
Matrices and vectors

A matrix is a rectangular array of numbers. Here’s an example:

A =





2.3 −1.4 17

−22.5 0
√

2



 .

This matrix has dimensions 2 × 3. The number of rows is first, then

the number of columns.

We can write the n × p matrix X abstractly as

X =





















x11 x12 x13 · · · x1p

x21 x22 x23 · · · x2p

x31 x32 x33 · · · x3p

...
...

...
. . .

...

xn1 xn2 xn3 · · · xnp





















.
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Another notation that is common is A = [aij ]n×m for an n × m

matrix A with element aij in the ith row and jth column. The

matrix X on the previous page would then be written X = [xij ]n×p.

If two matrices A = [aij ]n×m and B = [bij ]n×m have the same

dimensions, you can add them together, element by element, to get a

new matrix C = [cij ]n×m. That is, C = A + B is the matrix with

elements cij = aij + bij . For example,









−1 −2

5 7

−10 20









+









1 2

3 4

1 2









=









−1 + 1 −2 + 2

5 + 3 7 + 4

−10 + 1 20 + 2









=









0 0

8 11

−9 22









.
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Multiplying a matrix A = [aij ]n×m by a number b yields the matrix

C = Ab with elements cij = aijb. For example,

(−2)









−1 −2

5 7

−10 20









=









−1(−2) −2(−2)

5(−2) 7(−2)

−10(−2) 20(−2)









=









2 4

−10 −14

20 −40









.

The transpose of a matrix A′ takes the matrix A and makes the rows

the columns and the columns the rows. Precisely, if A = [aij ]n×m

then A′ is the m × n matrix with elements a′

ij = aji. For example:

If A =





1 2 3

4 5 6



 , then A′ =









1 4

2 5

3 6









.

Question: what is (A′)′?
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A vector is a matrix with only one column or row, called a “column

vector” or “row vector” respectively. Here’s an example of each:

x =









1

−1

14









, y = [ 1 −1 14 ].

Note that for these vectors, x′ = y and y′ = x.

The product of an 1 × n row vector and a n × 1 column vector is the

sum of the pairwise products of elements. So if x = [xi]1×n and

y = [yi]n×1 then xy =
∑n

i=1 xiyi.
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For example, if x = [ −1 2 ] and y =





10

−5



 then

xy = [ −1 2 ]





10

−5



 = −1(10) + 2(−5) = −20.

The inner product of two n× 1 column vectors x and y is the product

x′y = [ x1 x2 x3 · · · xn ]





















y1

y2

y3

...

yn





















=
n

∑

i=1

xiyi.
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Note that if x =





x1

x2



 is a point in the plane R2, then

x′x = x2
1 + x2

2 is the square of the length of x. That is, ||x|| =
√

x′x.

We are now ready to define general matrix multiplication. The

product of an n × p matrix A and a p × m matrix B is the n × m

matrix C with elements cij =
∑p

k=1 aikbkj . Let A be comprised of n

1 × p row vectors a1, . . . , an and let B be comprised of m p × 1

column vectors b1, . . . ,bm like

A =

















· · ·a1 · · ·
· · ·a2 · · ·

...

· · ·an · · ·

















n×p

and B =











...
...

...

b1 b2 · · · bm

...
...

...











p×m

.
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Then cij = aibj :

C =

















a1b1 a1b2 · · · a1bm

a2b1 a2b2 · · · a2bm

...
...

. . .
...

anb1 anb2 · · · anbm

















.

For example, let A =





1 −1 −2

−3 −1 5



 and B =









2 0 −2

0 −5 7

1 0.5 −4









.

Then

AB =

�

1(2) − 1(0) − 2(1) 1(0) − 1(−5) − 2(0.5) 1(−2) − 1(7) − 2(−4)

−3(2) − 1(0) + 5(1) −3(0) − 1(−5) + 5(0.5) −3(−2) − 1(7) + 5(−4)

�

=

�

0 4 0

−1 8.5 −21

�

.
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On the previous slide, does BA make sense? No. The rows of the

first matrix must be the same length as the columns of the second.

Note that, in general, AB 6= BA.

Define In×n as

I =





















1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1





















.

Then

An×pIp×p = An×p and In×nAn×p = An×p,

for any An×p. The matrix In×n is called the n × n identity matrix.
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For example,




1 0

0 1









1 −1 −2

−3 −1 5



 =





1 −1 −2

−3 −1 5





and





1 −1 −2

−3 −1 5













1 0 0

0 1 0

0 0 1









=





1 −1 −2

−3 −1 5



 .
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The inverse of a square (p× p) matrix A is the p× p matrix A−1 such

that A−1A = AA−1 = Ip×p. For example, if A =





1 −1

0 2



, then





1 −1

0 2









1 1
2

0 1
2



 =





1 0

0 1



 ,

and so A−1 =





1 1
2

0 1
2



. Note that we must have





1 1
2

0 1
2









1 −1

0 2



 =





1 0

0 1





as well.
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There is an algorithm for finding the inverse of any size matrix but it

is very computationally intensive, except for 2 × 2 matrices. Let

A =





a11 a12

a21 a22



 .

Then

A−1 =
1

a11a22 − a12a21





a22 −a12

−a21 a11



 .

That is, switch the diagonal entries, multiply the off-diagonals by −1,

and divide the works by a11a22 − a12a21.

We can show that this is the inverse in class. Try it out on A on the

previous slide.
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Not every square matrix has an inverse. For example

A =





−1 2

2 −4



 ,

does not. Try the formula on the previous slide out on this matrix.

What happens?

Square matrices that do not have an inverse are said to be singular.
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The two sample problem in terms of matrices

Recall the two-sample normal model with equal variances:

Y11, Y12, . . . , Y1n1

iid∼ N(µ1, σ
2),

Y21, Y22, . . . , Y2n2

iid∼ N(µ2, σ
2).

We can rewrite this as

Yij = µi + eij ,

where

eij
iid∼ N(0, σ2),

where i = 1, 2 indexes the group (1 or 2) and j = 1, . . . , ni is the

observation within the group.
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Each piece of data Yij follows:

Y11 = µ1 + e11

Y12 = µ1 + e12

Y13 = µ1 + e13

...
...

...

Y1n1
= µ1 + e1n1

Y21 = µ2 + e21

Y22 = µ2 + e22

Y23 = µ2 + e23

...
...

...

Y2n2
= µ2 + e2n2
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Define the following vectors and matrices:

Y =







































Y11

Y12

...

Y1n2

Y21

Y22

...

Y2n2







































, X =







































1 0

1 0
...

...

1 0

0 1

0 1
...

...

0 1







































, µ =





µ1

µ2



 , and e =







































e11

e12

...

e1n2

e21

e22

...

e2n2







































.
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Then we can write the model succinctly as

Y = Xµ + e.

We’ll show this on the board for n1 = n2 = 3.

It turns out the the MLE’s for µ1 and µ2, namely

µ̂1 = n−1
1

∑n1

j=1 y1j = ȳ1• and µ̂2 = n−1
2

∑n2

j=1 y2j = ȳ2• are obtained

in matrix terms as

µ̂ =





µ̂1

µ̂2



 = (X′X)−1X′y.
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We’ll show part of this:

X′X =





1 1 · · · 1 0 0 · · · 0

0 0 · · · 0 1 1 · · · 1











































1 0

1 0
...

...

1 0

0 1

0 1
...

...

0 1







































=





n1 0

0 n2



 .
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And so

(X′X)−1 =





n1 0

0 n2





−1

=





1
n1

0

0 1
n2



 .

Also,

X′y =





1 1 · · · 1 0 0 · · · 0

0 0 · · · 0 1 1 · · · 1











































y11

y12

...

y1n2

y21

y22

...

y2n2







































=





∑n1

j=1 y1j

∑n2

j=1 y2j



 .
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Then

(X′X)−1X′y =





1
n1

0

0 1
n2









∑n1

j=1 y1j

∑n2

j=1 y2j



 =





ȳ1•

ȳ2•



 =





µ̂1

µ̂2



 ,

as promised. The MLE of σ2 in terms of matrices is

σ̂2 = (y − Xµ̂)′(y − Xµ̂)/(n1 + n2) = ||y − Xµ̂||2/(n1 + n2).

What is the point? Although the two-sample normal model is fairly

simple, very complex models with multiple predictors, both

categorical and continuous, can be written as

Y = Xβ + e,

including the simple linear regression model, multiple regression

models, oneway and multiway ANOVA models, and ANCOVA

models.
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In

Y = Xβ + e,

• Y is the n × 1 data vector.

• X is the n× p design matrix. Often the ith row of X is comprised

of p − 1 measurements taken on the ith subject in a study, e.g.

the ith row of an Excel spreadsheet, and an intercept term.

• β is the p × 1 coefficient vector. For the two-sample model, p = 2

and β = (µ1, µ2).

• e is the n × 1 error vector. All the elements of e are assumed to

be iid N(0, σ2).
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The jth residual in group i is defined to be

rij = yij − Ê(Yij) = yij − µ̂i.

These can be plotted versus the group number i = 1, 2 to assess
whether constant variance across groups is reasonable. A histogram
of all n = n1 + n2 residuals can be used to assess the normality
assumption. There are formal tests for both constant variance and
for normality.

> skull <- c(english,celt)

> group <- c(rep("English",length(english)),rep("Celt",length(celt)))

> group <- factor(group)

> t.test(skull~group,var.equal=T)

Two Sample t-test

data: skull by group t = -7.6952, df = 32, p-value = 9.003e-09

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-19.91906 -11.58094
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sample estimates:

mean in group Celt mean in group English

130.75 146.50

> fit1 <- lm(skull~group) #lm() is "linear model"

> summary(fit1)

Call: lm(formula = skull ~ group)

Residuals:

Min 1Q Median 3Q Max

-14.500 -4.312 0.875 3.500 11.500

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 130.750 1.489 87.798 <2e-16 ***

groupEnglish 15.750 2.047 7.695 9e-09 ***

---

F-statistic: 59.22 on 1 and 32 DF, p-value: 9.003e-09

> r <- fit1$residuals # get residuals

> plot(group,r) # gives boxplots instead of scatterplot

> hist(r) # looks roughly normal
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Celt English

−
15

−
10

−
5

0
5

10

Histogram of r

r

F
re

qu
en

cy

−15 −5 5 15
0

2
4

6
8

10
12

Figure 1: Boxplots show roughly the same spread; histogram is roughly

‘normal’ looking.
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The lm() fit to the data fits a different, but equivalent model:

Celts : Y1,1, . . . , Y1,16
iid∼ N(µ, σ2),

English : Y2,1, . . . , Y2,18
iid∼ N(µ + δ, σ2),

reports estimates of the mean Celtic headbreadth µ, and the mean

difference for Englishmen δ. Of interest in this reparameterized

model is H0 : δ = 0, which is the same as testing H0 : µ1 = µ2 in the

two-sample model.
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The simple linear regression model stipulates

Yi = β0 + β1xi + ei,

where i = 1, . . . , n. Here we can write

Y =

















Y1

Y2

...

Yn

















, X =

















1 x1

1 x2

...
...

1 xn

















, β =





β0

β1



 , and e =

















e1

e2

...

en

















.

The model is succinctly written

Y = Xβ + e.
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As in the two-sample model, the MLE’s β̂ = (β̂0, β̂1) are given by

β̂ =





β̂0

β̂1



 = (X′X)−1X′y.

The MLE for σ2 is

σ̂2 =
(y − Xβ̂)′(y − Xβ̂)

n
=

1

n

n
∑

i=1

(yi − [β̂0 + β̂1xi])
2.

For the ith observation, the fitted value ŷi is the point on the line at

xi, namely β̂0 + β̂1xi. So at value xi we see the observed value yi,

but estimate the underlying mean ŷi = Ê(Yi) = β̂0 + β̂1xi. Since the

MLE’s β̂0 and β̂1 are unbiased,

E(β̂0 + β̂1xi) = E(β̂0) + E(β̂1)xi = β0 + β1xi.
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That is, E(ŷi) = β0 + β1xi.

The ith residual ri estimates the unknown ei = yi − [β0 + β1xi] by

ri = yi − [β̂0 + β̂1xi] = yi − Ê(Yi).

These are used to check model assumptions: (1) that the

e1, . . . , en
iid∼ N(0, σ2), and (2) that the mean changes linearly with x:

E(Yi) = β0 + β1xi.

A histogram of r1, . . . , rn should be roughly symmetric and

unimodal, i.e. “normal looking.” A plot of ri versus xi should show

no discernable pattern and roughly constant spread.
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> fit2 <- lm(score~ses)

> plot(fit2) # get a variety of diagnostic plots automatically

> r <- fit2$residuals

> plot(ses,r)

> hist(r)

−15 −10 −5 0 5 10 15

−
4

−
2

0
2

4

ses

r

Figure 2: Residual plot shows no discernable pattern.
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Figure 3: Histogram of residuals is roughly “normal looking.”
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