
Section 13.2: Generalized Linear Mixed Models

• Observations often occur in related clusters. Phrases like repeated

measures and longitudinal data get at the same thing: there’s

correlation among observations in a cluster.

• Chapter 12 dealt with an estimation procedure (GEE) that

accounted for correlation in estimating population-averaged

(marginal) effects.

• This section models cluster correlation explicitly through random

effects, yielding a GLMM.

Let Yi = (Yi1, . . . , Yini
) be ni correlated Bernoulli responses in

cluster i. Associated with each repeated measure Yij are fixed

(population) effects β and cluster-specific random effects bi. As

usual, πij = E(Yij).
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Just as in Chapter 9, the linear predictor is augmented to include

random effects. Let logit(x) = log{x/(1 − x)}. Then

logit πij = logit P (Yij = 1) = x′

ijβ + z′ijbi.

In vector/matrix terms,
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Note that πij = e
x
′
ijβ+z

′
ijbi

1+e
x′

ij
β+z′

ij
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is a conditional probability (on bi).
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Example: I ask a random sample of the same n = 30 graduate

students “do you like statistics?” once a month for 4 months.

Yij = 1 if “yes” and Yij = 0 if no. Here, i = 1, . . . , 30 and j = 1, . . . , 4.

Covariates might include mij , the average mood of the student over

the previous month (mij = 0 is bad, mij = 1 is good), the degree

being sought (di = 0 doctoral, di = 1 masters), the month tj = j, and

pj the number of homework problems assigned in Stat 771 in the

previous month.

A GLMM might be

logit P (Yij = 1) = β0 + β1mij + β2di + β3pj + β4tj
︸ ︷︷ ︸

x′
ij

β

+ bi0 + bi1tj
︸ ︷︷ ︸

z′
ij

bi

.
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This model assumes that log-odds of liking statistics changes linearly

in time, holding all else constant.

Alternatively, we might fit a quadratic instead or treat time as

categorical.

Here, bi represents a student’s a priori disposition-trend towards

statistics.
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Does overall mood affect one’s disposition toward statistics?

In a given month tj , for a given population of individuals with the
same trend bi, the difference in log odds for good versus bad moods is

(β0+β1(1)+β2di +β3pj +β4tj +bi0 +bi1tj)−(β0 +β1(0)+β2di +β3pj +β4tj +bi0 +bi1tj) = β1.

So eβ1 is how the odds of liking statistics changes with mood.

We are conditioning on individual i, or the subpopulation of all

individuals with predisposition bi; i.e. everyone “like” individual i in

terms of liking statistics (over time) to begin with.

How are eβ2 , eβ3 , and eβ4 interpreted here?
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The random effects are assumed to come from (in general) a

multivariate normal distribution

b1, . . . ,bn
iid
∼ Nq(0,Σ).

The covariance cov(bi) = Σ can have special structure, e.g.

exchangeability, AR(1), or be unstructured – usually only

unstructured makes sense. The free elements of Σ are estimated

along with β.

The bi can account for heterogeneity caused by omitting explanatory

variables.
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Connection between marginal and conditional models

In the GEE approach, the marginal means are explicitly modeled:

πij = E(Yij) =
ex

′
ijβ

1 + ex
′
ijβ

,

and correlation among (Yi1, . . . , Yini
) is accounted for in the

estimation procedure.

The conditional approach models the means conditional on the

random effects:

E(Yij |bi) =
ex

′
ijβ+z

′
ijbi

1 + ex′
ij

β+z′
ij

bi
.

The corresponding marginal mean is given by

E(Yij) =

∫

Rq

ex
′
ijβ+z

′
ijbi

1 + ex
′
ijβ+z

′
ijbi

f(bi;Σ)dbi = ???
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• In epi studies, often want to compare disease prevalence across

groups. Then it’s of interest to compute marginal odds ratios

and compare them.

• The more variability that’s accounted for in the conditional

model, the more we can “focus in” on the conditional effect of

covariates. This is true in any situation where we block. This has

the effect enlarging β̂ estimates under a conditional model.

• When correlation is small, independence is approximately

achieved, and marginal and conditional modeling yield similar

results.

• GLMMs are being increasingly used, in part due to the

availability of standard software to fit them!

• Bayesian approach is also natural here.
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GLIMMIX

This is a new SAS procedure that fits GLMM’s.

• The procedure had been available as a macro for some time.

• GLIMMIX essentially extends the MIXED procedure to GLM’s,

and in fact iteratively calls MIXED when fitting GLMM’s.

• Only normal random effects are allowed.

• GLIMMIX uses an approximation when fitting models. The

approximation in effect replaces the intractable integral ???

with a simple linear Taylor’s expansion. It’s crude, but works

and is fast. See pp. 119–125 in SAS’ GLIMMIX documentation

for details on “Pseudo-likelihood Estimation Based on

Linearization.”
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• GLIMMIX can also fit marginal models allowing for correlation

within a cluster (like GENMOD), but uses a different estimation

method than GENMOD with the repeated statement. Then R

has structure, e.g. exchangeability (called compound symmetry

here), AR structure, spatial structures, and others found in

PROC MIXED.

• The learning curve is steep, although it’s nice to be aware of

alternative fitting procedures if necessary!

• Let’s fit a GLMM to the wheezing (Six Cities) data.

logit πij = β0 + β1I{ci = Kingston} + β2I{sij = 0} + β3I{sij = 1} + tjβ4 + bi0 + bi1tj .
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proc glimmix data=six method=laplace;

class case city smoke;

model wheeze = city smoke age / dist=bin link=logit s;

random int age / subject=case type=un;

run;

----------------------------------------------------------------------------------------------------------

The GLIMMIX Procedure

Model Information

Data Set WORK.SIX

Response Variable wheeze

Response Distribution Binomial

Link Function Logit

Variance Function Default

Variance Matrix Blocked By case

Estimation Technique Maximum Likelihood

Likelihood Approximation Laplace

Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

case 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32

city 2 kingston portage

smoke 3 0 1 2

Number of Observations Read 128

Number of Observations Used 100
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Dimensions

G-side Cov. Parameters 3

Columns in X 7

Columns in Z per Subject 2

Subjects (Blocks in V) 32

Max Obs per Subject 4

Optimization Information

Optimization Technique Dual Quasi-Newton

Parameters in Optimization 8

Lower Boundaries 2

Upper Boundaries 0

Fixed Effects Not Profiled

Starting From GLM estimates

Iteration History

Objective Max

Iteration Restarts Evaluations Function Change Gradient

0 0 4 117.81153662 . 104.5189

1 0 8 116.98455729 0.82697933 65.599

2 0 4 115.85922461 1.12533268 3.707623

...et cetera...

34 0 3 115.37456051 0.00000076 0.029757

35 0 3 115.37456049 0.00000003 0.000869

Convergence criterion (GCONV=1E-8) satisfied.
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Fit Statistics

-2 Log Likelihood 115.37

AIC (smaller is better) 131.37

AICC (smaller is better) 132.96

BIC (smaller is better) 143.10

CAIC (smaller is better) 151.10

HQIC (smaller is better) 135.26

Fit Statistics for Conditional

Distribution

-2 log L(wheeze | r. effects) 82.07

Pearson Chi-Square 60.59

Pearson Chi-Square / DF 0.61

Covariance Parameter Estimates

Cov Standard

Parm Subject Estimate Error

UN(1,1) case 46.5032 95.6792

UN(2,1) case -4.2813 8.7969

UN(2,2) case 0.4011 0.8183
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Solutions for Fixed Effects

Standard

Effect city smoke Estimate Error DF t Value Pr > |t|

Intercept 1.5066 3.8219 30 0.39 0.6962

city kingston 0.3287 0.6789 38 0.48 0.6310

city portage 0 . . . .

smoke 0 -0.4994 0.8192 38 -0.61 0.5457

smoke 1 -0.9590 0.7697 38 -1.25 0.2204

smoke 2 0 . . . .

age -0.2095 0.3460 27 -0.61 0.5498

Type III Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

city 1 38 0.23 0.6310

smoke 2 38 0.82 0.4475

age 1 27 0.37 0.5498

14



Nothing is significant...even when weeding out nonsignificant

predictors. Just a “bad” data set: no signal, all noise.

Interpretation here is different though...it’s within child. Marginal
approach of last time is a population-averaged approach, i.e. for all
kids. Here’s the marginal (GEE) output:

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.4511 2.1023 -2.6694 5.5715 0.69 0.4901

city kingston 0.3407 0.4754 -0.5909 1.2724 0.72 0.4735

city portage 0.0000 0.0000 0.0000 0.0000 . .

smoke 0 -0.4426 0.5613 -1.5428 0.6575 -0.79 0.4303

smoke 1 -0.3367 0.7138 -1.7356 1.0623 -0.47 0.6372

smoke 2 0.0000 0.0000 0.0000 0.0000 . .

age -0.2005 0.2097 -0.6116 0.2105 -0.96 0.3390

The effects are about the same or smaller ; also the standard errors

are all less, some by as much as two thirds smaller. Often this is

reversed in terms of standard errors. With only a random intercept,

the standard errors from the GLMM decrease.
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