Sections 4.1, 4.2, 4.3

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 770: Categorical Data Analysis

Generalized linear models (GLMs) form a very large class that include many highly used models as special cases: ANOVA, ANCOVA, regression, logistic regression, Poisson regression, log-linear models, etc.

By developing the GLM in the abstract, we can consider many components that are similar across models (fitting techniques, deviance, residuals, etc).

Each GLM is completely specified by three components: (a) the distribution of the outcome Y_i , (b) the linear predictor η_i , and (c) the link function $g(\cdot)$.

4.1.1 Model components

(a) Random component is response Y with independent realizations $\mathbf{Y} = (Y_1, \dots, Y_N)$ from a distribution in a (one parameter) exponential family:

$$f(y_i|\theta_i) = a(\theta_i)b(y_i)\exp[y_iQ(\theta_i)].$$

- Members include chi-square, binomial, Poisson, and geometric distributions.
- $Q(\theta_i)$ is called the *natural parameter*.
- θ_i may depend on explanatory variables $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})$.
- Two parameter exponential families include gamma, Weibull, normal, beta, and negative binomial distributions.

Model components, continued

(b) The systematic components are $\boldsymbol{\eta} = (\eta_1, \dots, \eta_N)$ where $\eta_i = \sum_{j=1}^p \beta_j x_{ij} = \boldsymbol{\beta}' \mathbf{x}_i$.

- Called the *linear predictor*.
- Relates \mathbf{x}_i to θ_i via link function.
- Most models have an intercept and so often $x_{i1} = 1$ and there are p 1 actual predictors.

(c) The link function $g(\cdot)$ connects the random Y_i and systemic η_i components. Let $\mu_i = E(Y_i)$. Then $\eta_i = \mathbf{x}'_i \boldsymbol{\beta} = g(\mu_i)$.

- $g(\cdot)$ is monotone and smooth.
- g(m) = m is "identity link."
- The $g(\cdot)$ such that $g(\mu_i) = Q(\theta_i)$ is called the *canonical link*.

The model is

$$E(Y_i) = g^{-1}(x_{i1}\beta_1 + x_{i2}\beta_2 + \cdots + x_{ip}\beta_p),$$

for i = 1,..., N, where Y_i is distributed according to a 1-parameter exponential family (for now).
g⁻¹(·) is called the *inverse link function*. Common choices are
g(x) = x so g⁻¹(x) = x (identity link)
g(x) = log x so g⁻¹(x) = e^x (log-link)
g(x) = log{x/(1 - x)} so g⁻¹(x) = e^x/(1 + e^x) (logit link)
g(x) = F⁻¹(x) so g⁻¹(x) = F(x) where F(·) is a CDF (inverse-CDF link)

4.1.2 Bernoulli response

Let $Y \sim \text{Bern}(\pi) = \text{bin}(1,\pi)$. Then $p(y) = \pi^{y}(1-\pi)^{1-y} = (1-\pi)\exp\{y\log(\pi/(1-\pi))\}.$ So $a(\pi) = 1 - \pi$, b(y) = 1, $Q(\pi) = \log(\frac{\pi}{1-\pi})$. So $g(\pi) = \log\left(\frac{\pi}{1-\pi}\right)$ is the canonical link. $g(\pi)$ is the log-odds of $Y_i = 1$, also called the logit of π : logit $(\pi) = \log\left(\frac{\pi}{1-\pi}\right)$. Using the canonical link we have the GLM relating Y_i to $\mathbf{x}_i = (1, x_{i1}, \dots, x_{i, n-1})$:

$$Y_i \sim \text{Bern}(\pi_i), \ \log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + x_{i1}\beta_1 + \dots + x_{i,p-1}\beta_{p-1} = \mathbf{x}'_i \boldsymbol{\beta},$$

the logistic regression model.

Let $Y_i \sim \text{Pois}(\mu_i)$. Then

$$p(y) = e^{-\mu} \mu^{y} / y! = e^{-\mu} (1/y!) e^{y \log \mu}$$

So $a(\mu) = e^{-\mu}$, b(y) = 1/y!, $Q(\mu) = \log \mu$. So $g(\mu) = \log \mu$ is the canonical link.

Using the canonical link we have the GLM relating Y_i to x_i :

$$Y_i \sim \mathsf{Pois}(\mu_i), \ \log \mu_i = \beta_0 + x_{i1}\beta_1 + \cdots + x_{i,p-1}\beta_{p-1},$$

the Poisson regression model.

4.1.5 Deviance

For a GLM, let $\mu_i = E(Y_i)$ for i = 1, ..., N. The GLM places *structure* on the means $\mu = (\mu_1, ..., \mu_N)$; instead of N parameters in μ we really only have $p: \beta_1, ..., \beta_p$ determines μ and data reduction is obtained. So really, $\mu = \mu(\beta)$ in a GLM through $\mu_i = g^{-1}(\mathbf{x}_i\beta)$.

Here's the log likelihood in terms of (μ_1, \ldots, μ_N) :

$$L(\boldsymbol{\mu}; \mathbf{y}) = \sum_{i=1}^{N} \log p(y_i; \mu_i).$$

If we forget about the model (with parameter β) and just "fit" $\hat{\mu}_i = y_i$, the observed data, we obtain the largest the likelihood can be when the μ have no structure at all; we get $L(\hat{\mu}; \mathbf{y}) = L(\mathbf{y}; \mathbf{y})$. This is the largest the log-likelihood can be, when μ is unstructured and estimated by plugging in \mathbf{y} .

This terrible "model," called the *saturated* model, is not useful for succinctly explaining data or prediction, but rather serves as a reference point for real models with $\mu_i = g^{-1}(\beta' \mathbf{x}_i)$.

We can compare the fit of a real GLM to the saturated model, or to other GLMs with additional or fewer predictors, through the *drop in deviance*.

Let $L(\mu(\hat{\beta}); \mathbf{y})$ be the log likelihood evaluated at the MLE of β . The *deviance* of the model is $D = -2[L(\mu(\hat{\beta}); \mathbf{y}) - L(\mathbf{y}; \mathbf{y})]$.

Here we are plugging in $\hat{\mu}_i = g^{-1}(\hat{\beta}' \mathbf{x}_i)$ for the first part and $\hat{\mu}_i = y_i$ for the second.

If the sample size N is fixed but the data are recorded in such a way that each y_i gets more observations (this can happen with Poisson and binomial data), then $D \stackrel{\bullet}{\sim} \chi^2_{N-p}$ tests $H_0 : \mu_i = g^{-1}(\beta' \mathbf{x}_i)$ versus $H_0 : \mu_i$ arbitrary. GOF statistic. For example, Y_i is the

number of diabetics y_i out of n_i at three different BMI levels.

A more realistic scenario is that as more data are collected, N increases. In this case, a rule-of-thumb is to look at D/(N-p); D/(N-p) > 2 indicates some lack-of-fit.

If D/(N-p) > 2, then we can try modeling the mean more flexibly. If this does not help then the inclusion of random effects or the use of quasi-likelihood (a variance fix) can help. Alternatively, the use of another sampling model can also help; e.g. negative binomial instead of Poisson. Let $Y_i \sim \text{Bern}(\pi_i)$. Y_i might indicate the presence/absence of a disease, whether someone has obtained their drivers license or not, etc.

Through a GLM we wish to relate the probability of "success" to explanatory covariates $\mathbf{x}_i = (x_{i1}, \ldots, x_{ip})$ through $\pi_i = \pi(\mathbf{x}_i) = g^{-1}(\mathbf{x}'_i\beta)$. So then,

 $Y_i \sim \text{Bern}(\pi(\mathbf{x}_i)),$

and $E(Y_i) = \pi(\mathbf{x}_i)$ and $\operatorname{var}(Y_i) = \pi(\mathbf{x}_i)[1 - \pi(\mathbf{x}_i)]$.

When g(x) = x, the identity link, we have $\pi(\mathbf{x}_i) = \beta' \mathbf{x}_i$. When $\mathbf{x}_i = x_i$ is one-dimensional, this reduces to

$$Y_i \sim \mathsf{Bern}(lpha + eta x_i).$$

- When x_i large or small, $\pi(x_i)$ can be less than zero or greater than one.
- Appropriate for a restricted range of x_i values.
- Can of course be extended to $\pi(\mathbf{x}_i) = \beta' \mathbf{x}_i$ where $\mathbf{x}_i = (1, x_{i1}, \dots, x_{ip})$.
- Can be fit in SAS proc genmod.

Example: Association between snoring (as measured by a snoring score) and heart disease. Let *s* be someone's snoring score, $s \in \{0, 2, 4, 5\}$ (see text, p. 121).

		Hear	t disease	Proportion	Linear	Logit
Snoring	5	yes	no	yes	fit	fit
Never	0	24	1355	0.017	0.017	0.021
Occasionally	2	35	603	0.055	0.057	0.044
Nearly every night	4	21	192	0.099	0.096	0.093
Every night	5	30	224	0.118	0.116	0.132

This is fit in proc genmod:

```
data glm;
input snoring disease total @@;
datalines;
0 24 1379 2 35 638 4 21 213 5 30 254
;
proc genmod; model disease/total = snoring / dist=bin link=identity;
run;
```

Snoring data, SAS output

The GENMOD Procedure

Model Information

Description	Value
Distribution	BINOMIAL
Link Function	IDENTITY
Dependent Variable	DISEASE
Dependent Variable	TOTAL
Observations Used	4
Number Of Events	110
Number Of Trials	2484

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	2	0.0692	0.0346
Pearson Chi-Square	2	0.0688	0.0344
Log Likelihood		-417.4960	

Analysis Of Parameter Estimates

Parameter	DF	Estimate	Std Err	ChiSquare	Pr>Chi
INTERCEPT	1	0.0172	0.0034	25.1805	0.0001
SNORING	1	0.0198	0.0028	49.9708	0.0001
SCALE	0	1.0000	0.0000		

The fitted model is

 $\hat{\pi}(s) = 0.0172 + 0.0198s.$

For every unit increase in snoring score s, the probability of heart disease increases by about 2%.

The *p*-values test $H_0: \alpha = 0$ and $H_0: \beta = 0$. The latter is more interesting and we reject at the $\alpha = 0.001$ level. The probability of heart disease is strongly, *linearly* related to the snoring score.

What do you think that SCALE term is in the output?

Note: $P(\chi_2^2 > 0.0692) \approx 0.966$.

Often a fixed change in x has less impact when $\pi(x)$ is near zero or one.

Example: Let $\pi(x)$ be probability of getting an A in a statistics class and x is the number of hours a week you work on homework. When x = 0, increasing x by 1 will change your (very small) probability of an A very little. When x = 4, adding an hour will change your probability quite a bit. When x = 20, that additional hour probably wont improve your chances of getting an A much. You were at essentially $\pi(x) \approx 1$ at x = 10. Of course, this is a *mean* model. Individuals will vary.

logit link

The most widely used nonlinear function to model probabilities is the canonical, logit link:

$$logit(\pi_i) = \alpha + \beta x_i.$$

Solving for π_i and then dropping the subscripts we get the probability of success (Y = 1) as a function of x:

$$\pi(x) = rac{\exp(lpha + eta x)}{1 + \exp(lpha + eta x)}.$$

When $\beta > 0$ the function increases from 0 to 1; when $\beta < 0$ it decreases. When $\beta = 0$ the function is constant for all values of x and Y is unrelated to x.

The logistic function is $\text{logit}^{-1}(x) = e^x/(1+e^x)$.

$\pi(x)$ for various (α, β)

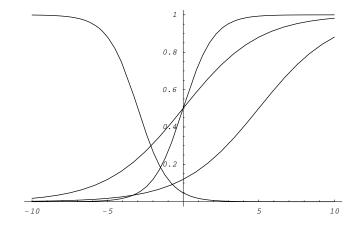


Figure: Logistic curves $\pi(x) = e^{\alpha+\beta x}/(1+e^{\alpha+\beta x})$ with $(\alpha,\beta) = (0,1)$, (0,0.4), (-2,0.4), (-3,-1). What about $(\alpha,\beta) = (\log 2, 0)$?

Snoring data

To fit the snoring data to the logistic regression model we use the same SAS code as before (proc genmod) except specify LINK=LOGIT and obtain $\hat{\alpha} = -3.87$ and $\hat{\beta} = 0.40$ as maximum likelihood estimates.

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	2	2.8089	1.4045
Pearson Chi-Square	2	2.8743	1.4372
Log Likelihood		-418.8658	

Analysis Of Parameter Estimates

Parameter	DF	Estimate	Std Err	ChiSquare	Pr>Chi
INTERCEPT	1	-3.8662	0.1662	541.0562	0.0001
SNORING	1	0.3973	0.0500	63.1236	0.0001
SCALE	0	1.0000	0.0000		

NOTE: The scale parameter was held fixed.

You can also use proc logistic to fit binary regression models.

proc logistic; model disease/total = snoring;

SAS output, proc logistic

The LOGISTIC Procedure

Response Variable (Events): DISEASE Response Variable (Trials): TOTAL Number of Observations: 4 Link Function: Logit

Response Profile

Ordered	Binary	
Value	Outcome	Count
1	EVENT	110
2	NO EVENT	2374

Model Fitting Information and Testing Global Null Hypothesis BETA=0

		Intercept	
	Intercept	and	
Criterion	Only	Covariates	Chi-Square for Covariates
AIC	902.827	841.732	
-2 LOG L	900.827	837.732	63.096 with 1 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

		Parameter	Standard	Wald	Pr >	Standardized	Odds
Variable	DF	Estimate	Error	Chi-Square	Chi-Square	Estimate	Ratio
INTERCPT	1	-3.8662	0.1662	541.0562	0.0001		
SNORING	1	0.3973	0.0500	63.1237	0.0001	0.384807	1.488

Association of Predicted Probabilities and Observed Responses

Concordant = 58.6%	Somers' D	= 0.419
Discordant = 16.7%	Gamma	= 0.556
Tied = 24.7%	Tau-a	= 0.035
(261140 pairs)	с	= 0.709

The fitted model is then

$$\hat{\pi}(x) = rac{\exp(-3.87 + 0.40x)}{1 + \exp(-3.87 + 0.40x)}.$$

As before, we reject H_0 : $\beta = 0$; there is a strong, positive association between snoring score and developing heart disease.

Figure 4.1 (p. 119) plots the fitted linear & logistic mean functions for these data. Which model provides better fit? (Fits at the 4 s values are in the original data table with raw proportions.)

Note: $P(\chi_2^2 > 2.8089) \approx 0.246$.

Consider a general link $g\{\pi(x)\} = \alpha + \beta x$.

Say x = 0, 1. Then we have a 2×2 contingency table.

	Y = 1	Y = 0
X = 1	$\pi(1)$	$1-\pi(1)$
X = 0	$\pi(0)$	$1-\pi(0)$

- Identity link, π(x) = α + βx: β = π(1) − π(0), the difference in proportions.
- Log link, $\pi(x) = e^{\alpha + \beta x}$: $e^{\beta} = \pi(1)/\pi(0)$ is the relative risk.
- Logit link, $\pi(x) = e^{\alpha + \beta x} / (1 + e^{\alpha + \beta x})$: $e^{\beta} = [\pi(1)/(1 - \pi(1))] / [\pi(0)/(1 - \pi(0))]$ is the odds ratio.

4.2.5 Inverse CDF links*

The logistic regression model can be rewritten as

$$\pi(\mathbf{x}) = F(\alpha + \beta \mathbf{x}),$$

where $F(x) = e^x/(1 + e^x)$ is the CDF of a standard logistic random variable L with PDF

$$L \sim f(x) = e^x/(1+e^x)^2.$$

In practice, any CDF $F(\cdot)$ can be used as $g^{-1}(\cdot)$. Common choices are $g^{-1}(x) = \Phi(x) = \int_{-\infty}^{x} (2\pi)^{-0.5} e^{-0.5z^2} dz$, yielding a *probit* regression model (LINK=PROBIT) and $g^{-1}(x) = 1 - \exp(-\exp(x))$ (LINK=CLL), the complimentary log-log link.

Alternatively, $F(\cdot)$ may be left unspecified and estimated from data using nonparametric methods. Bayesian approaches include using the Dirichlet process and Polya trees. Q: How is β interpreted?

- There's several links we can consider; we can also toss in quadratic terms in x_i , etc. How to choose? Diagnostics? Model fit statistics?
- We haven't discussed much of the output from PROC LOGISTIC; what do you think those statistics are? Gamma? AIC?
- For snoring data, D = 0.07 for identity versus D = 2.8 for logit links. Which model fits better? The df = 4 2 = 2 here. What is the 4? What is the 2? The corresponding *p*-values are 0.97 and 0.25. The log link yields D = 3.21 and p = 0.2, the probit D = 1.87 and p = 0.4, and CLL D = 3.0 and p = 0.22. Which link would you pick? How would you interpret β ? Are any links significantly inadequate?

4.3.1 Poisson loglinear model

We have

$$Y_i \sim \mathsf{Pois}(\mu_i).$$

The log link $log(\mu_i) = \mathbf{x}'_i \boldsymbol{\beta}$ is most common, with one predictor x we have

$$Y_i \sim \mathsf{Pois}(\mu_i), \ \ \mu_i = \mathrm{e}^{lpha + eta x_i},$$

or simply $Y_i \sim \text{Pois}(e^{\alpha + \beta x_i})$.

The mean satisfies

$$\mu(x)=e^{\alpha+\beta x}.$$

Then

$$\mu(x+1) = e^{\alpha+\beta(x+1)} = e^{\alpha+\beta x}e^{\beta} = \mu(x)e^{\beta}.$$

Increasing x by one increases the mean by a factor of e^{β} .

Crab mating

Note that the log maps the positive rate μ into the real numbers \mathbb{R} , where $\alpha + \beta x$ lives. This is also the case for the logit link for binary regression, which maps π into the real numbers \mathbb{R} .

Example: Crab mating Table 4.3 (p. 123) has data on female horseshoe crabs.

- C = color (1,2,3,4=light medium, medium, dark medium, dark).
- S = spine condition (1,2,3=both good, one worn or broken, both worn or broken).
- W = carapace width (cm).
- Wt = weight (kg).
- Sa = number of satellites (additional male crabs besides her nest-mate husband) nearby.

We initially examine width as a predictor for the number of satellites. Figure 4.3 doesn't tell us much. Aggregating over width categories in Figure 4.4 helps & shows an approximately linear trend.

We'll fit three models using proc genmod.

 $Sa_i \sim \mathsf{Pois}(e^{\alpha + \beta W_i}),$ $Sa_i \sim \mathsf{Pois}(\alpha + \beta W_i),$

and

$$Sa_i \sim \mathsf{Pois}(e^{\alpha + \beta_1 W_i + \beta_2 W_i^2}).$$

```
data crab; input color spine width satell weight;
   weight=weight/1000; color=color-1;
   width_sq=width*width;
datalines;
3 3 28.3 8 3050
4 3 22.5 0 1550
...et cetera...
5 3 27.0 0 2625
3 2 24.5 0 2000
proc genmod;
   model satell = width / dist=poi link=log ;
proc genmod;
   model satell = width / dist=poi link=identity ;
proc genmod;
   model satell = width width_sq / dist=poi link=log ;
run;
```

 $Sa_i \sim \mathsf{Pois}(e^{lpha + eta W_i})$

The GENMOD Procedure

Model Information

Data Set	WORK.CRAB
Distribution	Poisson
Link Function	Log
Dependent Variable	satell

Number	of	Observations	Read	173
Number	of	Observations	Used	173

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	171	567.8786	3.3209
Scaled Deviance	171	567.8786	3.3209
Log Likelihood		68.4463	

Analysis Of Parameter Estimates

Parameter	Parameter DF Estim		Standard er DF Estimate Error			Wald 95% Confidence Limits		Chi- Square	Pr > ChiSq	
Intercept	1	-3.3048	0.5422	-4.3675	-2.2420	37.14	<.0001			
width	1	0.1640	0.0200	0.1249	0.2032	67.51	<.0001			
Scale	0	1.0000	0.0000	1.0000	1.0000					

 $Sa_i \sim Pois(\alpha + \beta W_i)$

The GENMOD Procedure

Model Information

Data Set	WORK.CRAB
Distribution	Poisson
Link Function	Identity
Dependent Variable	satell

Number	of	Observations	Read	173
Number	of	Observations	Used	173

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	171	557,7083	3,2615
Deviance	1/1	337.7003	0.2010
Scaled Deviance	171	557.7083	3.2615
Log Likelihood		73.5314	

Analysis Of Parameter Estimates

Parameter DF Es		Standar DF Estimate Erro		···· · · · · · · · · · · · · · · · · ·		Chi- Square	Pr > ChiSq	
Intercept	1	-11.5321	1.5104	-14.4924	-8.5717	58.29	<.0001	
width	1	0.5495	0.0593	0.4333	0.6657	85.89	<.0001	
Scale	0	1.0000	0.0000	1.0000	1.0000			

 $Sa_i \sim \mathsf{Pois}(e^{\alpha + \beta_1 W_i + \beta_2 W_i^2})$

The GENMOD Procedure

Model Information

Data Set	WORK.CRAB
Distribution	Poisson
Link Function	Log
Dependent Variable	satell

Number	of	Observations	Read	173
Number	of	Observations	Used	173

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	170	558.2359	3.2837
Scaled Deviance	170	558.2359	3.2837
Log Likelihood		73.2676	

Analysis Of Parameter Estimates

Parameter	DF	Estimate	Standard Error	Wald 95% (Lim:	Confidence its	Chi- Square	Pr > ChiSq
Intercept	1	-19.6525	5.6374	-30.7017	-8.6034	12.15	0.0005
width	1	1.3660	0.4134	0.5557	2.1763	10.92	0.0010
width_sq	1	-0.0220	0.0076	-0.0368	-0.0071	8.44	0.0037
Scale	0	1.0000	0.0000	1.0000	1.0000		

- Write down the fitted equation for the Poisson mean from each model.
- How are the regression effects interpreted in each case?
- How would you pick among models?
- Are there any potential problems with any of the models? How about prediction?
- Is the requirement for D to have a \(\chi_{N-p}^2\) distribution met here? How might you change the data format so that it is?