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Chapter 5 — Logistic Regression |

The logistic regression model is

exp(Bo + Bixit + -+ + Bp—1Xi p—1)

Y' ~ bln n',ﬂ-' , T, = .
i (ni,mi), i 1 +exp(Bo + Bixin + -+ + Bp-1Xi p-1)

® x; = (1,x1,...,%p-1) is a p-dimensional vector of
explanatory variables including a place holder for the intercept.

e 3= (0o,-..,Bp—1) is the p-dimensional vector of regression
coefficients. These are the unknown population parameters.

o n; = x}3 is called the linear predictor.

@ Page 163: many, many uses including credit scoring, genetics,
disease modeling, etc, etc...

@ Many generalizations: ordinal data, complex random effects
models, discrete choice models, etc.



5.1.1 Model interpretation

Lets start with simple logistic regression:
_ et Bxi
)/,- ~ bin <n,-, m) .

An odds ratio: let's look at how the odds of success changes when
we increase x by one unit:

e +Bx+p3 1
T(x+1)/[1 —7m(x+1)] |:1+ea+ﬂ><+ﬂ] / |:1+ea+ﬂx+ﬂ]
1 — - a+Gx
m(x)/[1 — 7(x)] |:1—T-eﬂ+ﬁx] / [1+e£+ﬁx]
ea-l—ﬁx—i—ﬁ
= ——— =¢°
ea—i—ﬁx

When we increase x by one unit, the odds of an event occurring
increases by a factor of e, regardless of the value of x.



Another interpretation for 3

So e is an odds ratio.

We also have

or(x)
") _ ol — ()

Note that 7(x) changes more when 7(x) is away from zero or one
than when 7(x) is near 0.5.

This gives us approximately how 7(x) changes when x increases by
a unit. This increase depends on x, unlike the odds ratio.

See Figure 5.1, p. 164.



5.1.3 Horseshoe crab data

Let's look at Y; = 1 if a female crab has one or more satellites,
and Y; = 0 if not. So

ea—l—ﬁx
) = T e

is the probability of a female having more than her nest-mate
around as a function of her width x.

data crabs;

input color spine width satell weight @@; weight=weight/1000; color=color-1;
y=0; if satell>0 then y=1;

datalines;

...DATA HERE...

proc logistic;
model y=width;
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Fit of logit(7;) = o + (Bx; where x; is width

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -12.3508 2.6287 22.0749 <.0001
width 1 0.4972 0.1017 23.8872 <.0001

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits
width 1.644 1.347 2.007

We estimate the probability of a satellite as

e—l2.35+0.50x

~

it(x) = 1+ e 123510.50x

The odds of having a satellite increases by a factor between 1.3
and 2.0 times for every cm increase in carapace width.

The coefficient table houses estimates ﬂAj, se(@j), and the Wald

statistic zj2 = {f3;/se(3;)}? and p-value for testing Hy : 3; = 0.
What do we conclude here?



5.1.2 Looking at data

With a single predictor x, can plot p; = y;/n;j versus x;. This
approach works well when n; # 1. The plot should look like a “lazy
s.” Alternatively, the sample logits

log pi/(1 — pi) = log yi/(n; — yi) versus x; should be approximately
straight. If some categories have all successes or failures, an ad
hoc adjustment is log{(y; + 0.5)/(n; — yi +0.5)}.

When many n; are small, you can group the data yourself into, say,
10-20 like categories and plot them. For the horseshoe crab data
let's use the categories defined in Chapter 4. A new variable w is
created that is the midpoint of the width categories:

data crabl; input color spine width satell weight;

weight=weight/1000; color=color-1;

y=0; n=1; if satell>0 then y=1; w=22.75;

if width>23.25 then w=23.75;

if width>24.25 then w=24.75;

if width>25.25 then w=25.75;

if width>26.25 then w=26.75;

if width>27.25 then w=27.75;

if width>28.25 then w=28.75;

if width>29.25 then w=29.75;



Plot of sample logits vs. width windows

proc sort data=crabl; by w;

proc means data=crabl noprint; by w; var y n; output out=crabs2 sum=sumy sumn;
data crabs3; set crabs2; p=sumy/sumn;

logit=log((sumy+0.5)/ (sumn-sumy+0.5)) ;

proc gplot;

plot p*w; plot logit*w;

Togit
4

Figure: Sample logits versus width; is this “straight?”



Another option is to use loess

@ loess (Cleveland, 1979) stands for locally weighted scatterplot
smoothing.

@ For data {(x;,y;)}"_;, a weighted regression is fit at each xp,
where x-values further away from xgy are given less weight.

@ Essentially fits a nonparametric mean function u(x) = E(y|x)
to {(thu)}/r',:l'

@ Useful for (a) exploratory visualization of data, e.g. “is the
mean approximately a line?” and (b) residual plots for models
where the response is binary or a count.

@ However, loess does not restrict the mean to be between zero
and one!

proc sgscatter;
plot y*width / loess;



5.1.4 Retrospective sampling & logistic regression

In case-control studies the number of cases and the number of
controls are set ahead of time. It is not possible to estimate the
probability of being a case from the general population for these
types of data, but just as with a 2 x 2 table, we can still estimate
an odds ratio P

Let Z indicate whether a subject is sampled (1=yes,0=no). Let

p1 = P(Z = 1|y = 1) be the probability that a case is sampled and
let po = P(Z = 1|y = 0) be the probability that a control is
sampled.

In a simple random sample, p; = P(Y = 1) and
po=P(Y =0)=1py.

Assume the logistic regression model
ea+,8x
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Case-control studies, cont.

Assume that the probability of choosing a case is independent of x,
P(Z =1y =1,x) = P(Z = 1]y = 1) and the same for a control
P(Z = 1]y = 0,x) = P(Z = 1|y = 0). This is the case, for
instance, when a fixed number of cases and controls are sampled
retrospectively, regardless of their x values.

Bayes' rule gives us
P(Y =1|z=1,x) = pam(x)

pr(x) + po(1 — m(x))
ea*-l—ﬁx

14 e +8x’

where a* = o + log(p1/po).

The parameter 3 has the same interpretation in terms of odds
ratios as with simple random sampling.

12/29



Comments

@ This is very powerful & another reason why logistic regression
is widely used.

@ Other links (e.g. identity, probit) do not have this property.

@ Matched case/controls studies require more thought; Chapter
11.

@ 5.1.5 relates directly to ROC analysis where x is a diagnostic
test score (e.g. ELISA) and Y indicates presence/absence of
disease.



5.2.1 Inferences for regression effects

Consider the full model
logit{m(x)} = B0 + Bix1 + -+ + Bp—1%p—1 = X'B.

Most types of inferences are functions of 3, say g(3). Some
examples:

o g(B) = B, j* regression coefficient.

o g(B) = €%, j* odds ratio.

o g(B) = e’P/(1 + €P), probability 7(x).
If 3 is the MLE of 3, then g(3) is the MLE of g(3). This
provides an estimate.

The delta method is an all-purpose method for obtaining a
standard error for g(3).

14 /29



Delta method

We know . .
B~ Np(B,cov(B)).

Let g(3) be a function from RP to R. Taylor's theorem implies, as
long as the MLE 3 is somewhat close to the true value 3, that

g(B) ~ g(B) + [Dg(BN(B — B),

where [Dg(3)] is the vector of first partial derivatives

Dg(B)=|

15/29



Delta method

Then A .
(B — B) ~ N,(0,cov(B)),

implies
[Dg(B)]'(B — B) ~ N(0,[Dg(8)]'cov(B)[Dg(B))),
and finally
g(B) ~ N(g(8). [Dg(B)]'cov(B)[Dg(B))-
So

se{g(B)} = \/[De(B)/o(B)[Dg(B)].

This can be used to get confidence intervals for probabilities, etc.



Pointwise Cls for probability of success

proc logistic data=crabsl descending;

model y = width; output out=crabs2 pred=p lower=1 upper=u;
proc sort data=crabs2; by width;

proc gplot data=crabs2;

title "Estimated probabilities with pointwise 95% CI’s";
symboll i=join color=black; symbol2 i=join color=red line=3;
symbol3 i=join color=black; axisl label=(’’);

plot (1 p w)*width / overlay vaxis=axisl;

Estimated probabiliies with pointwise 95% Cl's




5.2.3,5.2.4 & 5.2.5 Goodness of fit and grouping

The deviance GOF statistic is defined to be

N
D= 2Z{yilog (n_’
i=1

y nip—yi
i)l — | ¢
17,1\-I'> ( y) °8 <n _nl7TI>}

are fitted values.

/5

where #tj = =
14-€%i

Pearson's GOF statistic is
N o
Z y, — nj 7T:)
— n;7ti(1
Both statistics are approximately Xf\,_p in large samples assuming

that the number of trials n = vazl n; increases in such a way that
each n; increases.



Group your data

Binomial data is often recorded as individual (Bernoulli) records:

3

Xi
9
14
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17
17
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20
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~NOoO G AWN R~

T e e

Grouping the data yields an identical model:

3

Xi
9
14
17
20

=N R ol

ENFRINCEEI IS
SR

o B, se(3;), and L(B) don't care if data are grouped.

@ The quality of residuals and GOF statistics depend on how
data are grouped. D and Pearson’s X? will change!



Comments

@ In PROC LOGISTIC type AGGREGATE and SCALE=NONE
after the MODEL statement to get D and X2 based on
grouped data. This option does not compute residuals based
on the grouped data. You can aggregate over all variables or a
subset, e.g. AGGREGATE=(width).

@ The Hosmer and Lemeshow test statistic orders observations
(xi, Yi) by fitted probabilities 7(x;) from smallest to largest
and divides them into (typically) g = 10 groups of roughly the
same size. A Pearson test statistic is computed from these g
groups.

20/29



Comments

@ The statistic would have a Xé—p distribution if each group
had exactly the same predictor x for all observations. In
general, the null distribution is approximately X§_2 (see text).
Termed a “near-replicate GOF test.” The LACKFIT option in
PROC LOGISTIC gives this statistic.

@ Can also test logit{m(x)} = o + S1x versus more general
model logit{m(x)} = Bo + Bix + B2x? via Hy : B = 0.
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Raw (Bernoulli) data with aggregate scale=none

lackfit;

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq
Deviance 69.7260 64 1.0895 0.2911
Pearson 55.1779 64 0.8622 0.7761

Number of unique profiles: 66

Partition for the Hosmer and Lemeshow Test

y=1 y=0
Group Total Observed Expected Observed  Expected
1 19 5 5.39 14 13.61
2 18 8 7.62 10 10.38
3 17 11 8.62 6 8.38
4 17 8 9.92 9 7.08
5 16 11 10.10 5 5.90
6 18 11 12.30 7 5.70
7 16 12 12.06 4 3.94
8 16 12 12.90 4 3.10
9 16 13 13.69 3 2.31
10 20 20 18.41 0 1.59

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq
5.2465 8 0.7309
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Comments

@ There are 66 distinct widths {x;} out of N = 173 crabs. For
X%ﬁ—z to hold, we must keep sampling crabs that only have
one of the 66 fixed number of widths! Does that make sense
here?

@ The Hosmer and Lemeshow test gives a p-value of 0.73 based
on g = 10 groups. Are assumptions going into this p-value
met?

@ None of the GOF tests have assumptions that are met in
practice for continuous predictors. Are they still useful?

@ The raw statistics do not tell you where lack of fit occurs.
Deviance and Pearson residuals do tell you this (later). Also,
the table provided by the H-L tells you which groups are ill-fit
should you reject Hy : logistic model holds.

@ GOF tests are meant to detect gross deviations from model
assumptions. No model ever truly fits data except
hypothetically.
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5.3 Categorical predictors

Let's say we wish to include variable X, a categorical variable that
takes on values x € {1,2,...,/}. We need to allow each level of
X = x to affect m(x) differently. This is accomplished by the use
of dummy variables. This is typically done one of two ways.

Define zy, 2, ...,z as follows:
1 X=j
Zj = :
-1 X7
This is the default in PROC LOGISTIC with a CLASS X
statement. Say / = 3, then the model is
logit 7(x) = fo + f1z1 + B2z
which gives
logit 7T(X) =0o+pP1—pP2 when X=1
logit m(x) = Bo — f1+ B2 when X =2
logit m(x) = 8o — 1 — P2 when X =3

24 /29



Zero/One dummy variables

At alternative method uses “zero/one” dummies instead:

S 1 X=j

L0 X#)
This is the default if PROC GENMOD with a CLASS X statement.
This can also be obtained in PROC LOGISTIC with the

PARAM=REF option. This sets class X = | as baseline. Say
| = 3, then the model is

logit m(x) = Bo + Prz1 + P2zo.

which gives

logit m(x) = fo+ 1 when X =1
logit m(x) = fo + > when X =2
logit m(x) = (o when X =3

25/29



SAS example

| prefer the latter method because it's easier to think about for me.
You can choose a different baseline category with REF=FIRST
next to the variable name in the CLASS statement. Table 3.8 (p.

89):

data mal;

input cons present absent @Q;
total=present+absent;

datalines;

1 48 17066 2 38 14464 3 5 788 4 1 126 5 1 37

H
proc logistic;

class cons / param=ref;
model present/total = conms;

26 /29



SAS output

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 6.2020 4 0.1846
Score 12.0821 4 0.0168
Wald 9.2811 4 0.0544

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq
cons 4 9.2811 0.0544

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -3.6109 1.0134 12.6956 0.0004
cons 1 1 -2.2627 1.0237 4.8858 0.0271
cons 2 1 -2.3309 1.0264 5.1577 0.0231
cons 3 1 -1.4491 1.1083 1.7097 0.1910
cons 4 1 -1.2251 1.4264 0.7377 0.3904
Odds Ratio Estimates
Point 95% Wald

Effect Estimate Confidence Limits

cons 1 vs 5 0.104 0.014 0.774

cons 2 vs 5 0.097 0.013 0.727

cons 3 vs 5 0.235 0.027 2.061

cons 4 vs 5 0.294 0.018 4.810



Interpretation

The model is
logit 7(X) = fo+BL{X = L +Bal{X = 2}+83/{X = 3}+6a1{X = 4}

where X denotes alcohol consumption X =1,2,3,4,5.

@ Type 3 analyses test whether all dummy variables associated
with a categorical predictor are simultaneously zero, here
Ho : B1 = P> = B3 = B4 = 0. If we accept this then the
categorical predictor is not needed in the model.

@ PROC LOGISTIC gives estimates and Cls for e for
j=1,2,3,4. Here, these are interpreted as the odds of
developing malformation when X = 1,2,3, or 4 versus the
odds when X = 5.

@ We are not as interested in the individual Wald tests
Ho : 3; = 0 for a categorical predictor. Why is that? Because
they only compare a level X = 1,2, 3,4 to baseline X =5, not
to each other.
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Comments

® The Testing Global Null Hypothesis: BETA=0 are
three tests that no predictor is needed; Hy : logit{m(x)} = Bo
versus Hy : logit{m(x)} = x’3. Anything wrong here? We'll
talk about exact tests later.

@ Note that the Wald test for Hyp : 3 = 0 is the same as the
Type Il test that consumption is not important. Why is that?

@ Let Y =1 denote malformation for a randomly sampled
individual. To get an odds ratio for malformation from
increasing from, say, X = 2 to X = 4, note that

P(Y=1UX=2)/P(Y =0X=2) 4
P(Y=1X=4)/P(Y=0X=4) °

This is estimated with the CONTRAST command.
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