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7.1 Alternative links in binary regression*

There are three common links considered in binary regression:
logistic, probit, and complimentary log-log. All three are written

π(x) = F (x′β).

Logistic regression: F (x) = ex

1+ex .

Probit regression: F (x) = Φ(x) where Φ(x) =
∫ x

−∞
e−0.5z2

√
2π

dz .

Complimentary log-log binary regression:
F (x) = 1 − exp{− exp(x)}.

They differ primarily in the tails, but the logistic and probit links
are symmetric in that rare and very common events are treated
similarly in the tails. The CLL link approaches 1 faster than 0, so
obtaining “rare event” status requires more extreme values of x

than reaching “likely event” status.
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O-ring data

Famous data set; your text has it in Table 5.14 (p. 199). N = 23
space shuttle flights before the Challenger disaster in 1986.
Temperature in Fahrenheit, and whether at least one primary
O-ring suffered thermal distress.
data shut1; input temp td @@; datalines;

66 0 70 1 69 0 68 0 67 0 72 0 73 0 70 0 57 1 63 1

70 1 78 0 67 0 53 1 67 0 75 0 70 0 81 0 76 0 79 0

75 1 76 0 58 1

;

data shut2;

do i=1 to 50; temp=i+29; td=.; output; end;

data shut3; set shut1 shut2;

proc logistic descending data=shut3; model td = temp / link=logit;

output out=shut4 p=p1;

proc logistic descending data=shut3; model td = temp / link=cloglog;

output out=shut5 p=p2;

proc logistic descending data=shut3; model td = temp / link=probit;

output out=shut6 p=p3;

data shut7; set shut4 shut5 shut6;

proc sort data=shut7; by temp;

goptions;

symbol1 color=black value=dot interpol=none;

symbol2 color=black value=none l=1 interpol=join;

symbol3 color=black value=none l=2 interpol=join;

symbol4 color=black value=none l=3 interpol=join;

legend1 label=none value=(’data’ ’logit’ ’cloglog’ ’probit’);

proc gplot data=shut7;

plot td*temp p1*temp p2*temp p3*temp / overlay legend=legend1;
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Fits from different links
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From the SAS output

Statistic logit cloglog probit

AIC 24.3 23.5 24.4
α̂ 15.0 12.3 8.8

β̂ −0.23 −0.20 −0.14

Complimentary log-log chosen as “best” out of three
according to AIC.

Fitted cloglog model is

π̂(temp) = 1 − exp{− exp(12.3 − 0.2 temp)}.

H-L p-values are 0.21, 0.23, 0.22 respectively.
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7.2 Bayesian logistic regression

The Bayesian approach allows the addition of information for β in
the form of a prior. If no information is available, the prior can be
uninformative. Conditional means priors allow incorporation of
probability of success for different covariate values (Bedrick,
Christensen, and Johnson, 1997).

Bayesian approaches typically do not depend on asymptotics so
they’re valid for small sample sizes.

Inference usually obtained through Markov chain Monte Carlo.
Yields Monte Carlo estimates of inferences of interest (odds ratios,
etc.)

In SAS, can add BAYES statement to PROC GENMOD. Example
coming up where Bayes approach handles complete separation in
data.
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7.3 Exact conditional logistic regression

Pages 265–270 describe a method to obtain exact small-sample
inference for regression parameters. The basic idea involves
conditioning on sufficient statistics of parameters you don’t care
about. This was also done to obtain Monte Carlo p-values using
EXACT in PROC FREQ (Chapter 3).

Exact conditional logistic regression is appropriate when the data
are sparse, i.e. either

∑N
i=1 yi , or

∑N
i=1(ni − yi) is small.

Without loss of generality, assume we have two predictors x1 and
x2. The logistic regression likelihood looks like

P(Y1 = y1, . . . , Yn = yn) =
exp

[

β0

∑N

i=1 yi + β1

∑N

i=1 yixi1 + β2

∑N

i=1 yixi2

]

∏N
i=1

[

1 + exp
(

β0N + β1

∑N
i=1 xi1 + β2

∑N
i=1 xi2

)] .

The sufficient statistic for each βj is Tj =
∑N

i=1 yixij where
xi0 = 1 for the intercept.
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Exact conditional logistic regression

The likelihood for β2, conditional T0 = t0 and T1 = t1 is given by

P(Y1 = y1, . . . ,YN = yN |T0 = t0,T1 = t1) =
exp(t2β2)

∑

S(t0,t1)
exp(t∗2β2)

where S(t0, t1) =
{

(y∗
1 , . . . , y∗

N) :
∑N

i=1 y∗
i xi0 = t0 and

∑N
i=1 y∗

i xi1 = t1

}

. This is

maximized to give the conditional estimate β̃2. Further inference
(e.g. hypothesis testing) requires P(T2 = t2|T0 = t0,T1 = t1).
This is given on p. 267 as (7.7). More details are in a document
posted on the course webpage, if you are interested.

Instead of one effect, we may be interested in two or more effects.
We simply condition on the remaining effects to obtain a
contitional likelihood of two or more effects, similar to the above.
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Exact conditional logistic regression

To test one or more effects, add an EXACT statement in PROC
LOGISTIC, followed by a list variables you want to test dropping
from the model. Options include JOINT (dropping more than one
effect and each effect separately), JOINTONLY, ESTIMATE
(=PARM, ODDS, or BOTH), ALPHA, and ONESIDED.

If your data are not sparse, be prepared to wait for days – a
Bayesian approach might be better.
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7.3.6 Example with quasi-complete separation and sparcity

data promote;

input race$ month$ promoted total @@;

datalines;

black july 0 7

black august 0 7

black september 0 8

white july 4 20

white august 4 17

white september 2 15

;

proc logistic data=promote; class race month;

model promoted/total=race month;

exact race / alpha=0.05 estimate=both onesided;

proc logistic data=promote; class race month;

model promoted/total=race month / firth;

proc genmod data=promote; class race month;

model promoted/total=race month / dist=binom link=logit;

bayes coefprior=jeffries;

run;
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‘Regular’ logistic regression

Model Convergence Status

Quasi-complete separation of data points detected.

WARNING: The maximum likelihood estimate may not exist.

WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are

based on the last maximum likelihood iteration. Validity of the model fit is

questionable.

The LOGISTIC Procedure

WARNING: The validity of the model fit is questionable.

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 8.2663 3 0.0408

Score 5.3825 3 0.1458

Wald 0.5379 3 0.9105

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

race 1 0.0027 0.9583

month 2 0.5351 0.7652

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.8718 0.7596 6.0730 0.0137

race black 1 -12.6091 241.4 0.0027 0.9583

month august 1 0.6931 0.9507 0.5316 0.4659

month july 1 0.4855 0.9431 0.2650 0.6067
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Conditional exact logistic regression

The LOGISTIC Procedure

Exact Conditional Analysis

Conditional Exact Tests

--- p-Value ---

Effect Test Statistic Exact Mid

race Score 4.5906 0.0563 0.0434

Probability 0.0257 0.0563 0.0434

Exact Parameter Estimates

Standard One-sided 95% One-sided

Parameter Estimate Error Confidence Limits p-Value

race black -1.8813* . -Infinity -0.2491 0.0257

NOTE: * indicates a median unbiased estimate.

Exact Odds Ratios

One-sided 95% One-sided

Parameter Estimate Confidence Limits p-Value

race black 0.152* 0 0.779 0.0257

NOTE: * indicates a median unbiased estimate.

Race is significant using the small-sample exact approach. Race is
also significant using a Bayesian approach fit via McMC (coming
up).
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Bayesian approach using Jeffreys’ prior (FIRTH)

Uses Jeffreys’ prior, but inferenced based on normal approximation.

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 5.6209 3 0.1316

Score 4.4120 3 0.2203

Wald 3.1504 3 0.3690

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

race 1 2.6869 0.1012

month 2 0.4464 0.7999

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.6891 0.6946 5.9133 0.0150

race black 1 -2.3491 1.4331 2.6869 0.1012

month august 1 0.5850 0.8770 0.4449 0.5047

month july 1 0.3867 0.8703 0.1975 0.6568

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

race black vs white 0.095 0.006 1.584

month august vs septembe 1.795 0.322 10.014

month july vs septembe 1.472 0.267 8.105
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Bayesian approach using Jeffreys’ prior

Uses Jeffreys’ prior; inference from Markov chain Monte Carlo.
Bayesian Analysis

Model Information

Burn-In Size 2000

MC Sample Size 10000

Thinning 1

Sampling Algorithm ARMS

Distribution Binomial

Link Function Logit

Fit Statistics

DIC (smaller is better) 16.131

pD (effective number of parameters) 3.645

Posterior Summaries

Standard Percentiles

Parameter N Mean Deviation 25% 50% 75%

Intercept 10000 -1.8560 0.7482 -2.3170 -1.7943 -1.3319

raceblack 10000 -3.4542 1.9101 -4.5220 -3.1403 -2.0504

monthaugust 10000 0.6772 0.9428 0.0332 0.6543 1.2855

monthjuly 10000 0.4642 0.9365 -0.1802 0.4351 1.0652

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

Intercept 0.050 -3.4978 -0.5705 -3.3326 -0.4128

raceblack 0.050 -8.0198 -0.5685 -7.5265 -0.2661

monthaugust 0.050 -1.1122 2.5991 -1.1378 2.5499

monthjuly 0.050 -1.2837 2.4032 -1.2698 2.4152
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Hierarchical model building

“When using a polynomial regression model as an approximation to the true regression function, statisticians will
often fit a second-order or third-order model and then explore whether a lower-order model is adequate...With the
hierarchical approach, if a polynomial term of a given order is retained, then all related terms of lower order are also
retained in the model. Thus, one would not drop the quadratic term of a predictor variable but retain the cubic
term in the model. Since the quadratic term is of lower order, it is viewed as providing more basic information
about the shape of the response function; the cubic term is of higher order and is viewed as providing refinements
in the specification of the shape of the response function.” – Applied Statistical Linear Models by Neter, Kutner,
Nachtsheim, and Wasserman.

“It is not usually sensible to consider a model with interaction but not the main effects that make up the
interaction.” – Categorical Data Analysis by Agresti.

“Consider the relationship between the terms β1x and β2x2. To fit the term β0 + β2x2 without including β1x

implies that the maximum (or minimum) of the response occurs at x = 0...ordinarily there is no reason to suppose

that the turning point of the response is at a specified point in the x-scale, so that the fitting of β2x2 without the
linear term is usually unhelpful.

A further example, involving more than one covariate, concerns the relation between a cross-term such as β12x1x2
and the corresponding linear terms β1x1 and β2x2 . To include the former in a model formula without the latter
two is equivalent to assuming the point (0, 0) is a col or saddle-point of the response surface. Again, there is
usually no reason to postulate such a property for the origin, so that the linear terms must be included with the
cross-term.” – Generalized Linear Models by McCullagh and Nelder.
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Polynomial approximation to unknown surface

Real model
logit(πi ) = f (xi1, xi2).

First order approximation to f (x1, x2) about some (x̄1, x̄2):

f (x1, x2) = f (x̄1, x̄2) +
∂f (x̄1, x̄2)

∂x1
(x1 − x̄1) +

∂f (x̄1, x̄2)

∂x1
(x2 − x̄2)

+HOT.

=

[

f (x̄1, x̄2) − x̄1
∂f (x̄1, x̄2)

∂x1
− x̄2

∂f (x̄1, x̄2)

∂x2

]

+

[

∂f (x̄1, x̄2)

∂x1

]

x1 +

[

∂f (x̄1, x̄2)

∂x2

]

x2 + HOT

= β0 + β1x1 + β2x2 + HOT

logit(π) = β0 + β1x1 + β2x2 is an approximation to unknown,
infinite-dimensional f (x1, x2) characterized by (β0, β1, β2).
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Polynomial approximation to unknown surface

Now let x = (x1, x2) and

f (x) = f (x̄) + Df (x̄)(x − x̄) +
1

2
(x − x̄)′D2f (x̄)(x − x̄)′ + HOT.

This similarly reduces to

f (x1, x2) = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2 + HOT,

where (β0, β1, β2, β3, β4, β5) correspond to various (unknown)
partial derivatives of f (x1, x2). Depending on the shape of the true
(unknown) f (x1, x2), some or many of the terms in the
approximation logit(π) = β0 + β1x1 + β2x2 + β3x

2
1 + β4x

2
2 + β5x1x2

may be unnecessary.

We work backwards via Wald tests hierarchically getting rid of
HOT first to get at more general trends/shapes, e.g. the first order
approximation.
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Generalized additive models

This directly relates to generalized additive models (GAM) where
instead we approximate

f (x1, x2) = β0 + g1(x1) + g2(x2),

where g1(·) and g2(·) are modeled flexibly (often using splines).

A linear additive model is a special case where gj(x) = βjx yielding
f (x1, x2) = β0 + β1x1 + β2x2.
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7.4.9 Generalized additive models

Consider a linear regression problem:

Yi = β0 + β1xi1 + β2xi2 + ei ,

where e1, . . . , en
iid
∼ N(0, σ2).

Diagnostics (residual plots, added variable plots) might indicate
poor fit of the basic model above. Remedial measures might
include transforming the response, transforming one or both
predictors, or both. One also might consider adding quadratic
terms and/or an interaction term.

Note: we only consider transforming continuous predictors!
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Transformations of predictors

When considering a transformation of one predictor, an added
variable plot can suggest a transformation (e.g. log(x), 1/x) that
might work if the other predictor is “correctly” specified.

In general, a transformation is given by a function g(x). Say we
decide that xi1 should be log-transformed and the reciprocal of xi2

should be used. Then the resulting model is

Yi = β0 + β1 log(xi1) + β2/xi2 + ei = β0 + g1(xi1) + g2(xi2) + ei ,

where g1(x) and g2(x) are two functions of β1 and β2, respectively.
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One method for “nonparametric regression”

Here we are specifying forms for g1(x) and g2(x) based on
exploratory data analysis, but we could from the outset specify
models for g1(x) and g2(x) that are rich enough to capture
interesting and predictively useful aspects of how the predictors
affect the response and estimate these functions from the data.

This is an example of “nonparametric regression,” which ironically
involves the inclusion of lots of parameters rather than fewer.
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Additive model for normal-errors regression

For simple regression data {(xi , yi )}
n
i=1, a cubic spline smoother

g(x) minimizes

n
∑

i=1

(yi − g(xi ))
2 + λ

∫ ∞

−∞
g ′′(x)2dx .

Good fit is achieved by minimizing the sum of squares
∑n

i=1(yi − g(xi ))
2. The

∫ ∞
−∞ g ′′(x)2dx term measures how wiggly

g(x) is and λ ≥ 0 is how much we will penalize g(x) for being
wiggly.

So the spline trades off between goodness of fit and wiggliness.

Although not obvious, the solution to this minimization is a cubic
spline: a piecewise cubic polynomial with the pieces joined at the
unique xi values.
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Model fit in PROC GAM

Hastie and Tibshirani (1986, 1990) point out that the meaning of
λ depends on the units xi is measured in, but that λ can be picked
to yield an “effective degrees of freedom” df or an “effective
number of parameters” being used in g(x). Then the complexity
of g(x) is equivalent to df -degree polynomial, but with the
coefficients “spread out” more yielding a more flexible function
that fits data better.

Alternatively, λ can be picked through cross validation, by
minimizing

CV (λ) =
n

∑

i=1

(yi − g−i
λ

(xi ))
2.

Both options are available in SAS.
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Generalized additive model

We don’t have {(xi , yi)}
n
i=1 where y1, . . . , yn are continuous, but

rather {(xi , yi )}
n
i=1 where yi is categorical (e.g. Bernoulli) or

Poisson. The generalized additive model (GAM) is given by

h{E (Yi )} = β0 + g1(xi1) + · · · + gp(xip),

for p predictor variables. Yi is a member of an exponential family
such as binomial, Poisson, normal, etc. h is a link function.

Each of g1(x), . . . , gp(x) are modeled via cubic smoothing splines,
each with their own smoothness parameters λ1, . . . , λp either
specified as df1, . . . , dfp or estimated through cross-validation. The
model is fit through “backfitting.” See Hastie and Tibshirani
(1990) or the SAS documentation for details.
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Fit of GAM to O-ring space shuttle data

data shut1;

input temp td @@;

datalines;

66 0 70 1 69 0 68 0 67 0 72 0 73 0 70 0 57 1 63 1 70 1 78 0 67 0

53 1 67 0 75 0 70 0 81 0 76 0 79 0 75 1 76 0 58 1

;

ods html; ods graphics on;

proc gam plots(clm) data=shut1;

model td = spline(temp) / dist=binomial;

run; quit; ods graphics off; ods html close;

Output:

The GAM Procedure

Dependent Variable: td

Smoothing Model Component(s): spline(temp)

Summary of Input Data Set

Number of Observations 23

Number of Missing Observations 0

Distribution Binomial

Link Function Logit
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Output from PROC GAM

Iteration Summary and Fit Statistics

Number of local score iterations 15

Local score convergence criterion 5.925073E-10

Final Number of Backfitting Iterations 1

Final Backfitting Criterion 8.5164609E-9

The Deviance of the Final Estimate 12.445020758

The local score algorithm converged.

Regression Model Analysis

Parameter Estimates

Parameter Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 5.18721 14.01486 0.37 0.7156

Linear(temp) -0.08921 0.19693 -0.45 0.6560

Smoothing Model Analysis

Fit Summary for Smoothing Components

Num

Smoothing Unique

Component Parameter DF GCV Obs

Spline(temp) 0.999976 3.000000 136344 16

Smoothing Model Analysis

Analysis of Deviance

Sum of

Source DF Squares Chi-Square Pr > ChiSq

Spline(temp) 3.00000 7.870171 7.8702 0.0488
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Comments

The Analysis of Deviance table gives a χ2-test from comparing the
deviance between the full model and the model with this variable
dropped – here the intercept model plus a linear effect in

temperature. We see that temperature effect is significantly
nonlinear at the 5% level. The default df = 3 corresponds to a
smoothing spline with the complexity of a cubic polynomial.

The following plot was obtained from the plots(clm) statement.
The plot has the estimated smoothing spline function with the
linear effect subtracted out. The plot includes a 95% curvewise
Bayesian confidence band. We visually inspect where this band
does not include zero to get an idea of where significant
nonlinearity occurs. This plot can suggest simpler transformations
of predictor variables than use of the full-blown smoothing spline.
Model is

logit(πi ) = β0 + β1xi + g̃1(xi ) = β0 + g1(xi )
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Estimation of g̃1(·), “wiggly part” of g1(·)
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Comments

The band basically includes zero for most temperature values; at a
few points it comes close to not including zero.

The plot spans the range of temperature values in the data set and
becomes highly variable at the ends. Do you think extrapolation is
a good idea using GAMs?

We want to predict the probability of a failure at 39 degrees. I
couldn’t get GAM to predict beyond the range of predictor values.
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GAM in R

The package gam was written by Trevor Hastie (one of the
inventors of GAM) and (in your instructor’s opinion) is easier to
use and gives nicer output that SAS PROC GAM.

A subset of the kyphosis data set is given on p. 199. Kyphosis is
severe forward flexion of the spine following spinal surgery. We will
run the following code in class:

library(gam); data(kyphosis)

?kyphosis

fit=gam(Kyphosis~s(Age)+s(Number)+s(Start),family=binomial(link=logit),

data=kyphosis)

par(mfrow=c(2,2))

plot(fit,se=TRUE)

summary(fit)
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More R examples

# Challenger O-ring data

td=c(0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,1,0,1)

te=c(66,70,69,68,67,72,73,70,57,63,70,78,67,53,67,75,70,81,76,79,75,76,58)

fit=gam(td~s(te),family=binomial(link=logit))

plot(fit,se=TRUE)

summary(fit)

fit$coeff

# example with linear log-odds

# parametric part significant, nonparametric not significant

x=rnorm(1000,0,2); p=exp(x)/(1+exp(x)); y=rbinom(1000,1,p)

plot(x,y)

fit=gam(y~s(x),family=binomial(link=logit))

plot(fit,se=TRUE)

summary(fit)

fit$coef

# example with quadratic log-odds

# parametric part not be significant, nonparametric significant

p=exp(x^2)/(1+exp(x^2)); y=rbinom(1000,1,p)

plot(x,y)

fit=gam(y~s(x),family=binomial(link=logit))

plot(fit,se=TRUE)

summary(fit)
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