Sections 5.1, 5.2, 5.3

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 770: Categorical Data Analysis
The logistic regression model is

\[Y_i \sim \text{bin}(n_i, \pi_i), \quad \pi_i = \frac{\exp(\beta_0 + \beta_1 x_{i1} + \cdots + \beta_{p-1} x_{i,p-1})}{1 + \exp(\beta_0 + \beta_1 x_{i1} + \cdots + \beta_{p-1} x_{i,p-1})}. \]

- \(x_i = (1, x_{i1}, \ldots, x_{i,p-1}) \) is a \(p \)-dimensional vector of explanatory variables including a placeholder for the intercept.
- \(\beta = (\beta_0, \ldots, \beta_{p-1}) \) is the \(p \)-dimensional vector of regression coefficients. These are the unknown population parameters.
- \(\eta_i = x'_i \beta \) is called the linear predictor.
- Page 163: many, many uses including credit scoring, genetics, disease modeling, etc, etc...
- Many generalizations: ordinal data, complex random effects models, discrete choice models, etc.
5.1.1 Model interpretation

Lets start with simple logistic regression:

\[Y_i \sim \text{bin} \left(n_i, \frac{e^{\alpha+\beta x_i}}{1 + e^{\alpha+\beta x_i}} \right). \]

An odds ratio: let’s look at how the odds of success changes when we increase \(x \) by one unit:

\[
\frac{\pi(x + 1)/[1 - \pi(x + 1)]}{\pi(x)/[1 - \pi(x)]} = \frac{\left[\frac{e^{\alpha+\beta x + \beta}}{1 + e^{\alpha+\beta x + \beta}} \right]}{\left[\frac{1}{1 + e^{\alpha+\beta x + \beta}} \right]} / \frac{\left[\frac{e^{\alpha+\beta x}}{1 + e^{\alpha+\beta x}} \right]}{\left[\frac{1}{1 + e^{\alpha+\beta x}} \right]}
\]

\[= \frac{e^{\alpha+\beta x + \beta}}{e^{\alpha+\beta x}} = e^\beta. \]

When we increase \(x \) by one unit, the odds of an event occurring increases by a factor of \(e^\beta \), regardless of the value of \(x \).
Another interpretation for β

So e^β is an odds ratio.

We also have

$$\frac{\partial \pi(x)}{\partial x} = \beta \pi(x) [1 - \pi(x)].$$

Note that $\pi(x)$ changes more when $\pi(x)$ is away from zero or one than when $\pi(x)$ is near 0.5.

This gives us *approximately* how $\pi(x)$ changes when x increases by a unit. This increase depends on x, unlike the odds ratio.

See Figure 5.1, p. 164.
Let's look at $Y_i = 1$ if a female crab has one or more satellites, and $Y_i = 0$ if not. So

$$
\pi(x) = \frac{e^{\alpha+\beta x}}{1 + e^{\alpha+\beta x}},
$$

is the probability of a female having more than her nest-mate around as a function of her width x.

data crabs;
input color spine width satell weight @@; weight=weight/1000; color=color-1;
y=0; if satell>0 then y=1;
datalines;
...DATA HERE...
;
proc logistic;
model y=width;
<table>
<thead>
<tr>
<th>Crab data</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 3 28.3 8 3050 4 3 22.5 0 1550 4 3 26.0 9 2300 4 3 24.8 0 2100 4 3 26.0 4 2600</td>
</tr>
<tr>
<td>3 3 23.8 0 2100 2 1 26.5 0 2350 4 2 24.7 0 1900 3 1 23.7 0 1950 4 3 25.6 0 2150</td>
</tr>
<tr>
<td>4 3 24.3 0 2150 3 3 25.8 0 2650 3 3 28.2 11 3050 5 2 21.0 0 1850 3 1 26.0 14 2300</td>
</tr>
<tr>
<td>2 1 27.1 8 2950 3 3 25.2 1 2000 3 3 29.0 1 3000 5 3 24.7 0 2200 3 3 27.4 5 2700</td>
</tr>
<tr>
<td>3 2 23.2 4 1950 2 2 25.0 3 2300 3 1 22.5 1 1600 4 3 26.7 2 2600 5 3 25.8 3 2000</td>
</tr>
<tr>
<td>5 3 26.2 0 1300 3 3 28.7 3 3150 3 1 26.8 5 2700 3 3 27.5 0 2600 3 3 24.9 0 2100</td>
</tr>
<tr>
<td>2 1 29.3 4 3200 2 3 25.8 0 2600 3 2 26.5 0 2350 4 2 24.7 0 1900 3 3 27.9 6 2800</td>
</tr>
<tr>
<td>4 3 27.1 0 2550 4 3 24.5 5 2050 4 1 27.0 3 2450 3 3 26.0 5 2150 3 3 28.0 1 2800</td>
</tr>
<tr>
<td>3 3 30.0 8 3050 3 3 29.0 16 3200 3 3 26.2 0 2400 3 3 26.5 0 1300 3 3 26.2 3 2400</td>
</tr>
<tr>
<td>4 3 28.9 4 2800 3 3 28.2 6 2600 3 3 25.0 4 2100 3 3 28.5 3 3000 3 3 30.3 3 3600</td>
</tr>
<tr>
<td>5 3 24.7 5 2100 3 3 27.7 5 2900 2 1 27.4 6 2700 3 3 22.9 4 1600 3 1 25.7 5 2000</td>
</tr>
<tr>
<td>3 3 28.3 15 3000 3 3 27.2 3 2700 4 3 26.2 3 2300 3 3 27.8 0 2750 3 3 25.5 0 2250</td>
</tr>
<tr>
<td>4 3 27.1 0 2550 4 3 24.5 5 2050 4 1 27.0 3 2450 3 3 26.0 5 2150 3 3 28.0 1 2800</td>
</tr>
<tr>
<td>5 3 29.7 5 3850 3 1 26.8 0 2550 5 3 26.7 0 2450 3 1 28.7 0 3200 4 3 23.1 0 1550</td>
</tr>
<tr>
<td>3 1 29.0 1 2800 4 3 25.5 0 2250 4 3 26.5 1 1967 4 3 24.5 1 2200 4 3 28.5 1 3000</td>
</tr>
<tr>
<td>3 3 28.2 1 2867 3 3 24.5 1 1600 3 3 27.5 1 2550 3 3 27.4 3 2900 3 3 25.3 2 1900</td>
</tr>
<tr>
<td>2 2 24.5 6 1950 3 3 25.1 0 1800 3 1 28.0 4 2900 5 3 25.8 10 2250 3 3 27.9 7 3050</td>
</tr>
<tr>
<td>3 3 27.8 3 3250 3 3 27.0 6 2500 4 3 25.7 0 2100 3 3 25.0 2 2100 3 3 31.9 2 3255</td>
</tr>
<tr>
<td>5 3 23.7 0 1800 5 3 29.3 12 3225 4 3 22.0 0 1400 3 3 25.0 5 2400 4 3 27.0 6 2500</td>
</tr>
<tr>
<td>4 3 23.8 6 1800 2 1 30.2 2 3275 4 3 26.2 0 2225 3 3 24.2 2 1650 3 3 27.4 3 2900</td>
</tr>
<tr>
<td>3 2 25.4 0 2300 4 3 28.4 3 3200 5 3 22.5 4 1475 3 3 26.2 2 2025 3 3 24.9 6 2300</td>
</tr>
<tr>
<td>2 2 24.5 6 1950 3 3 25.1 0 1800 3 1 28.0 4 2900 5 3 25.8 10 2250 3 3 27.9 7 3050</td>
</tr>
<tr>
<td>3 3 24.9 0 2200 3 1 28.4 5 3100 4 3 27.2 5 2400 3 3 25.0 6 2250 3 3 27.5 6 2625</td>
</tr>
<tr>
<td>3 1 33.5 7 5200 3 3 30.5 3 3325 4 3 29.0 3 2925 3 1 24.3 0 2000 3 3 25.8 0 2400</td>
</tr>
<tr>
<td>5 3 25.0 8 2100 3 1 31.7 4 3725 3 3 29.5 4 3025 4 3 24.0 10 1900 3 3 30.0 9 3000</td>
</tr>
<tr>
<td>3 3 27.6 4 2850 3 3 26.2 0 2300 3 1 23.1 0 2000 3 1 22.9 0 1600 5 3 24.5 0 1900</td>
</tr>
<tr>
<td>3 3 24.7 4 1950 3 3 28.3 0 3200 3 3 23.9 2 1850 4 3 23.8 0 1800 4 2 29.8 4 3500</td>
</tr>
<tr>
<td>3 3 26.5 4 2350 3 3 26.0 3 2275 3 3 28.2 8 3050 5 3 25.7 0 2150 3 3 26.5 7 2750</td>
</tr>
<tr>
<td>3 3 25.8 0 2200 4 3 24.1 0 1800 4 3 26.2 2 2175 4 3 26.1 3 2750 4 3 29.0 4 3275</td>
</tr>
<tr>
<td>2 1 28.0 0 2625 5 3 27.0 0 2625 3 2 24.5 0 2000</td>
</tr>
</tbody>
</table>
Fit of logit(π_i) = $\alpha + \beta x_i$ where x_i is width

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>-12.3508</td>
<td>2.6287</td>
<td>22.0749</td>
<td><.0001</td>
</tr>
<tr>
<td>width</td>
<td>1</td>
<td>0.4972</td>
<td>0.1017</td>
<td>23.8872</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Odds Ratio Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Point Estimate</th>
<th>95% Wald Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>width</td>
<td>1.644</td>
<td>1.347 2.007</td>
</tr>
</tbody>
</table>

We estimate the probability of a satellite as

$$\hat{\pi}(x) = \frac{e^{-12.35 + 0.50x}}{1 + e^{-12.35 + 0.50x}}.$$

The odds of having a satellite increases by a factor between 1.3 and 2.0 times for every cm increase in carapace width.

The coefficient table houses estimates $\hat{\beta}_j$, se($\hat{\beta}_j$), and the Wald statistic $z_j^2 = \left\{\frac{\hat{\beta}_j}{se(\hat{\beta}_j)}\right\}^2$ and p-value for testing $H_0 : \beta_j = 0$. What do we conclude here?
5.1.2 Looking at data

With a single predictor x, can plot $p_i = y_i/n_i$ versus x_i. This approach works well when $n_i \neq 1$. The plot should look like a “lazy s.” Alternatively, the sample logits

$$\log \frac{p_i}{1 - p_i} = \log \frac{y_i}{(n_i - y_i)}$$

versus x_i should be approximately straight. If some categories have all successes or failures, an ad hoc adjustment is

$$\log \left\{ \frac{(y_i + 0.5)}{(n_i - y_i + 0.5)} \right\}.$$

When many n_i are small, you can group the data yourself into, say, 10-20 like categories and plot them. For the horseshoe crab data let’s use the categories defined in Chapter 4. A new variable w is created that is the midpoint of the width categories:

```plaintext
data crab1; input color spine width satell weight;
  weight=weight/1000; color=color-1;
  y=0; n=1; if satell>0 then y=1; w=22.75;
  if width>23.25 then w=23.75;
  if width>24.25 then w=24.75;
  if width>25.25 then w=25.75;
  if width>26.25 then w=26.75;
  if width>27.25 then w=27.75;
  if width>28.25 then w=28.75;
  if width>29.25 then w=29.75;
```

proc sort data=crab1; by w;
proc means data=crab1 noprint; by w; var y n; output out=crabs2 sum=sumy sumn;
data crabs3; set crabs2; p=sumy/sumn;
logit=log((sumy+0.5)/(sumn-sumy+0.5));
proc gplot;
 plot p*w; plot logit*w;

Figure: Sample logits versus width; is this “straight?”
Another option is to use loess

- loess (Cleveland, 1979) stands for \textit{locally weighted scatterplot smoothing}.
- For data \(\{(x_i, y_i)\}_{i=1}^{n} \), a weighted regression is fit at each \(x_0 \), where \(x \)-values further away from \(x_0 \) are given less weight.
- Essentially fits a nonparametric mean function \(\mu(x) = E(y|x) \)
 to \(\{(x_i, y_u)\}_{i=1}^{n} \).
- Useful for (a) exploratory visualization of data, e.g. “is the mean approximately a line?” and (b) residual plots for models where the response is binary or a count.
- However, loess does not restrict the mean to be between zero and one!

```plaintext
proc sgscatter;
  plot y*width / loess;
```
In case-control studies the number of cases and the number of controls are set ahead of time. It is not possible to estimate the probability of being a case from the general population for these types of data, but just as with a 2×2 table, we can still estimate an odds ratio e^{β}.

Let Z indicate whether a subject is sampled (1=yes, 0=no). Let $\rho_1 = P(Z = 1|y = 1)$ be the probability that a case is sampled and let $\rho_0 = P(Z = 1|y = 0)$ be the probability that a control is sampled.

In a simple random sample, $\rho_1 = P(Y = 1)$ and $\rho_0 = P(Y = 0) = 1 - \rho_1$.

Assume the logistic regression model

$$
\pi(x) = P(Y_i = 1|x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}.
$$
Case-control studies, cont.

Assume that the probability of choosing a case is independent of \(x \),
\[
P(Z = 1|y = 1, x) = P(Z = 1|y = 1)
\]
and the same for a control
\[
P(Z = 1|y = 0, x) = P(Z = 1|y = 0).
\]
This is the case, for instance, when a fixed number of cases and controls are sampled retrospectively, regardless of their \(x \) values.

Bayes’ rule gives us
\[
P(Y = 1|z = 1, x) = \frac{\rho_1 \pi(x)}{\rho_1 \pi(x) + \rho_0(1 - \pi(x))}
\]
\[
= \frac{e^{\alpha^* + \beta x}}{1 + e^{\alpha^* + \beta x}},
\]
where \(\alpha^* = \alpha + \log(\rho_1/\rho_0) \).

The parameter \(\beta \) has the same interpretation in terms of odds ratios as with simple random sampling.
This is very powerful & another reason why logistic regression is widely used.

Other links (e.g. identity, probit) do not have this property.

Matched case/controls studies require more thought; Chapter 11.

5.1.5 relates directly to ROC analysis where x is a diagnostic test score (e.g. ELISA) and Y indicates presence/absence of disease.
Consider the full model

\[\logit\{\pi(x)\} = \beta_0 + \beta_1 x_1 + \cdots + \beta_{p-1} x_{p-1} = x' \beta. \]

Most types of inferences are functions of \(\beta \), say \(g(\beta) \). Some examples:

- \(g(\beta) = \beta_j \), \(j^{th} \) regression coefficient.
- \(g(\beta) = e^{\beta_j} \), \(j^{th} \) odds ratio.
- \(g(\beta) = e^{x' \beta} / (1 + e^{x' \beta}) \), probability \(\pi(x) \).

If \(\hat{\beta} \) is the MLE of \(\beta \), then \(g(\hat{\beta}) \) is the MLE of \(g(\beta) \). This provides an estimate.

The *delta method* is an all-purpose method for obtaining a standard error for \(g(\hat{\beta}) \).
We know
\[\hat{\beta} \sim N_p(\beta, \text{cov}(\hat{\beta})). \]

Let \(g(\beta) \) be a function from \(\mathbb{R}^p \) to \(\mathbb{R} \). Taylor’s theorem implies, as long as the MLE \(\hat{\beta} \) is somewhat close to the true value \(\beta \), that

\[g(\beta) \approx g(\hat{\beta}) + [Dg(\hat{\beta})](\beta - \hat{\beta}), \]

where \([Dg(\beta)] \) is the vector of first partial derivatives

\[
Dg(\beta) = \begin{bmatrix}
\frac{\partial g(\beta)}{\partial \beta_1} \\
\frac{\partial g(\beta)}{\partial \beta_2} \\
\vdots \\
\frac{\partial g(\beta)}{\partial \beta_p}
\end{bmatrix}.
\]
Then

\[(\hat{\beta} - \beta) \sim N_p(0, \hat{\text{cov}}(\hat{\beta}))\],

implies

\[[Dg(\beta)]'(\hat{\beta} - \beta) \sim N(0, [Dg(\beta)]'\hat{\text{cov}}(\hat{\beta})[Dg(\beta)])],\]

and finally

\[g(\hat{\beta}) \sim N(g(\beta), [Dg(\hat{\beta})]'\hat{\text{cov}}(\hat{\beta})[Dg(\hat{\beta})]).\]

So

\[\text{se}\{g(\hat{\beta})\} = \sqrt{[Dg(\hat{\beta})]'\hat{\text{cov}}(\hat{\beta})[Dg(\hat{\beta})]}\].

This can be used to get confidence intervals for probabilities, etc.
proc logistic data=crabs1 descending;
 model y = width; output out=crabs2 pred=p lower=l upper=u;
proc sort data=crabs2; by width;
proc gplot data=crabs2;
 title "Estimated probabilities with pointwise 95% CI’s";
 symbol1 i=join color=black; symbol2 i=join color=red line=3;
 symbol3 i=join color=black; axis1 label=('');
 plot (l p u)*width / overlay vaxis=axis1;

Estimated probabilities with pointwise 95% CI's
The deviance GOF statistic is defined to be

\[D = 2 \sum_{i=1}^{N} \left\{ y_i \log \left(\frac{y_i}{n_i \hat{\pi}_i} \right) + (n_i - y_i) \log \left(\frac{n_i - y_i}{n_i - n_i \hat{\pi}_i} \right) \right\}, \]

where \(\hat{\pi}_i = \frac{e^{x_i' \beta}}{1 + e^{x_i' \beta}} \) are fitted values.

Pearson’s GOF statistic is

\[\chi^2 = \sum_{i=1}^{N} \frac{(y_i - n_i \hat{\pi}_i)^2}{n_i \hat{\pi}_i (1 - \hat{\pi}_i)}. \]

Both statistics are approximately \(\chi^2_{N-p} \) in large samples assuming that the number of trials \(n = \sum_{i=1}^{N} n_i \) increases in such a way that each \(n_i \) increases.
Binomial data is often recorded as individual (Bernoulli) records:

Grouping the data yields an identical model:

<table>
<thead>
<tr>
<th>i</th>
<th>y_i</th>
<th>n_i</th>
<th>x_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

- $\hat{\beta}$, $se(\hat{\beta}_j)$, and $L(\hat{\beta})$ don’t care if data are grouped.
- The quality of residuals and GOF statistics depend on how data are grouped. D and Pearson’s X^2 will change!
In PROC LOGISTIC type AGGREGATE and SCALE=NONE after the MODEL statement to get D and X^2 based on grouped data. This option does not compute residuals based on the grouped data. You can aggregate over all variables or a subset, e.g. AGGREGATE=(width).

The Hosmer and Lemeshow test statistic orders observations (x_i, Y_i) by fitted probabilities $\hat{\pi}(x_i)$ from smallest to largest and divides them into (typically) $g = 10$ groups of roughly the same size. A Pearson test statistic is computed from these g groups.
The statistic would have a χ^2_{g-p} distribution if each group had exactly the same predictor x for all observations. In general, the null distribution is approximately χ^2_{g-2} (see text). Termed a “near-replicate GOF test.” The LACKFIT option in PROC LOGISTIC gives this statistic.

Can also test $\text{logit}\{\pi(x)\} = \beta_0 + \beta_1 x$ versus more general model $\text{logit}\{\pi(x)\} = \beta_0 + \beta_1 x + \beta_2 x^2$ via $H_0 : \beta_2 = 0$.
Deviance and Pearson Goodness-of-Fit Statistics

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Value</th>
<th>DF</th>
<th>Value/DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviance</td>
<td>69.7260</td>
<td>64</td>
<td>1.0895</td>
<td>0.2911</td>
</tr>
<tr>
<td>Pearson</td>
<td>55.1779</td>
<td>64</td>
<td>0.8622</td>
<td>0.7761</td>
</tr>
</tbody>
</table>

Number of unique profiles: 66

Partition for the Hosmer and Lemeshow Test

<table>
<thead>
<tr>
<th>Group</th>
<th>Total</th>
<th>y = 1</th>
<th></th>
<th>y = 0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed</td>
<td>Expected</td>
<td>Observed</td>
<td>Expected</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>5</td>
<td>5.39</td>
<td>14</td>
<td>13.61</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>8</td>
<td>7.62</td>
<td>10</td>
<td>10.38</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>11</td>
<td>8.62</td>
<td>6</td>
<td>8.38</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>8</td>
<td>9.92</td>
<td>9</td>
<td>7.08</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>11</td>
<td>10.10</td>
<td>5</td>
<td>5.90</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>11</td>
<td>12.30</td>
<td>7</td>
<td>5.70</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>12</td>
<td>12.06</td>
<td>4</td>
<td>3.94</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>12</td>
<td>12.90</td>
<td>4</td>
<td>3.10</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>13</td>
<td>13.69</td>
<td>3</td>
<td>2.31</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>20</td>
<td>18.41</td>
<td>0</td>
<td>1.59</td>
</tr>
</tbody>
</table>

Hosmer and Lemeshow Goodness-of-Fit Test

<table>
<thead>
<tr>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2465</td>
<td>8</td>
<td>0.7309</td>
</tr>
</tbody>
</table>
There are 66 distinct widths \(\{x_i\} \) out of \(N = 173 \) crabs. For \(\chi^2_{66-2} \) to hold, we must keep sampling crabs that only have one of the 66 \textit{fixed number of widths}! Does that make sense here?

The Hosmer and Lemeshow test gives a \(p \)-value of 0.73 based on \(g = 10 \) groups. Are assumptions going into this \(p \)-value met?

None of the GOF tests have assumptions that are met in practice for continuous predictors. Are they still useful?

The raw statistics do not tell you \textit{where} lack of fit occurs. Deviance and Pearson residuals do tell you this (later). Also, the table provided by the H-L tells you which groups are ill-fit should you reject \(H_0 : \) logistic model holds.

GOF tests are meant to detect \textit{gross} deviations from model assumptions. No model ever truly fits data except hypothetically.
5.3 Categorical predictors

Let’s say we wish to include variable X, a categorical variable that takes on values $x \in \{1, 2, \ldots, I\}$. We need to allow each level of $X = x$ to affect $\pi(x)$ differently. This is accomplished by the use of dummy variables. This is typically done one of two ways.

Define $z_1, z_2, \ldots, z_{I-1}$ as follows:

$$z_j = \begin{cases}
1 & X = j \\
-1 & X \neq j
\end{cases}$$

This is the default in PROC LOGISTIC with a CLASS X statement. Say $I = 3$, then the model is

$$\text{logit } \pi(x) = \beta_0 + \beta_1 z_1 + \beta_2 z_2.$$

which gives

$$\text{logit } \pi(x) = \beta_0 + \beta_1 - \beta_2 \quad \text{when } X = 1$$
$$\text{logit } \pi(x) = \beta_0 - \beta_1 + \beta_2 \quad \text{when } X = 2$$
$$\text{logit } \pi(x) = \beta_0 - \beta_1 - \beta_2 \quad \text{when } X = 3$$
At alternative method uses “zero/one” dummies instead:

\[z_j = \begin{cases}
1 & X = j \\
0 & X \neq j
\end{cases} \]

This is the default if PROC GENMOD with a CLASS X statement. This can also be obtained in PROC LOGISTIC with the PARAM=REF option. This sets class \(X = I \) as baseline. Say \(I = 3 \), then the model is

\[
\text{logit } \pi(x) = \beta_0 + \beta_1 z_1 + \beta_2 z_2.
\]

which gives

\[
\begin{align*}
\text{logit } \pi(x) &= \beta_0 + \beta_1 \quad \text{when } X = 1 \\
\text{logit } \pi(x) &= \beta_0 + \beta_2 \quad \text{when } X = 2 \\
\text{logit } \pi(x) &= \beta_0 \quad \text{when } X = 3
\end{align*}
\]
I prefer the latter method because it’s easier to think about for me. You can choose a different baseline category with REF=FIRST next to the variable name in the CLASS statement. Table 3.8 (p. 89):

data mal;
 input cons present absent @@;
 total=present+absent;
 datalines;
 1 48 17066 2 38 14464 3 5 788 4 1 126 5 1 37
;
proc logistic;
 class cons / param=ref;
 model present/total = cons;
Testing Global Null Hypothesis: BETA=0

<table>
<thead>
<tr>
<th>Test</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>6.2020</td>
<td>4</td>
<td>0.1846</td>
</tr>
<tr>
<td>Score</td>
<td>12.0821</td>
<td>4</td>
<td>0.0168</td>
</tr>
<tr>
<td>Wald</td>
<td>9.2811</td>
<td>4</td>
<td>0.0544</td>
</tr>
</tbody>
</table>

Type 3 Analysis of Effects

<table>
<thead>
<tr>
<th>Wald</th>
<th>Effect</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cons</td>
<td>4</td>
<td>9.2811</td>
<td>0.0544</td>
</tr>
</tbody>
</table>

Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Error</th>
<th>Standard Chi-Square</th>
<th>Wald Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>-3.6109</td>
<td>1.0134</td>
<td>12.6956</td>
<td>0.0004</td>
<td></td>
</tr>
<tr>
<td>cons</td>
<td>1</td>
<td>-2.2627</td>
<td>1.0237</td>
<td>4.8858</td>
<td>0.0271</td>
<td></td>
</tr>
<tr>
<td>cons</td>
<td>2</td>
<td>-2.3309</td>
<td>1.0264</td>
<td>5.1577</td>
<td>0.0231</td>
<td></td>
</tr>
<tr>
<td>cons</td>
<td>3</td>
<td>-1.4491</td>
<td>1.1083</td>
<td>1.7097</td>
<td>0.1910</td>
<td></td>
</tr>
<tr>
<td>cons</td>
<td>4</td>
<td>-1.2251</td>
<td>1.4264</td>
<td>0.7377</td>
<td>0.3904</td>
<td></td>
</tr>
</tbody>
</table>

Odds Ratio Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Point Estimate</th>
<th>95% Wald Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>cons 1 vs 5</td>
<td>0.104</td>
<td>0.014, 0.774</td>
</tr>
<tr>
<td>cons 2 vs 5</td>
<td>0.097</td>
<td>0.013, 0.727</td>
</tr>
<tr>
<td>cons 3 vs 5</td>
<td>0.235</td>
<td>0.027, 2.061</td>
</tr>
<tr>
<td>cons 4 vs 5</td>
<td>0.294</td>
<td>0.018, 4.810</td>
</tr>
</tbody>
</table>
The model is

\[\text{logit } \pi(X) = \beta_0 + \beta_1 I\{X = 1\} + \beta_2 I\{X = 2\} + \beta_3 I\{X = 3\} + \beta_4 I\{X = 4\} \]

where \(X \) denotes alcohol consumption \(X = 1, 2, 3, 4, 5 \).

- Type 3 analyses test whether all dummy variables associated with a categorical predictor are simultaneously zero, here \(H_0 : \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0 \). If we accept this then the categorical predictor is not needed in the model.

- PROC LOGISTIC gives estimates and CIs for \(e^{\beta_j} \) for \(j = 1, 2, 3, 4 \). Here, these are interpreted as the odds of developing malformation when \(X = 1, 2, 3, \) or 4 versus the odds when \(X = 5 \).

- We are not as interested in the individual Wald tests \(H_0 : \beta_j = 0 \) for a categorical predictor. Why is that? Because they only compare a level \(X = 1, 2, 3, 4 \) to baseline \(X = 5 \), not to each other.
The Testing Global Null Hypothesis: BETA=0 are three tests that no predictor is needed; $H_0 : \logit\{\pi(x)\} = \beta_0$ versus $H_1 : \logit\{\pi(x)\} = x'\beta$. Anything wrong here? We'll talk about exact tests later.

Note that the Wald test for $H_0 : \beta = 0$ is the same as the Type III test that consumption is not important. Why is that?

Let $Y = 1$ denote malformation for a randomly sampled individual. To get an odds ratio for malformation from increasing from, say, $X = 2$ to $X = 4$, note that

$$\frac{P(Y = 1|X = 2)/P(Y = 0|X = 2)}{P(Y = 1|X = 4)/P(Y = 0|X = 4)} = e^{\beta_2 - \beta_4}.$$

This is estimated with the CONTRAST command.