
Chapter 12: Population-averaged models for Bernoulli

repeated measurements

Example of repeated measures:

• Data are comprised of several repeated measurements on the

same individual over time, e.g. Yij = 1 indicates acne outbreak

for patient i in month j; Yij = 0 indicates no outbreak.

• Data are recorded in clusters, e.g. Yij might indicate the

presence of tooth decay for tooth j in patient i.

• Data are from naturally associated groups, e.g. Yij might denote

a successful treatment of patient j at clinic i.

• Wheezing data in Chapter 1.

In all of these examples, the repeated measurements are (typically

positively) correlated within an individual or group.

1



Marginal logistic model of multiple 0/1 responses

Let ni binary responses Yi = (Yi1, . . . , Yini
) come from the ith

individual at times ti = (ti1, . . . , tini
). Let πi = (πi1, . . . , πini

) where

πij = E(Yij). Let xij be a p × 1 vector of explanatory variables.

We assume the vectors Y1, . . . ,Yn are independent, but that
elements of Yi are correlated. Common choices are
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Others are

R(α) = corr(Yi) =
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and R = corr(Yi) =
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You can also specify a fixed, known R as well as MDEP(m) which
yields R(α) as

corr(Yij, Yi,j+t) =

�
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• Unstructured most general; often a default choice. Need balance

though.

• Exchangeable useful when time is not important and correlations

thought to be approximately equal, e.g. repeated measurements

on individual in crossover study, measurements across several

individuals from clinic i.

• AR(1) useful when serial correlation plausible, e.g. repeated

measurements across equally spaced time points on individual.
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Comments:

• These correlation matrices are used in a GEE algorithm

(sketched below) in PROC GENMOD (all other PROC MIXED

covariance structures available in GLIMMIX).

• Repeated measures are accounted for via REPEATED statement.

• The order of (Yi1, . . . , Yin) makes a difference with some R(α). If

ordering is different to that defined in the DATA step, one can

use the WITHIN subcommand in the REPEATED statement to

tell SAS what the ordering is. Also used when missing some

measurements in (Yi1, . . . , Yin).

• CORRW in the REPEATED statement gives the final working

correlation matrix estimate.

• Elements of β are interpreted as usual, but averaged over

clusters. This is a marginal interpretation.
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Let πij = g−1(x′

ijβ) be the marginal mean. In general, Yij is from an

exponential family

Yij ∼ f(yij ; θij , φ) = exp{[yijθij − b(θij)]/φ + c(yij , φ)},

where the dispersion φ is known. The GEE approach requires some

notation:

• πij = b′(θij) and v(πij) = var(Yij) = b′′(θij)φ.

• R(α) is “working correlation matrix,” reflecting our best guess

at the true correlation structure among the elements of Yi. See

the previous slide. Choice of R(α) can be made based on QIC

(Pan, 2001).

• Bi = diag(b′′(θi1), . . . , b
′′(θin)) is a diagonal matrix with

var(Yij)/φ along the diagonal.

• Vi = B
1/2
i R(α)B

1/2
i φ is the working covariance matrix.
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Let Di = ∂πi

∂β
= Bi∆iXi be the ni × p matrix of first partial

derivatives where πi = πi(β) = (g−1(x′

i1β), . . . , g−1(x′

ini
β)),

∆i = diag( ∂θi1

∂ηini

, . . . , ∂θi1

∂ηini

), ηij = x′

ijβ, and Xi =
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The generalized estimating equations (GEE) are

u(β) =
n

∑

i=1

D′

iV
−1
i [yi − πi(β)] = 0.

These correspond to likelihood (score) equations, but are not derived

from a proper likelihood. However, the β̂ that solves them is

consistent, even when the correlation assumption is wrong. Roughly

speaking, this is because consistency is a first moment (mean)

property.
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Liang and Zeger (1986) show β̂
•

∼ Np(0,VG) where

VG =
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Here β is replaced by β̂, φ replaced with φ̂ (φ = 1 for binomial and

Poisson models), and α replaced by α̂. cov(Yi) is replaced by

[yi − πi(β̂)][yi − πi(β̂)]′.

This sandwich estimator sandwiches an empirical estimate between

the theoretical (working guess)
[
∑n

i=1 D′

iV
−1
i Di

]−1
. If we know for

certain (we don’t) that corr(Yi) = R(α), then we can use this

instead (MODELSE in the REPEATED statement).
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To reiterate, the ingredients for the marginal GEE approach are

• A marginal model where Yij is Bernoulli, Poisson, normal,

gamma, etc. (see Chapters 11 & 12) with mean µij = g−1(x′

ijβ).

• We are only considering Bernoulli data, so

µij = E(Yij) = πij = g−1(x′

ijβ).

Note that often for repeated measures, xij = xi for j = 1, . . . , ni;

e.g. gender and weight are not apt to change over a 6 month

study.

• An assumption on how the elements of Yi = (Yi1, . . . , Yini
) are

correlated, corr(Yi) = R(α).

• This is not the case for the wheezing data!
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Example (Agresti, 2002, p. 459)

Response at 1, 2, and 4 weeks

Diagnosis Treatment NNN NNA NAN NAA ANN ANA AAN AAA

Mild Standard 16 13 9 3 14 4 15 6

New 31 0 6 0 22 2 9 0

Severe Standard 2 2 8 9 9 15 27 28

New 7 2 5 2 31 5 32 6

Longitudinal study comparing a new drug with a standard drug for

treatment of subjects suffering mental depression. n = 340 patients

either mildly or severely depressed upon admission into the study. At

weeks 1, 2, and 4, corresponding to j = 1, 2, 3, patient i’s suffering

Yij was classified as normal Yij = 1 or abnormal Yij = 0. Let

si = 0, 1 be the severity of the diagnosis (mild, severe) and di = 0, 1

denote the drug (standard, new).
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We treat time as a categorical predictor and fit a marginal logit

model with an exchangeable correlation structure; note n = 3:

corr(Yi) = corr
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The model is:

logit(πij) = β0 + β1si + β2di + τj + diθj .
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data depress;

infile "c:/tim/cat/depress.txt";

input case diagnose treat time outcome; time=time+1;

proc genmod descending; class case time;

model outcome = diagnose treat time treat*time / dist=bin link=logit type3;

repeated subject=case / type=exch corrw;

Fit of independence model to get initial estimate of β:

Analysis Of Initial Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 0.9812 0.1809 0.6267 1.3356 29.43 <.0001

diagnose 1 -1.3116 0.1462 -1.5981 -1.0251 80.50 <.0001

treat 1 2.0429 0.3056 1.4439 2.6420 44.68 <.0001

time 1 1 -0.9600 0.2290 -1.4088 -0.5112 17.58 <.0001

time 2 1 -0.6206 0.2245 -1.0607 -0.1806 7.64 0.0057

time 3 0 0.0000 0.0000 0.0000 0.0000 . .

treat*time 1 1 -2.0980 0.3893 -2.8610 -1.3351 29.05 <.0001

treat*time 2 1 -1.0961 0.3838 -1.8482 -0.3439 8.16 0.0043

treat*time 3 0 0.0000 0.0000 0.0000 0.0000 . .

GEE Model Information

Correlation Structure Exchangeable

Subject Effect case (340 levels)

Number of Clusters 340

Correlation Matrix Dimension 3
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Working Correlation Matrix

Col1 Col2 Col3

Row1 1.0000 -0.0034 -0.0034

Row2 -0.0034 1.0000 -0.0034

Row3 -0.0034 -0.0034 1.0000

Exchangeable Working

Correlation

Correlation -0.003436171

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept 0.9812 0.1841 0.6203 1.3421 5.33 <.0001

diagnose -1.3117 0.1453 -1.5964 -1.0269 -9.03 <.0001

treat 2.0427 0.3061 1.4428 2.6426 6.67 <.0001

time 1 -0.9601 0.2379 -1.4265 -0.4938 -4.04 <.0001

time 2 -0.6207 0.2372 -1.0855 -0.1559 -2.62 0.0089

time 3 0.0000 0.0000 0.0000 0.0000 . .

treat*time 1 -2.0975 0.3923 -2.8663 -1.3287 -5.35 <.0001

treat*time 2 -1.0958 0.3900 -1.8602 -0.3314 -2.81 0.0050

treat*time 3 0.0000 0.0000 0.0000 0.0000 . .
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Score Statistics For Type 3 GEE Analysis

Chi-

Source DF Square Pr > ChiSq

diagnose 1 70.83 <.0001

treat 1 40.38 <.0001

time 2 15.73 0.0004

treat*time 2 29.52 <.0001

Clearly, there is an important interaction between time and the

treatment. The initial diagnosis is also important. Fitting two more

models shows that there is no evidence of interaction between

diagnosis and treatment or diagnosis and time.

We see a severe diagnosis (s = 1) significantly decreases the odds of a

normal classification by a factor of e−1.31 = 0.27. The odds (for

normal classification) ratio comparing the new drug to the standard

drug changes with time because of the interaction. At 1 week it’s

e2.04−2.09 = 0.95, and week 2 it’s e2.04−1.10 = 2.6, and at 4 weeks it’s

e2.04−0 = 7.7. The new drug is better, but takes time to work.
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Here, the focus is on whole populations of patients at 1, 2, and 4

weeks, and on the new drug versus the standard drug. These

interpretations are not within the individual, as one would make for a

conditional, i.e. random effects, analysis, coming up in Chapter 13.

Look at the estimate of the working correlation matrix. What does

this tell you? In fact, if “comment out” the REPEATED statement

and assume independent observations across individuals, i.e.

Yi1, Yi2, Yi3 independent, regression coefficients and standard errors

change negligibly.
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When to use which correlation structure R(α)?

Because GENMOD automatically uses the “sandwich” estimate of

the variance, adjusting the working correlation with an empirical

(but yet model-based from mean estimates!) estimate of cov(β̂), this

GEE is robust to misspecification of R(α). However, it’s nice to have

a formal tool for choosing.

Pan (2001) proposes a measure analogous to AIC for quasi-likelihood

termed the QIC. When φ = 1 it reduces to

QIC = −2L(π(β̂);y1, . . . ,yn) + 2trace(Ω̂VG),

where Ω̂ =
∑n

i=1 D′

iViDi; see Pan (2001).

QICu replaces 2trace(Ω̂VG) with 2p.
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Example (Wheezing data from Chapter 1): The data analyzed are
from Lipsitz et al. (1994). Binary Yij is the wheezing status of
n = 16 children at ages 9, 10, 11, and 12 years (j = 1, 2, 3, 4); Yij = 1
for “yes” and Yij = 0 for “no”. The mean πij = P (Yij = 1) = E(Yij)
is modeled

logit πij = β0 + β1I{ci = Kingston} + β2I{sij = 0} + β3I{sij = 1} + tjβ4

where the covariates are city of residence, age, and maternal
smoking status sij = 0, 1, 2 at the particular age.

sij dij1 dij2 status

0 1 0 0-9 cigarettes per day

1 0 1 10-19 cigarettes per day

2 0 0 ≥ 20 cigarettes per day
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If we assume Yi1, Yi2, Yi3, Yi4 are equally correlated, we get an

exchangeable correlation structure:

corr(Yi) =
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We can also, e.g., try unstructured
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Code:

data six;

input case city$ @@;

do i=1 to 4; input age smoke wheeze @@; output; end;

datalines;

1 portage 9 0 1 10 0 1 11 0 1 12 0 0

2 kingston 9 1 1 10 2 1 11 2 0 12 2 0

...et cetera...

31 kingston 9 1 0 10 . . 11 1 0 12 2 1

32 portage 9 . . 10 1 1 11 1 0 12 1 0

;

run;

proc genmod data=six descending;

class case city smoke;

model wheeze = city smoke age / dist=bin link=logit type3;

repeated subject=case / type=un corrw; * try cs, ar, and un;

run;
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Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.2011 0.2383 -0.1566

Row2 0.2011 1.0000 0.6267 -0.1366

Row3 0.2383 0.6267 1.0000 0.2368

Row4 -0.1566 -0.1366 0.2368 1.0000

GEE Fit Criteria

QIC 129.8428

QICu 128.7822

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.4511 2.1023 -2.6694 5.5715 0.69 0.4901

city kingston 0.3407 0.4754 -0.5909 1.2724 0.72 0.4735

city portage 0.0000 0.0000 0.0000 0.0000 . .

smoke 0 -0.4426 0.5613 -1.5428 0.6575 -0.79 0.4303

smoke 1 -0.3367 0.7138 -1.7356 1.0623 -0.47 0.6372

smoke 2 0.0000 0.0000 0.0000 0.0000 . .

age -0.2005 0.2097 -0.6116 0.2105 -0.96 0.3390

Score Statistics For Type 3 GEE Analysis

Chi-

Source DF Square Pr > ChiSq

city 1 0.45 0.5044

smoke 2 0.65 0.7228

age 1 0.76 0.3834
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