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11 Generalized linear models for nonnormal response

11.1 Introduction

So far, in our study of “regression-type” models for longitudinal data, we have focused on situations

where

• The response is continuous and reasonably assumed to be normally distributed.

• The model relating mean response to time and possibly other covariates is linear in parameters

that characterize the relationship. For example, regardless of how we modeled covariance (by

direct modeling or by introducing random effects), we had models for the mean response of a data

vector of the form

E(Y i) = X iβ;

i.e. for the observation at time tij on unit i,

E(Yij) = β0 + β1tij .

Under these conditions, we were led to methods that were based on the assumption that

Y i ∼ N (X iβ,Σi);

the form of the matrix Σi is dictated by what one assumes about the nature of variation. To fit the

model, we used the methods of maximum likelihood and restricted maximum likelihood under

the assumption that the data vectors are distributed as multivariate normal. Thus, the fitting

method was based on the normality assumption.

As we noted at the beginning of the course, the assumption of normality is not always relevant for some

data. This issue is not confined to longitudinal data analysis – it is an issue even in ordinary regression

modeling. If the response is in the form of small counts, or is in fact binary (yes/no), it is clear that

the assumption of normality would be quite unreasonable. Thus, the modeling and methods we have

discussed so far, including the classical techniques, would be inappropriate for these situations.
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One possibility is to analyze the data on a transformed scale on which they appear to be more nearly

normal; e.g. count data may be transformed via a square-root or other transformation, and then

represented by linear models on this scale. This is somewhat unsatisfactory, however, as the model

no longer pertains directly to the original scale of measurement, which is usually of greatest interest.

Moreover, it tries to “force” a model framework and distributional assumption that may not be best

for the data.

In the late 1970’/early 1980’s, in the context of ordinary regression modeling, a new perspective emerged

in the statistical literature that generated much interest and evolved into a new standard for analysis

in these situations. For data like counts and binary outcomes, as well as for continuous data for which

the normal distribution is not a good probability model, there are alternative probability models

that might be better representations of the way in which the response takes on values. The idea was

to use these more appropriate probability models as the basis for developing new regression models

and methods, rather than to try and make things fit into the usual (and inappropriate) normal-based

methods. Then, in the mid-1980’s, these techniques were extended to allow application to longitudinal

data; this topic still is a focus of current statistical research.

In this chapter, we will gain the necessary background for understanding longitudinal data methods for

nonnormal response. To do this, we will step away from the longitudinal data problem in this chapter,

and consider just the ordinary regression situation where responses are scalar and independent.

Armed with an appreciation of regression methods for nonnormal response, we will then be able to

see how these might be extended to the harder problem of longitudinal data. As we will see, this

extension turns out to not be quite as straightforward as it was in the normal case.

Thus, in this chapter, we will consider the following problem as a prelude to our treatment of nonnormal

longitudinal data:

• As in multiple regression, suppose we have responses Y1, . . . , Yn each taken at a setting of k

covariates xj1, . . . , xjk, j = 1, . . . , n.

• The Yj values are mutually independent.

• The goal is to develop a statistical model that represents the response as a function of the

covariates, as in usual linear regression.

• However, the nature of the response is such that the normal probability model is not appropriate.
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We might think of the data as arising either as

• n observations on a single unit in a longitudinal data situation, where we focus on this individual

unit only, so that the only relevant variation is within the unit. If observations are taken far

enough apart in time, they might be viewed as independent.

• n scalar observations, each taken on a different unit (thus, the independence assumption is

natural). Here, j indexes observations and units (recall the oxygen intake example in section 3.4).

• Either way of thinking is valid – the important point is that we wish to fit a regression model to

data that do not seem to be normally distributed. As we will see, the data type might impose

additional considerations about the form of the regression model.

• We use the subscript j in this chapter to index the observations; we could have equally well used

the subscript i.

The class of regression models we will consider for this situation is known in the literature as generalized

linear models (not to be confused with the name of the SAS procedure GLM standing for General Linear

Model). Our treatment here is not comprehensive; for everything you ever wanted to know and more

about generalized linear models, see the book by McCullagh and Nelder (1989).

11.2 Probability models for nonnormal data

Before we discuss regression modeling of nonnormal data, we review a few probability models that are

ideally suited to representation of these data. We will focus on three models in particular; a more

extensive catalogue of models may be found in McCullagh and Nelder (1989):

• The Poisson probability distribution as a model for count data (discrete)

• The Bernoulli probability distribution as a model for binary data (discrete) (this may be ex-

tended to model data in the form of proportions

• The gamma probability distribution as a model for continuous but nonnormal data with con-

stant coefficient of variation.

PAGE 425



CHAPTER 11 ST 732, M. DAVIDIAN

We will see that all of these probability models are members of a special class of probability models.

This class also includes the normal distribution with constant variance (the basis for classical linear

regression methods for normal data); thus, generalized linear models will be seen to be an extension

of ordinary linear regression models.

COUNT DATA – THE POISSON DISTRIBUTION: Suppose we have a response Y that is in the form

of a count – Y records the number of times an event of interest is observed. Recall the epileptic seizure

data discussed at the beginning of the course; here, Y was the number of seizures suffered by a particular

patient in a two-week period.

When the response is a count, it should be clear that the possible values of the response must be non-

negative integers; more precisely, Y may take on the values 0, 1, 2, 3, . . .. In principle, any nonnegative

integer value is possible; there is no upper bound on how large a count may be. Realistically, if the

thing being counted happens infrequently, large counts may be so unlikely as to almost never be seen.

The Poisson probability distribution describes probabilities that a random variable Y that describes

counts takes on values in the range 0, 1, 2, 3, . . .. More precisely, the probability density function de-

scribes the probability that Y takes on the value y:

f(y) = P (Y = y) =
µye−µ

y!
, y = 0, 1, 2, . . . , µ > 0. (11.1)

• It may be shown that the mean (expectation) of Y is µ; i.e. E(Y ) = µ. Note that µ is positive,

which makes sense – the average across all possible values of counts should be positive.

• Furthermore, it may be shown that the variance of Y is also equal to µ; i.e. var(Y ) = µ. Thus,

the variance of Y is nonconstant. Thus, if Y1 and Y2 are both Poisson random variables, the

only way that they can have the same variance is if they have the same mean.

• This has implications for regression – if Y1 and Y2 correspond to counts taken at different settings

of the covariates, so thus at possibly different mean values, it is inappropriate to assume that they

have the same variance. Recall that a standard assumption of ordinary regression under normality

is that of constant variance regardless of mean value; this assumption is clearly not sensible for

count data.

Figure 1 shows the probability histogram for the case of a Poisson distribution with µ = 4. Because

the random variable in question is discrete, the histogram is not smooth; rather, the blocks represent

the probabilities of each value on the horizontal axis by area.
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Figure 1: Poisson probabilities with mean = 4.
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Some features:

• Probabilities of seeing counts larger than 12 are virtually negligible, although, in principle, counts

may take on any nonnegative value.

• Clearly, if µ were larger, the values for which probabilities would become negligible would get

larger and larger.

• For “smallish” counts, where the mean is small (e.g. µ = 4), the shape of the probability histogram

is asymmetric. Thus, discreteness aside, the normal distribution would be a lousy approximation

to this shape. For larger and larger µ, it may be seen that the shape gets more and more symmetric.

Thus, when counts are very large, it is common to approximate the Poisson probability distribution

by a normal distribution.
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EXAMPLE – HORSE-KICK DATA: As an example of a situation where the response is a (small) count,

we consider a world-famous data set. These data may be found on page 227 of Hand et al. (1994). Data

were collected and maintained over the 20 years 1875 – 1894, inclusive, on the numbers of Prussian

militiamen killed by being kicked by a horse in each of 10 separate corps of militiamen. For example,

the data for the first 6 years are as follows:

Year Corps

1 2 3 4 5 6 7 8 9 10

1875 0 0 0 0 1 1 0 0 1 0

1876 0 0 1 0 0 0 0 0 1 1

1877 0 0 0 0 1 0 0 1 2 0

1878 2 1 1 0 0 0 0 1 1 0

1879 0 1 1 2 0 1 0 0 1 0

1880 2 1 1 1 0 0 2 1 3 0

Thus, for example, in 1877, 2 militiamen were killed by kicks from a horse in the 9th corps. Note that,

technically, counts may not be any number – there is an “upper bound” (the total number of men in

the corps). But this number is so huge relative to the size of the counts that, for all practical purposes

it is “infinite.” Clearly, the numbers of men killed (counts) in each year/corps combination are small;

thus, the normal distribution is a bad approximation to the true, Poisson distribution.

It was of interest to determine from these data whether differences in the numbers of men kicked could

be attributed to systematic effects of year or corps. That is, were members of certain corps more

susceptible to horse-kick deaths than others? Were certain years particularly bad for horse-kick deaths?

• If the data were normal, a natural approach to this question would be to postulate a regression

model that allows mean response to depend on the particular corps and year.

• Specifically, if we were to define 19 dummy variables for year and 9 for corps, we might write a

linear model for the mean of the jth observation in the data set (n = 200 total) as

β0 + β1xj1 + · · · + β19xj,19 + β20zj1 + · · · + β28zj9, (11.2)

xjk = 1 if observation j is from year k = 1875, . . . , 1893

= 0 otherwise

zjk = 1 if observation j is from corps k = 1, . . . , 9

= 0 otherwise
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With these definitions, note that β0 corresponds to what happens for year 1894 with corps 10.

The remaining parameters describe the change from this due to changing year or corps.

• Note that, aside from the normality issue, letting (11.2) represent the mean of observation Yj ,

E(Yj) has a problem. Recall that counts must be nonnegative by definition. However with this

model, it is possible to end up with an estimated value for E(Yj) that is negative – this restriction

is not enforced. This seems quite possible – many of the observations are 0, so that it would not

be surprising to end up estimating some means as negative. More on this later.

BINARY DATA – THE BERNOULLI DISTRIBUTION: Suppose we have a response y that takes

on either the value 0 or 1 depending on whether an event of interest occurs or not. Recall the child

respiratory data at the beginning of the course; here, y was 0 or 1 according to whether a child did not

or did “wheeze.”

Here, the response can take on only two possible values. Clearly, the normal distribution should not

even be considered as a model.

The Bernoulli probability distribution describes probabilities that a random variable Y that charac-

terizes whether an event occurs or not takes on its two possible values (0, 1). The probability density

function is given by

f(1) = P (Y = 1) = µ, f(0) = P (Y = 0) = 1 − µ

for 0 ≤ µ ≤ 1. The extremes µ = 0, 1 are not particularly interesting, so we will consider 0 < µ < 1.

This may be summarized succinctly as

f(y) = P (Y = y) = µy(1 − µ)(1−y), 0 < µ < 1, y = 0, 1. (11.3)

• It may be shown that the mean of Y is µ. Also, note that µ is also the probability of seeing the

event of interest (y = 1). As a probability, it must be between 0 and 1, so that the mean of Y

must be between 0 and 1 as well.

• Furthermore, it may be shown that the variance of Y is equal to µ(1−µ); i.e. var(Y ) = µ(1−µ).

As with the Poisson distribution, the variance of Y is nonconstant. Thus, if Y1 and Y2 are both

Bernoulli random variables, the only way that they can have the same variance is if they have

the same mean.
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• This has implications for regression – if Y1 and Y2 correspond to binary responses taken at dif-

ferent settings of the covariates, so thus at possibly different mean values, it is inappropriate to

assume that they have the same variance. Thus, again, the usual assumption of constant variance

is clearly not sensible when modeling binary data.

EXAMPLE – MYOCARDIAL INFARCTION DATA: The response is often binary in medical studies.

Here, we consider an example in which 200 women participated in a study to investigate risk factors

associated with myocardial infarction (heart attack). On each woman, the following information was

observed:

• Whether the woman used oral contraceptives in the past year (1 if yes, 0 if no)

• Age in years

• Whether the woman currently smokes more than 1 pack of cigarettes per day (1 if yes, 0 if no)

• Whether the woman has suffered a myocardial infarction – the response (y = 0 if no, y = 1 if yes).

The data for the first 10 women are given below:

Woman Contracep. Age Smoke MI

1 1 33 1 0

2 0 32 0 0

3 1 37 0 1

4 0 36 0 0

5 1 50 1 1

6 1 40 0 0

7 0 35 0 0

8 1 33 0 0

9 1 33 0 0

10 0 31 0 0

The objective of this study was to determine whether any of the covariates, or potential risk factors

(oral contraceptive use, age, smoking), were associated with the chance of having a heart attack. For

example, was there evidence to suggest that smoking more than one pack of cigarettes a day raises the

probability of having a heart attack?
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• If the data were normal, a natural approach to this question would be to postulate a regression

model that allows mean response (which is equal to probability of having a heart attack as this

is a binary response) to depend on age, smoking status, and contraceptive use.

• Define for the jth woman

xj1 = 1 if oral contraceptive use

= 0 otherwise

xj2 = age in years

xj3 = 1 if smoke more then one pack/day

= 0 otherwise

Then we would be tempted to model the mean (probability of heart attack) as a linear model,

writing the mean for the j observation

β0 + β1xj1 + β2xj2 + β3xj3.

• Using a linear function of the covariates like this to represent the mean (probability of heart

attack) has an immediate problem. Because the mean is a probability, it must be between 0 and

1. There is nothing to guarantee that the estimates of means we would end up with after fitting

this model in the usual way would honor this restriction. Thus, we could end up with negative

estimates of probabilities, or estimated probabilities that were greater than one! More on this

later.

CONTINUOUS DATA WITH CONSTANT COEFFICIENT OF VARIATION – THE GAMMA DIS-

TRIBUTION: As we have already remarked, just because the response is continuous does not mean

that the normal distribution is a sensible probability model.

• For example, most biological responses take on only positive values. The normal distribution in

principle assigns positive probability to all values on the real line, negative and positive.
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• Furthermore, the normal distribution says that values to the left and right of its mean are equally

likely to be seen, by virtue of the symmetry inherent in the form of the probability density.

This may not be realistic for biological and other kinds of data. A common phenomenon is to

see “unusually large” values of the response with more frequency than “unusually small” values.

For example, if the response is annual income, the distribution of incomes is mostly in a limited

range; however, every so often, a “chairman of the board,” athlete, or entertainer may command

an enormous income. For this situation, a distribution that says small and large values of the

response are equally likely is not suitable.

Other probability models are available for continuous response that better represent these features.

Several such models are possible; we consider one of these.

The gamma probability distribution describes the probabilities with which a random variable Y takes

on values, where Y can only be positive. More precisely, the probability density function for value y

is given by

f(y) =
1

yΓ(1/σ2)

(
y

σ2µ

)1/σ2

exp

(
− y

σ2µ

)
, µ, σ2 > 0, y > 0. (11.4)

• In (11.4), Γ(·) is the so-called “Gamma function.” This function of a positive argument may only

be evaluated on a computer. If the argument is a positive integer k, however, then it turns out

that Γ(k) = (k − 1)! = (k − 1)(k − 2) · · · (2)(1).

• It may be shown that the mean of Y is µ; i.e. E(Y ) = µ. Note that µ must be positive, which

makes sense.

• It may also be shown that the variance of Y is var(Y ) = σ2µ2. That is, the variance of Y is

nonconstant; it depends on the value of µ. Thus, if Y1 and Y2 are both gamma random variables,

then the only way that they can have the same variance is if they have the same mean µ and the

same value of the parameter σ2.

• Thus, for regression, if Y1 and Y2 correspond to responses taken at different covariate settings, it is

inappropriate to take them to have the same variance. Thus, as above, the assumption of constant

variance is not appropriate for a response that is well-represented by the gamma probability model.
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• In fact, note here that the symbol σ2 is being used here in a different way from how we have

used it in the past, to represent a variance. Here, it turns out that σ (not squared) has the

interpretation as the coefficient of variation (CV), defined for any random variable Y as

CV =
{var(Y )}1/2

E(Y )
;

that is, CV is the ratio of standard deviation of the response to mean, or “noise to signal.”

This ratio may be expressed as a proportion or a percentage; in either case, CV characterizes

the “quality” of the data by quantifying how large the “noise” is relative to the size of the thing

being measured.

• “Small” CV (“high quality”) is usually considered to be CV ≤ 0.30. “Large” CV (“low quality”)

is larger.

• Note that for the gamma distribution,

CV =
(σ2µ2)1/2

µ
= σ,

so that, regardless of the value of µ, the ratio of “noise” to “signal” is the same. Thus, rather than

having constant variance, the gamma distribution imposes constant coefficient of variation.

This is often a realistic model for biological, income, and other data taking on positive values.

Figure 2 shows gamma probability density functions for µ = 1 and progressively smaller choices of σ2,

corresponding to progressively smaller CV.

• As σ2 becomes smaller, the shape of the curve begins to look more symmetric. Thus, if CV

is “small” (“high quality” data), gamma probability distribution looks very much like a normal

distribution.

• On the other hand, when σ2 is relatively large, so that CV is “large” (“low quality” data), the

shape is skewed. For example, with σ2 = 0.5, corresponding to CV = 0.707, so “noise” that is

70% the magnitude of the “signal” (upper left panel of Figure 2), the shape of the gamma density

does not resemble that of the normal at all.
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Figure 2: Gamma probability density functions.
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EXAMPLE – CLOTTING TIME DATA: In the development of clotting agents, it is common to perform

in vitro studies of time to clotting. The following data are reported in McCullagh and Nelder (1989,

section 8.4.2), and are taken from such a study. Here, samples of normal human plasma were diluted to

one of 9 different percentage concentrations with prothrombin-free plasma; the higher the dilution, the

more the interference with the blood’s ability to clot, because the blood’s natural clotting capability

has been weakened. For each sample, clotting was induced by introducing thromboplastin, a clotting

agent, and the time until clotting occurred was recorded (in seconds). 5 samples were measured at each

of the 9 percentage concentrations, and the mean clotting times were averaged; thus, the response is

mean clotting time over the 5 samples. The response is plotted against percentage concentration (on

the log scale) in the upper left panel of Figure 3. We will discuss the other panels of the figure shortly.

It is well-recognized that this type of response, which is by its nature always positive, does not exhibit

the same variability at all levels. Rather, large responses tend to be more variable than small ones, and

a constant coefficient of variation model is often a suitable model for this nonconstant variation.
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Figure 3: Clotting times (seconds) for normal plasma diluted to 9 different concentrations with

prothrombin-free plasma. In the lower right panel, the solid line is the loglinear fit, the dashed line

is the reciprocal (inverse) fit.
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From the plot, it is clear that a straight-line model for mean response as a function of log(percentage

concentration) would be inappropriate. A quadratic model seems better, but, because such models

eventually curve “back up,” this might not be a good model, either. In the upper right and lower left

panels, the reciprocals (1/y) and logarithms (log y) of the response, respectively, are plotted against

log(percentage concentration). These appear to be roughly like straight lines, the former more-so than

the latter. We will return to the implications of these two plots for choosing a model for mean response

shortly. Note, of course, that a sensible model for mean response would be one that honors the positivity

restriction for the response.

Also noticeable from the plot is that the data are of “high quality” – the pattern of change in the

response with log(percentage concentration) is very clear and smooth, with very little “noise.” This

would suggest that if the data really are well-represented by the gamma probability distribution, then

the coefficient of variation is “small.” From the plot, it is very difficult to see any evidence of that the

variance really is nonconstant as the response changes – this is due to the fact that variation is just so

small, so it is hard to pick up by eye.

We will return to these data shortly.
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SUMMARY: The Poisson, Bernoulli, and gamma distributions are three different probability distribu-

tions that are well-suited to modeling data in the form of counts, binary response, and positive contin-

uous response where constant coefficient of variation is more likely than constant variance, respectively.

As mentioned above, still other probability distributions for other situations are available; discussion

of these is beyond our scope here, but the implications are similar to the cases we have covered. We

now turn to regression modeling in the context of problems where these probability distributions are

appropriate.

11.3 Generalized linear models

THE CLASSICAL LINEAR REGRESSION MODEL: The classical linear regression model for scalar

response Yj and k covariates xj1, . . . , xjk is usually written as

Yj = β0 + β1xj1 + · · · + βkxjk + εj

or, defining xj = (1, xj1, . . . , xjk)
′, where xj is (p × 1), p = k + 1,

Yj = x′

jβ + εj , β = (β0, . . . , βk)
′. (11.5)

The Yj are assumed to be independent across j. When the response is continuous, it is often assumed

that the εj are independent N (0, σ2), so that

Yj ∼ N (x′

jβ, σ2).

That is, the classical, normal-based regression model may be summarized as:

(i) Mean: E(Yj) = x′

jβ.

(ii) Probability distribution: Yj follow a normal distribution for all j and are independent.

(iii) Variance: var(Yj) = σ2 (constant regardless of the setting of xj).

As we have discussed through our examples, this approach has several deficiencies as a model for count,

binary, or some positive continuous data:

• The normal distribution may not be a good probability model.

• Variance may not be constant across the range of the response.
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• Because the response (and its mean) are restricted to be positive, a model that does not build

this in may be inappropriate – in (11.5), there is nothing that says that estimates of the mean

response must be positive everywhere – it could very well be that the estimated value of β could

produce negative mean estimates for some covariate settings, even if ideally this is not possible

for the problem at hand.

Models appropriate for the situations we have been discussing would have to address these issues.

GENERALIZATION: For responses that are not well represented by a normal distribution, it is not

customary to write models in the form of (11.5) above, with an additive deviation.. This is because, for

distributions like the Poisson, Bernoulli, or gamma, there is no analogue to the fact that if ε is normally

distributed with mean 0, variance σ2, then Y = µ + ε is also normal with mean µ, variance σ2.

It is thus standard to express regression models as we did in (i), (ii), and (iii) above – in terms of (i) an

assumed model for the mean, (ii) an assumption about probability distribution, and (iii) an assumption

about variance. As we have noted, for the Poisson, Bernoulli, and gamma distributions, the form of the

distribution dictates the assumption about variance.

We now show how this modeling is done for the three situations on which we have focused. We will then

highlight the common features. Because these models are more complex that usual linear regression

models, special fitting techniques are required, and will be discussed in section 11.4.

COUNT DATA: For data in the form of counts, we have noted that a sensible probability model is the

Poisson distribution. This model dictates that variance is equal to the mean; moreover, any sensible

representation of the mean ought to be such that the mean is forced to be positive.

(i) Mean: For regression modeling, we wish to represent the mean for Yj as a function of the

covariates xj . However, this representation should ensure the mean can only be positive. A

model that would accomplish this is

E(Yj) = exp(β0 + β1xj1 + · · · + βkxjk) = exp(x′

jβ). (11.6)

In (11.6), the positivity requirement is enforced by writing the mean as the exponential of the

linear function of β x′

jβ. Note that the model implies

log{E(Yj)} = β0 + β1xj1 + · · · + βkxjk = x′

jβ;

i.e. the logarithm of the mean response is being modeled as a linear function of covariates and

regression parameters. As a result, a model like (11.6) is often called a loglinear model.
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Loglinear modeling is a standard technique for data in the form of counts, especially when the

counts are small. When the counts are small, it is quite possible that using a linear model

instead, E(Yj) = x′

jβ, would lead to an estimated value for β that would allow estimates of the

mean to be negative for some covariate settings. This is less of a worry when the counts are very

large. Consequently, loglinear modeling is most often employed for small count data.

It is important to note that a loglinear model for the mean response is not the only possibility

for count data. However, it is the most common.

(ii) Probability distribution: The Yj are assumed to arise at each setting xj from a Poisson

distribution with mean as in (11.6) and are assumed to be independent.

(iii) Variance: Under the Poisson assumption and the mean model (11.6), we have that the variance

of Yj is given by

var(Yj) = E(Yj) = exp(x′

jβ) (11.7)

BINARY DATA: For binary data, the relevant probability model is the Bernoulli distribution. Here, the

mean is also equal to the probability of seeing the event of interest; thus, the mean should be restricted

to lie between 0 and 1. In addition, the model dictates that the variance of a response is a particular

function of the mean.

(i) Mean: For regression modeling, we wish to represent the mean for Yj as a function of the

covariates xj with the important restriction that this function always be between 0 and 1. A

model that accomplishes this is

E(Yj) =
exp(x′

jβ)

1 + exp(x′

jβ)
. (11.8)

Note that, regardless of the value of the linear combination x′

jβ, this function must always

be less than 1. Similarly, the function must always be greater than 0. (Convince yourself).

It is an algebraic exercise to show that (try it!)

log

(
E(Yj)

1 − E(Yj)

)
= x′

jβ. (11.9)

The function of E(Yj) on the left hand side of (11.9) is called the logit function. Recall that here

E(Yj) is equal to the probability of seeing the event of interest. Thus, the function

(
E(Yj)

1 − E(Yj)

)

is the ratio of the probability of seeing the event of interest to the probability of not seeing it!
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This ratio is often called the odds for this reason. Thus, the model (11.8) may be thought of as

modeling the log odds as a linear combination of the covariates and regression parameters.

Model (11.8) is not the only model appropriate for representing the mean of a Bernoulli random

variable; any function taking values only between 0 and 1 would do. Other such models are

the probit and complementary log-log functions (see McCullagh and Nelder 1989, page 31).

However, (11.8) is by far the most popular, and the model is usually referred to as the logistic

regression model (for binary data).

(ii) Probability distribution: The Yj are assumed to arise at each setting xj from a Bernoulli

distribution with mean as in (11.8) and are assumed to be independent.

(iii) Variance: For binary data, if the mean is represented by (11.8), then we must have that the

variance of Yj is given by

var(Yj) = E(Yj){1 − E(Yj)} =
exp(x′

jβ)

1 + exp(x′

jβ)

(
1 −

exp(x′

jβ)

1 + exp(x′

jβ)

)
(11.10)

CONTINUOUS, POSITIVE DATA WITH CONSTANT COEFFICIENT OF VARIATION: For these

data, there are a number of relevant probability models; we have discussed the gamma distribution.

Here, the mean must be positive, and the variance must have the constant CV form.

(i) Mean: For regression modeling, we wish to represent the mean for Yj as a function of the

covariates xj If the size of the responses is not too large, then using a linear model, E(Yj) = x′

jβ

could be dangerous; thus, it is preferred to use a model that enforces positivity. One common

model is the loglinear model (11.6), which is also commonly used for count data. Both types of

data share the requirement of positivity, so this is not surprising.

When the size of the response is larger, it is often the case that the positivity requirement is not

a big concern – even if a linear model is used to represent the data, because the responses are

all so big, estimated means will still all be positive for covariate settings like those of the original

data. This opens up the possibility for other models for the mean.

With a single covariate (k = 1), linear models are seldom used – here, the linear model would be

a straight line. This is because it is fairly typical that, for phenomena where constant coefficient

of variation occurs, the relationship between response and covariate seldom looks like a straight

line; rather it tends to look more like that in the upper left panel of Figure 3.
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Note that in the lower left panel of Figure 3, once the response is placed on the log scale, the

relationship looks much more like a straight line. This suggests that a model like

log{E(Yj)} = β0 + β1xj ,

where xj = log percent concentration, might be reasonable; that is, log of response is a straight

line in xj . This is exactly the loglinear model (11.6) in the special case k = 1, of course.

However, note that in the upper right panel, once the response is inverted by taking the recip-

rocal (so plotting 1/Yj on the vertical axis), the relationship looks even more like a straight line.

This observation indicates that a model like

1

E(Yj)
= β0 + β1xj

might be appropriate.

More generally, for k covariates, this suggests the model

E(Yj) =
1

x′

jβ
. (11.11)

This model does not preserve the positivity requirement; however, for situations where this is

not really a concern, the inverse or reciprocal model (11.11) often gives a better representation

than does a plain linear model for E(Yj), as was the case for the clotting time data.

(ii) Probability distribution: The Yj are assumed to arise at each setting xj from a gamma distri-

bution with mean as in (11.6), (11.11), or some other model deemed appropriate. The Yj are also

assumed to be independent.

(iii) Variance: Under the gamma assumption, the variance of Yj is proportional to the square of the

mean response; i.e. constant coefficient of variation. Thus, if the mean is represented by (11.6),

then we must have that the variance of Yj is given by

var(Yj) = σ2E(Yj)
2 = σ2{exp(x′

jβ)}2. (11.12)

If the mean is represented by (11.11), then we must have that

var(Yj) = σ2E(Yj)
2 = σ2

(
1

x′

jβ

)2

. (11.13)
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IN GENERAL: All of the regression models we have discussed share the features that

• Appropriate models for mean response are of the form

E(Yj) = f(x′

jβ), (11.14)

where f(x′

jβ) is a suitable function of a linear combination of the covariates xj and regression

parameter β.

• The variance of Yj may be represented as a function of the form

var(Yj) = φV {E(Yj) } = φV { f(x′

jβ) }, (11.15)

where V is a function of the mean response and φ is a constant usually assumed to be the same

for all j. For the Poisson and Bernoulli cases, φ = 1; for the gamma case, φ = σ2.

SCALED EXPONENTIAL FAMILY: It turns out that these regression models share even more. It was

long ago recognized that certain probability distributions all fall into a general class. For distributions

in this class, if the mean is equal to µ, then the variance must be a specific function φV (µ) of µ.

Distributions in this class include:

• The normal distribution with mean µ, variance σ2 (not related to µ in any way, so a function of

µ that is the same for all µ).

• The Poisson distribution with mean µ, variance µ.

• The gamma distribution with mean µ, variance σ2µ2.

• The Bernoulli distribution with mean µ, variance µ(1 − µ).

The class includes other distributions we have not discussed as well. This class of distributions is known

as the scaled exponential family. As we will discuss in section 11.4, because these distributions share

so much, fitting regression models under them may be accomplished by the same method.
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GENERALIZED LINEAR MODELS: We are now in a position to state all of this more formally. A

generalized linear model is a regression model for response Yj with the following features:

• The mean of Yj is assumed to be of the form (11.14)

E(Yj) = f(x′

jβ).

It is customary to express this a bit differently, however. The function f is almost always chosen

to be monotone; that is, it is a strictly increasing or decreasing function of x′

jβ. This

means that there is a unique function g, say, called the inverse function of f , such that we may

re-express (11.14) model in the form

g{E(Yj)} = x′

jβ.

For example, for binary data, we considered the logistic function (11.8); i.e.

E(Yj) = f(x′

jβ) =
exp(x′

jβ)

1 + exp(x′

jβ)
.

This may be rewritten in the form (11.9),

log

(
E(Yj)

1 − E(Yj)

)
= g{E(Yj)} = x′

jβ.

The function g is called the link function, because it “links” the mean and the covariates. The

linear combination of covariates and regression parameters x′

jβ is called the linear predictor.

Certain choices of f , and hence of link function g, are popular for different kinds of data, as we

have noted.

• The probability distribution governing Yj is assumed to be one of those from the scaled expo-

nential family class.

• The variance of Yj is thus assumed to be of the form dictated by the distribution:

var(Yj) = φV {E(Yj) },

where the function V depends on the distribution and φ might be equal to a known constant.

The function V is referred to as the variance function for obvious reasons. The parameter φ is

often called the dispersion parameter because it has to do with variance. It may be known,

as for the Poisson or Bernoulli distributions, or unknown and estimated, which is the case for the

gamma.

The models we have discussed for count, binary, and positive continuous data are thus all generalized

linear models. In fact, the classical linear regression model assuming normality with constant variance

is also a generalized linear model!
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11.4 Maximum likelihood and iteratively reweighted least squares

The class of generalized linear models may be thought of as extending the usual classical linear model

to handle special features of different kinds of data. The extension introduces some complications,

however. In particular:

• The model for mean response need no longer be a linear model.

• The variance is allowed to depend on the mean; thus, the variance depends on the regression

parameter β.

The result of these more complex features is that it is no longer quite so straightforward to estimate

β (and φ, if required). To appreciate this, we first review the method of least squares for the normal,

linear, constant variance model.

LINEAR MODEL AND MAXIMUM LIKELIHOOD: For the linear model with constant variance σ2

and normality, the usual method of least squares involves minimizing in β the distance criterion

n∑

j=1

(yj − x′

jβ)2, (11.16)

where y1, . . . , yn are observed data. This approach has another motivation – the estimator of β obtained

in this way is the maximum likelihood estimator. In particular, write the observed data as y =

(y1, . . . , yn)′. Because the Yj are assumed independent, the joint density of all the data (that is, the

joint density of Y ), is just the product of the n individual normal densities:

f(y) =
n∏

j=1

(2π)−1/2σ−1 exp{−(yj − x′

jβ)2/(2σ2)}.

It is easy to see that the only place that β appears is in the exponent; thus, if we wish to maximize

the likelihood f(y), we must maximize the exponent. Note that the smaller (Yj − x′

jβ)2 gets, the

larger the exponent gets (because of the negative sign). Thus, to maximize the likelihood, we wish

to minimize (11.16), which corresponds exactly to the method of least squares!

• Thus, obtaining the least squares estimator in a linear regression model under the normality and

constant variance assumptions is the same as finding the maximum likelihood estimator.

• In this case, minimizing (11.16) may be done analytically; that is, we can write down an explicit

expression for the estimator (as a function of the random vector Y ):

β̂ = (X ′X)−1X ′Y ,
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where X is the usual design matrix.

• This follows from calculus – the minimizing value of (11.16) is found by setting the first derivative

of the equation to 0 and solving for β. That is, the least squares (ML) estimator solves the set of

p equations
n∑

j=1

(Yj − x′

jβ)xj = 0. (11.17)

• Note that the the estimator and the equation it solves are linear functions of the data Yj .

GENERALIZED LINEAR MODELS AND MAXIMUM LIKELIHOOD: A natural approach to esti-

mating β in all generalized linear models is thus to appeal to the principle of maximum likelihood. It is

beyond the scope of our discussion to give a detailed treatment of this. We simply remark that it turns

out that, fortuitously, the form of the joint density of random variables Y1, . . . , Yn that arise from any

of the distributions in the scaled exponential family class has the same general form. Thus, it turns out

that the ML estimator for β in any generalized linear model solves a set of p equations of the same

general form:
n∑

j=1

1

V {f(x′

jβ)}{Yj − f(x′

jβ)}f ′(x′

jβ)xj = 0, (11.18)

where f ′(u) =
d

du
f(u), the derivative of f with respect to its argument.

The equation (11.18) and the equation for the linear, normal, constant variance model (11.17) share

the feature that they are both linear functions of the data Yj and are equations we would like to solve

in order to obtain the maximum likelihood estimator for β. Thus, they are very similar in spirit.

However, they differ in several ways:

• Each deviation {Yj − f(x′

jβ)} in (11.18) is weighted in accordance with its variance (the

scale parameter φ is a constant). Of course, so is each deviation in (11.17); however, in that

case, the variance is constant for all j. Recall that weighting in accordance with variance is a

sensible principle, so it is satisfying to see that, despite the difference in probability distributions,

this principle is still followed. Here, the variance function depends on β, so now the weighting

depends on β! Thus, β appears in this equation in a very complicated way.

• Moreover, β also appears in the function f , which can be quite complicated – the function f is

certainly not a linear function of β!

The result of these differences is that, while it is possible to solve (11.17) explicitly, it is not possible

to do the same for (11.18). Rather, the solution to (11.18) must be found using a numerical algorithm.
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The numerical algorithm is straightforward and works well in practice, so this is not an enormous

drawback.

ITERATIVELY REWEIGHTED LEAST SQUARES: It turns out that there is a standard algorithm

that is applicable for solving equations of the form (11.18); discussion of the details is beyond our scope.

The basic idea is (operating on the observed data)

• Given a starting value, or guess, for β, β(0), say, evaluate the weights at β(0): 1/V {f(xj , β
(0))}.

• Pretending the weights are fixed constants not depending on β, solve equation (11.18). This still

requires a numerical technique, but may be accomplished by something that is approximately

like solving (11.17). This gives a new guess for β, β(1), say.

• Evaluate the weights at β(1). and repeat. Continue updating until two successive β values are the

same.

The repeatedly updating of the weights along with the approximation to solve an equation like (11.17)

gives this procedure its name: iteratively reweighted least squares, often abbreviated as IRWLS

or IWLS.

Luckily, there are standard ways to find the starting value based on the data and knowledge of the

assumed probability distribution. Thus, the user need not be concerned with this (usually); software

typically generates this value automatically.

SAMPLING DISTRIBUTION: It should come as no surprise that the sampling distribution of the

estimator β̂ solving (11.18) cannot be derived in closed form. Rather, it is necessary to resort to

large sample theory approximation. Here, “large sample” refers to the sample size, n (number of

independent observations). This is sensible – each Yj is typically from a different unit.

We now state the large sample result. For n “large,” the IRWLS/ML estimator satisfies

β̂
·∼ N{β, φ(∆′V −1∆)−1}. (11.19)

Here,

• ∆ is a (n × p) matrix whose (j, s) element (j = 1, . . . , n, s = 1, . . . , p) is the derivative of f(x′

jβ)

with respect to the sth element of β.

• V is the (n × n) diagonal matrix with diagonal elements V {f(x′

jβ)}.
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A little thought about the form of ∆ and V reveals that both depend on β. However, β is unknown

and has been estimated. In addition, if φ is not dictated to be equal to a specific constant (e.g. φ = 1

if Yj are Poisson or Bernoulli but is unknown if Yj is gamma), then it, too, must be estimated. In this

situation, the standard estimator for φ is

φ̂ = (n − p)−1
n∑

j=1

{Yj − f(x′

jβ̂)}2

V {f(x′

jβ̂)}
.

In the context of fitting generalized linear models, this is often referred to as the Pearson chi-square

(divided by its degrees of freedom). Other methods are also available; we use this method for illustration

in the examples of section 11.6.

Thus, it is customary to approximate (11.19) by replacing β and φ by estimates wherever they appear.

Standard errors for the elements of β̂ are then found as the square roots of the diagonal elements of

the matrix

V̂ β = φ̂(∆̂
′

V̂
−1

∆̂)−1,

where the “hats” mean that β and φ are replaced by estimates. We use the same notation, V̂ β, as in

previous chapters to denote the estimated covariance matrix; the definition of V̂ β should be clear from

the context.

HYPOTHESIS TESTS: It is common to use Wald testing procedures to test hypotheses about β.

Specifically, for null hypotheses of the form

H0 : Lβ = h,

we may approximate the sampling distribution of the estimate Lβ̂ by

Lβ̂
·∼ N (Lβ, LV̂ βL′).

Construction of test statistics and confidence intervals is then carried out in a fashion identical to that

discussed in previous chapters. For example, if L is a row vector, then one may form the “z-statistic”

z =
Lβ̂ − h

SE(Lβ̂)
.

More generally, the Wald χ2 test statistic would be

(Lβ̂ − h)′(LV̂ βL′)−1(Lβ̂ − h)

(of course = z2 in the case L has a single row).
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REMARK: Note that all of this looks very similar to what is done in classical, linear regression under

the assumption of constant variance and normality. The obvious difference is that the results are now

just large sample approximations rather than exact, but the form and spirit are the same.

11.5 Discussion

Generalized linear models may be regarded as an extension of classical linear regression when the usual

assumptions of normality and constant variance do not apply. Because of the additional considerations

imposed by the nature of the data, sensible models for mean response may no longer be linear functions

of covariates and regression parameters directly. Rather, the mean response is modeled as a function

(nonlinear) of a linear combination of covariates and regression parameters (the linear predictor).

Although the models and fitting methods become more complicated as a result, the spirit is the same.

11.6 Implementation with SAS

We illustrate how to carry out fitting of generalized linear models for the three examples discussed in

this section:

1. The horsekick data

2. The myocardial infarction data

3. The clotting times data

As our main objective is to gain some familiarity with these models in order to appreciate their extension

to the case of longitudinal data from m units, we do not perform detailed, comprehensive analyses

involving many questions of scientific interest. Rather, we focus mainly on how to specify models using

SAS PROC GENMOD and how to interpret the output. In the next chapter, we will use PROC GENMOD with

the REPEATED statement to fit longitudinal data.
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EXAMPLE 1 – HORSEKICK DATA: Recall that it was reasonable to model these data using the

Poisson distribution assumption. Define Yj to be the jth observations of number of horsekick deaths

suffered corresponding to a particular corps and year denoted by dummy variables

xjk = 1 if observation j is from year k = 1875, . . . , 1893

= 0 otherwise

zjk = 1 if observation j is from corps k = 1, . . . , 9

= 0 otherwise

We thus consider the loglinear model

E(Yj) = exp(β0 + β1xj1 + · · · + β19xj,19 + β20zj1 + · · · + β28zj9) (11.20)

for the mean response. This model represents the mean number of horse kicks as an exponential function;

for example, for j corresponding to 1894 and corps 10,

E(Yj) = exp(β0);

for j corresponding to 1875 and corps 1,

E(Yj) = exp(β0 + β1 + β20).

An obvious question of interest would be to determine whether some of the regression parameters are

different from 0, indicating that the particular year or corps to which they correspond does not differ

from the final year and corps (1894, corps 10). This may be addressed by inspecting the Wald test

statistics corresponding to each element of β. To address the issue of how specific years compared,

averaged across corps, one would be interested in whether the appropriate differences in elements of

β were equal to zero. For example, if we were interested in whether 1875 and 1880 were different, we

would be interested in the difference β1 − β6.
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PROGRAM:

/******************************************************************

CHAPTER 11, EXAMPLE 1

Fit a loglinear regression model to the horse-kick data.
(Poisson assumption)

******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

The data look like (first 6 records)

1875 0 0 0 0 1 1 0 0 1 0
1876 0 0 1 0 0 0 0 0 1 1
1877 0 0 0 0 1 0 0 1 2 0
1878 2 1 1 0 0 0 0 1 1 0
1879 0 1 1 2 0 1 0 0 1 0
1880 2 1 1 1 0 0 2 1 3 0

.

.

.

column 1 year
columns 2-11 number of fatal horsekicks suffered by corps 1-10.

******************************************************************/

data kicks; infile ’kicks.dat’;
input year c1-c10;

run;

/******************************************************************

Reconfigure the data so that the a single number of kicks
for a particular year/corps combination appears on a separate
line.

******************************************************************/

data kicks2; set kicks;
array c{10} c1-c10;
do corps=1 to 10;
kicks = c{corps};
output;
end;
drop c1-c10;

run;

proc print data=kicks2 ; run;

/*****************************************************************

Fit the loglinear regression model using PROC GENMOD. Here,
the dispersion parameter phi=1, so is not estimated. We let SAS
form the dummy variables through use of the CLASS statement.
This results in the model for mean response being parameterized
as in equation (11.20).

The DIST=POISSON option in the model statement specifies
that the Poisson probability distribution assumption, with its
requirement that mean = variance, be used. The LINK=LOG option
asks for the loglinear model. Other LINK= choices are available.

We also use a CONTRAST statement to investigate whether there is
evidence to suggest that 1875 differed from 1880 in terms of numbers
of horsekick deaths. The WALD option asks that the usual large sample
chi-square test statistic be used as the basis for the test.

*****************************************************************/

proc genmod data=kicks2;
class year corps;
model kicks = year corps / dist = poisson link = log;
contrast ’1875-1880’ year 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 / wald;

run;
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OUTPUT: Following the output, we comment on a few aspects of the output.

The SAS System 1
Obs year corps kicks

1 1875 1 0
2 1875 2 0
3 1875 3 0
4 1875 4 0
5 1875 5 1
6 1875 6 1
7 1875 7 0
8 1875 8 0
9 1875 9 1
10 1875 10 0
11 1876 1 0
12 1876 2 0
13 1876 3 1
14 1876 4 0
15 1876 5 0
16 1876 6 0
17 1876 7 0
18 1876 8 0
19 1876 9 1
20 1876 10 1
21 1877 1 0
22 1877 2 0
23 1877 3 0
24 1877 4 0
25 1877 5 1
26 1877 6 0
27 1877 7 0
28 1877 8 1
29 1877 9 2
30 1877 10 0
31 1878 1 2
32 1878 2 1
33 1878 3 1
34 1878 4 0
35 1878 5 0
36 1878 6 0
37 1878 7 0
38 1878 8 1
39 1878 9 1
40 1878 10 0
41 1879 1 0
42 1879 2 1
43 1879 3 1
44 1879 4 2
45 1879 5 0
46 1879 6 1
47 1879 7 0
48 1879 8 0
49 1879 9 1
50 1879 10 0
51 1880 1 2
52 1880 2 1
53 1880 3 1
54 1880 4 1
55 1880 5 0

The SAS System 2
Obs year corps kicks

56 1880 6 0
57 1880 7 2
58 1880 8 1
59 1880 9 3
60 1880 10 0
61 1881 1 0
62 1881 2 2
63 1881 3 1
64 1881 4 0
65 1881 5 1
66 1881 6 0
67 1881 7 1
68 1881 8 0
69 1881 9 0
70 1881 10 0
71 1882 1 0
72 1882 2 0
73 1882 3 0
74 1882 4 0
75 1882 5 0
76 1882 6 1
77 1882 7 1
78 1882 8 2
79 1882 9 4
80 1882 10 1
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81 1883 1 1
82 1883 2 2
83 1883 3 0
84 1883 4 1
85 1883 5 1
86 1883 6 0
87 1883 7 1
88 1883 8 0
89 1883 9 0
90 1883 10 0
91 1884 1 1
92 1884 2 0
93 1884 3 0
94 1884 4 0
95 1884 5 1
96 1884 6 0
97 1884 7 0
98 1884 8 2
99 1884 9 1

100 1884 10 1
101 1885 1 0
102 1885 2 0
103 1885 3 0
104 1885 4 0
105 1885 5 0
106 1885 6 0
107 1885 7 2
108 1885 8 0
109 1885 9 0
110 1885 10 1

The SAS System 3
Obs year corps kicks

111 1886 1 0
112 1886 2 0
113 1886 3 1
114 1886 4 1
115 1886 5 0
116 1886 6 0
117 1886 7 1
118 1886 8 0
119 1886 9 3
120 1886 10 0
121 1887 1 2
122 1887 2 1
123 1887 3 0
124 1887 4 0
125 1887 5 2
126 1887 6 1
127 1887 7 1
128 1887 8 0
129 1887 9 2
130 1887 10 0
131 1888 1 1
132 1888 2 0
133 1888 3 0
134 1888 4 1
135 1888 5 0
136 1888 6 0
137 1888 7 0
138 1888 8 0
139 1888 9 1
140 1888 10 0
141 1889 1 1
142 1889 2 1
143 1889 3 0
144 1889 4 1
145 1889 5 0
146 1889 6 0
147 1889 7 1
148 1889 8 2
149 1889 9 0
150 1889 10 2
151 1890 1 0
152 1890 2 2
153 1890 3 0
154 1890 4 1
155 1890 5 2
156 1890 6 0
157 1890 7 2
158 1890 8 1
159 1890 9 2
160 1890 10 2
161 1891 1 0
162 1891 2 1
163 1891 3 1
164 1891 4 1
165 1891 5 1
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The SAS System 4
Obs year corps kicks

166 1891 6 1
167 1891 7 0
168 1891 8 3
169 1891 9 1
170 1891 10 0
171 1892 1 2
172 1892 2 0
173 1892 3 1
174 1892 4 1
175 1892 5 0
176 1892 6 1
177 1892 7 1
178 1892 8 0
179 1892 9 1
180 1892 10 0
181 1893 1 0
182 1893 2 0
183 1893 3 0
184 1893 4 1
185 1893 5 2
186 1893 6 0
187 1893 7 0
188 1893 8 1
189 1893 9 0
190 1893 10 0
191 1894 1 0
192 1894 2 0
193 1894 3 0
194 1894 4 0
195 1894 5 0
196 1894 6 1
197 1894 7 0
198 1894 8 1
199 1894 9 0
200 1894 10 0

The SAS System 5
The GENMOD Procedure

Model Information

Data Set WORK.KICKS2
Distribution Poisson
Link Function Log
Dependent Variable kicks

Number of Observations Read 200
Number of Observations Used 200

Class Level Information

Class Levels Values

year 20 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

corps 10 1 2 3 4 5 6 7 8 9 10

Parameter Information

Parameter Effect year corps

Prm1 Intercept
Prm2 year 1875
Prm3 year 1876
Prm4 year 1877
Prm5 year 1878
Prm6 year 1879
Prm7 year 1880
Prm8 year 1881
Prm9 year 1882
Prm10 year 1883
Prm11 year 1884
Prm12 year 1885
Prm13 year 1886
Prm14 year 1887
Prm15 year 1888
Prm16 year 1889
Prm17 year 1890
Prm18 year 1891
Prm19 year 1892
Prm20 year 1893
Prm21 year 1894
Prm22 corps 1
Prm23 corps 2
Prm24 corps 3
Prm25 corps 4
Prm26 corps 5
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Prm27 corps 6
Prm28 corps 7
Prm29 corps 8
Prm30 corps 9

The SAS System 6
The GENMOD Procedure

Parameter Information

Parameter Effect year corps

Prm31 corps 10

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 171 171.6395 1.0037
Scaled Deviance 171 171.6395 1.0037
Pearson Chi-Square 171 160.6793 0.9396
Scaled Pearson X2 171 160.6793 0.9396
Log Likelihood -161.8886

Algorithm converged.

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 -2.0314 0.7854 -3.5707 -0.4921 6.69 0.0097
year 1875 1 0.4055 0.9129 -1.3837 2.1947 0.20 0.6569
year 1876 1 0.4055 0.9129 -1.3837 2.1947 0.20 0.6569
year 1877 1 0.6931 0.8660 -1.0042 2.3905 0.64 0.4235
year 1878 1 1.0986 0.8165 -0.5017 2.6989 1.81 0.1785
year 1879 1 1.0986 0.8165 -0.5017 2.6989 1.81 0.1785
year 1880 1 1.7047 0.7687 0.1981 3.2114 4.92 0.0266
year 1881 1 0.9163 0.8367 -0.7235 2.5561 1.20 0.2734
year 1882 1 1.5041 0.7817 -0.0281 3.0363 3.70 0.0544
year 1883 1 1.0986 0.8165 -0.5017 2.6989 1.81 0.1785
year 1884 1 1.0986 0.8165 -0.5017 2.6989 1.81 0.1785
year 1885 1 0.4055 0.9129 -1.3837 2.1947 0.20 0.6569
year 1886 1 1.0986 0.8165 -0.5017 2.6989 1.81 0.1785
year 1887 1 1.5041 0.7817 -0.0281 3.0363 3.70 0.0544
year 1888 1 0.4055 0.9129 -1.3837 2.1947 0.20 0.6569
year 1889 1 1.3863 0.7906 -0.1632 2.9358 3.07 0.0795
year 1890 1 1.7918 0.7638 0.2948 3.2887 5.50 0.0190
year 1891 1 1.5041 0.7817 -0.0281 3.0363 3.70 0.0544
year 1892 1 1.2528 0.8018 -0.3187 2.8242 2.44 0.1182
year 1893 1 0.6931 0.8660 -1.0042 2.3905 0.64 0.4235
year 1894 0 0.0000 0.0000 0.0000 0.0000 . .
corps 1 1 0.4055 0.4564 -0.4891 1.3001 0.79 0.3744
corps 2 1 0.4055 0.4564 -0.4891 1.3001 0.79 0.3744
corps 3 1 -0.0000 0.5000 -0.9800 0.9800 0.00 1.0000
corps 4 1 0.3185 0.4647 -0.5923 1.2292 0.47 0.4931
corps 5 1 0.4055 0.4564 -0.4891 1.3001 0.79 0.3744
corps 6 1 -0.1335 0.5175 -1.1479 0.8808 0.07 0.7964
corps 7 1 0.4855 0.4494 -0.3952 1.3662 1.17 0.2799
corps 8 1 0.6286 0.4378 -0.2295 1.4867 2.06 0.1510

The SAS System 7

The GENMOD Procedure

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

corps 9 1 1.0986 0.4082 0.2985 1.8988 7.24 0.0071
corps 10 0 0.0000 0.0000 0.0000 0.0000 . .
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

Contrast Results

Chi-
Contrast DF Square Pr > ChiSq Type

1875-1880 1 3.98 0.0461 Wald

INTERPRETATION:
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• Pages 1–4 of the output show the reconfigured data set.

• The results of running PROC GENMOD appear on pages 5–7 of the output. On page 6, the results

of the fit by IRWLS/ML are displayed. The table Analysis of Parameter Estimates contains

the estimates of the parameters β0 – β28, along with their estimated standard errors (square roots

of the elements of V̂ β). The column Chi-Square gives the value of the Wald test statistic for

testing whether the parameter in that row is equal to zero.

• The row SCALE corresponds to φ; here, for the Poisson distribution, φ = 1, so nothing is estimated.

This is noted at the bottom of page 6 (The scale parameter was held fixed.).

• Page 7 shows the result of the contrast statement to address the null hypothesis that there was

no difference in mean horsekick deaths in 1875 and 1880 (see the program). The Wald test statistic

is 3.98 with an asociated p-value of 0.046, suggesting that there is some evidence to support a

difference. Note that if β1 and β6 are different, then the mean responses for 1875 and 1880 must

be different for any corps. However, note that the difference β1 − β6 does not correspond to the

actual difference in mean response. Inspection of the estimates of β1 and β6 on page 6 shows

β̂1 = 0.4055 and β̂6 = 1.7047. This suggests that the mean response for 1880, which depends on

exp(β6), is larger than that for 1875, which depends on exp(β1).

EXAMPLE 2 – MYOCARDIAL INFARCTION DATA: Here, the response (whether or not a woman

has suffered a myocardial infarction) is binary, so we wish to fit a generalized linear model assuming

the Bernoulli distribution. The mean function must honor the restriction of being between 0 and 1;

here, we fit the logistic regression model, using the logit link.

Recall that we defined

xj1 = 1 if oral contraceptive use

= 0 otherwise

xj2 = age in years

xj3 = 1 if smoke more then one pack/day

= 0 otherwise

Thus, we model the mean response, equivalently, the probability of suffering a heart attack, as

E(Yj) =
exp(β0 + β1xj1 + β2xj2 + β3xj3)

1 + exp(β0 + β1xj1 + β2xj2 + β3xj3)
. (11.21)

Interest focuses on whether or not β1, β2, and β3. corresponding to the association of oral contraceptive

use, age, and smoking, respectively, with probability of myocardial infarction, are different from zero.
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If β1 is different from zero, for example, the interpretation is that oral contraceptive use does change

the probability of suffering a heart attack. We say more about this shortly.

PROGRAM:

/******************************************************************

CHAPTER 11, EXAMPLE 2

Fit a logistic regression model to the myocardial infarction
data.

******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

The data look like (first 10 records)

1 1 33 1 0
2 0 32 0 0
3 1 37 0 1
4 0 36 0 0
5 1 50 1 1
6 1 40 0 0
7 0 35 0 0
8 1 33 0 0
9 1 33 0 0
10 0 31 0 0

.

.

.

column 1 subject id
column 2 oral contraceptive indicator (0=no,1=yes)
column 3 age (years)
column 4 smoking indicator (0=no,1=yes)
column 5 binary response -- whether MI has been suffered

(0=no,1=yes)

******************************************************************/

data mi; infile ’infarc.dat’;
input id oral age smoke mi;

run;

/*****************************************************************

Fit the logistic regression model using PROC GENMOD.
We do not use a CLASS statement here, as the covariates are
either continuous (AGE) or already in "dummy" form (ORAL, SMOKE).
The model statement with the LINK=LOGIT option results in the
logistic regression model in equation (10.21). The DIST=BINOMIAL
specifies the Bernoulli distribution, which is the simplest case
of a binomial distribution.

In versions 7 and higher of SAS, PROC GENMOD will model by
default the probability that the response y=0 rather than
the conventional y=1! To make PROC GENMOD model probability
y=1, as is standard, one must include the DESCENDING option in
the PROC GENMOD statement. In earlier versions of SAS, the
probability y=1 is modeled by default, as would be expected.

If the user is unsure which probability is being modeled, one
can check the .log file. In later versions of SAS, an explicit
statement about what is being modeled will appear. PROC GENMOD
output should also contain a statement about what is being
modeled.

******************************************************************/

proc genmod data=mi descending;
model mi = oral age smoke / dist = binomial link = logit;

run;
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OUTPUT: Following the output, we comment on a few aspects of the output.

The SAS System 1

The GENMOD Procedure

Model Information

Data Set WORK.MI
Distribution Binomial
Link Function Logit
Dependent Variable mi

Number of Observations Read 200
Number of Observations Used 200
Number of Events 43
Number of Trials 200

Response Profile

Ordered Total
Value mi Frequency

1 1 43
2 0 157

PROC GENMOD is modeling the probability that mi=’1’.

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 oral
Prm3 age
Prm4 smoke

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 196 150.3748 0.7672
Scaled Deviance 196 150.3748 0.7672
Pearson Chi-Square 196 177.5430 0.9058
Scaled Pearson X2 196 177.5430 0.9058
Log Likelihood -75.1874

Algorithm converged.

The SAS System 2

The GENMOD Procedure

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 -9.1140 1.7571 -12.5579 -5.6702 26.90 <.0001
oral 1 1.9799 0.4697 1.0593 2.9005 17.77 <.0001
age 1 0.1626 0.0445 0.0753 0.2498 13.32 0.0003
smoke 1 1.8122 0.4294 0.9706 2.6538 17.81 <.0001
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

Contrast Estimate Results

Standard Chi-
Label Estimate Error Alpha Confidence Limits Square

smk log odds ratio 1.8122 0.4294 0.05 0.9706 2.6538 17.81
Exp(smk log odds ratio) 6.1241 2.6297 0.05 2.6396 14.2084

Contrast Estimate Results

Label Pr > ChiSq

smk log odds ratio <.0001
Exp(smk log odds ratio)

INTERPRETATION:

• From the output, the Wald test statistics in the Chi-Square column of the table Analysis Of
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Parameter Estimates of whether β1 = 0, β2 = 0, and β3 = 0 are all large, with very small p-

values. This suggests that there is strong evidence that oral contraceptive use, age, and smoking

affects the probability of having a heart attack.
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• In each case, note that the estimate is positive. The logistic function

exp(u)

1 + exp(u)

is an increasing function of u. Note that because the estimated values of β1, β2, and β3 are

positive, if xj1 changes from 0 (no contraceptives) to 1 (contraceptives), the linear predictor

β0 + β1xj1 + β2xj2 + β3xj3

evaluated at the estimates increases, and the same is true if age xj2 increases or if xj3 changes

from 0 (no smoking) to 1 (smoking). Thus, the fit indicates that the probability of having a heart

attack increases if one uses oral contraceptives or smokes, and increases as women age.

• In fact, we can say more. According to this model, the odds of having a heart attack, given

a woman has particular settings of contraceptive use, age, and smoking (xj1, , xj2, xj3) is, from

(11.9), which is the ratio of the probability of having a heart attack to not having one, is

exp(β0 + β1xj1 + β2xj2 + β3xj3).

A common quantity of interest is the so-called odds ratio. For example, we may be interested

in comparing the odds of having a heart attack if a randomly chosen woman smokes (xj3 = 1) to

those if she does not (xj3 = 0). The ratio of the odds under smoking to those under not smoking,

for any settings of age or contraceptive use, is thus

exp(β0 + β1xj1 + β2xj2 + β3)

exp(β0 + β1xj1 + β2xj2)
= exp(β3).

Thus, exp β3 is a multiplicative factor that measures by how much the odds of having a heart

attack change if we move from not smoking to smoking. If β3 > 0, this multiplicative factor is

> 1, meaning that the odds go up; if β3 is negative, the factor is < 1, and the odds go down. β3

itself is referred to as the log odds ratio for obvious reasons.

Here, we estimate the log odds ratio for smoking as 1.81 and the odds ratios as exp(β̂3) =

exp(1.81) = 6.12; the odds increase by 6-fold if a woman smokes! Note that, ideally, we would

like a standard error to attach to this estimated odd ratios.
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One can actually get PROC GENMOD to print out a log odds ratio and odds ratio and associated

standard errors in an estimate statement with the exp option by choosing L appropriately. Here,

to get the log odds ratio, which is just β3, we take L = (0, 0, 0, 1). The estimate tatement would

be

estimate "smk log odds ratio" int 0 oral 0 age 0 smoke 1 / exp;

try adding this to the program and see what happens (see the program on the class web site for

the results).

• An interesting aside: Logistic regression is a standard technique in public health studies. Chances

are, when you read in the newspaper that a certain behavior increases the risk of developing a

disease, the analysis that was performed to arrive at that conclusion was like this one.

EXAMPLE 3 – CLOTTING TIME DATA: These data are positive and continuous with possible con-

stant coefficient of variation. Thus, we consider the gamma probability model. Letting Yj be the clotting

time at percentage concentration xj , we consider two models for the mean response:

• Loglinear: E(Yj) = exp(β0 + β1xj)

• Reciprocal (inverse): E(Yj) = 1/(β0 + β1xj).

Note that although in both models β1 has to do with how the changing percentage concentration affects

the mean response, this happens in different ways in each model, so the parameters have different

interpretations, so it is not interesting to compare their values for the different models.

Here, because of the gamma assumption, the dispersion parameter φ is not equal to a fixed, known

constant. It is thus estimated from the data. Note that PROC GENMOD does not print out the estimate

of φ; rather, it prints out 1/φ.

We also show how to obtain results of the fit in a table that may be output to a SAS data set using

the ods statement, which is relevant in versions 7 and higher of SAS. Earlier versions use the make

statement.
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PROGRAM:

/******************************************************************

CHAPTER 11, EXAMPLE 3

Fitting loglinear and reciprocal models to the clotting data.
(Gamma assumption)

******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

The data look like

5 118
10 58
15 42
20 35
30 27
40 25
60 21
80 19
100 18

column 1 percentage concentration plasma
column 2 clotting time (seconds)

******************************************************************/

data clots; infile ’clot.dat’;
input u y;
x=log(u);

run;

/*****************************************************************

Fit the loglinear regression model using PROC GENMOD. The
DIST=GAMMA option specifies the gamma distribution assumption.
We then fit two models: the loglinear model in the first
call to PROC GENMOD, obtained with the LINK=LOG option,
and the reciprocal (inverse) model, obtained with the
LINK=POWER(-1) option -- this option asks that the linear
predictor be raised to the power in parentheses as the model
for the mean response.

Here, the dispersion parameter phi is unknown so must be estimated.
This may be done a number of ways -- here, we use the PSCALE
option in MODEL statement to ask that phi be estimated
by the Pearson chi-square divided by its degrees of freedom.
Actually, for the gamma distribution, what is printed under
SCALE parameter is the reciprocal of this quantity, so we must
remember to invert the result from the output to obtain the estimate
of phi.

Also, use the OBSTATS option in the MODEL statement to output a
table of statistics such as predicted values (estimates of the mean
response) and residuals (response-estimated mean). We show
how to output these to a data set using the ODS statement for
for the loglinear fit (although we don’t do anything with them).
The ODS statement works with version 7 and higher of SAS.
Note that the obstats option causes the output of GENMOD to contain
these statistics; printing the output data set simply repeats
these values.

******************************************************************/

proc genmod data=clots;
model y = x / dist = gamma link = log obstats pscale;
ods output obstats=outlog;

run;

proc print data=outlog; run;

/*****************************************************************

Fit the inverse reciprocal regression model using PROC GENMOD.
Phi is again calculated by the Pearson chi-square/dof.

******************************************************************/

proc genmod data=clots;
model y = x / dist = gamma link = power(-1) obstats pscale;

run;
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OUTPUT: Following the output, we comment on a few aspects of the output.

The SAS System 1

The GENMOD Procedure

Model Information

Data Set WORK.CLOTS
Distribution Gamma
Link Function Log
Dependent Variable y

Number of Observations Read 9
Number of Observations Used 9

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 7 0.1626 0.0232
Scaled Deviance 7 6.6768 0.9538
Pearson Chi-Square 7 0.1705 0.0244
Scaled Pearson X2 7 7.0000 1.0000
Log Likelihood -26.4276

Algorithm converged.

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 5.5032 0.1799 5.1506 5.8559 935.63 <.0001
x 1 -0.6019 0.0520 -0.7039 -0.4999 133.80 <.0001
Scale 0 41.0604 0.0000 41.0604 41.0604

NOTE: The Gamma scale parameter was estimated by DOF/Pearson’s Chi-Square

Lagrange Multiplier Statistics

Parameter Chi-Square Pr > ChiSq

Scale 0.3069 0.5796

Observation Statistics

Observation y x Pred Xbeta Std HessWgt
Lower Upper Resraw Reschi Resdev

StResdev StReschi Reslik

1 118 1.6094379 93.175154 4.5344811 0.1026374 52.000165
76.196496 113.93712 24.824846 0.266432 0.2458801
2.1728608 2.3544798 2.2608074

The SAS System 2

The GENMOD Procedure

Observation Statistics

Observation y x Pred Xbeta Std HessWgt
Lower Upper Resraw Reschi Resdev

StResdev StReschi Reslik

2 58 2.3025851 61.39102 4.1172636 0.0738424 38.792341
53.119026 70.951174 -3.39102 -0.055236 -0.056288
-0.413325 -0.405606 -0.411497

3 42 2.7080502 48.096382 3.873207 0.0607149 35.855825
42.700382 54.174268 -6.096382 -0.126753 -0.132544
-0.9248 -0.8844 -0.918591

4 35 2.9957323 40.449166 3.700046 0.0545252 35.528863
36.349431 45.011297 -5.449166 -0.134716 -0.141291
-0.967048 -0.92205 -0.961605

5 27 3.4011974 31.689627 3.4559894 0.052237 34.984
28.605721 35.106001 -4.689627 -0.147986 -0.155989
-1.060815 -1.006389 -1.054851

6 25 3.6888795 26.651048 3.2828285 0.0556359 38.516653
23.897747 29.721562 -1.651048 -0.061951 -0.063278
-0.434509 -0.425393 -0.433342

7 21 4.0943446 20.879585 3.0387719 0.0661298 41.297168
18.341382 23.769042 0.1204152 0.0057671 0.0057561
0.0409427 0.0410213 0.0409576

8 19 4.3820266 17.559778 2.865611 0.0762872 44.428066
15.121094 20.391766 1.4402218 0.0820182 0.0798774
0.5932165 0.6091154 0.5973195
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9 18 4.6051702 15.352785 2.7312969 0.0851497 48.140231
12.992945 18.141231 2.6472147 0.1724257 0.1634065
1.2715487 1.3417313 1.2945556

The SAS System 3

Obs Observation y x Pred Xbeta

1 1 118 1.6094379 93.175154 4.5344811
2 2 58 2.3025851 61.39102 4.1172636
3 3 42 2.7080502 48.096382 3.873207
4 4 35 2.9957323 40.449166 3.700046
5 5 27 3.4011974 31.689627 3.4559894
6 6 25 3.6888795 26.651048 3.2828285
7 7 21 4.0943446 20.879585 3.0387719
8 8 19 4.3820266 17.559778 2.865611
9 9 18 4.6051702 15.352785 2.7312969

Obs Std Hesswgt Lower Upper Resraw

1 0.1026374 52.000165 76.196496 113.93712 24.824846
2 0.0738424 38.792341 53.119026 70.951174 -3.39102
3 0.0607149 35.855825 42.700382 54.174268 -6.096382
4 0.0545252 35.528863 36.349431 45.011297 -5.449166
5 0.052237 34.984 28.605721 35.106001 -4.689627
6 0.0556359 38.516653 23.897747 29.721562 -1.651048
7 0.0661298 41.297168 18.341382 23.769042 0.1204152
8 0.0762872 44.428066 15.121094 20.391766 1.4402218
9 0.0851497 48.140231 12.992945 18.141231 2.6472147

Obs Reschi Resdev Stresdev Streschi Reslik

1 0.266432 0.2458801 2.1728608 2.3544798 2.2608074
2 -0.055236 -0.056288 -0.413325 -0.405606 -0.411497
3 -0.126753 -0.132544 -0.9248 -0.8844 -0.918591
4 -0.134716 -0.141291 -0.967048 -0.92205 -0.961605
5 -0.147986 -0.155989 -1.060815 -1.006389 -1.054851
6 -0.061951 -0.063278 -0.434509 -0.425393 -0.433342
7 0.0057671 0.0057561 0.0409427 0.0410213 0.0409576
8 0.0820182 0.0798774 0.5932165 0.6091154 0.5973195
9 0.1724257 0.1634065 1.2715487 1.3417313 1.2945556

The SAS System 4

The GENMOD Procedure

Model Information

Data Set WORK.CLOTS
Distribution Gamma
Link Function Power(-1)
Dependent Variable y

Number of Observations Read 9
Number of Observations Used 9

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 7 0.0167 0.0024
Scaled Deviance 7 6.8395 0.9771
Pearson Chi-Square 7 0.0171 0.0024
Scaled Pearson X2 7 7.0000 1.0000
Log Likelihood -16.1504

Algorithm converged.

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 -0.0166 0.0009 -0.0184 -0.0147 318.53 <.0001
x 1 0.0153 0.0004 0.0145 0.0162 1367.15 <.0001
Scale 0 408.8247 0.0000 408.8247 408.8247

NOTE: The Gamma scale parameter was estimated by DOF/Pearson’s Chi-Square

Lagrange Multiplier Statistics

Parameter Chi-Square Pr > ChiSq

Scale 0.2600 0.6101

Observation Statistics

Observation y x Pred Xbeta Std HessWgt
Lower Upper Resraw Reschi Resdev

StResdev StReschi Reslik
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1 118 1.6094379 122.85904 0.0081394 0.0003814 6170940.5
112.52367 135.28505 -4.859041 -0.03955 -0.040083
-2.535827 -2.502059 -2.50553

The SAS System 5

The GENMOD Procedure

Observation Statistics

Observation y x Pred Xbeta Std HessWgt
Lower Upper Resraw Reschi Resdev

StResdev StReschi Reslik

2 58 2.3025851 53.263889 0.0187744 0.0003353 1159852.7
51.462321 55.196169 4.7361113 0.0889179 0.0864112
1.8736358 1.9279877 1.8808138

3 42 2.7080502 40.007131 0.0249955 0.0004121 654352.76
38.754832 41.343065 1.9928686 0.0498128 0.049009
1.0510498 1.0682898 1.0529795

4 35 2.9957323 34.002638 0.0294095 0.0004948 472674.68
32.917102 35.162214 0.9973619 0.0293319 0.0290499
0.6246313 0.6306943 0.625336

5 27 3.4011974 28.065779 0.0356306 0.0006317 322026.28
27.12331 29.076102 -1.065779 -0.037974 -0.038466
-0.833125 -0.822477 -0.831765

6 25 3.6888795 24.972206 0.0400445 0.0007367 254947.6
24.103101 25.906332 0.0277938 0.001113 0.0011126
0.0242347 0.0242437 0.024236

7 21 4.0943446 21.614323 0.0462656 0.0008909 190994.29
20.828244 22.462064 -0.614323 -0.028422 -0.028696
-0.629919 -0.623908 -0.629011

8 19 4.3820266 19.731822 0.0506796 0.001003 159173.77
18.99499 20.528126 -0.731822 -0.037088 -0.037557
-0.828624 -0.818283 -0.826977

9 18 4.6051702 18.48317 0.0541033 0.0010911 139665.78
17.780391 19.243791 -0.48317 -0.026141 -0.026372
-0.583988 -0.578865 -0.583139

INTERPRETATION:

• Pages 1–2 of the output show the results of fitting the loglinear model. The estimates of β0 and β1

and their estimated standard errors are given in the table Analysis of Parameter Estimates.

The SCALE parameter estimate corresponds to an estimate of 1/φ; thus, the estimate of φ itself

is 1/41.0604 = 0.02435. Recall that the coefficient of variation σ is defined as σ2 = φ; thus, the

estimated coefficient of variation under the loglinear fit is 0.15606.

• The table Observation Statistics on pages 1 and 2 lists a number of results based on the

fit. Of particular interest is the column PRED, which gives the estimates of the mean response at

each xj value (the column Y contains the actual data values for comparison). These numbers are

repeated on page 3, which shows the result of the call to proc print to print the data set created

by the ods statement. This illustrates how it is possible to output such results so that further

manipulation may be undertaken.

• Pages 4–5 contain the same information for the reciprocal link fit. Here, the estimate of φ is

1/408.8247 = 0.002446, so that the estimated coefficient of variation σ is 0.04946.

• Note that the estimates of CV do not agree well at all between the two fits. The reason can

be appreciated when one inspects the lower right panel of Figure 3. Here, the estimated mean
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response for each fit is superimposed on the actual data – the solid line represents the fit of the

loglinear model, the dashed line is the fit of the reciprocal model. Note that this second model

appears to provide a much better fit to the data. The calculation of φ, and hence of σ, is based

on squared deviations {Yj − f(x′

jβ̂)}2. Because the loglinear model fits poorly, these deviations

are large, leading to an estimate of CV that is misleading large. The reciprocal model, which fits

the data very well, leads to a much smaller estimate because the deviations of the fit from the

observed responses are much smaller. Based on the visual evidence, the fit of the reciprocal model

is preferred for describing the percentage concentration of plasma-clotting time relationship.
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