisson sampling.

If n = 200 police records sampled from crashes on turnpike. Then
(n11, n12, n21, n22) is mult(200,π). Multinomial sampling.

Could sample n1 = 100 fatal crash reports and n2 = 100 nonfatal
reports. Then (n11, n12) ∼ mult(100, (π1|1, π2|1)) independent of
(n21, n22) ∼ mult(100, (π1|2, π2|2)). Product multinomial sampling.
Here, there’s no information on the prevalence of fatal versus
non-fatal accidents.

Read experimental design approach.
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2.1.7 Case-control studies

Case Control
Smoker 688 650
Non-smoker 21 59
Total 709 709

In a case/control study, fixed numbers of cases n1 and controls n2

are (randomly) selected and exposure variables of interest
recorded. In the above study we can compare the relative
proportions of those who smoke within those that developed lung
cancer (cases) and those that did not (controls). We can measure
association between smoking and lung cancer, but cannot infer
causation. These data were collected “after the fact.” Data
usually cheap and easy to get. Above: lung cancer (p. 42).

Always yield product multinomial sampling.
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2.1.8 Types of studies

Prospective studies start with a sample and observes them
through time.

Clinical trial randomly allocates “smoking” and “non-smoking”
treatments to experimental units and then sees who ends up
with lung cancer or not. Problem with ethics here.
A cohort study simply follows subjects after letting them
assign their own treatments (i.e. smoking or non-smoking) and
records outcomes.

A cross-sectional design samples n subjects from a population
and cross-classifies them.

Carefully read this section. Classify each study as multinomial
or product multinomial.
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2.2.1 –2.2.6 Comparing two proportions

Let X and Y be dichotomous. Let π1 = P(Y = 1|X = 1) and let
π2 = P(Y = 1|X = 2).

The difference in probability of Y = 1 when X = 1 versus X = 2 is
π1 − π2.

The relative risk π1/π2 may be more informative for rare
outcomes. However it may also exaggerate the effect of X = 1
versus X = 2 as well and cloud issues.
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Comparing two proportions, cont.

Example: Let Y = 1 indicate presence of a disease and X = 1
indicate an exposure.

When π2 = 0.001 and π1 = 0.01, π1 − π2 = 0.009. However,
π1/π2 = 10. You are 10 times more likely to get the disease when
X = 1 than X = 2. However, in either case the probability of
getting the disease ≤ 0.01.

When π2 = 0.401 and π1 = 0.41, π1 − π2 = 0.009. However,
π1/π2 = 1.02. You are 2% more likely to get the disease when
X = 1 than X = 2. This doesn’t seem as drastic as 1000%.

These sorts of comparisons figure into reporting results concerning
public health and safety information. e.g. HRT for
post-menopausal women, relative safety of SUVs versus sedans,
etc.
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2.2.3 & 2.2.4 Odds ratios

The odds of success (say Y = 1) versus failure (Y = 2) are
Ω = π/(1− π) where π = P(Y = 1). When someone says “3 to 1
odds the Gamecocks will win”, they mean Ω = 3 which implies the
probability the Gamecocks will win is 0.75, from π = Ω/(Ω + 1).
Odds measure the relative rates of success and failure.

An odds ratio compares relatives rates of success (or disease or
whatever) across two exposures X = 1 and X = 2:

θ =
Ω1

Ω2
=
π1/(1− π1)

π2/(1− π2)
.

Odds ratios are always positive and a ratio > 1 indicates the
relative rate of success for X = 1 is greater than for X = 2.
However, the odds ratio gives no information on the probabilities
π1 = P(Y = 1|X = 1) and π2 = P(Y = 1|X = 2).
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Odds ratio, cont.

Different values for these parameters can lead to the same odds
ratio.

Example: π1 = 0.833 & π2 = 0.5 yield θ = 5.0. So does
π1 = 0.0005 & π2 = 0.0001.

• One set of values might imply a different decision than the other,
but θ = 5.0 in both cases.

• Here, the relative risk is about 1.7 and 5 respectively.

• Note that when dealing with a rare outcome, where πi ≈ 0, the
relative risk is approximately equal to the odds ratio; see Sec.
2.2.7.
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Odds ratio, cont.

When θ = 1 we must have Ω1 = Ω2 which further implies that
π1 = π2 and hence Y does not depend on the value of X . If (X ,Y )
are both random then X and Y are stochastically independent.

An important property of odds ratio is the following:

θ =
P(Y = 1|X = 1)/P(Y = 2|X = 1)

P(Y = 1|X = 2)/P(Y = 2|X = 2)

=
P(X = 1|Y = 1)/P(X = 2|Y = 1)

P(X = 1|Y = 2)/P(X = 2|Y = 2)

You should verify this formally.

This implies that for the purposes of estimating an odds ratio, it
does not matter if data are sampled prospectively, retrospectively,
or cross-sectionally. The common odds ratio is estimated
θ̂ = n11n22/[n12n21].
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2.2.6 Case/control and the odds ratio

Case Control
Smoker 688 650
Non-smoker 21 59
Total 709 709

Recall there are n1 = n2 = 709 lung cancer cases and (non-lung
cancer) controls. The margins are fixed and we have product
multinomial sampling.

We can estimate π1|1 = P(X = 1|Y = 1) = n11/n+1 and
π1|2 = P(X = 1|Y = 2) = n12/n+2 but not P(Y = 1|X = 1) or
P(Y = 1|X = 2).

However, for the purposes of estimating θ it does not matter!

For the lung cancer case/control data,
θ̂ = 688× 59/[21× 650] = 3.0 to one decimal place.
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Odds of lung cancer, cont.

The odds of being a smoker is 3 times greater for those that
develop lung cancer than for those that do not.

The odds of developing lung cancer is 3 times greater for
smokers than for non-smokers.

The second interpretation is more relevant when deciding whether
or not you should take up recreational smoking.

Note that we cannot estimate the relative risk of developing lung
cancer for smokers P(Y = 1|X = 1)/P(Y = 1|X = 2).
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Formally comparing groups

You should convince yourself that the following statements are
equivalent:

π1 − π2 = 0, the difference in proportions is zero.

π1/π2 = 1, the relative risk is one.

θ = [π1/(1− π1)]/[π2/(1− π2)] = 1, the odds ratio is one.

All of these imply that there is no difference between groups for
the outcome being measured, i.e. Y is independent of X , written
Y ⊥ X .

Estimation of π1 − π2, π1/π2, and θ are coming up in Section 3.1.
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