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4.3.3 Overdispersion for Poisson GLMs

If data are truly Poisson, then we should have roughly
E(Y;) = var(Y;) = pi. Data can be grouped into like categories
and this can be informally checked.

For the horseshoe crab data we have the following:

Width (cm) Sample mean  Sample variance
< 23.25 1.0 2.8

23.25 — 24.25 1.4 8.9

24.25 — 25.25 2.4 6.5

25.25 — 26.25 2.7 11.4

26.25 — 27.25 2.9 6.7

27.25 — 28.25 3.9 8.9

28.25 — 29.25 3.9 16.9
> 29.25 51 8.3




Overdispersion

The sample variance tends to be 2-3 times as much as the mean.
This is an example of overdispersion. There is greater variability in
the data than we expect under our sampling model.
Fixes:

@ Find another sampling model!

@ Include other important, explanatory covariates.

@ Random effects as a proxy to unknown, latent covariates.

@ Quasi-likelihood approach.

We'll explore a common approach to the first fix above...



4.3.4 Negative binomial regression

A sampling model that includes another parameter allows some
separation between the mean and variance. If Y ~ negbin(k, u)

then
[y + k) ( k >k< k )y
— 1—-——) fory=0,1,2,3,....
PV = Fiory + 0\ ek it k) Y
Then

E(Y) = and var(Y) = u+ p?/k.
As k — oo the Poisson distribution is obtained.

Here, the variance increases with the mean; is that appropriate for
the crab data? Book looks at crab data on p. 127.

Another modeling approach: adding a random effect for each crab,
coming up toward the end of the semester.



4 4 Mean, variance, & likelihood for GLMs*

A two parameter exponential family includes a dispersion
parameter ¢:

f(vil0i, #) = exp{[yi0; — b(0:)]/a(®) + c(yi, ¢)}-

This includes binomial, Poisson, normal, and many others.

Let L; = log f(y;;0;,¢). This is the contribution of the it
observation to the likelihood in terms of §; and ¢.

Then N N
L(0,¢) :ZL/ :Z ng Yis Ia¢)
i=1 i=1

where

Li = [yifi — b(0:)]/a(¢) + c(yi, 9)-



Likelihood equations

Then some work gives us

wi = E(Y;) = b'(0;) and var(Y;) = b"(0))a(s).

The model imposes u; = b'(6;) = g*(x!3). The N-dimensional
w, or equivalently 6, is reduced to the p-dimensional 3 (and ¢ in a
2-parameter family). Then

S {y,-(b’)‘l(g‘l(Xiﬂ)) i (O Ca(C712))) IRV |

L(B.9) = > 0

i=1

The MLEs 3 and ¢ are found by taking first derivatives of this,
setting equal to zero, and solving (pp. 133-135).

Things simplify when using the canonical link.



Estimated covariance of 3

The asymptotic covariance matrix for B is the inverse of the fisher
information matrix, cov(3). This is a function of the unknown 3
and ¢, and in practice we just plug in the MLE values B and gZA>
yielding cov(3).

Section 4.4.3 shows how Poisson and binomial GLMs fit into the
general exponential family form and specifies corresponding b(6;),

a(¢), and c(y;, ¢).

Section 4.4.9 carries out computations leading to cov(3) in the
Poisson regression model with a log link.



4.5.1 Deviance and GOF

For now assume we're able to get A. Anyway, we are able to, in
SAS or R!

Recall that the saturated model estimates the N ;s with the N
yis, providing perfect fit. This model does not reduce data, provide
a means for prediction for arbitrary covariate values x, allow for
meaningful hypotheses to be tested, etc.

However, we can use the saturated model to check the fit of a
“real” GLM.

If, the sample size is fixed at N, but data are collected so that
counts y; increase in each of the N strata, then

G2 = —2log L(1(B), br;y) — log L(y, d¢;y)] is the LRT statistic
for testing Ho : g(pi) = X3 relative to the alternative that the
means g are unstructured.



Scaled deviance

G? ~ X%\I—p—l if data are collected appropriately using general LRT
theory.

In Poisson and binomial regression models a(¢) = 1, i.e. there is
no dispersion parameter, and this LRT statistic is equal to the
model deviance as described last time, i.e. D = G2.

When there is a dispersion parameter ¢ (e.g. normal, negative
binomial, or gamma regression models), then G2 is called the
scaled deviance; see top, p. 137.

You can either compare G2 to a x%\,_p_l distribution to formally
assess model fit, or else compare G2/(N — p) to 2 as before.



4.5.6 Residuals for GLMs

Residuals indicate where model fit is inadequate.

The deviance residual d; is defined in such a way that
SN d? =D, see p. 141.

The Pearson residual is given by e; = \/#% These have

variance < 1. The standardized Pearson residuals r; properly
standardize the residual to have variance one and in large samples
are N(0,1) if the model holds. This means reasonably large n; for
binomial data and reasonably large counts for Poisson data. So
residuals |r;| > 3 show rather extreme lack of fit for (x;, Y;)
according to the model.

Residuals can be plotted versus predictors or against the linear
predictor 7); = x3 to assess systematic departures from model
assumptions.

Note: X2 =S &2 2 X?v-,; when Hy : g(ui) = X3 is true and
N is fixed. Called Pearson GOF statistic.



4.6 How to get the estimates?

Newton-Raphson in one dimension: Say we want to find where
f(x) = 0 for differentiable f(x). Let xp be such that f(xp) = 0.
Taylor's theorem tells us

f(xo) = f(x) + f'(x)(x0 — x).
Plugging in f(xp) = 0 and solving for xo we get Xp = x — %
Starting at an x near xg, Xp should be closer to xp than x was.
Let's iterate this idea t times:

(1)
(D) _ (o fXY)
f’(x(t))

Eventually, if things go right, x(t) should be close to xo.
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Matrix version of Newton-Raphson

If f(x) : RP — IRP, the idea works the same, but in vector/matrix
terms. Start with an initial guess x(¥) and iterate

x(1) = x(® _ [DF(x())]7Le(x(1)).
If things are “done right,” then this should converge to xg such

that f(xo) = 0.

We are interested in solving DL(3) = 0 (the score, or likelihood
equations!) where

oL(B) oLB) .. 9oLB)
OB 932 98108,

DL(B) = : and D’L(B) = : - :
oL(B) ouB) ... oLB)

A 5001 0132
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Starting and stopping

So for us, we start with ,6(0) (maybe through a MOM or least
squares estimate) and iterate

B = g — [D2L(B)(BM)] " DL(BW).

This is (4.45) on p. 143 disguised.
The process is typically stopped when |30t — g(1)] < ¢.

@ Newton-Raphson uses D?L(f3) as is, with the y plugged in.

o Fisher scoring instead uses E{D?L(3)}, with expectation
taken over Y, which is not a function of the observed y, but
harder to get.

@ The latter approach is harder to implement, but conveniently
yields cov(B) ~ [-E{D?L(B)}]"! evaluated at 3 when the
process is done.
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4.7 Quasi-likelihood and overdispersion*

The MLE (3 satisfies:

N
R N L - 1) A
UJ(IB)_; V(,Ufi) < 8771 > _0? J_la"'apv

where n; = x}3 and v(u;) = var(Y;), a function of z1;. These are
the partial derivatives of the log-likelihood function set to zero,
also called the score equations.

In exponential families, a given p; = E(Y;) and v(p;) = var(Y;)
uniquely determines the distribution. For example, if we say

E(Y;) = pi and var(Y;) = v(ui) = i, and that Y; is a distribution
in the exponential family, then Y; has to be Poisson.
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overdispersion, cont.

For Poisson data, we know v(u;) = u;; for Binomial data

(E(Y;) = pi = nim;), we have v(m;) = nimi(1 — 7;). If we add a
dispersion parameter ¢ and declare that v(u;) = ¢u; (Poisson) or
v(ri) = ¢nijmi(1 — ;) (binomial), the resulting family may not be
exponential, or not even unique, but the score equations on the
previous slide remain the same.

So 3 does not change. What does change is the estimate c/o\v(,é)
This estimate is the same as from the original model (where
v(ui) = pi or v(m;) = nymj(1 — 7;) for Poisson or Binomial
respectively) except multiplied by ¢. Therefore regression effect

standard errors are simply multiplied by \/; where gZA> is an estimate

of ¢.



Overdispersion, cont.

Let X2 ="M (yi — fi1)?/pi for Poisson and
X2 =N (yi — ni#:)?/[ni#i(1 — #;)] for binomial, the Pearson
statistic for assessing model (original) model fit.

¢ is not in the score equations; however, X2/¢ ~ X?v-,; (when the
dispersion model is true) where N is the number of unique
covariate vectors in {x;}. Since E(x2;) = df, a MOM estimate of

¢ is o = X?/(N = p).

The adjusted estimate is cov,(3) = ¢ cov(B). When ¢ > 1, which
happens with overdispersed data, standard errors get properly
inflated.

This is an easy, ad hoc fix to overdispersion, but commonly done
and useful. SAS does everything automatically when you specify
SCALE=PEARSON in the MODEL statement of GENMOD. Also:
SCALE=DEVIANCE works similarly.
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SAS code for crab data

proc genmod; model satell = width / dist=pois link=ident scale=pearson;

Output:
Criteria For Assessing Goodness 0f Fit
Criterion DF Value Value/DF
Deviance 171 557.7083 3.2615
Scaled Deviance 171 175.7985 1.0281
Pearson Chi-Square 171 542.4854 3.1724
Scaled Pearson X2 171 171.0000 1.0000
Log Likelihood . 23.1783 .

Analysis 0f Parameter Estimates

Parameter DF Estimate Std Err ChiSquare Pr>Chi
INTERCEPT 1 -11.5321 2.6902 18.3754 0.0001
WIDTH 1 0.5495 0.1056 27.0731 0.0001
SCALE 0 1.7811 0.0000 . .

NOTE: The scale parameter was estimated by the square root of Pearson’s Chi-Squared/DOF.

Note that @ is the same with or without the dispersion parameter.
What changes are se((3;).



Comments

@ This approach to handling overdispersion works well when the
mean structure is well modeled. Otherwise, what does ¢ really
estimate? Example coming up in a few lectures...

@ For simple linear regression, say you fit Y; ~ N(u;, 1) where
wi = a+ Bx;. What does ¢ look like?

@ This was a lot of information thrown at you very quickly.
Meant to introduce notation and be an overview of things to
come.

@ We will slow down and investigate specific models in more
detail.

@ Be careful distinguishing s from N! In the saturated model, s
is the number of distinct categories that data fall into.
However, SAS takes the df for deviance to be the number of
records N regardless.



4.7.4 Teratology example

N = 58 Female rats given one of four treatments: placebo, weekly
iron supplement, days 7 & 10, days 0 & 7. See p. 151 for the
data. The number dead y;; out of litter size n;; was recorded where
i =1,2,3,4 is the treatment group, and j =1,...,m; is the
number of litters in group / (31, 12, 5, 10).

Let 7r; denote the probability of death in group /. The model is
simply Yj; ~ bin(njj, ;).
The sum of two independent binomials with the same probability is

also binomial. So according to the model, there really is only four
observations:
Yit+ Nit

248 327
12 118

ENEN I N
N
o1
<

5 104
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Teratology example, cont.

The idea behind this example is that there is litter-to-litter
variability and so the data are really a mixture of binomial
distributions and overdispersion might be present.

If we consider the N = 58 rats, then
Z Uy i)
n,ﬂr, (1—7)

This has an approximate X§8—4 distribution when we think of litter

sizes njj — oo. Then ¢3: 2.86 and there's evidence of
overdispersion.

We are using information on litters to assess overdispersion, but
not explicitly including this information in a real probability model,
but rather through ¢. (Better than ignoring the possibility
entirely!)

20/21



Comments

A model-based approach is to include a separate term for each

litter!
Y ~ bin(ny, pi), logit(uy) = mi + i,
where .
v % N0, 02).

This random effects model explicitly includes litter-to-litter
heterogeneity in the model. The v;; serve as a proxy to
unmeasured, latent genetic differences among litters.

@ Which approach is better, estimating ¢ and inflating the se's
for 7t; or the random effects model?

@ What assumptions under the random effects model might be
violated? What strengths does it have?

@ What assumptions using v(7;) = ¢njmi(1 — 7;) might be
violated? How does this affect the model? Can you see a
potentially bigger problem here in using an estimate quS?

@ How would | analyze these data? With a random effects

model, then examine 4;; to check the normality assumption.



