
Random vectors

Recall that a random vector X =




X1

X2

...

Xk




is made up of, say, k

random variables.

A random vector has a joint distribution, e.g. a density f(x), that

gives probabilities

P (X ∈ A) =

∫

A

f(x)dx.

Just as a random variable X has a mean E(X) and variance var(X),

a random vector also has a mean vector E(X) and a covariance

matrix cov(X).
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Let X = (X1, . . . , Xk) be a random vector with density f(x1, . . . , xk)

or pmf p(X1, . . . , xk). The mean of X is the vector of marginal means

E(X) = E
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E(X1)
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...

E(Xk)
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.

The covariance matrix of X is given by

cov(X) =

�
�
�
�
�
�
�

�

cov(X1,X1) cov(X1, X2) · · · cov(X1,Xk)

cov(X2,X1) cov(X2, X2) · · · cov(X2,Xk)

...
...

. . .
...

cov(Xk, X1) cov(Xk, X2) · · · cov(Xk, Xk)
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�

.
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Multivariate normal distribution

The normal distribution generalizes to multiple dimensions. We’ll

first look at two jointly distributed normal random variables, then

discuss three or more.

The bivariate normal density for (X1, X2) is given by f(x1, x2) =

1

2πσ1σ2 � 1 − ρ2
exp

�

−

1

2(1 − ρ2) � �

x1 − µ1

σ1 �
2

− 2ρ

�

x1 − µ1

σ1 � �

x2 − µ2

σ2 �

+

�

x2 − µ2

σ2 �

2

� �

.

There are 5 parameters: (µ1, µ2, σ1, σ2, ρ).

Read: pp. 81–84, 145–146, 148, 567–568.
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• This density jointly defines X1 and X2, which live in

R
2 = (−∞,∞) × (−∞,∞).

• Marginally, X1 ∼ N(µ1, σ
2

1
) and X2 ∼ N(µ2, σ

2

2
).

• The correlation between X1 and X2 is given by corr(X1, X2) = ρ.

• For jointly normal random variables, if the correlation is zero

then they are independent. This is not true in general for jointly

defined random variables (e.g. homework 5 problem).

• E(X) =


 µ1

µ2


, cov(X) =


 σ2

1
σ1σ2ρ

σ1σ2ρ σ2

2


.

• Next slide: µ1 = 0, 1; µ2 = 0, 2; σ2

1
= σ2

2
= 1; ρ = 0, 0.9,−0.6.
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Figure 1: Bivariate normal PDF level curves.
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Proof that X1 indpendent X2 when ρ = 0

When ρ = 0 the joint density for (X1, X2) simplifies to

f(x1, x2) =
1

2πσ1σ2

exp

{
−1

2

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2
]}

=

[
1√

2πσ1

e
−0.5

�

x1−µ1
σ1 �

2
] [

1√
2πσ2

e
−0.5

�

x2−µ21
σ2 �

2
]

.

Since these are each respectively functions of x1 and x2 only, and the

range of (X1, X2) factors into the produce of two sets, X1 and X2 are

independent and in fact X1 ∼ N(µ1, σ
2

1
) and X2 ∼ N(µ2, σ

2

2
).
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Conditional distributions [X1|X2 = x2] and [X2|X1 = x1]

The conditional distribution of X1 given X2 = x2 is

[X1|X2 = x2] ∼ N

(
µ1 +

σ1

σ2

ρ(x2 − µ2), σ
2

1
(1 − ρ2)

)
.

Similarly,

[X2|X1 = x1] ∼ N

(
µ2 +

σ2

σ1

ρ(x1 − µ1), σ
2

2
(1 − ρ2)

)
.

This ties directly to linear regression:

To predict X2|X1 = x1, we have

E(X2|X1 = x1) =

[
µ2 −

σ2

σ1

ρµ1

]
+

[
σ2

σ1

ρ

]
x1 = β0 + β1x1.
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Bivariate normal distribution as data model

Here we assume

�
�

Xi1

Xi2

�
�

iid
∼ N2

�
�

�
�

µ1

µ2

�
�

, �
�

σ11 σ12

σ21 σ22

�
�

�
�

,

or succinctly,

Xi
iid∼ N2(µ,Σ).

If the bivariate normal model is appropriate for paired outcomes, it

provides a convenient probability model with some nice properties.

The sample mean X̄ = 1

n

∑n
i=1

Xi is the MLE of µ and the sample

covariance matrix Σ̂ = 1

n

∑n
i=1

(Xi − X̄)(Xi − X̄)′ is the MLE for Σ.

It can be shown that

X̄ ∼ N2

(
µ,

1

n
Σ

)
.

The matrix nΣ̂ has an “inverted Wishart” distribution.
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Say n outcome pairs are to be recorded:

{(X11, X12), (X21, X22), . . . , (Xn1, Xn2)}. The ith pair is (Xi1, Xi2).

The sample mean vector is given elementwise by

X̄ = �
�̄
X1

X̄2
�

�

= �
�

1

n �

n

i=1
Xi1

1

n �

n

i=1
Xi2

�
�

,

and the sample covariance matrix is given elementwise by

S = �
�

1

n �

n

i=1
(Xi1 − X̄1)

2 1

n �
n

i=1
(Xi1 − X̄1)(Xi2 − X̄2)

1

n �

n

i=1
(Xi1 − X̄1)(Xi2 − X̄2)

1

n �
n

i=1
(Xi2 − X̄2)

2

�
�

.
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The sample mean vector X̄ estimates µ = �
�

µ1

µ2

�
�

and the sample

covariance matrix S estimates

Σ = �
�

σ2

1 ρσ1σ2

ρσ1σ2 σ2

2

�
�

= �
�

σ11 σ12

σ21 σ22

�
�

.

We will place hats on parameter estimators based on the data. So

µ̂1 = X̄1, µ̂2 = X̄2, σ̂2

1
=

1

n

n∑

i=1

(Xi1 − X̄1)
2, σ̂2

2
=

1

n

n∑

i=1

(Xi2 − X̄2)
2.

Also,

ĉov(X1, X2) =
1

n

n∑

i=1

(Xi1 − X̄)(Xi2 − X̄2).
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So a natural estimate of ρ is then

ρ̂ =
ĉov(X1, X2)

σ̂1σ̂2

=
1

n

∑n
i=1

(Xi1 − X̄1)(Xi2 − X̄2)√
1

n

∑n
i=1

(Xi1 − X̄1)2
√

1

n

∑n
i=1

(Xi1 − X̄1)2
.

This is in fact the MLE estimate based on the bivariate normal

model. It is also a “plug-in” estimator based on the

method-of-moments too. It is commonly referred to as the Pearson

correlation coefficient. You can get it as, e.g., cor(age,Gesell) in R.

This estimate of correlation can be unduly influenced by outliers in

the sample. An alternative measure of linear association is the

Spearman correlation based on ranks. This correlation estimates

something a bit different than the Pearson correlation.

> cor(age,Gesell)

[1] -0.64029

> cor(age,Gesell,method="spearman")

[1] -0.3166224
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Gesell data:

Recall: X is age in months a child speaks his/her first word and let

Y is Gesell adaptive score, a measure of a child’s aptitude. Question:

how does the child’s aptitude change with how long it takes them to

speak? Here, n = 21.

In R we find

�

E(X) = �
�

14.38

93.67
�

�

. Also,

�

cov(X) = �
�

60.14 −67.78

−67.78 186.32

�
�

.

Assuming a bivariate model, we plug in the MLEs and obtain the

estimated PDF for (X, Y ):

f(x, y) = exp(−60.22+1.3006x−0.0134x
2+0.9520y−0.0098xy−0.0043y

2).

We can further find from Y
•∼ N(93.67, 186.32),

fY (y) = exp(−3.557 − 0.00256(y − 93.67)2).
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Figure 2: 3D plot of f(x, y) for (X, Y ) based on MLEs.
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Figure 3: Solid is fY (y); left dashed is fY |X(y|25) the right dashed is

fY |X(y|10). As the age in months of first words X = x increases, the

distribution of Gesell Adaptive Scores Y decreases.
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Figure 4: MLE estimate of density with actual data.
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R code to get estimates µ̂ and Σ̂, plot level curves of PDF, and data.

age<-c(15,26,10,9,15,20,18,11,8,20,7,9,10,11,11,10,12,42,17,11,10)

Gesell<-c(95,71,83,91,102,87,93,100,104,94,113,96,83,84,102,100,105,57,121,86,100)

data=matrix(c(age,Gesell),ncol=2) # make data matrix

m=c(mean(age),mean(Gesell)) # mean vector s=cov(data) # covariance

matrix

x1=seq(min(age)-sd(age),max(age)+sd(age),length=200) # grid of representative age values

x2=seq(min(Gesell)-sd(Gesell),max(Gesell)+sd(Gesell),length=200) # grid of Gesell values

f=function(x,y){

r=s[1,2]/sqrt(s[1,1]*s[2,2])

term1=(x-m[1])/sqrt(s[1,1]); term2=(y-m[2])/sqrt(s[2,2]); term3=-2*r*term1*term2

exp(-0.5*(term1^2+term2^2+term3)/(1-r^2))/(2*3.141*sqrt(s[1,1]*s[2,2]*(1-r^2)))

} # function that gives the best fitting bivariate normal density to the data

z=outer(x1,x2,f) # compute the joint pdf over the grid

contour(x1,x2,z,nlevels=7,xlab="age",ylab="Gesell") # make contour plot

points(age,Gesell,pch=19) # superimpose filled points
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Checking bivariate normality

There are no “multivariate” boxplots. There are multivariate

histograms (and smoothed histograms), but they’re typically not that

useful for checking normality.

Easiest thing to do is to check that marginal boxplots/histograms of

X11, . . . , X1n and X21, . . . , X2n are approximately normal. This does

not guarantee joint normality though.

One can additionally look at a simple scatterplot of the data,

checking to see that it shows an approximately ‘elliptical’ cloud of

points with no glaringly obvious outlying values.
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Multivariate normal distribution

In general, a k-variate normal is defined through the mean and

covariance matrix:



X1

X2

...

Xk



∼ Nk







µ1

µ2

...

µk




,




σ11 σ12 · · · σ1k

σ21 σ22 · · · σ2k

...
...

. . .
...

σk1 σk2 · · · σkk







.

Succinctly,

X ∼ Nk(µ,Σ).

Recall that if Z ∼ N(0, 1), then X = µ + σZ ∼ N(µ, σ2). The

definition of the multivariate normal distribution just extends this

idea.
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Instead of one standard normal, we have a list of k independent

standard normals Z = (Z1, . . . , Zk), and consider the same sort of

transformation in the multivariate case using matrices and vectors.

Let Z1, . . . , Zk
iid∼ N(0, 1). The joint pdf of (Z1, . . . , Zk) is given by

f(z1, . . . , zk) =
k∏

i=1

exp(−0.5z2

i )/
√

2π.

Let

µ =




µ1

µ2

...

µk




and Σ =




σ11 σ12 · · · σ1k

σ21 σ22 · · · σ2k

...
...

. . .
...

σk1 σk2 · · · σkk




,

where Σ is symmetric (i.e. ΣT = Σ, which implies σij = σji for all

1 ≤ i, j ≤ k).
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Let Σ1/2 be any matrix such that Σ1/2Σ1/2 = Σ. Then

X = µ + Σ1/2Z is said to have a multivariate normal distribution

with mean vector µ and covariance matrix Σ, written

X ∼ Nk(µ,Σ).

Written in terms of matrices

X =




X1

X2

...

Xk




=




µ1

µ2

...

µk




+




σ11 σ12 · · · σ1k

σ21 σ22 · · · σ2k

...
...

. . .
...

σk1 σk2 · · · σkk




1/2 


Z1

Z2

...

Zk




.
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Using some math, it can be shown that the pdf of the new vector

X = (X1, . . . , Xk) is given by

f(x1, . . . , xk|µ,Σ) = |2πΣ|−1/2 exp{−0.5(x − µ)′Σ−1(x − µ)}.

In the one-dimensional case, this simplifies to our old friend

f(x1|µ, σ2) = (2πσ2)−1/2 exp{−0.5(x − µ)(σ2)−1(x − µ)},

the pdf of a N(µ, σ2) random variable X .

There are several important properties of multivariate normal

vectors...
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Let

X ∼ Nk(µ,Σ).

Then

1. For each Xi in X = (X1, . . . , Xk), E(Xi) = µi and var(Xi) = σii.

That is, marginally, Xi ∼ N(µi, σii).

2. For any r × k matrix M,

MX ∼ Nr(Mµ,MΣM′).

3. For any two (Xi, Xj) where 1 ≤ i < j ≤ k, cov(Xi, Xj) = σij .

The off-diagonal elements of Σ give the covariance between two

elements of (X1, . . . , Xk). Note then ρ(Xi, Xj) = σij/
√

σiiσjj .

4. For any k × 1 vector m = (m1, . . . , mk) and Y ∼ Nk(µ,Σ),

m + Y ∼ Nk(m + µ,Σ).
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As a simple example, let

�
�
�

�

X1

X2

X3

�
�
�

�

∼ N3

�
�
�

�

�
�
�

�

−2

5

0

�
�
�

�

,

�
�
�

�

2 1 1

1 3 −1

1 −1 4

�
�
�

�

�
�
�

�

.

Define

M = �
�

1 0 −1

1
3

1
3

1
3

�
�

and Y = �
�

Y1

Y2

�
�

= MX = �
�

1 0 −1

1
3

1
3

1
3

�
�

�
�
�

�

X1

X2

X3

�
�
�

�

.

Then X2 ∼ N(5, 3), cov(X2, X3) = −1 and

�
�

1 0 −1

1
3

1
3

1
3

�
�

�
�
�

�
X1

X2

X3
�
�
�

�

∼

N2

�
�
�

�

�
�

1 0 −1

1
3

1
3

1
3

�
�

�
�
�

�

−2

5

0

�
�
�

�

, �
�

1 0 −1

1
3

1
3

1
3

�
�

�
�
�

�

2 1 1

1 3 −1

1 −1 4

�
�
�

�

�
�
�

�

1 1
3

0 1
3

−1 1
3

�
�
�

�

�
�
�

�

,
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or simplifying,
�

�

Y1

Y2
�

�
= �

�

1 0 −1

1
3

1
3

1
3

�
�

�
�
�

�

X1

X2

X3

�
�
�

�

∼ N2

�
�

�
�

−2

1

�
�

, �
�

4 0

0 11
9

�
�

�
�

.

Note that for the transformed vector Y = (Y1, Y2), cov(Y1, Y2) = 0

and therefore Y1 and Y2 are uncorrelated, i.e. ρ(Y1, Y2) = 0.

We will use these properties later on, when we discuss the large

sample distribution of MLE vectors

θ̂ =




θ̂1

θ̂2

...

θ̂p




•∼ Np







θ1

θ2

...

θp




, ĉov(θ̂)




.
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For the linear model (e.g. simple linear regression or the two-sample

model) Y = Xβ + e, the MLE that describes the mean parameters

has exactly a multivariate normal distribution (p. 574)

β̂ ∼ Np(β, (X′X)−1σ2).

p = 2 is the number of mean parameters. The MLE σ̂2 has a gamma

distribution.

Let’s try an experiment where we know β = �
�

5

3

�
�

We will generate 200 independent experiments, each with a sample

size of n = 20. The model is

Yi = β0 + β1xi + ei, i = 1, . . . , 20,

where β0 = 5, β1 = 3, and σ = 0.2. Take xi to be equally spaced from

x1 = 0 to x20 = 1. The errors satisfy e1, . . . , e20

iid∼ N(0, 0.22).

25



Here’s R code to sample the m = 200 β̂’s, each obtained from a

sample of size n = 20:
sigma=0.2

m=200 # number of beta.hat’s sampled

n=20 # sample size going into each experiment

y=rep(0,n)

beta0.hat=rep(0,m)

beta1.hat=rep(0,m)

x=seq(0,1,length=n) # predictor values evenly spaced over [0,1]

beta=c(5,3) # true (but usually unknown) beta vector

mean=beta[1]+beta[2]*x # true mean function on grid of x values

for(i in 1:m){

y=mean+rnorm(n,0,sigma)

fit=lm(y~x)

beta0.hat[i]=fit$coefficients[1]

beta1.hat[i]=fit$coefficients[2]

}

X.design=matrix(c(rep(1,n),x),ncol=2)

m=beta # exact mean vector

s=solve(t(X.design)%*%X.design)*sigma^2 # exact covariance

x1=seq(4.7,5.3,length=200) # grid of representative beta.hat0 values

x2=seq(2.5,3.4,length=200) # grid of representative beta.hat1 values
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f=function(x,y){

r=s[1,2]/sqrt(s[1,1]*s[2,2])

term1=(x-m[1])/sqrt(s[1,1]); term2=(y-m[2])/sqrt(s[2,2]); term3=-2*r*term1*term2

exp(-0.5*(term1^2+term2^2+term3)/(1-r^2))/(2*3.141*sqrt(s[1,1]*s[2,2]*(1-r^2)))

} # exact bivariate normal density according to theory

g0=rep(beta[1],200); g1=rep(beta[2],200)

z=outer(x1,x2,f) # compute the joint pdf over the grid

contour(x1,x2,z,nlevels=15,xlab="beta0.hat",ylab="beta1.hat") # make contour plot

points(beta0.hat,beta1.hat) # superimpose beta.hat’s from m experiments of sample size n

lines(x1,g1,lty=2); lines(g0,x2,lty=2) # dotted lines crossing at true beta

Exactly, the theory tells us

�
�

β̂0

β̂1

�
�

∼ N2

�
�

�
�

5

3

�
�

, �
�

0.00743 −0.01086

−0.01086 0.02171

�
�

�
�

.

Let’s see how a plot of the 200 β̂’s looks superimposed on the exact

sampling distribution...
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Figure 5: Theoretical distribution (pdf) with 200 sampled MLE’s.
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