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Prologue: log-linear models for 2 × 2 table

Assume X ∈ {1, 2} and Y ∈ {1, 2}, so the table has 4 cells:

Y = 1 Y = 2
X = 1 n11 n12

X = 2 n21 n22

Assume multinomial sampling so

n = (n11, n12, n21, n22) ∼ mult{n,p = (π11, π12, π21, π22)}.

We write this {nij} ∼ mult(n, {πij}) for short.

Let’s examine the additive model for this table in some detail...
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Log-linear models for 2 × 2 table

The additive model for E (nij) = nπij is

log(nπij) = λ + λX
i + λX

j .

We set λX
2 = λY

2 = 0 for identifiability. Then the cell means are

Y = 1 Y = 2

X = 1 eλ+λX
1 +λY

1 eλ+λX
1

X = 2 eλ+λY
1 eλ

Under multinomial sampling λ is redundant and known through

eλ+λX
1 +λY

1

n
+

eλ+λX
1

n
+

eλ+λY
1

n
+

eλ

n
= 1.

That is

λ = log n − log
{

eλX
1 +λY

1 + eλX
1 + eλY

1 + 1
}

.
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Log-linear models for 2 × 2 table

Under the additive model,

θ =
P(Y = 2|X = 2)/P(Y = 1|X = 2)

P(Y = 2|X = 1)/P(Y = 1|X = 1)

=
P(Y = 2,X = 2)/P(Y = 1,X = 2)

P(Y = 2,X = 1)/P(Y = 1,X = 1)

=
eλ/eλ+λY

1

eλ+λX
1 /eλ+λX

1 +λY
1

= 1.

This proves X ⊥ Y .

There are only two parameters in the model: λX
1 and λY

1 to
estimate three free probabilities in (π11, π12, π21, π22).
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Log-linear models for 2 × 2 table

Under the interaction model we have

log(nπij) = λ + λX
i + λX

j + λXY
ij ,

where λXY
12 = λXY

22 = λXY
21 = 0. This adds one more non-zero

parameter to the model λXY
11 for a total of three. There are only

three degrees of freedom in the table for (n11, n12, n21, n22) and
thus the model is saturated; three parameters λX

1 , λY
1 , λXY

11 to
estimate three free probabilities in (π11, π12, π21, π22). Then

θ =
P(Y = 2,X = 2)/P(Y = 1,X = 2)

P(Y = 2,X = 1)/P(Y = 1,X = 1)

=
eλ/eλ+λY

1

eλ+λX
1 /eλ+λX

1 +λY
1 +λXY

11

= eλXY
11 .

The interaction term is a simple function of the odds ratio. We see
that X ⊥ Y iff λXY

11 = 0 iff λXY
ij = 0 for all i , j .
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Example

Subtable of Table 2.1 (p. 38):

Fatal Nonfatal
Placebo 18 171
Aspirin 5 99

SAS code:

data table;

input Treat$ Outcome$ count @@;

datalines;

1 1 18 1 2 171 2 1 5 2 2 99

;

proc format;

value $tc ’1’=’Placebo’ ’2’=’Aspirin’;

value $oc ’1’=’Fatal’ ’2’=’Nonfatal’;

proc freq order=data; weight count;

format Treat $tc. Outcome $oc.;

tables Treat*Outcome / norow nocol nopercent expected;

exact chisq or;

proc genmod order=data; class Treat Outcome;

model count = Treat Outcome Treat*Outcome / dist=poi link=log;
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FREQ output

The FREQ Procedure

Table of Treat by Outcome

Treat Outcome

Frequency|

Expected |Fatal |Nonfatal| Total

---------+--------+--------+

Placebo | 18 | 171 | 189

| 14.836 | 174.16 |

---------+--------+--------+

Aspirin | 5 | 99 | 104

| 8.1638 | 95.836 |

---------+--------+--------+

Total 23 270 293

Statistics for Table of Treat by Outcome

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 2.0627 0.1509

Likelihood Ratio Chi-Square 1 2.2173 0.1365
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More FREQ output

Pearson Chi-Square Test

----------------------------------

Chi-Square 2.0627

DF 1

Asymptotic Pr > ChiSq 0.1509

Exact Pr >= ChiSq 0.1782

Odds Ratio (Case-Control Study)

-----------------------------------

Odds Ratio 2.0842

Asymptotic Conf Limits

95% Lower Conf Limit 0.7506

95% Upper Conf Limit 5.7872

Exact Conf Limits

95% Lower Conf Limit 0.7151

95% Upper Conf Limit 7.3897

Sample Size = 293
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GENMOD output

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 4.5951 0.1005 4.3981 4.7921 2090.40 <.0001

Treat 1 1 0.5465 0.1263 0.2990 0.7941 18.73 <.0001

Treat 2 0 0.0000 0.0000 0.0000 0.0000 . .

Outcome 1 1 -2.9857 0.4584 -3.8841 -2.0873 42.43 <.0001

Outcome 2 0 0.0000 0.0000 0.0000 0.0000 . .

Treat*Outcome 1 1 1 0.7344 0.5211 -0.2869 1.7557 1.99 0.1587

Treat*Outcome 1 2 0 0.0000 0.0000 0.0000 0.0000 . .

Treat*Outcome 2 1 0 0.0000 0.0000 0.0000 0.0000 . .

Treat*Outcome 2 2 0 0.0000 0.0000 0.0000 0.0000 . .

As promised, e0.7344 = 2.0842 with CI
(e−0.2869, e1.7557) = (0.7506, 5.7875). We also obtain the p-value
for the Wald test of H0 : λXY

11 = 0 in the saturated model, 0.1587,
slightly different than the Pearson or LRT tests obtained from
PROC FREQ.

Now let’s look at I × J tables...
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Chapter 8: Log-linear models for modeling dependence

A log-linear model is a Poisson model with ANOVA structure for
the log-means of counts in a contingency table.

We start with I × J tables and then consider multiway, e.g.
I × J × K × L tables.

Useful to determine conditional dependence relationships
between variables.

Can be generalized to non-categorical predictors.

No one categorical variable is the outcome.
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8.1 Two-way models

Let nij be the counts in an I × J contingency table.

Y = 1 Y = 2 · · · Y = J

X = 1 n11 n12 · · · niJ
X = 2 n21 n22 · · · n2J

.

.

.

.

.

.

.

.

.
. .

.
.
.
.

X = I nI1 nI2 · · · nIJ

The random, total number in the table is n++ =
∑I

i=1

∑J
j=1 nij .

We assume that each cell in the table is independent Poisson,

nij
ind.
∼ Poisson(µij).

Different parameterizations for µij lead to different distributions for
(X ,Y ).

The µ11, µ12, . . . , µIJ are the rates at which the (X ,Y ) fall into
the cross-classified categories.
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Details

Let (X ,Y ) be a pair of nominal or ordinal outcomes with
X ∈ {1, . . . , I} and Y ∈ {1, . . . , J}. We will collect n such pairs
iid from the population: (X1,Y1), . . . , (Xn,Yn).

Let nij =
∑n

k=1 I{Xk = i ,Yk = j} be the number of pairs
{(X1,Y1), . . . , (Xn,Yn)} that fall into the i th category of X and
the j th category of Y .

We assume that data are collected over time and that the nij are
independent Poisson random variables with means µij . At any time
we can stop the collection process and have a snapshot of the
contingency table at that time. For example, if n = n++ = 1000
people are sampled and cross-classified, we have a snapshot after
n = 1000 individuals are sampled.
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Poisson is equivalent to multinomial sampling

We know {nij} is distributed as I × J independent Poisson
variables. But if we stop collecting data when n++ = n, what is
the distribution? Recall that the sum of independent Poisson
random variables is also Poisson with a rate that is the sum of the
individual rates. So n ∼ Pois(

∑

i ,j µij).

p(n11, . . . , nIJ |n++ = n) =
p(n11, . . . , nIJ)I{n++ = n}

P(n++ = n)

=
I{n++ = n}

∏

i ,j

e
−µij µ

nij
ij

nij !

e
−

∑

ij µij [
∑

ij µij ]
∑

i,j nij

[
∑

ij nij ]!

=

(

n

n11 · · · nIJ

)

∏

i ,j

[

µij

µ++

]nij

.
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Poisson is equivalent to multinomial sampling

This pmf, subject to n++ = n, is a multinomial distribution with
parameters n and p = (µ11/µ++, . . . , µIJ/µ++).

Put another way, Poisson sampling is equivalent to multinomial
sampling where at any time such that n++ = n,
πij = P(X = i ,Y = j) = µij/µ++.

Thus, fitting a Poisson model for the (µ11, . . . , µIJ) conditional

on n++ = n is the same as fitting the multinomial.

We will fit log-linear models using the Poisson distribution in
PROC GENMOD.
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9.1.1 Independence model

The independence model (also see Section 4.3.7) stipulates

log µij = λ + λX
i + λY

j .

For identifiability, we must place restrictions on the parameters,
e.g. λX

I = λY
J = 0. Then there are (I − 1)+ (J − 1)+1 = I + J − 1

parameters to estimate: (λX
1 , . . . , λX

I−1, λ
Y
1 , . . . , λY

J−1, λ).

Note that conditional on n, we have multinomial sampling and

µij = eλeλX
i e

λY
j = nπi+π+j . That is, the intercept term λ adjusts

the overall mean µ++ in the Poisson model and is a function of n

as well as the other model parameters. However, it is not true that

eλ = n, eλX
i = πi+ and e

λY
j = π+j .
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Independence model

In fact, we know that n++ ∼ Poisson(µ++) and that the MLE of
this is µ̂++ = n++ = n. So we must have

n =
I

∑

i=1

J
∑

j=1

eλ̂eλ̂X
i e

λ̂Y
j .

So,

λ̂ = log n − log
I

∑

i=1

J
∑

j=1

e
λ̂X

i
+λ̂Y

j .

Under multinomial sampling (conditional on n++ = n) the number
of parameters (λX

1 , . . . , λX
I−1, λ

Y
1 , . . . , λY

J−1) drops by 1, because λ
is known, to (I − 1) + (J − 1).

Conditional on n, the model satisfies πij = πi+π+j .
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Five hierarchical models

Model Interpretation
log µij = λ X ⊥ Y , πij = π

log µij = λ + λX
i X ⊥ Y , πij = πi

log µij = λ + λY
j X ⊥ Y , πij = πj

log µij = λ + λX
i + λY

j X ⊥ Y , πij = πi+π+j

log µij = λ + λX
i + λY

j + λXY
ij X 6⊥ Y

We are typically only interested in the last two, as a means to test
H0 : X ⊥ Y versus H1 : X 6⊥ Y . This boils down to testing
H0 : λXY

ij = 0 in the full interaction model.

The interaction model is given by

log µij = λ + λX
i + λY

j + λXY
ij ,

where λX
I = 0, λY

J = 0, and λXY
iJ = λXY

Ij = 0 for i = 1, . . . , I and
j = 1, . . . , J. So there are
(I − 1) + (J − 1) + (I − 1)(J − 1) = IJ − 1 parameters to estimate
in the multinomial interaction model, one for each cell.
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Testing independence, example

The LRT for independence from Chapter 3 is equivalent to testing
the additive (most flexible independence model) to the interaction
model in the Poisson GLM framework. The difference in
parameters is
(I −1)+(J −1)+(I −1)(J −1)− [(I −1)+(J −1)] = (I −1)(J −1)
as we found before. Let’s examine an example in detail.

From Chapter 2 in Christensen (1997) we have a sample of n = 52
males with ages from 11 to 30 with knee operations via
arthroscopic surgery. They are cross-classified according to
X = 1, 2, 3 for injury type (twisted knee, direct blow, or both) and
Y = 1, 2, 3 for surgical result (excellent, good, or fair-to-poor).

nij Excellent Good Fair to poor Totals
Twisted knee 21 11 4 36
Direct blow 3 2 2 7
Both types 7 1 1 9

Totals 31 14 7 n = 52
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SAS code

with theoretical probabilities:

πij Excellent Good Fair to poor Totals
Twisted knee π11 π12 π13 π1+

Direct blow π21 π22 π23 π2+

Both types π31 π32 π33 π3+

Totals π+1 π+2 π+3 π++ = 1

SAS code:

data table;

input Injury$ Result$ count @@;

datalines;

1 1 21 1 2 11 1 3 4 2 1 3 2 2 2 2 3 2 3 1 7 3 2 1 3 3 1

;

proc format;

value $ic ’1’=’twisted’ ’2’=’direct blow’ ’3’=’both’;

value $rc ’1’=’excellent’ ’2’=’good’ ’3’=’fair-to-poor’;

proc freq order=data; weight count;

format Injury $ic. Result $rc.;

tables Injury*Result / chisq;

proc genmod order=data; class Injury Result;

model count = Injury Result / dist=poi link=log;
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Output from PROC FREQ

Injury Result

Frequency |

Percent |excellen|good |fair-to-| Total

|t | |poor |

------------+--------+--------+--------+

twisted | 21 | 11 | 4 | 36

| 40.38 | 21.15 | 7.69 | 69.23

------------+--------+--------+--------+

direct blow | 3 | 2 | 2 | 7

| 5.77 | 3.85 | 3.85 | 13.46

------------+--------+--------+--------+

both | 7 | 1 | 1 | 9

| 13.46 | 1.92 | 1.92 | 17.31

------------+--------+--------+--------+

Total 31 14 7 52

59.62 26.92 13.46 100.00

Statistics for Table of Injury by Result

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 4 3.2288 0.5203

Likelihood Ratio Chi-Square 4 3.1732 0.5293
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Output from PROC GENMOD

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 4 3.1732 0.7933

Scaled Deviance 4 3.1732 0.7933

Pearson Chi-Square 4 3.2288 0.8072

Scaled Pearson X2 4 3.2288 0.8072

Log Likelihood 61.9602

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 0.1919 0.4845 -0.7577 1.1415 0.16 0.6921

Injury 1 1 1.3863 0.3727 0.6559 2.1167 13.84 0.0002

Injury 2 1 -0.2513 0.5040 -1.2390 0.7364 0.25 0.6180

Injury 3 0 0.0000 0.0000 0.0000 0.0000 . .

Result 1 1 1.4881 0.4185 0.6679 2.3083 12.65 0.0004

Result 2 1 0.6931 0.4629 -0.2141 1.6004 2.24 0.1343

Result 3 0 0.0000 0.0000 0.0000 0.0000 . .

21 / 52



Comments

Pearson and LRT test statistics and df for independence from
PROC FREQ are the same as the GOF tests of the additive
model versus the saturated interaction model from PROC
GENMOD fitting the Poisson models.

P(χ2
4 > 3.1732) = 0.5293; compare to PROC FREQ.

λ̂ = 0.1919 = log 52 − log
∑3

i=1

∑3
j=1 e

λ̂X
i
+λ̂Y

j from the last 6
rows of the SAS GENMOD Analysis of Parameter Estimates.

We accept that X ⊥ Y , i.e. that πij = πi+π+j .

Testing whether we can drop either Result or Injury from the
model signficantly increases the difference in −2 times the
log-likelihood (on 2 df for either test) and we reject the
simpler models.
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9.2 Three-way I × J × K tables

Now we have n individuals cross-classified on three variables
(X ,Y ,Z ). Let nijk be the number out of n = n+++ that are
classified X = i , Y = j , and Z = k. We assume

{nijk} ∼ mult(n, {πijk}).

As before, including ANOVA parameters for the log-mean
E (nijk) = nπijk will force certain types of dependence among
(X ,Y ,Z ). The saturated model is

log(nπijk) = λ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λYZ

jk + λXYZ
ijk ,

with the usual constraints. There are IJK − 1 free parameters in
the model to estimate IJK − 1 free probabilities in the table.
Shorthand: [XYZ ].
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Independence model

1. [X ][Y ][Z ]

The additive model is

log(nπijk) = λ + λX
i + λY

j + λZ
k .

The additive model implies complete independence:

P(X = i ,Y = j ,Z = k) = P(X = i)P(Y = j)P(Z = k),

i.e.
πijk = πi++π+j+π++k .

The shorthand for this model is [X ][Y ][Z ].

A test of the additive model versus the saturated model tests
H0 : X ⊥ Y ⊥ Z .

However, there are a number of models (7 total) between the
additive (mutual independence) model and the saturated model,
each implying a unique dependency structure among (X ,Y ,Z ).
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Partial independence models

2. [XY ][Z ], 3. [XZ ][Y ], or 4. [YZ ][X ]

There are three ways that one variable can be independent of the
remaining two: (X ,Y ) ⊥ Z , (X ,Z ) ⊥ Y , or (Y ,Z ) ⊥ X . These
have shorthand [XY ][Z ], [XZ ][Y ], or [YZ ][X ] respectively. These
models imply πijk = πij+π++k , πijk = πi+kπ+j+, or
πijk = π+jkπi++ and have log-linear model representation:

log(nπijk) = λ + λX
i + λY

j + λZ
k + λXY

ij ,

log(nπijk) = λ + λX
i + λY

j + λZ
k + λXZ

ik ,

or
log(nπijk) = λ + λX

i + λY
j + λZ

k + λYZ
jk .

[XY ][Z ] implies
P(X = i ,Y = j ,Z = k) = P(X = i ,Y = j)P(Z = k), etc.

25 / 52



Conditional independence models

5. [XZ ][YZ ], 6. [XY ][ZY ], or 7. [YX ][ZX ]

There are three ways that two variables can be independent
conditional on the other one: X ⊥ Y |Z , X ⊥ Z |Y , or Y ⊥ Z |X .
These have shorthand [XZ ][YZ ], [XY ][ZY ], or [YX ][ZX ]
respectively. These models imply
P(X = i ,Y = j |Z = k) = P(X = i |Z = k)P(Y = j |Z = k),
P(X = i ,Z = k|Y = j) = P(X = i |Y = j)P(Z = k|Y = j), or
P(Y = j ,Z = k|X = i) = P(Y = j |X = i)P(Z = kj |X = i) and
have log-linear model representation:

log(nπijk) = λ + λX
i + λY

j + λZ
k + λXZ

ik + λYZ
jk ,

log(nπijk) = λ + λX
i + λY

j + λZ
k + λXY

ij + λYZ
jk ,

or
log(nπijk) = λ + λX

i + λY
j + λZ

k + λXY
ij + λXZ

ik .
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Hard-to-interpret models

Note that the shorthand summarizes the highest-order interactions
included in the model as well as the dependence structure. This
leaves two last models:

8. [XY ][XZ ][YZ ] given by

log(nπijk) = λ + λX
i + λY

j + λZ
k + λXY

ij + λYZ
jk + λXZ

ik ,

and the saturated model
9. [XYZ ] given by

log(nπijk) = λ + λX
i + λY

j + λZ
k + λXY

ij + λYZ
jk + λXZ

ik + λXYZ
ijk .

Both of these imply rather complex dependency structures. Please
see pp. 344-346 (more at end of notes). Models 1-7 yield
simplified dependency structure for (X ,Y ,Z ) and are preferred if
one or more fit.
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Choosing among log-linear models is an art

Many contingency tables will have many, sometimes mostly,
empty or near-empty cells. The asymptotics involved in
testing reduced models relative to the saturated model are
then tenuous at best.

Testing reduced models to (non-saturated) higher-order
interaction models is a bit safer. Browns tests of association

are a useful tool to find higher-order models from which to
start from. See paper posted on course website if interested .

An ad hoc but useful approach is to find models that
minimize the AIC and check “winning” model fit through a
residual analysis. That’s what we will do here.
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Example

n = 2121 individuals did not exercise or have cardiovascular disease
during a 41

2 year study. They are cross-classified below according
to personality type A (e.g. workaholics) or B (e.g. relaxed, slouchy
graduate students), cholesterol level normal or high, and diastolic
blood pressure normal or high. Lets call these factors P , C , and B .

Diastolic blood pressure
Personality Cholesterol Normal High

A Normal 716 79
High 207 25

B Normal 819 67
High 186 22

SAS code:

data drugs;

input type chol bp count @@;

datalines;

1 1 1 716 1 1 2 79

1 2 1 207 1 2 2 25

2 1 1 819 2 1 2 67

2 2 1 186 2 2 2 22

;

proc genmod order=data; class type chol bp;

model count = type|chol|bp / dist=poi link=log type3;
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Output

LR Statistics For Type 3 Analysis

Chi-

Source DF Square Pr > ChiSq

type 1 0.56 0.4544

chol 1 238.24 <.0001

type*chol 1 0.33 0.5642

bp 1 1109.42 <.0001

type*bp 1 0.82 0.3665

chol*bp 1 1.62 0.2029

type*chol*bp 1 0.61 0.4336

There are plenty of observations in each cell and a test of the
saturated model versus [PC ][PB ][CB ] should be approximately
valid. Here we reject that the 3-way interaction is necessary to
model dependence and accept the model [PC ][PB ][CB ]. Let’s refit
this model via model count = type|chol type|bp chol|bp /
dist=poi link=log type3;

Chi-

Source DF Square Pr > ChiSq

type 1 1.35 0.2458

chol 1 241.43 <.0001

type*chol 1 3.95 0.0469

bp 1 1114.32 <.0001

type*bp 1 2.37 0.1240

chol*bp 1 1.45 0.2286
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B ⊥ C |P

We can further drop [CB ] and so we fit model count =
type|chol type|bp / dist=poi link=log type3;

Chi-

Source DF Square Pr > ChiSq

type 1 1.46 0.2269

chol 1 772.43 <.0001

type*chol 1 4.12 0.0423

bp 1 1645.33 <.0001

type*bp 1 2.54 0.1111

The p-value for dropping [PB ] is 0.11, a bit too close to 0.05 for
comfort. I’ll stop here and accept the model [PC ][PB ]. We accept
that given personality type A or B, cholesterol level is independent
of blood pressure in this study population. Put another way,
personality type has all the information about blood pressure in it;
nothing is to be gained from knowing the cholesterol level. In fact,
we can collapse the table over cholesterol level if we want without
loss of information concerning the relationship between blood
pressure and personality or worries about Simpson’s paradox –
more on this next time.
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Higher order tables

If we had accepted we could drop [PB ] from the model, then the
final model would be [PC ][B ], blood pressure is independent of the
other two, a much stronger assertion.
Higher order tables

All of these ideas generalize to higher order tables. A particular
(hierarchical) log-linear model corresponds to a dependence
structure among factors in the table. The shorthand for the
association involves the highest order interactions needed for
reasonable fit in the model. For example, say we have factors
A,B ,C ,D and the following model fits:

log(nπijkl) = λ + λA
i + λB

j + λC
k + λD

l + λBD
jk + λCD

kl .

The shorthand is [A][BD][CD]. A is independent of the other three
and B ⊥ C |D.
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9.4.2: Seat belt example (pp. 351–352)

n = 68694 passengers in autos and light trucks involved in
accidents in Maine in 1991.

Injury
Gender Location Seat belt No Yes
Female Urban No 7287 996

Yes 11587 759
Rural No 3246 973

Yes 6134 757
Male Urban No 10381 812

Yes 10969 380
Rural No 6123 1084

Yes 6693 513
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Model fitting

Fitting the model with all four 3-way interactions yields a p-value
for [GBI ] of 0.84. Replacing this term with [GB ][GI ][BI ] yields

Chi-

Source DF Square Pr > ChiSq

g 1 1.86 0.1725

l 1 292.60 <.0001

g*l 1 86.24 <.0001

b 1 49.79 <.0001

g*b 1 864.76 <.0001

l*b 1 3.78 0.0519

g*l*b 1 15.19 <.0001

i 1 47313.0 <.0001

g*i 1 405.58 <.0001

l*i 1 736.58 <.0001

g*l*i 1 2.22 0.1358

b*i 1 898.90 <.0001

l*b*i 1 3.12 0.0772
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Model fitting...

So we replace [GLI ] with [GL][GI ][LI ] and obtain:

Chi-

Source DF Square Pr > ChiSq

g 1 1.51 0.2186

l 1 309.33 <.0001

g*l 1 181.34 <.0001

b 1 49.79 <.0001

g*b 1 869.47 <.0001

l*b 1 3.31 0.0690

g*l*b 1 17.04 <.0001

i 1 47612.6 <.0001

l*i 1 735.91 <.0001

g*i 1 404.72 <.0001

b*i 1 900.36 <.0001

l*b*i 1 3.87 0.0491

The deviance from this model is 3.59 on 3 df yielding a p-value of
0.31. The model is [LBI ][GLB ][GI ]. This model has no simple
conditional independence interpretation, but rather is interpretable
in terms of odds ratios; we’ll explore this later.
This approach to model selection uses backwards elimination from
a fairly complex model. The model with all four 3-way interactions
is just one degree of freedom away from the saturated model. We
will discuss methods for assessing fit shortly, namely residuals.
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Let’s revisit alligator food data

Let’s reexamine the alligator food preference data. Call the factors
F , S , L, and G for food, size, lake, and gender. The model with all
4 3-way interactions crashes the program (separation occurs). A
bit of model building yields the following:

LR Statistics For Type 3 Analysis

Chi-

Source DF Square Pr > ChiSq

lake 3 2.88 0.4105

gender 1 9.88 0.0017

lake*gender 3 17.72 0.0005

size 1 2.80 0.0945

lake*size 3 4.14 0.2465

gender*size 1 23.85 <.0001

lake*gender*size 3 27.02 <.0001

food 4 85.71 <.0001

lake*food 12 49.13 <.0001

size*food 4 21.09 0.0003

This gives the model [GLS ][LS ][SF ][LF ] and the interpretation
G ⊥ F |L,S . Males and females eat similarly within a lake and size
category.
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More on log-linear models...

On model building:

Brown’s tests of association (not discussed) give large models
to start backwards elimination from. BMDP implements
these.

Another approach is to try backward elimination from models
with all higher k-way interactions (e.g. 3-way).

G 2 is model deviance, the drop in −2 logL from reduced
model to saturated model; Agresti uses G 2 for model building.
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10.3.1: Diagnostics

Let’s consider I × J × K tables for illustration. The ideas
immediately generalize.

A table has observed cell counts nijk and predicted under the
model nπ̂ijk where πijk is given by, e.g.,

log(nπijk) = λ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik ,

for model [XY ][XZ ]. The ijkth raw residual is nijk − nπ̂ijk . A
standardized version based on Poisson sampling is given by

eijk =
nijk − nπ̂ijk

√

nπ̂ijk

.
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Example, personality-type data

The standardized Pearson residual is rijk = eijk/
√

1 − ĥijk . One

can find cells for which |rijk | > 3 and flag them as being ill-fit, or
simply compare the raw counts nijk to the fitted values nπ̂ijk .

proc genmod order=data; class type chol bp;

model count = type|chol type|bp / dist=poi link=log r;

Observation Statistics

Observation Resraw Reschi Resdev StResdev StReschi Reslik

1 1.5063291 0.0563535 0.0563337 0.3724586 0.3725894 0.3725864

2 -1.506329 -0.167882 -0.16841 -0.37376 -0.372589 -0.372827

3 -1.506329 -0.104318 -0.104444 -0.373039 -0.372589 -0.372625

4 1.5063291 0.3107738 0.3075386 0.3687106 0.3725894 0.3698952

5 5.0786106 0.1780138 0.1778292 1.4298604 1.431345 1.4313221

6 -5.078611 -0.598194 -0.605433 -1.448667 -1.431345 -1.434386

7 -5.078611 -0.3674 -0.369046 -1.437757 -1.431345 -1.431768

8 5.0786106 1.2346018 1.179489 1.3674495 1.431345 1.3840886

The StReschi have the rijk . All are within |rijk | < 3.
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10.1 Association graphs and collapsing tables

An association graph plots each factor as a vertex and connects
factors according to interaction terms in the log-linear model.

Recall the the example that looked at personality type P , blood
pressure B , and cholesterol C . We found the model [PC ][PB ] fit.
This has association graph:

C

P

B

The two variables C and B are separated by P . All paths from C

to B go through P . This implies that C ⊥ B |P .
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Collapsibility

From page 380: “Suppose that a model for a multiway table partitions variables

into three mutually exclusive subsets A, B, and C such that B separates A and C .

After collapsing the table over the variables in C , parameters relating to variables in A

and parameters relating A to B are unchanged.” Also: A ⊥ C |B .

Alligator food example: the model [GLS ][SF ][LF ] fit the data.
Then A = {G}, C = {F} and B = {L,S} from the association
graph:

GL

SF

We can collapse the table over gender and examine associations
among F ,L,S without worrying about Simpson’s paradox (recall
we dropped gender from the model with food as the outcome).
Also: F ⊥ G |L,S .
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10.2.2 Student survey of drug use

Example: Table 10.1 (p. 381). Five factors: M, C , A, G , R .

Model with all 10 3-factor interactions fits well with G 2 = 5.3 on 6
df p-value is 0.5. Reduced model with all 10 2-factor interactions
also fits well with G 2 = 15.3 on 16 df and p-value is 0.5 (again).

data drug;

input g r a c m count @@;

datalines;

0 1 1 1 1 405 0 1 1 1 0 268

0 1 1 0 1 13 0 1 1 0 0 218

0 1 0 1 1 1 0 1 0 1 0 17

0 1 0 0 1 1 0 1 0 0 0 117

1 1 1 1 1 453 1 1 1 1 0 228

1 1 1 0 1 28 1 1 1 0 0 201

1 1 0 1 1 1 1 1 0 1 0 17

1 1 0 0 1 1 1 1 0 0 0 133

0 0 1 1 1 23 0 0 1 1 0 23

0 0 1 0 1 2 0 0 1 0 0 19

0 0 0 1 1 0 0 0 0 1 0 1

0 0 0 0 1 0 0 0 0 0 0 12

1 0 1 1 1 30 1 0 1 1 0 19

1 0 1 0 1 1 1 0 1 0 0 18

1 0 0 1 1 1 1 0 0 1 0 8

1 0 0 0 1 0 1 0 0 0 0 17

;
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Model fitting

proc genmod;

class g r a c m;

model count=g|r|a g|r|c g|r|m g|a|c g|a|m g|c|m r|a|c r|a|m r|c|m a|c|m / link=log dist=poi type3;

proc genmod;

class g r a c m;

model count=g|r g|a g|c g|m r|a r|c r|m a|c a|m c|m / link=log dist=poi type3;

LR Statistics For Type 3 Analysis

Chi-

Source DF Square Pr > ChiSq

g 1 5.98 0.0144

r 1 828.44 <.0001

g*r 1 0.84 0.3597

a 1 378.56 <.0001

g*a 1 3.38 0.0661

c 1 20.19 <.0001

g*c 1 0.98 0.3230

m 1 248.74 <.0001

g*m 1 9.82 0.0017

r*a 1 4.98 0.0256

r*c 1 0.44 0.5056

r*m 1 3.59 0.0582

a*c 1 185.86 <.0001

a*m 1 91.62 <.0001

c*m 1 498.13 <.0001

We can remove [RC ]. Then [GR ]. Then [GC ]. (Not shown).
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Final model

proc genmod;

class g r a c m;

model count=g|a g|m r|a r|m a|c a|m c|m / link=log dist=poi type3;

Chi-

Source DF Square Pr > ChiSq

g 1 6.20 0.0127

a 1 428.92 <.0001

g*a 1 5.51 0.0189

m 1 264.33 <.0001

g*m 1 8.90 0.0029

r 1 834.63 <.0001

r*a 1 4.78 0.0288

r*m 1 2.99 0.0836

c 1 25.49 <.0001

a*c 1 187.38 <.0001

a*m 1 92.05 <.0001

c*m 1 497.00 <.0001

The final model is [GA][GM][RA][RM][AC ][AM][CM]. This model
has G 2 = 17.54 on 19 df for a p-value of 0.55.
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Interpretation of final model

The association graph looks like:

G

R

A

C

M

We see that C ⊥ G ⊥ R |M,A. For example, cigarette use is
independent of gender given marijuana and alcohol use. Question:
which individual factors can we collapse over and retain valid
inferences for the remaining four parameters? Hint: there’s three
of them.

What if we accept that r*m is not needed above (p = 0.083)?
Then race is connected to G , M, and C only through alcohol. We
would have R ⊥ (G ,M,C )|A, i.e. R ⊥ G |A, R ⊥ M|A, and
R ⊥ C |A.
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9.2.3 Interpretation for [XY ][XZ ][YZ ]

In I × J × K table.

For 1 ≤ i ≤ I − 1 and 1 ≤ j ≤ J − 1 define

θij(k) =
πi ,j ,k πi+1,j+1,k

πi ,j+1,k πi+1,j ,k

=

[

P(Y =j ,X=i |Z=k)
P(Y =j+1,X=i |Z=k)

]

[

P(Y =j ,X=i+1|Z=k)
P(Y =j+1,X=i+1|Z=k)

] .

There are (I − 1)(J − 1) local odds ratios at each level of Z = k.
This completely determines the dependence structure among
X ,Y |Z = k.

For model [XY ][XZ ][YZ ] we have

log nπijk = λ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λYZ

jk .

This implies

log θij(k) = λXY
i,j + λXY

i+1,j+1 − λXY
i,j+1 − λXY

i+1,j .

So θij(1) = θij(2) = · · · = θij(K) for all i and j , the model of
homogeneous association.
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Interpretation for [XY ][XZ ][YZ ]

Similarly, [XY ][XZ ][YZ ] implies θ(1)jk = θ(2)jk = · · · = θ(I )jk for all
j and k, and θi(1)k = θi(2)k = · · · = θi(J)k for all i and k. This is
the difference between [XY ][XZ ][YZ ] and the saturated model
[XYZ ] in which there is no homogeneous association.

Section 9.5.1: [XY ][XZ ][YZ ] and logistic regression
Now let’s say Y is the outcome and is dichotomous. Then

log
P(Y = 1|X = i, Z = k)

P(Y = 2|X = i, Z = k)
=

P(Y = 1, X = i, Z = k)

P(Y = 2, X = i, Z = k)

= log nπi1k − log nπi2k

=
[

λ + λ
X
i + λ

Y
1 + λ

Z
k + λ

XY
i1 + λ

XZ
ik + λ

YZ
1k

]

−
[

λ + λ
X
i + λ

Y
2 + λ

Z
k + λ

XY
i2 + λ

XZ
ik + λ

YZ
2k

]

=
[

λ
Y
1 − λ

Y
2

]

+
[

λ
XY
i1 − λ

XY
i2

]

+
[

λ
YZ
1k − λ

YZ
2k

]

≡ β0 + β
X
i + β

Z
k ,

which corresponds to an additive logistic regression model.
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Which: log-linear model or logistic regression?

If all’s we care about is how (X ,Y ) relates to outcome Y , then
logistic regression model is okay.

If we are concerned with dependence structure among (X ,Y ,Z ),
then log-linear modeling is appropriate.

Table 9.11 gives the equivalent logistic regression model to several
log-linear models:

log-linear model logit model with outcome Y

[Y ][XY ] logit P(Y = 1) = α

[XY ][XZ ] logit P(Y = 1) = βX
i

[YZ ][XZ ] logit P(Y = 1) = βZ
k

[XY ][XZ ][YZ ] logit P(Y = 1) = βX
i + βZ

k

[XYZ ] logit P(Y = 1) = βX
i + βZ

k + βXZ
ik

Question: where are [X ][Y ][Z ], [X ][YZ ], [Z ][XY ], and
[XY ][YZ ]?
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More on collapsibility

Recall “personality type” data, which had three factors: P , C , and
B . We decided [PC ][PB ] fit the data.

Fitting [PC ][PB ] yields λPC
11 = −0.2176 and λPB

11 = −0.2409.

Fitting [PC ], i.e. collapsing over blood pressure, yields
λPC

11 = −0.2176 (same as above).

Fitting [PB ], i.e. collapsing over cholesterol, yields λPB
11 = −0.2409

(same as above).

In model [PC ][PB ] we have

θ11(k) =
P(P = 1,C = 1|B = k)P(P = 2,C = 2|B = k)

P(P = 1,C = 2|B = k)P(P = 2,C = 1|B = k)
.
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More on collapsibility

In terms of the log-linear model parameters,

log θ11(k) =
[

λPC
11 + λPB

1k

]

+
[

λPC
22 + λPB

2k

]

−
[

λPC
12 + λPB

1k

]

−
[

λPC
21 + λPB

2k

]

= λPC
11 ,

independent of k! This is because λPC
12 = λPC

21 = λPC
22 = 0 for

identifiability.

So θ̂11(k) = e−0.2176 = 0.80. The odds of having normal
cholesterol is reduced 20% for personality type A (within each level
of blood pressure).

Collapsing over blood pressure yielding model [PC ] gives
θ11 = λPC

11 from the reduced model, which has exactly the same

outcome θ̂11 = 0.80.

As required by the collapsibility theorem, the marginal and
conditional interpretations are the same. No information is lost by
collapsing the table.
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Seat belt example revisited

The final model was [GLB ][LBI ][GI ]. Ugh!

Can we say anything succinctly here?

Let’s see how the gender/injury odds ratio changes with levels of
location and belt use. Define

θ11(kl) =
P(G = 1, I = 1|L = k, B = l)P(G = 2, I = 2|L = k, B = l)

P(G = 1, I = 2|L = k, B = l)P(G = 2, I = 1|L = k, B = l)
.

In terms of log-linear model parameters,

log θ11(kl) =
[

λGLB
11l + λILB

1kl + λGI
11

]

+
[

λGLB
21l + λILB

2kl + λGI
22

]

−
[

λGLB
11l + λILB

2kl + λGI
12

]

−
[

λGLB
21l + λILB

1kl + λGI
21

]

= λGI
11 ,

independent of L = k and B = l , the model of homogeneous

association.

51 / 52



Seat belt data

What is the association graph for [GLB ][LBI ][GI ]?

From the seatbelt output, θ̂11(kl) = e−0.5459 = 0.58. The odds of
not being injured for females is 0.58 times the odds for males
within each (B ,L) strata.

Fitting the table collapsed over B and L, i.e. fitting [GI ], we obtain
the marginal odds ratio θ̂11 = e−0.4128 = 0.66.

The marginal interpretation is not the same (but not that

different!) as the conditional interpretation. The conditions of the
collapsibility theorem are not satisfied here, and so the
interpretation changes upon collapsing the table.
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