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Chapter 4: Introduction to Generalized Linear Models

Generalized linear models (GLMs) form a very large class that
include many highly used models as special cases: ANOVA,
ANCOVA, regression, logistic regression, Poisson regression,
log-linear models, etc.

By developing the GLM in the abstract, we can consider many
components that are similar across models (fitting techniques,
deviance, residuals, etc).

Each GLM is completely specified by three components: (a) the
distribution of the outcome Yi , (b) the linear predictor ηi , and (c)
the link function g(·).

2 / 32



4.1.1 Model components

(a) Random component is response Y with independent
realizations Y = (Y1, . . . ,YN) from a distribution in a (one
parameter) exponential family:

f (yi |θi) = a(θi)b(yi ) exp[yiQ(θi)].

Members include chi-square, binomial, Poisson, and geometric
distributions.
Q(θi ) is called the natural parameter.
θi may depend on explanatory variables xi = (xi1, . . . , xip).
Two parameter exponential families include gamma, Weibull,
normal, beta, and negative binomial distributions.
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Model components, continued

(b) The systematic components are η = (η1, . . . , ηN) where
ηi =

∑p
j=1 βjxij = β′xi .

Called the linear predictor.
Relates xi to θi via link function.
Most models have an intercept and so often xi1 = 1 and
there are p − 1 actual predictors.

(c) The link function g(·) connects the random Yi and systemic
ηi components. Let µi = E (Yi ). Then ηi = x′iβ = g(µi ).

g(·) is monotone and smooth.
g(m) = m is “identity link.”
The g(·) such that g(µi ) = Q(θi ) is called the canonical link.
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Generalized linear model

The model is

E (Yi) = g−1(xi1β1 + xi2β2 + · · · + xipβp),

for i = 1, . . . ,N, where Yi is distributed according to a
1-parameter exponential family (for now).
g−1(·) is called the inverse link function. Common choices are

1 g(x) = x so g−1(x) = x (identity link)

2 g(x) = log x so g−1(x) = ex (log-link)

3 g(x) = log{x/(1 − x)} so g−1(x) = ex/(1 + ex) (logit link)

4 g(x) = F−1(x) so g−1(x) = F (x) where F (·) is a CDF
(inverse-CDF link)
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4.1.2 Bernoulli response

Let Y ∼ Bern(π) = bin(1, π). Then

p(y) = πy (1 − π)1−y = (1 − π) exp{y log(π/(1 − π))}.

So a(π) = 1 − π, b(y) = 1, Q(π) = log
(

π
1−π

)

. So

g(π) = log
(

π
1−π

)

is the canonical link. g(π) is the log-odds of

Yi = 1, also called the logit of π: logit(π) = log
(

π
1−π

)

.

Using the canonical link we have the GLM relating Yi to
xi = (1, xi1, . . . , xi ,p−1):

Yi ∼ Bern(πi), log

(

πi

1 − πi

)

= β0+xi1β1+· · ·+xi ,p−1βp−1 = x′iβ,

the logistic regression model.
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4.1.3 Poisson response

Let Yi ∼ Pois(µi ). Then

p(y) = e−µµy/y ! = e−µ(1/y !)ey log µ.

So a(µ) = e−µ, b(y) = 1/y !, Q(µ) = log µ. So g(µ) = log µ is the
canonical link.

Using the canonical link we have the GLM relating Yi to xi :

Yi ∼ Pois(µi), log µi = β0 + xi1β1 + · · · + xi ,p−1βp−1,

the Poisson regression model.
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4.1.5 Deviance

For a GLM, let µi = E (Yi ) for i = 1, . . . ,N. The GLM places
structure on the means µ = (µ1, . . . , µN); instead of N parameters
in µ we really only have p: β1, . . . , βp determines µ and data
reduction is obtained. So really, µ = µ(β) in a GLM through
µi = g−1(xiβ).

Here’s the log likelihood in terms of (µ1, . . . , µN):

L(µ; y) =

N
∑

i=1

log p(yi ;µi ).

If we forget about the model (with parameter β) and just “fit”
µ̂i = yi , the observed data, we obtain the largest the likelihood can
be when the µ have no structure at all; we get L(µ̂; y) = L(y; y).
This is the largest the log-likelihood can be, when µ is
unstructured and estimated by plugging in y.
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Deviance GOF statistic

This terrible “model,” called the saturated model, is not useful for
succinctly explaining data or prediction, but rather serves as a
reference point for real models with µi = g−1(β′xi ).

We can compare the fit of a real GLM to the saturated model, or
to other GLMs with additional or fewer predictors, through the
drop in deviance.

Let L(µ(β̂); y) be the log likelihood evaluated at the MLE of β.
The deviance of the model is D = −2[L(µ(β̂); y) − L(y; y)].

Here we are plugging in µ̂i = g−1(β̂
′

xi ) for the first part and
µ̂i = yi for the second.
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Using D for goodness-of-fit

If the sample size N is fixed but the data are recorded in such a way
that each yi gets more observations (this can happen with Poisson

and binomial data), then D
•

∼ χ2
N−p tests H0 : µi = g−1(β′xi )

versus H0 : µi arbitrary. GOF statistic. For example, Yi is the

number of diabetics yi out of ni at three different BMI levels.

A more realistic scenario is that as more data are collected, N

increases. In this case, a rule-of-thumb is to look at D/(N − p);
D/(N − p) > 2 indicates some lack-of-fit.

If D/(N − p) > 2, then we can try modeling the mean more
flexibly. If this does not help then the inclusion of random effects
or the use of quasi-likelihood (a variance fix) can help.
Alternatively, the use of another sampling model can also help; e.g.
negative binomial instead of Poisson.
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4.2 Binary response regression

Let Yi ∼ Bern(πi ). Yi might indicate the presence/absence of a
disease, whether someone has obtained their drivers license or not,
etc.

Through a GLM we wish to relate the probability of “success” to
explanatory covariates xi = (xi1, . . . , xip) through
πi = π(xi ) = g−1(x′iβ). So then,

Yi ∼ Bern(π(xi )),

and E (Yi ) = π(xi ) and var(Yi ) = π(xi )[1 − π(xi )].
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4.2.1 Simplest link, g(x) = x

When g(x) = x , the identity link, we have π(xi ) = β′xi . When
xi = xi is one-dimensional, this reduces to

Yi ∼ Bern(α + βxi ).

When xi large or small, π(xi ) can be less than zero or greater
than one.

Appropriate for a restricted range of xi values.

Can of course be extended to π(xi ) = β′xi where
xi = (1, xi1, . . . , xip).

Can be fit in SAS proc genmod.

12 / 32



Snoring and heart disease

Example: Association between snoring (as measured by a snoring
score) and heart disease. Let s be someone’s snoring score,
s ∈ {0, 2, 4, 5} (see text, p. 121).

Heart disease Proportion Linear Logit
Snoring s yes no yes fit fit
Never 0 24 1355 0.017 0.017 0.021
Occasionally 2 35 603 0.055 0.057 0.044
Nearly every night 4 21 192 0.099 0.096 0.093
Every night 5 30 224 0.118 0.116 0.132

This is fit in proc genmod:

data glm;

input snoring disease total @@;

datalines;

0 24 1379 2 35 638 4 21 213 5 30 254

;

proc genmod; model disease/total = snoring / dist=bin link=identity;

run;

13 / 32



Snoring data, SAS output

The GENMOD Procedure

Model Information

Description Value

Distribution BINOMIAL

Link Function IDENTITY

Dependent Variable DISEASE

Dependent Variable TOTAL

Observations Used 4

Number Of Events 110

Number Of Trials 2484

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 2 0.0692 0.0346

Pearson Chi-Square 2 0.0688 0.0344

Log Likelihood . -417.4960 .

Analysis Of Parameter Estimates

Parameter DF Estimate Std Err ChiSquare Pr>Chi

INTERCEPT 1 0.0172 0.0034 25.1805 0.0001

SNORING 1 0.0198 0.0028 49.9708 0.0001

SCALE 0 1.0000 0.0000 . .

NOTE: The scale parameter was held fixed.
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Interpreting SAS output

The fitted model is

π̂(s) = 0.0172 + 0.0198s.

For every unit increase in snoring score s, the probability of heart
disease increases by about 2%.

The p-values test H0 : α = 0 and H0 : β = 0. The latter is more
interesting and we reject at the α = 0.001 level. The probability of
heart disease is strongly, linearly related to the snoring score.

What do you think that SCALE term is in the output?

Note: P(χ2
2 > 0.0692) ≈ 0.966.
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4.2.3 Logistic regression

Often a fixed change in x has less impact when π(x) is near zero
or one.

Example: Let π(x) be probability of getting an A in a statistics
class and x is the number of hours a week you work on homework.
When x = 0, increasing x by 1 will change your (very small)
probability of an A very little. When x = 4, adding an hour will
change your probability quite a bit. When x = 20, that additional
hour probably wont improve your chances of getting an A much.
You were at essentially π(x) ≈ 1 at x = 10. Of course, this is a
mean model. Individuals will vary.
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logit link

The most widely used nonlinear function to model probabilities is
the canonical, logit link:

logit(πi ) = α + βxi .

Solving for πi and then dropping the subscripts we get the
probability of success (Y = 1) as a function of x :

π(x) =
exp(α + βx)

1 + exp(α + βx)
.

When β > 0 the function increases from 0 to 1; when β < 0 it
decreases. When β = 0 the function is constant for all values of x

and Y is unrelated to x .

The logistic function is logit−1(x) = ex/(1 + ex).
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π(x) for various (α, β)
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Figure: Logistic curves π(x) = eα+βx/(1 + eα+βx) with (α, β) = (0, 1),
(0, 0.4), (−2, 0.4), (−3,−1). What about (α, β) = (log 2, 0)?
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Snoring data

To fit the snoring data to the logistic regression model we use the
same SAS code as before (proc genmod) except specify
LINK=LOGIT and obtain α̂ = −3.87 and β̂ = 0.40 as maximum
likelihood estimates.

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 2 2.8089 1.4045

Pearson Chi-Square 2 2.8743 1.4372

Log Likelihood . -418.8658 .

Analysis Of Parameter Estimates

Parameter DF Estimate Std Err ChiSquare Pr>Chi

INTERCEPT 1 -3.8662 0.1662 541.0562 0.0001

SNORING 1 0.3973 0.0500 63.1236 0.0001

SCALE 0 1.0000 0.0000 . .

NOTE: The scale parameter was held fixed.

You can also use proc logistic to fit binary regression models.

proc logistic; model disease/total = snoring;
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SAS output, proc logistic
The LOGISTIC Procedure

Response Variable (Events): DISEASE

Response Variable (Trials): TOTAL

Number of Observations: 4

Link Function: Logit

Response Profile

Ordered Binary

Value Outcome Count

1 EVENT 110

2 NO EVENT 2374

Model Fitting Information and Testing Global Null Hypothesis BETA=0

Intercept

Intercept and

Criterion Only Covariates Chi-Square for Covariates

AIC 902.827 841.732 .

-2 LOG L 900.827 837.732 63.096 with 1 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized Odds

Variable DF Estimate Error Chi-Square Chi-Square Estimate Ratio

INTERCPT 1 -3.8662 0.1662 541.0562 0.0001 . .

SNORING 1 0.3973 0.0500 63.1237 0.0001 0.384807 1.488

Association of Predicted Probabilities and Observed Responses

Concordant = 58.6% Somers’ D = 0.419

Discordant = 16.7% Gamma = 0.556

Tied = 24.7% Tau-a = 0.035

(261140 pairs) c = 0.709
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Interpreting SAS output

The fitted model is then

π̂(x) =
exp(−3.87 + 0.40x)

1 + exp(−3.87 + 0.40x)
.

As before, we reject H0 : β = 0; there is a strong, positive
association between snoring score and developing heart disease.

Figure 4.1 (p. 119) plots the fitted linear & logistic mean functions
for these data. Which model provides better fit? (Fits at the 4 s

values are in the original data table with raw proportions.)

Note: P(χ2
2 > 2.8089) ≈ 0.246.
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4.2.4 What is β when x = 0 or 1?

Consider a general link g{π(x)} = α + βx .

Say x = 0, 1. Then we have a 2 × 2 contingency table.

Y = 1 Y = 0
X = 1 π(1) 1 − π(1)
X = 0 π(0) 1 − π(0)

Identity link, π(x) = α + βx : β = π(1) − π(0), the difference
in proportions.

Log link, π(x) = eα+βx : eβ = π(1)/π(0) is the relative risk.

Logit link, π(x) = eα+βx/(1 + eα+βx):
eβ = [π(1)/(1 − π(1))]/[π(0)/(1 − π(0))] is the odds ratio.
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4.2.5 Inverse CDF links*

The logistic regression model can be rewritten as

π(x) = F (α + βx),

where F (x) = ex/(1 + ex ) is the CDF of a standard logistic
random variable L with PDF

L ∼ f (x) = ex/(1 + ex)2.

In practice, any CDF F (·) can be used as g−1(·). Common choices
are g−1(x) = Φ(x) =

∫ x

−∞
(2π)−0.5e−0.5z2

dz , yielding a probit

regression model (LINK=PROBIT) and
g−1(x) = 1 − exp(− exp(x)) (LINK=CLL), the complimentary
log-log link.

Alternatively, F (·) may be left unspecified and estimated from data
using nonparametric methods. Bayesian approaches include using
the Dirichlet process and Polya trees. Q: How is β interpreted?
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Comments

There’s several links we can consider; we can also toss in
quadratic terms in xi , etc. How to choose? Diagnostics?
Model fit statistics?

We haven’t discussed much of the output from PROC
LOGISTIC; what do you think those statistics are? Gamma?
AIC?

For snoring data, D = 0.07 for identity versus D = 2.8 for
logit links. Which model fits better? The df = 4 − 2 = 2
here. What is the 4? What is the 2? The corresponding
p-values are 0.97 and 0.25. The log link yields D = 3.21 and
p = 0.2, the probit D = 1.87 and p = 0.4, and CLL D = 3.0
and p = 0.22. Which link would you pick? How would you
interpret β? Are any links significantly inadequate?

24 / 32



4.3.1 Poisson loglinear model

We have
Yi ∼ Pois(µi ).

The log link log(µi) = x′iβ is most common, with one predictor x

we have
Yi ∼ Pois(µi), µi = eα+βxi ,

or simply Yi ∼ Pois(eα+βxi ).

The mean satisfies
µ(x) = eα+βx .

Then
µ(x + 1) = eα+β(x+1) = eα+βxeβ = µ(x)eβ .

Increasing x by one increases the mean by a factor of eβ.

25 / 32



Crab mating

Note that the log maps the positive rate µ into the real numbers
R, where α + βx lives. This is also the case for the logit link for
binary regression, which maps π into the real numbers R.

Example: Crab mating
Table 4.3 (p. 123) has data on female horseshoe crabs.

C = color (1,2,3,4=light medium, medium, dark medium,
dark).

S = spine condition (1,2,3=both good, one worn or broken,
both worn or broken).

W = carapace width (cm).

Wt = weight (kg).

Sa = number of satellites (additional male crabs besides her
nest-mate husband) nearby.
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Width as predictor

We initially examine width as a predictor for the number of
satellites. Figure 4.3 doesn’t tell us much. Aggregating over width
categories in Figure 4.4 helps & shows an approximately linear
trend.
We’ll fit three models using proc genmod.

Sai ∼ Pois(eα+βWi ),

Sai ∼ Pois(α + βWi ),

and
Sai ∼ Pois(eα+β1Wi+β2W

2
i ).
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SAS code:

data crab; input color spine width satell weight;

weight=weight/1000; color=color-1;

width_sq=width*width;

datalines;

3 3 28.3 8 3050

4 3 22.5 0 1550

...et cetera...

5 3 27.0 0 2625

3 2 24.5 0 2000

;

proc genmod;

model satell = width / dist=poi link=log ;

proc genmod;

model satell = width / dist=poi link=identity ;

proc genmod;

model satell = width width_sq / dist=poi link=log ;

run;
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Sai ∼ Pois(eα+βWi )

The GENMOD Procedure

Model Information

Data Set WORK.CRAB

Distribution Poisson

Link Function Log

Dependent Variable satell

Number of Observations Read 173

Number of Observations Used 173

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 171 567.8786 3.3209

Scaled Deviance 171 567.8786 3.3209

Log Likelihood 68.4463

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -3.3048 0.5422 -4.3675 -2.2420 37.14 <.0001

width 1 0.1640 0.0200 0.1249 0.2032 67.51 <.0001

Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

29 / 32



Sai ∼ Pois(α + βWi)

The GENMOD Procedure

Model Information

Data Set WORK.CRAB

Distribution Poisson

Link Function Identity

Dependent Variable satell

Number of Observations Read 173

Number of Observations Used 173

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 171 557.7083 3.2615

Scaled Deviance 171 557.7083 3.2615

Log Likelihood 73.5314

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -11.5321 1.5104 -14.4924 -8.5717 58.29 <.0001

width 1 0.5495 0.0593 0.4333 0.6657 85.89 <.0001

Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.
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Sai ∼ Pois(eα+β1Wi+β2W
2
i )

The GENMOD Procedure

Model Information

Data Set WORK.CRAB

Distribution Poisson

Link Function Log

Dependent Variable satell

Number of Observations Read 173

Number of Observations Used 173

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 170 558.2359 3.2837

Scaled Deviance 170 558.2359 3.2837

Log Likelihood 73.2676

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -19.6525 5.6374 -30.7017 -8.6034 12.15 0.0005

width 1 1.3660 0.4134 0.5557 2.1763 10.92 0.0010

width_sq 1 -0.0220 0.0076 -0.0368 -0.0071 8.44 0.0037

Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.
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Comments

Write down the fitted equation for the Poisson mean from
each model.

How are the regression effects interpreted in each case?

How would you pick among models?

Are there any potential problems with any of the models?
How about prediction?

Is the requirement for D to have a χ2
N−p distribution met

here? How might you change the data format so that it is?
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