Sections 3.4, 3.5

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 770: Categorical Data Analysis

3.4 $I \times J$ tables with ordinal outcomes

Tests that take advantage of ordinal data's structure can increase power and interpretability. We now assume both X and Y are ordinal.

3.4.1 Linear trend alternative to independence

If we are willing to replace the ordinal outcomes by numerical scores, we can compute something akin to a correlation between X and Y. Let $u_1 \leq u_2 \leq \cdots \leq u_I$ for X and $v_1 \leq v_2 \leq \cdots \leq v_J$ for Y. Define

$$r = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} (u_i - \bar{u}_i) (v_i - \bar{v}_i)}{\sqrt{\sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} (u_i - \bar{u}_i)^2 \sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} (v_i - \bar{v}_i)^2}},$$

where
$$\bar{u}_i = \sum_{i=1}^{I} n_{i+} u_i / n_{++}$$
 and $\bar{v}_j = \sum_{j=1}^{J} n_{+j} v_j / n_{++}$.

r is the Pearson correlation

r is akin to a correlation between X and Y, and in fact is the sample correlation when each (X, Y) pair is replaced by by its score (u, v).

r is going to estimate something lurking underneath, a population parameter ρ . Testing $H_0: \rho=0$ is a test for linear association between X and Y.

Define the test statistic

$$M^2 = (n_{++} - 1)r^2.$$

 $M^2 \stackrel{\bullet}{\sim} \chi_1^2$ when H_0 : $\rho = 0$.

Happiness and political ideology

Data (p. 83) from 2008 General Social Survey for subjects over 65 years old:

	Happiness					
Ideology	Not too happy	Pretty happy	Very happy			
Liberal	13	29	15			
Moderate	23	59	47			
Conservative	14	67	54			

SAS code

```
data table;
input Ideology$ Happiness$ count @@;
datalines;
Liberal NotTooHappy 13 Liberal PrettyHappy 29 Liberal VeryHappy 15
Moderate NotTooHappy 23 Moderate PrettyHappy 59 Moderate VeryHappy 47
Conservative NotTooHappy 14 Conservative PrettyHappy 67 Conservative VeryHappy 54;
proc freq data=table order=data; weight count;
tables Ideology*Happiness / chisq expected measures plcorr norow nocol;
run:
```

Recall that chisq gives tests of $H_0: X \perp Y$. measures gives various measures of association, including r and $\hat{\gamma}$, as well as their (asymptotic) standard errors. plcorr gives the estimated polychoric correlation $\hat{\rho}_{pc}$.

Table of Ideology by Happiness

Ideology	Happiness			
Frequency Expected Percent	 NotTooHa		VeryHapp	
Liberal	l 13	l 29 l 27.523	15	57
	4.05			17.76
Moderate	l 23 l 20.093		46.617	129 40.19
Conserva	+ 14 21.028 4.36	65.187	48.785	135 42.06
Total	50 15.58	+ 155 48.29	116 36.14	321 100.00

Statistics for Table of Ideology by Happiness

Statistic	DF	Value	Prob
Chi-Square	4	7.0681	0.1323
Likelihood Ratio Chi-Square	4	7.2666	0.1225

We do not reject H_0 : happiness is independent of ideology using X^2 or G^2 .

Statistics for Table of Ideology by Happiness

Value	ASE	
0.1849	0.0779	
0.1352	0.0544	
0.1671	0.0690	
	0.1849 0.1352	

Sample Size = 321

- Recall that $\hat{\gamma}$ estimates γ , the probability of concordance minus the probability of discordance. When $H_0: \gamma = 0$ is true, the probability of concordance is equal to the probability of discordance, i.e. no evidence of a monotone association.
- $\hat{\gamma}=0.185.~95\%$ CI given by $\hat{\gamma}\pm 1.96 \text{se}(\hat{\gamma})=0.185\pm 1.96(0.078)=(0.032,0.338).$ We reject $H_0:\gamma=0$ at the 5% level! How to get p-value?
- r=0.135 using default scores $u_i \in \{1,2,3\}$ and $v_i \in \{1,2,3\}$. Note that we reject $H_0: \rho_P=0$ at the 5% level. Focusing on the linear aspect of the scores helped refine our assessment of the relationship between ideology and happiness. Note that you cannot get M^2 directly in SAS, but rather r.

Statistics for Table of Ideology by Happiness

Statistic	Value	ASE
Gamma Pearson Correlation	0.1849 0.1352	0.0779 0.0544
Polychoric Correlation	0.1671	0.0690

Sample Size = 321

- $\hat{\rho}_{pc} = 0.167$ and we reject $H_0: \rho_{pc} = 0$ as well at the 5% level. The underlying continuous 'happiness' and 'ideology' variables are significantly, positively associated.
- The general test of $H_0: X \perp Y$ does not reject, but the correlation tests do find an association at the 5% level. More power by treating the data as ordinal rather than nominal!

3.4.4 Using focused alternatives gives added power

- G^2 and X^2 test $H_0: X \perp Y$. Does not take into account nature of ordinal data. df = (I-1)(J-1) reflecting all possible ways data can be dependent.
- For ordinal data, $H_0: \rho=0$ and $H_0: \gamma=0$ (or one-sided versions) test no association versus focused alternatives that are a special case of dependence. These tests focus on one parameter that describes a specific, defined type of association (linear or monotone).
- Since the alternative is focused, there can be more power to detect an association. df = 1 instead of df = (I 1)(J 1).

3.4.5 Choice of scores in computing r and M^2

The scores $u_1 \le u_2 \le \cdots \le u_I$ for X and $v_1 \le v_2 \le \cdots \le v_J$ for Y affect r and M^2 and therefore the p-value for $H_0: \rho = 0$.

- A linear transformation of scores does not affect r or M^2 . For example, using $\{1, 2, 3, 4\}$ or $\{52, 53, 54, 55\}$ or $\{3, 6, 9, 12\}$ for X all yield the same r.
- For most data, different choices of scores tend to give roughly the same *r* and *p*-value.
- Highly unbalanced data will be more sensitive to the choice of scores.

3.4.6 relationship between drinking during pregnancy & congenital malformations

	Drinks per day				
Malformation	0	< 1	1 – 2	3 – 5	<u>≥ 6</u>
Absent	17,066	14,464	788	126	37
Present	48	38	5	1	1

Let the scores for X be $\{1, 2\}$.

- For Y, $\{0, 0.5, 1.5, 4.0, 7.0\}$ yields $M^2 = 6.57$ with p = 0.01.
- For Y, $\{1, 2, 3, 4, 5\}$ yields $M^2 = 1.83$ with p = 0.18.

One solution to this discrepancy is to use scores suggested by the data: *midranks*.

Midranks

For the alcohol variable, 17066+48=17144 didn't drink during pregnancy. The midrank is (1+17144)/2=8557.5. The next category, those that averaged less than one drink per day, we start at 17145 and go up to 17144+(14464+38)=31646. The midrank for the 2^{nd} category is then (17145+31647)/2=24395.5 (book typo?). The midrank for the 1-2 category is (31617+32409)/2=32013, etc. Scores are $\{8557.5,24395.5,32013,32473,32555.5\}$.

Using these midranks yields $M^2 = 0.35$ and p = 0.55.

Here, inappropriate: treats 1-2 as being much closer to ≥ 6 than to 0 drinks. Probably best to use midranks when no obvious set(s) of scores exist. Midranks are used is SAS by specifying scores=rank.

3.5 & 16.5.2 Exact tests of independence

There's a lot of info in here (pp. 91-101, 10 pages). We'll focus on what's involved in obtaining exact p-values for X^2 and G^2 instead of asymptotic $\chi^2_{(I-1)(J-1)}$.

Instead of an asymptotic distribution, we need the *exact* distribution of cell counts under $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}$.

Under product multinomial sampling, the row totals are fixed at n_{i+} ahead of time. Under H_0 , the row counts are independent $\operatorname{mult}(n_{i+},\pi)$ where $\pi=(\pi_{+1},\pi_{+2},\ldots,\pi_{+J})$. There are J-1 free, unknown parameters in the model under H_0 . These are nuisance parameters, since what we need to be able to do is find the distribution of cell counts assuming independence, not just for one particular value of π .

Conditioning on sufficient statistics

The marginal totals (n_{+1}, \ldots, n_{+J}) carry all information for π – they are *sufficient* for π . By conditioning on these sufficient statistics (which can lead to a UMP test), we end up with the pmf of the cell counts n_{ij} ,

$$p(n_{ij}) = \frac{\prod_{i=1}^{I} n_{i+}! \prod_{j=1}^{J} n_{+j}!}{n_{++}! \prod_{i=1}^{I} \prod_{j=1}^{J} n_{ij}!}.$$

This is the distribution of $\{n_{ij}\}$ from data having the same fixed marginals n_{+1}, \ldots, n_{+J} and n_{1+}, \ldots, n_{J+} as the observed data, assuming $H_0: X \perp Y$ is true.

A simple way to approximate an exact p-value for an observed X_o^2 statistic is to simply randomly generate IJ cell counts $\{n_{ij}\}$ according to the above pmf, say 1000 times, and compute $X_1^2, X_2^2, \ldots, X_{1000}^2$. The proportion of $\{X_m^2\}$ larger than the observed X_o^2 is the (Monte Carlo) exact p-value. The test is the same for multinomial sampling.

Smoking and heart attacks

Example: a sparse table where the approximate $\chi^2_{(I-1)(J-1)}$ assumption is unreasonable.

	Smoking level				
Outcome	0 /day	1 — 24 / day	> 25 / day		
Control (no heart attack)	25	25	12		
Heart attack	0	1	3		

```
data table;
input Smoking$ Outcome$ count @0;
datalines;
1 1 25 2 1 25 3 1 12 1 2 0 2 2 1 3 2 3
;
proc format;
value $sc '1'= '0 / day' '2' = '1-24 / day' '3' = '>25 / day';
value $sc '1' = 'No heart attack' '2' = 'Heart attack';
proc freq order=data; weight count;
format Smoking $sc. Outcome $oc.;
tables Smoking*Outcome / plcorr;
exact chisq;
run;
```

Statistics for Table of Smoking by Outcome

Statistic	DF	Value	Prob
Chi-Square	2	6.9562	0.0309
Likelihood Ratio Chi-Square	2	6.6901	0.0353

WARNING: 50% of the cells have expected counts less than 5. (Asymptotic) Chi-Square may not be a valid test.

Pearson Chi-Square Test

Chi-Square				6.9562			
DF				2			
Asymptotic	${\tt Pr}$	>	ChiSq	0.0309			
Exact	Pr	>=	ChiSq	0.0516			

Likelihood Ratio Chi-Square Test

Chi-Square DF				6.6901 2
Asymptotic	${\tt Pr}$	>	ChiSq	0.0353
Exact	Pr	>=	ChiSq	0.0724

Value	ASE
0.8717	0.1250
0.2999	0.0973
0.6754	0.1924
	0.8717 0.2999

Comments:

- SAS provides a warning on the small expected cell counts.
- Exact versus asymptotic tests provide different conclusions at the 5% level!
- Treating (X,Y) as ordinal shows a positive association between the number of cigarettes smoked and getting a heart attack using γ , Pearson ρ_P (using scores 1,2 and 1,2,3), and polychoric ρ_{pc} . We would reject than any of these are zero.
- To get Monte Carlo estimate, specify mc with exact. Also possible to get exact CI for θ in 2 × 2 table with OR.
- The Pearson correlation is actually bounded away from -1 and 1. Outside the scope of the class, but r=0.30 may be "larger" than it appears.

Fisher's exact test of H_0 : $\pi_1 = \pi_2$ for 2×2 tables

Example: A 7-year old child thinks that cats like gouda cheese more than dogs; she decides to try feeding cats and dogs gouda cheese and records whether they eat it. Her null hypothesis is that cats and dogs prefer gouda in the same proportions, $H_0: \pi_c = \pi_d$. She wants to show the alternative $H_a: \pi_c > \pi_d$.

In her neighborhood there are 5 cats and 8 dogs nearby. Of the 5 cats, 2 eat the cheese; of the 8 dogs, 2 eat the cheese. We have $\hat{\pi}_c = 0.40$ and $\hat{\pi}_d = 0.25$ for the estimated proportions of cats and dogs that eat gouda cheese. There appears to be some evidence that cats like gouda more than dogs, but is it *significant*?

	eat c		
animal	yes	no	total
cat	2	3	5
dog	2	6	8
total	4	9	13

P-value under H_0 : $\pi_c = \pi_d$

Under the null H_0 we cannot tell the difference between dogs and cats; we only "see" n_{+1} cheese eating animals and n_{+2} non-cheese eaters. If we pick out any $n_{1+}=5$ animals without replacement, then the probability that there are exactly $n_{11}=k$ cheese eaters is hypergeometric:

$$P(n_{11} = k) = \frac{\binom{n_{+1}}{k} \binom{n_{+2}}{n_{1+}-k}}{\binom{n_{++}}{n_{1+}}}.$$

Here, the sample size $n_{1+} = 5$ is fixed, as well as the number of cheese-eaters n_{+1} . Hence, all four marginal totals are fixed.

Restated: We draw n_{1+} balls without replacement from an urn that has n_{+1} white balls (cheese eaters) and n_{+2} black balls (non-cheese eaters). The number of white balls (cheese eaters) in this sample is $n_{11} = k$.

Fisher's exact test p-value

To compute the p-value, we find the probability of seeing sample $\hat{\pi}_c$ and $\hat{\pi}_d$ at least as far apart as what we observed. Fixing the row and column totals, there are three tables that give differences $\hat{\pi}_c - \hat{\pi}_d$ the same or greater than $\hat{\pi}_c - \hat{\pi}_d = 0.15$:

	eat cheese?		1		eat cheese?		1			eat cheese?		
animal	yes	no	total	animal	yes	no	total		animal	yes	no	total
cat	2	3	5	cat	3	2	5		cat	4	1	5
dog	2	6	8	dog	1	7	8		dog	0	8	8
total	4	9	13	total	4	9	13	-	total	4	9	13
$\hat{\pi}_c = 0.40, \hat{\pi}_d = 0.25$			$\hat{\pi}_c$	$\hat{\pi}_c = 0.60, \ \hat{\pi}_d = 0.125$				$\hat{\pi}_c = 0.80, \ \hat{\pi}_d = 0.00$				
$\frac{\left(\begin{array}{c}4\\2\end{array}\right)\left(\begin{array}{c}9\\3\end{array}\right)}{\left(\begin{array}{c}13\\5\end{array}\right)}=0.3916$				$\frac{\left(\begin{array}{c}4\\3\end{array}\right)}{\left(\begin{array}{c}\end{array}\right.}$	1 . 11 . 1				$\frac{\left(\begin{array}{c}4\\4\end{array}\right)\left(\begin{array}{c}9\\1\end{array}\right)}{\left(\begin{array}{c}13\\5\end{array}\right)}=0.0070.$			

The p-value is 0.3916 + 0.1119 + 0.0070 = 0.5105. We do not have evidence that there is an association between type of pet and whether they eat gouda.

SAS code & output

```
data cheese:
input animal$ eat$ count @@;
datalines:
cat ves 2 cat no 3
dog yes 2 dog no 6
proc freq order=data; weight count;
 tables animal*eat:
 exact fisher;
run:
   Fisher's Exact Test
Cell (1,1) Frequency (F) 2
Left-sided Pr <= F 0.8811
Right-sided Pr >= F 0.5105
Table Probability (P) 0.3916
Two-sided Pr \leq P 1.0000
```

An especially nice feature of Fisher's exact test is that it is natural to have one-sided alternatives.

3.7 Extensions...

- Ideas for testing independence, partitioning G^2 , std. Pearson residuals, etc. all generalize to threeway and higher dimensional tables.
- Often only interested in one outcome i.e. one categorical variable is a natural Y. Logistic, Poisson, ordinal regression models useful here. Can also consider continuous predictors.
- If interested in types of conditional dependence in larger dimensional tables, log-linear models (and associated graph methods) useful.
- Often data are not given in the form of a table or counts; see
 p. 101.
- Methods and ideas in this chapter can be recast in modeling framework explored in the rest of the book.