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Should you always toss in a dispersion term φ?

Why not always use quasilikelihood (Section 4.7)?

Here’s some SAS code:

data example;

input x y n @@; x_sq=x*x;

datalines;

-2.0 86 100 -1.5 58 100 -1.0 25 100 -0.5 17 100 0.0 10 100

0.5 17 100 1.0 25 100

;

proc genmod; * fit simple linear term in x & check for overdispersion;

model y/n = x / link=logit dist=bin;

proc genmod; * adjust for apparent overdispersion;

model y/n = x / link=logit dist=bin scale=pearson;

proc genmod; * what if instead we try a more flexible mean?;

model y/n = x x_sq / link=logit dist=binom;

proc logistic; * residual plots from simpler model;

model y/n = x; output out=diag1 reschi=p h=h xbeta=eta;

data diag2; set diag1; r=p/sqrt(1-h);

proc gplot; plot r*x; plot r*eta;

2 / 33



Output from fit of logistic model with logit link

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 5 74.6045 14.9209

Pearson Chi-Square 5 79.5309 15.9062

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -1.3365 0.1182 -1.5682 -1.1047 127.77 <.0001

x 1 -1.0258 0.0987 -1.2192 -0.8323 108.03 <.0001

Scale 0 1.0000 0.0000 1.0000 1.0000

The coefficient for x is highly significant. Note that
P(χ2

5 > 74.6) < 0.0001 and P(χ2
5 > 79.5) < 0.0001. Evidence of

overdispersion? There’s good replication here, so certainly
something is not right with the model.
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Let’s include a dispersion parameter φ

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 5 74.6045 14.9209

Scaled Deviance 5 4.6903 0.9381

Pearson Chi-Square 5 79.5309 15.9062

Scaled Pearson X2 5 5.0000 1.0000

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -1.3365 0.4715 -2.2607 -0.4123 8.03 0.0046

x 1 -1.0258 0.3936 -1.7972 -0.2543 6.79 0.0092

Scale 0 3.9883 0.0000 3.9883 3.9883

We have

√
φ̂ = 4.0 and the standard errors are increased by this

factor. The coefficient for x is still significant.
Problem solved!!! Or is it?
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More flexible mean

Instead of adding φ to a model with a linear term, what happens if
we allow the mean to be a bit more flexible?

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 4 1.7098 0.4274

Pearson Chi-Square 4 1.6931 0.4233

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -1.9607 0.1460 -2.2468 -1.6745 180.33 <.0001

x 1 -0.0436 0.1352 -0.3085 0.2214 0.10 0.7473

x_sq 1 0.9409 0.1154 0.7146 1.1671 66.44 <.0001

Scale 0 1.0000 0.0000 1.0000 1.0000

Here, we are not including a dispersion term φ. There is no
evidence of overdispersion when the mean is modeled correctly.
Adjusting SE’s using the quasilikelihood approach relies on
correctly modeling the mean, otherwise φ becomes a measure of
dispersion of data about an incorrect mean. That is, φ attempts to
pick up the slop left over from specifying a mean that is too simple.
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Residual plot ri versus η̂i for made-up data.

A correctly specified mean can obviate overdispersion. How to
check if the mean is okay? Hint:

6 / 33



Chapter 6 – Logistic Regression III

6.1 Model selection
Two competing goals:

Model should fit the data well.

Model should be simple to interpret (smooth rather than
overfit – principle of parsimony).

Often hypotheses on how the outcome is related to specific
predictors will help guide the model building process.

6.1.1: Agresti points out a rule of thumb: at least 10 events and
10 non-events should occur for each predictor in the model
(including dummies). So if

∑N
i=1 yi = 42 and

∑N
i=1(ni − yi ) = 830,

you should have no more than 42/10 ≈ 4 predictors in the model.
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6.1.2 Horseshoe crab data

Recall that in all models fit we strongly rejected
H0 : logit π(x) = β0 in favor of H1 : logit π(x) = x′β:

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 40.5565 7 <.0001

Score 36.3068 7 <.0001

Wald 29.4763 7 0.0001

However, it was not until we carved superfluous predictors from the
model that we showed significance for the included model effects.
This is an indication that several covariates may be highly related,
or correlated. If one or more predictors are perfectly predicted as a
linear combination of other predictors the model is overspecified
and unidentifiable. Here’s an example:

logit π(x) = β0 + β1x1 + β2x2 + β3(x1 − 3x2).
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Multicollinearity

The MLE β = (β0, β1, β2, β3) is not unique and the model is said
to be unidentifiable. The variable x1 − 3x2 is totally predicted and
redundant given x1 and x2.

Although a perfect linear relationship is usually not met in practice,
often variables are highly correlated and therefore one or more are
redundant. We need to get rid of some!

Although not ideal, automated model selection is necessary with
large numbers of predictors. With p − 1 = 10 predictors, there are
210 = 1024 possible models; with p − 1 = 20 there are 1, 048, 576
to consider.

Backwards elimination starts with a large pool of potential
predictors and step-by-step eliminates those with (Wald) p-values
larger than a cutoff (the default is 0.05 in SAS PROC LOGISTIC).
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6.1.4 Backwards elimination for crab data

proc logistic data=crabs1 descending;

class color spine / param=ref;

model y = color spine width weight color*spine color*width color*weight

spine*width spine*weight width*weight / selection=backward;

When starting from all main effects and two-way interactions, the
default p-value cutoff 0.05 yields only the model with width as a
predictor

Summary of Backward Elimination

Effect Number Wald

Step Removed DF In Chi-Square Pr > ChiSq

1 color*spine 6 9 0.0837 1.0000

2 width*color 3 8 0.8594 0.8352

3 width*spine 2 7 1.4906 0.4746

4 weight*spine 2 6 3.7334 0.1546

5 spine 2 5 2.0716 0.3549

6 width*weight 1 4 2.2391 0.1346

7 weight*color 3 3 5.3070 0.1507

8 weight 1 2 1.2263 0.2681

9 color 3 1 6.6246 0.0849

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -12.3508 2.6287 22.0749 <.0001

width 1 0.4972 0.1017 23.8872 <.0001
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Change criteria for removing predictor to p-value ≥ 0.15

model y = color spine width weight color*spine color*width color*weight

spine*width spine*weight width*weight / selection=backward slstay=0.15;

Yields more complicated model:

Summary of Backward Elimination

Effect Number Wald

Step Removed DF In Chi-Square Pr > ChiSq

1 color*spine 6 9 0.0837 1.0000

2 width*color 3 8 0.8594 0.8352

3 width*spine 2 7 1.4906 0.4746

4 weight*spine 2 6 3.7334 0.1546

5 spine 2 5 2.0716 0.3549

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 13.8781 14.2883 0.9434 0.3314

color 1 1 1.3633 5.9645 0.0522 0.8192

color 2 1 -0.6736 2.6036 0.0669 0.7958

color 3 1 -7.4329 3.4968 4.5184 0.0335

width 1 -0.4942 0.5546 0.7941 0.3729

weight 1 -10.1908 6.4828 2.4711 0.1160

weight*color 1 1 0.1633 2.3813 0.0047 0.9453

weight*color 2 1 0.9425 1.1573 0.6632 0.4154

weight*color 3 1 3.9283 1.6151 5.9155 0.0150

width*weight 1 0.3597 0.2404 2.2391 0.1346
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Drop width and width*weight?

Let’s test if we can simultaneously drop width and width*weight
from this model. From the (voluminous) output we find:

Intercept

Intercept and

Criterion Only Covariates

AIC 227.759 196.841

SC 230.912 228.374

-2 Log L 225.759 176.841

Fitting the simpler model with color, weight, and color*weight
yields

Model Fit Statistics

Intercept

Intercept and

Criterion Only Covariates

AIC 227.759 197.656

SC 230.912 222.883

-2 Log L 225.759 181.656

There are 2 more parameters in the larger model (for width and
width*weight) and we obtain −2(L0 − L1) = 181.7− 176.8 = 4.9
and P(χ2

2 > 4.9) = 0.07. We barely accept that we can drop width
and width*weight at the 5% level.

12 / 33



Forward selection

Forward selection starts by fitting each model with one predictor
separately and including the model with the smallest p-value under
a cutoff (default=0.05 in PROC LOGISTIC). When we instead
have SELECTION=FORWARD in the MODEL statement we
obtain the model with only width. Changing the cutoff to
SLENTRY=0.15 gives the model with width and color.

Starting from main effects and working backwards by hand, we
ended up with width and color in the model. We further simplified
color to dark and non dark crabs. Using backwards elimination
with a cutoff of 0.05 we ended up with just width. A cutoff of 0.15
and another “by hand” step (at the 0.05 level) yielded weight,
color, and weight*color.

Your book considers backwards elimination starting with a
three-way interaction model including color, spine condition, and
width. The end model is color and width.
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Stepwise procedure and SAS options

PROC LOGISTIC allows backwards elimination, forwards selection,
and something that does both, termed ‘stepwise.’

Stepwise selection checks to see whether one or more effects can
be removed from the model after adding a term. Stepwise goes
back and forth adding and removing terms until no more can be
eliminated at the SLSTAY level and no more can be added at the
SLENTRY level. In my opinion, this is the best of the three
approaches to variable selection.

Hierarchical models have interactions and/or quadratic effects only
when the main effects comprising them are also in the model
(more on this shortly). SAS automatically chooses the default
HIERARCHY=SINGLE to force a hierarchical final model. There
are other options, e.g. HIER=MULTIPLE or HIER=NONE.
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Stepwise procedure and SAS options

Recall that default values for SLENTRY and SLSTAY are 0.05.
You will get models with more predictors when you increase these.

For default SLENTRY and SLSTAY, only width is picked using all
three selection procedures for the crab data. For
SLENTRY=SLSTAY=0.1, all three procedures give the same
model: color and width.

Treating color and spine as continuous also yields an additive
model with color and width using all three approaches.
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6.1.6 AIC & model selection

“No model is correct, but some are more useful than others.” –
George Box.

It is often of interest to examine several competing models. In
light of underlying biology or science, one or more models may
have relevant interpretations within the context of why data were
collected in the first place.

In the absence of scientific input, a widely-used model selection
tool is the Akaike information criterion (AIC),

AIC = −2[L(β̂; y)− p].

The L(β̂; y) represents model fit. If you add a parameter to a
model, L(β̂; y) has to increase. If we only used L(β̂; y) as a
criterion, we’d keep adding predictors until we ran out. The p
penalizes for the number of the predictors in the model.
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AIC for crab data models

The AIC has very nice properties in large samples in terms of
prediction. The smaller the AIC is, the better the model fit
(asymptotically).

Model AIC

W 198.8
C +Wt+C ∗Wt 197.7

C +W 197.5
D + Wt + D ∗Wt 194.7

D + W 194.0
C ∗ + W 196.7

*color continuous,

If we pick one model, it’s W + D, the additive model with width
and the dark/nondark category.
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LASSO for logistic regression

SAS has a new procedure, PROC HPGENSELECT, which can
implement the LASSO, a modern variable selection technique. I
was able to get it running on “cloud SAS”. It does not, as of yet,
have a HIER=SINGLE option akin to PROC GLMSELECT, but
probably will in a future version. SAS will perform forward selection
with a very large number of variables in a more principled manner
than traditional forward selection in PROC HPGENSELECT with
the METHOD=LASSO option. It will star the model with the
“best” selection criterion that you ask for, below the AIC corrected
for small sample sizes. Here we try to find a parsimonious model
from all main effects and two-way interactions.

proc hpgenselect;

class color spine;

model y(event="1") = color spine width weight color*spine color*width

color*weight spine*width spine*weight weight*width / dist=binary link=logit;

selection method=lasso(choose=aicc) details=all;

run;
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6.2 Diagnostics

GOF tests are global checks for model adequacy.
The data are (xi ,Yi ) for i = 1, . . . ,N. The i th fitted value is an

estimate of µi = E (Yi ), namely Ê (Yi ) = µ̂i = ni π̂i where

πi = eβ
′xi

1+eβ
′xi

and π̂i = eβ̂
′
xi

1+eβ̂
′
xi

. The raw residual is what we see Yi

minus what we predict ni π̂i . The Pearson residual divides this by
an estimate of

√
var(Yi ):

ei =
yi − ni π̂i√
ni π̂i (1− π̂i )

.

The Pearson GOF statistic is

X 2 =
N∑
i=1

e2i .
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Standardized Pearson residual ri

ri =
yi − ni π̂i√

ni π̂i (1− π̂i )(1− ĥi )
,

where ĥi is the i th diagonal element of the hat matrix
Ĥ = Ŵ1/2X(X′ŴX)−1X′Ŵ1/2 where X is the design matrix

X =


1 x11 · · · x1,p−1

1 x21 · · · x2,p−1

...
...

. . .
...

1 xN1 · · · xN,p−1

 ,
and

Ŵ =


n1π̂1(1− π̂1) 0 · · · 0

0 n2π̂2(1− π̂2) · · · 0
...

...
. . .

...
0 0 · · · nN π̂N(1− π̂N)

 .
Alternatively, (6.2.1, p. 216) defines a deviance residual.
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Comments

With good replication (e.g. ni ≥ 10, plots of residuals rj
versus one of the p − 1 predictors xij , for j = 1, . . . ,N should
show randomness, just as in regular regression. If a pattern
exists, adding nonlinear terms or interactions can improve fit.

With truly continuous predictors ni = 1 and the residual plots
will have a distinct pattern. Use the fact that if the model
fits, E (ri ) ≈ 0 and superimpose a loess fit on top of the
residuals. The loess line should be approximately straight.

An overall plot is rj versus the linear predictor η̂j = β̂
′
xj . This

plot will tell you if the model tends to over or underpredict the
observed data for ranges of the linear predictor.

The ri are approximately N(0, 1) when ni is not small.

Individual ri might flag some individuals (e.g. crabs) ill-fit by
the model; a rule-of-thumb is to flag |ri | > 3 as ill-fit.
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Fit W + D to the crab data

The DATA step is

data crabs;

input orig_color spine width satell weight @@; weight=weight/1000; orig_color=orig_color-1;

y=0; if satell>0 then y=1; color=’light’; if orig_color=4 then color=’dark’; id=_n_;

datalines;

3 3 28.3 8 3050 4 3 22.5 0 1550 2 1 26.0 9 2300 4 3 24.8 0 2100 4 3 26.0 4 2600

3 3 23.8 0 2100 2 1 26.5 0 2350 4 2 24.7 0 1900 3 1 23.7 0 1950 4 3 25.6 0 2150

...et cetera...

Model fit, ri plots, and fitted probabilities:

proc logistic data=crabs descending; class color / param=ref;

model y=color width;

output out=diag1 stdreschi=r xbeta=eta p=p;

proc sort; by color weight;

proc sgscatter data=diag1;

title "Std. Pearson residual plots";

plot r*(width eta) r*color / loess;

run;

proc sgplot data=diag1;

title1 "Predicted probabilities";

series x=width y=p / group=color;

yaxis min=0 max=1;

run;
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ri vs. weight, η̂i and color
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Fitted probabilities of one or more satellites
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6.2.4 Influence

Unlike linear regression, the leverage ĥi in logistic regression
depends on the model fit β̂ as well as the covariates X. Points
that have extreme predictor values xi may not have high leverage
ĥi if π̂i is close to 0 or 1. Here are the influence diagnostics
available in PROC LOGISTIC:

Leverage ĥi . Still may be useful for detecting “extreme”
predictor values xi .

ci = e2i ĥi/(1− ĥi )
2 measures the change in the joint

confidence region for β when i is left out.

DFBETAij is the standardized change in β̂j when observation
i is left out.

The change in the X 2 GOF statistic when obs. i is left out is
DIFCHISQi = e2i /(1− ĥi ).
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Obtaining influence diagnostics in SAS

I suggest looking at plots of ci vs. i , and possibly the DFBETA’s
versus i . One way to get all influence diagnostics is to add
INFLUENCE and IPLOTS to the PROC LOGISTIC statement,
although this generates a lot of output; e.g. data:

proc logistic data=crabs descending; class color / param=ref;

model y=color width / influence iplots;

If you add PLOTS to PROC LOGISTIC the output is displayed as
plots. Another option is to save the ci directly and make a plot
yourself. Two basic plots to look at are ci vs. i and ri vs. i . Note
how the ID variable was made in the data step.

proc logistic data=crabs descending; class color / param=ref;

model y=color width;

output out=diag2 stdreschi=r c=c;

proc sgscatter data=diag2;

title "Cook’s distance and Std. Pearson resids";

plot c*id r*id ;

proc print data=diag2(where=(c>0.2 or r>3 or r<-3));

var y width color c r;

run;

---------------------------------------------------------------------------------

Obs y width color c r

128 1 22.5 dark 0.30822 3.08247
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ci and ri vs. i

Obs. 128 has the largest |ri | and ci ; it is both ill-fit and influential.
This is a skinny (22.5cm) dark crab that has satellite(s). Recall the
probability of having a satellite decreases for dark crabs and for
skinny crabs. Comment in light of predicted probability plot.
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6.3 Assessment of a model’s predictive ability

6.3.3 SAS will “predict” each Bernoulli outcome, say ỹi based on
a fit of the model without observation i with the CTABLE option.
You can include the proportion of ‘successes’ in the population, say
it’s 30%, using PEVENT=0.3. The default for PEVENT is the
proportion of successes in the data set.

An observation will be classified as a success if π̃i > k where k is a
cutoff and π̃i is the predicted probability of success through the
model leaving observation i out; use PPROB=k . If PPROB is
omitted, SAS will pick a bunch of them and give the correct
number of correctly predicted successes (true positives) and the
number of correctly predicted failures (true negatives), as well as
the sensitivity and specificity for each.

6.3.4 Sensitivity and specificity for different cutoffs k can be
combined into a receiver operator characteristic (ROC) curve; the
area under this curve is c . OUTROC=name in the MODEL
statement and PLOTS in the PROC LOGISTIC statement gives an
ROC curve and estimate of c .
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Default predictive ability SAS output

Every pair of observations with different outcomes, i.e. every pair
(i1, i2) where yi1 6= yi2 , is either concordant, discordant, or tied.
Assume yi1 = 1 and yi2 = 0. This pair is concordant if π̂i1 > π̂i2 ,
discordant if π̂i1 < π̂i2 , and tied if π̂i1 = π̂i2 . Let C be the number
of concordant pairs, D the number of discordant pairs, T the
number of ties. The total number of pairs is C + D + T . Then γ̂
is (C − D)/(C + D) and Somer’s D is (C − D)/(C + D + T ). γ̂
does not penalize for ties. All of this information is in SAS’s
“Association of Predicted Probabilities and Observed Responses”.

c is (C + 0.5T )/(C + D + T ): the probability that a randomly
drawn “success” will have a higher π̂ than a randomly drawn
“failure”, also called “the area underneath the ROC curve.” c ≈ 1
indicates excellent discriminatory ability; c ≈ 0.5 means you might
as well flip a coin rather than use the model to predict success or
failure.

The probabilities π̂i are different than the leave-one-out values π̃i
used in the CTABLE option.
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D + W in SAS

proc logistic data=crabs1 descending plots;

class dark / param=ref ref=first;

model y = dark width / outroc=out;

proc logistic data=crabs1 descending plots;

class dark / param=ref ref=first;

model y = dark width / ctable;

run;

-------------------------------------------------------------------------------------------

Response Profile

Ordered Total

Value y Frequency

1 1 111

2 0 62

-------------------------------------------------------------------------------------------

Association of Predicted Probabilities and Observed Responses

Percent Concordant 76.7 Somers’ D 0.544

Percent Discordant 22.3 Gamma 0.549

Percent Tied 0.9 Tau-a 0.252

Pairs 6882 c 0.772

Note that 111× 62 = 6882.
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ROC curve for D + W
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Classification table

Correct Incorrect Percentages

Prob Non- Non- Sensi- Speci- False False

Level Event Event Event Event Correct tivity ficity POS NEG

0.040 111 0 62 0 64.2 100.0 0.0 35.8 .

0.060 111 1 61 0 64.7 100.0 1.6 35.5 0.0

0.080 110 1 61 1 64.2 99.1 1.6 35.7 50.0

0.100 110 1 61 1 64.2 99.1 1.6 35.7 50.0

0.120 110 1 61 1 64.2 99.1 1.6 35.7 50.0

0.140 110 1 61 1 64.2 99.1 1.6 35.7 50.0

0.160 110 3 59 1 65.3 99.1 4.8 34.9 25.0

0.180 110 5 57 1 66.5 99.1 8.1 34.1 16.7

0.200 110 5 57 1 66.5 99.1 8.1 34.1 16.7

0.220 109 5 57 2 65.9 98.2 8.1 34.3 28.6

0.240 108 6 56 3 65.9 97.3 9.7 34.1 33.3

0.260 108 8 54 3 67.1 97.3 12.9 33.3 27.3

0.280 107 8 54 4 66.5 96.4 12.9 33.5 33.3

...et cetera...

0.700 63 49 13 48 64.7 56.8 79.0 17.1 49.5

0.720 61 52 10 50 65.3 55.0 83.9 14.1 49.0

0.740 57 54 8 54 64.2 51.4 87.1 12.3 50.0

0.760 54 54 8 57 62.4 48.6 87.1 12.9 51.4

0.780 51 56 6 60 61.8 45.9 90.3 10.5 51.7

0.800 47 57 5 64 60.1 42.3 91.9 9.6 52.9

0.820 39 57 5 72 55.5 35.1 91.9 11.4 55.8

0.840 34 57 5 77 52.6 30.6 91.9 12.8 57.5

0.860 28 59 3 83 50.3 25.2 95.2 9.7 58.5

0.880 21 60 2 90 46.8 18.9 96.8 8.7 60.0

0.900 13 62 0 98 43.4 11.7 100.0 0.0 61.3

0.920 11 62 0 100 42.2 9.9 100.0 0.0 61.7

0.940 5 62 0 106 38.7 4.5 100.0 0.0 63.1

0.960 3 62 0 108 37.6 2.7 100.0 0.0 63.5

0.980 1 62 0 110 36.4 0.9 100.0 0.0 64.0

1.000 0 62 0 111 35.8 0.0 100.0 . 64.2
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More detail for ctable

PEVENT is π. For a given k ,

π̃i > k π̃i < k

yi = 1 n11 n10

yi = 0 n01 n00

Note that n++ is the total number of trials.

ŝe = P̂(π̃i > k|yi = 1) =
n11

n1+
, ŝp = P̂(π̃i < k|yi = 0) =

n00

n0+
.

PVP = P(yi = 1|π̃i > k)

=
P(π̃i > k|yi = 1)P(yi = 1)

P(π̃i > k|yi = 1)P(yi = 1) + P(π̃i > k|yi = 0)P(yi = 0)

=
se π

se π + (1− sp)(1− π)
.

PVN = P(yi = 0|π̃i < k)

=
P(π̃i < k|yi = 0)P(yi = 0)

P(π̃i < k|yi = 0)P(yi = 0) + P(π̃i < k|yi = 1)P(yi = 1)

=
sp(1− π)

sp(1− π) + (1− se)π
.
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