Sections 4.3-4.7

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 770: Categorical Data Analysis

4.3.3 Overdispersion for Poisson GLMs

If data are truly Poisson, then we should have roughly $E(Y_i) = \text{var}(Y_i) = \mu_i$. Data can be grouped into like categories and this can be informally checked.

For the horseshoe crab data we have the following:

Width (cm)	Sample mean	Sample variance
< 23.25	1.0	2.8
23.25 - 24.25	1.4	8.9
24.25 - 25.25	2.4	6.5
25.25 - 26.25	2.7	11.4
26.25 - 27.25	2.9	6.7
27.25 - 28.25	3.9	8.9
28.25 - 29.25	3.9	16.9
> 29.25	5.1	8.3

Overdispersion

The sample variance tends to be 2-3 times as much as the mean. This is an example of overdispersion. There is greater variability in the data than we expect under our sampling model.

Fixes:

- Find another sampling model!
- Include other important, explanatory covariates.
- Random effects as a proxy to unknown, latent covariates.
- Quasi-likelihood approach.

We'll explore a common approach to the first fix above...

4.3.4 Negative binomial regression

A sampling model that includes another parameter allows some separation between the mean and variance. If $Y \sim \text{negbin}(k,\mu)$ then

$$p(y) = \frac{\Gamma(y+k)}{\Gamma(k)\Gamma(y+1)} \left(\frac{k}{\mu+k}\right)^k \left(1 - \frac{k}{\mu+k}\right)^y \text{ for } y = 0, 1, 2, 3, \dots$$

Then

$$E(Y) = \mu$$
 and $var(Y) = \mu + \mu^2/k$.

As $k \to \infty$ the Poisson distribution is obtained.

Here, the variance *increases* with the mean; is that appropriate for the crab data? Book looks at crab data on p. 127.

Another modeling approach: adding a random effect for each crab, coming up toward the end of the semester.

4.4 Mean, variance, & likelihood for GLMs*

A two parameter exponential family includes a dispersion parameter ϕ :

$$f(y_i|\theta_i,\phi) = \exp\{[y_i\theta_i - b(\theta_i)]/a(\phi) + c(y_i,\phi)\}.$$

This includes binomial, Poisson, normal, and many others.

Let $L_i = \log f(y_i; \theta_i, \phi)$. This is the contribution of the i^{th} observation to the likelihood in terms of θ_i and ϕ .

Then

$$L(\boldsymbol{\theta}, \phi) = \sum_{i=1}^{N} L_i = \sum_{i=1}^{N} \log f(y_i; \theta_i, \phi),$$

where

$$L_i = [y_i \theta_i - b(\theta_i)]/a(\phi) + c(y_i, \phi).$$

Likelihood equations

Then some work gives us

$$\mu_i = E(Y_i) = b'(\theta_i)$$
 and $var(Y_i) = b''(\theta_i)a(\phi)$.

The model imposes $\mu_i = b'(\theta_i) = g^{-1}(\mathbf{x}_i'\boldsymbol{\beta})$. The *N*-dimensional $\boldsymbol{\mu}$, or equivalently $\boldsymbol{\theta}$, is reduced to the *p*-dimensional $\boldsymbol{\beta}$ (and $\boldsymbol{\phi}$ in a 2-parameter family). Then

$$L(\beta,\phi) = \sum_{i=1}^{N} \left[\frac{y_i(b')^{-1}(g^{-1}(\mathbf{x}_i'\beta)) - b((b')^{-1}(g^{-1}(\mathbf{x}_i'\beta)))}{a(\phi)} + c(y_i,\phi) \right].$$

The MLEs $\hat{\beta}$ and $\hat{\phi}$ are found by taking first derivatives of this, setting equal to zero, and solving (pp. 133-135).

Things simplify when using the canonical link.

Estimated covariance of β

The asymptotic covariance matrix for $\hat{\boldsymbol{\beta}}$ is the inverse of the fisher information matrix, $\operatorname{cov}(\hat{\boldsymbol{\beta}})$. This is a function of the unknown $\boldsymbol{\beta}$ and ϕ , and in practice we just plug in the MLE values $\hat{\boldsymbol{\beta}}$ and $\hat{\phi}$ yielding $\widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}})$.

Section 4.4.3 shows how Poisson and binomial GLMs fit into the general exponential family form and specifies corresponding $b(\theta_i)$, $a(\phi)$, and $c(y_i, \phi)$.

Section 4.4.9 carries out computations leading to $\widehat{\text{cov}}(\hat{\beta})$ in the Poisson regression model with a log link.

4.5.1 Deviance and GOF

For now assume we're able to get $\hat{\beta}$. Anyway, we are able to, in SAS or R!

Recall that the saturated model estimates the N μ_i s with the N y_i s, providing perfect fit. This model does not reduce data, provide a means for prediction for arbitrary covariate values \mathbf{x} , allow for meaningful hypotheses to be tested, etc.

However, we can use the saturated model to check the fit of a "real" GLM.

If, the sample size is fixed at N, but data are collected so that counts y_i increase in each of the N strata, then $G^2 = -2\log\mathcal{L}(\mu(\hat{\beta}), \hat{\phi}_r; \mathbf{y}) - \log\mathcal{L}(\mathbf{y}, \hat{\phi}_f; \mathbf{y})]$ is the LRT statistic for testing $H_0: g(\mu_i) = \mathbf{x}_i'\beta$ relative to the alternative that the means μ are unstructured.

Scaled deviance

 ${\it G}^2 \sim \chi^2_{\it N-p-1}$ if data are collected appropriately using general LRT theory.

In Poisson and binomial regression models $a(\phi)=1$, i.e. there is no dispersion parameter, and this LRT statistic is equal to the model deviance as described last time, i.e. $D=G^2$.

When there is a dispersion parameter ϕ (e.g. normal, negative binomial, or gamma regression models), then G^2 is called the *scaled deviance*; see top, p. 137.

You can either compare G^2 to a χ^2_{N-p-1} distribution to formally assess model fit, or else compare $G^2/(N-p)$ to 2 as before.

4.5.6 Residuals for GLMs

Residuals indicate where model fit is inadequate.

The deviance residual d_i is defined in such a way that $\sum_{i=1}^{N} d_i^2 = D$, see p. 141.

The Pearson residual is given by $e_i = \frac{y_i - \hat{\mu}_i}{\sqrt{\widehat{\text{var}}(Y_i)}}$. These have variance < 1. The standardized Pearson residuals r_i properly standardize the residual to have variance one and in large samples are N(0,1) if the model holds. This means reasonably large n_i for binomial data and reasonably large counts for Poisson data. So residuals $|r_i| > 3$ show rather extreme lack of fit for (\mathbf{x}_i, Y_i) according to the model.

Residuals can be plotted versus predictors or against the linear predictor $\hat{\eta}_i = \mathbf{x}_i' \hat{\boldsymbol{\beta}}$ to assess systematic departures from model assumptions.

Note: $X^2 = \sum_{i=1}^N e_i^2 \stackrel{\bullet}{\sim} \chi_{N-p}^2$ when $H_0: g(\mu_i) = \mathbf{x}_i' \boldsymbol{\beta}$ is true and N is fixed. Called Pearson GOF statistic.

4.6 How to get the estimates?

Newton-Raphson in one dimension: Say we want to find where f(x) = 0 for differentiable f(x). Let x_0 be such that $f(x_0) = 0$. Taylor's theorem tells us

$$f(x_0) \approx f(x) + f'(x)(x_0 - x).$$

Plugging in $f(x_0) = 0$ and solving for x_0 we get $\hat{x}_0 = x - \frac{f(x)}{f'(x)}$. Starting at an x near x_0 , \hat{x}_0 should be closer to x_0 than x was. Let's iterate this idea t times:

$$x^{(t+1)} = x^{(t)} - \frac{f(x^{(t)})}{f'(x^{(t)})}.$$

Eventually, if things go right, $x^{(t)}$ should be close to x_0 .

Matrix version of Newton-Raphson

If $f(x): \mathbb{R}^p \to \mathbb{R}^p$, the idea works the same, but in vector/matrix terms. Start with an initial guess $x^{(0)}$ and iterate

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - [D\mathbf{f}(\mathbf{x}^{(t)})]^{-1}\mathbf{f}(\mathbf{x}^{(t)}).$$

If things are "done right," then this should converge to \mathbf{x}_0 such that $\mathbf{f}(\mathbf{x}_0) = \mathbf{0}$.

We are interested in solving $DL(\beta) = \mathbf{0}$ (the score, or likelihood equations!) where

$$DL(\beta) = \begin{bmatrix} \frac{\partial L(\beta)}{\partial \beta_1} \\ \vdots \\ \frac{\partial L(\beta)}{\partial \beta_p} \end{bmatrix} \text{ and } D^2L(\beta) = \begin{bmatrix} \frac{\partial L(\beta)}{\partial \beta_1^2} & \cdots & \frac{\partial L(\beta)}{\partial \beta_1 \partial \beta_p} \\ \vdots & \ddots & \vdots \\ \frac{\partial L(\beta)}{\partial \beta_p \partial \beta_1} & \cdots & \frac{\partial L(\beta)}{\partial \beta_p^2} \end{bmatrix}.$$

Starting and stopping

So for us, we start with $eta^{(0)}$ (maybe through a MOM or least squares estimate) and iterate

$$\beta^{(t+1)} = \beta^{(t)} - [D^2 L(\beta)(\beta^{(t)})]^{-1} DL(\beta^{(t)}).$$

This is (4.45) on p. 143 disguised.

The process is typically stopped when $|\beta^{(t+1)} - \beta^{(t)}| < \epsilon$.

- Newton-Raphson uses $D^2L(\beta)$ as is, with the **y** plugged in.
- Fisher scoring instead uses $E\{D^2L(\beta)\}$, with expectation taken over **Y**, which is *not* a function of the observed **y**, but harder to get.
- The latter approach is harder to implement, but conveniently yields $\widehat{\text{cov}}(\hat{\beta}) \approx [-E\{D^2L(\beta)\}]^{-1}$ evaluated at $\hat{\beta}$ when the process is done.

4.7 Quasi-likelihood and overdispersion*

The MLE β satisfies:

$$u_j(\beta) = \sum_{i=1}^N \frac{(y_i - \mu_i)x_{ij}}{\nu(\mu_i)} \left(\frac{\partial g^{-1}(\eta_i)}{\partial \eta_i}\right) = 0, \quad j = 1, \dots, p,$$

where $\eta_i = \mathbf{x}_i' \boldsymbol{\beta}$ and $v(\mu_i) = \text{var}(Y_i)$, a function of μ_i . These are the partial derivatives of the log-likelihood function set to zero, also called the *score* equations.

In exponential families, a given $\mu_i = E(Y_i)$ and $v(\mu_i) = \text{var}(Y_i)$ uniquely determines the distribution. For example, if we say $E(Y_i) = \mu_i$ and $\text{var}(Y_i) = v(\mu_i) = \mu_i$, and that Y_i is a distribution in the exponential family, then Y_i has to be Poisson.

overdispersion, cont.

For Poisson data, we know $v(\mu_i) = \mu_i$; for Binomial data $(E(Y_i) = \mu_i = n_i \pi_i)$, we have $v(\pi_i) = n_i \pi_i (1 - \pi_i)$. If we add a dispersion parameter ϕ and declare that $v(\mu_i) = \phi \mu_i$ (Poisson) or $v(\pi_i) = \phi n_i \pi_i (1 - \pi_i)$ (binomial), the resulting family may not be exponential, or not even unique, but the score equations on the previous slide *remain the same*.

So $\hat{\beta}$ does not change. What does change is the estimate $\widehat{\text{cov}}(\hat{\beta})$. This estimate is the same as from the original model (where $v(\mu_i) = \mu_i$ or $v(\pi_i) = n_i \pi_i (1 - \pi_i)$ for Poisson or Binomial respectively) except multiplied by ϕ . Therefore regression effect standard errors are simply multiplied by $\sqrt{\hat{\phi}}$ where $\hat{\phi}$ is an estimate of ϕ .

Overdispersion, cont.

Let $X^2 = \sum_{i=1}^N (y_i - \hat{\mu}_i)^2 / \hat{\mu}_i$ for Poisson and $X^2 = \sum_{i=1}^N (y_i - n_i \hat{\pi}_i)^2 / [n_i \hat{\pi}_i (1 - \hat{\pi}_i)]$ for binomial, the Pearson statistic for assessing model (original) model fit.

 ϕ is not in the score equations; however, $X^2/\phi \stackrel{\bullet}{\sim} \chi^2_{N-p}$ (when the dispersion model is true) where N is the number of unique covariate vectors in $\{\mathbf{x}_i\}$. Since $E(\chi^2_{df}) = df$, a MOM estimate of ϕ is $\hat{\phi} = X^2/(N-p)$.

The adjusted estimate is $\widehat{\text{cov}}_a(\hat{\boldsymbol{\beta}}) = \widehat{\phi} \ \widehat{\text{cov}}(\hat{\boldsymbol{\beta}})$. When $\widehat{\phi} > 1$, which happens with overdispersed data, standard errors get properly inflated.

This is an easy, *ad hoc* fix to overdispersion, but commonly done and useful. SAS does everything automatically when you specify SCALE=PEARSON in the MODEL statement of GENMOD. Also: SCALE=DEVIANCE works similarly.

SAS code for crab data

proc genmod; model satell = width / dist=pois link=ident scale=pearson;

Output:

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	171	557.7083	3.2615
Scaled Deviance	171	175.7985	1.0281
Pearson Chi-Square	171	542.4854	3.1724
Scaled Pearson X2	171	171.0000	1.0000
Log Likelihood		23.1783	

Analysis Of Parameter Estimates

Parameter	DF	Estimate	Std Err	ChiSquare	Pr>Chi
INTERCEPT	1	-11.5321	2.6902	18.3754	0.0001
WIDTH	1	0.5495	0.1056	27.0731	0.0001
SCALE	0	1.7811	0.0000		

NOTE: The scale parameter was estimated by the square root of Pearson's Chi-Squared/DOF.

Note that $\hat{\beta}$ is the same with or without the dispersion parameter. What changes are $se(\hat{\beta}_j)$.

Comments

- ullet This approach to handling overdispersion works well when the mean structure is well modeled. Otherwise, what does $\hat{\phi}$ really estimate? Example coming up in a few lectures...
- For simple linear regression, say you fit $Y_i \sim N(\mu_i, 1)$ where $\mu_i = \alpha + \beta x_i$. What does $\hat{\phi}$ look like?
- This was a lot of information thrown at you very quickly.
 Meant to introduce notation and be an overview of things to come.
- We will slow down and investigate specific models in more detail.
- Be careful distinguishing s from N! In the saturated model, s
 is the number of distinct categories that data fall into.
 However, SAS takes the df for deviance to be the number of
 records N regardless.

4.7.4 Teratology example

N=58 Female rats given one of four treatments: placebo, weekly iron supplement, days 7 & 10, days 0 & 7. See p. 151 for the data. The number dead y_{ij} out of litter size n_{ij} was recorded where i=1,2,3,4 is the treatment group, and $j=1,\ldots,m_i$ is the number of litters in group i (31, 12, 5, 10).

Let π_i denote the probability of death in group i. The model is simply $Y_{ij} \sim \text{bin}(n_{ij}, \pi_i)$.

The sum of two independent binomials with the same probability is also binomial. So according to the *model*, there really is only four observations:

i	y_{i+}	n_{i+}
1	248	327
2	12	118
3	2	58
4	5	104

Teratology example, cont.

The idea behind this example is that there is litter-to-litter variability and so the data are really a mixture of binomial distributions and overdispersion might be present.

If we consider the N=58 rats, then

$$X^{2} = \sum_{i=1}^{4} \sum_{j=1}^{m_{i}} \frac{(y_{ij} - n_{ij}\hat{\pi}_{i})^{2}}{n_{ij}\hat{\pi}_{i}(1 - \hat{\pi}_{i})}.$$

This has an approximate χ^2_{58-4} distribution when we think of litter sizes $n_{ij} \to \infty$. Then $\hat{\phi} = 2.86$ and there's evidence of overdispersion.

We are using information on litters to assess overdispersion, but not explicitly including this information in a real probability model, but rather through ϕ . (Better than ignoring the possibility entirely!)

Comments

A model-based approach is to include a separate term for each litter!

$$Y_{ij} \sim \text{bin}(n_{ij}, \mu_{ij}), \ \text{logit}(\mu_{ij}) = \pi_i + \gamma_{ij},$$

where

$$\gamma_{ij} \stackrel{iid}{\sim} N(0, \sigma^2).$$

This random effects model explicitly includes litter-to-litter heterogeneity in the model. The γ_{ij} serve as a proxy to unmeasured, latent genetic differences among litters.

- Which approach is better, estimating ϕ and inflating the se's for $\hat{\pi}_i$ or the random effects model?
- What assumptions under the random effects model might be violated? What strengths does it have?
- What assumptions using $v(\pi_i) = \phi n_i \pi_i (1 \pi_i)$ might be violated? How does this affect the model? Can you see a potentially bigger problem here in using an estimate $\hat{\phi}$?
- How would I analyze these data? With a random effects model, then examine $\hat{\gamma}_{ii}$ to check the normality assumption.