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12 Population-averaged models for nonnormal repeated measure-

ments

12.1 Introduction

In the previous chapter, we discussed regression models for data that may not be normally distributed,

such as count or binary data or data that take on positive values but that may have skewed distributions.

These models, known as generalized linear models, have several features:

• A by-product of dealing with these types of variables is that the model for mean response may

need to satisfy some restrictions. The most extreme case was that of models for binary data; here,

the mean response is also the probability of seeing the event of interest, which must lie between

0 and 1. The main consequence is that models of interest are no longer necessarily linear in

regression parameters β (p× 1); instead, plausible models tend to be nonlinear functions f of β

through a linear predictor x′

jβ. Thus, the usual theory of linear models does not apply.

• The variance of the response is no longer legitimately viewed as being constant for all values of

the mean response (that is, for all settings of the covariates). Rather, the distributional models

that are sensible for these data impose a relationship between mean and variance; that is, the

variance of a response taken at a particular value of the mean is some known function V of the

mean.

• Because of the nonlinearity of mean response models and the fact that variance also is a function

of the mean, it is no longer possible to derive an expression for the estimator of β in closed form.

However, fortunately, it turns out that for all distributions in the class containing the relevant

distributions, such as the Poisson, Bernoulli, and gamma, the (ML) estimator of β solves a set

of p equations that is a sum of weighted deviations. Although these equations cannot be solved

analytically, they may be solved via a general numerical algorithm (IRWLS). Furthermore, large

sample approximations are available for the sampling distribution of the estimator β̂, so that

approximate inference may be carried out.

Generalized linear models may thus be viewed as an extension of ordinary linear regression models

for normal data with constant variance. These models and methods are of course only applicable to

the standard regression problem where independent scalar responses Y1, . . . , Yn have been observed at

covariate settings xj1, . . . , xjk for the jth response, j = 1, . . . , n.
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In this chapter, we are concerned with how we might extend generalized linear models to the situation

of longitudinal data, where now the responses are vectors Y i of repeated count, binary, or other

observations on each of m units.

• Recall in the the case of the linear model with the assumption of normality, the extension from

ordinary regression problems to the longitudinal problem was facilitated by thinking about the

multivariate normal distribution. That is, there is a natural generalization of the probability

model we use for ordinary linear regression (the normal distribution) to that we use for longitudinal

response vectors (multivariate normal).

• Specifically, if individual observations are assumed to be normally distributed, as they are in clas-

sical linear regression, then vectors of such observations have a multivariate normal distribution.

Each component of the data vector is normally distributed individually, with mean determined by

the regression model and variance that of the individual normal distribution. To fully characterize

the multivariate normal distribution that is appropriate, the only additional piece of information

we must specify is how the components of the vector are correlated. Put another way, as long as

(i) we believe individual observations are normally distributed and (ii) are willing to specify the

form of the mean vector through a regression model and the form of the covariance matrix

of a data vector, either by outright assumption or using a mixed effects structure, we can fully

specify the particular multivariate normal distribution that will be used as the basis for infer-

ence. Because of this, it was straightforward to contemplate models for longitudinal, normally

distributed data. Moreover, because we thus had a full probability model, we could write down the

joint probability distribution of the data and use the methods of maximum likelihood or restricted

maximum likelihood to fit the model and make inference.

• By analogy, it is natural to hope that we could do something similar when the elements of a data

vector Y i are now counts, binary responses, or positive responses with constant CV. That is, it

would be desirable if there were extensions of the Poisson, Bernoulli, and gamma distributions

that could be fully specified by simply adding assumptions about correlation to the individual

observation assumptions on mean and variance.
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• Unfortunately, this is not the case. This same kind of generalization is not so easy for the other

distributions in the scaled exponential family class, like the Poisson, Bernoulli, or gamma. In

particular, multivariate extensions of these probability models are unwieldy or require more than

just an assumption about the correlations among components of a data vector. Thus, sadly, trying

to use multivariate extensions of the distributions used for ordinary regression (generalized linear

models) to longitudinal data vectors is simply too complex to yield useful statistical models for

real situations.

To make matters worse, still another problem complicates things further. We have noted two perspec-

tives on modeling: population-averaged and subject-specific. For continuous, normally distributed

data, it is often relevant, as we have seen, to specify models that are linear:

• With the population-averaged perspective, we modeled the mean response of the elements of

a data vector by some function of time and possibly other covariates. This function was linear

in parameters β, e.g.

E(Yij) = β0 + β1tij .

We then modeled the covariance matrix Σi of a data vector explicitly. This model would (hope-

fully) take into account variation from all sources, among and within individuals simultaneously.

• With the subject-specific perspective, we modeled the individual trajectory of the elements of

a data vector by some function of time. This function was linear in individual-specific parameters;

e.g. we wrote models like the straight-line random coefficient model

Yij = β0i + β1itij + eij .

The individual-specific parameters β0i and β1i were in turn modeled as linear functions of a fixed

parameter β and random effects bi, βi = Aiβ+bi, that characterized respectively the “typical”

values of the elements of βi and how individual values deviated from these typical values. The

result was again a model for mean response averaged across individuals that was a linear function

of β; e.g., with Ai = I,

E(Yij) = β0 + β1tij .

The covariance model Σi arose from the combination of assumptions about bi and ei, thus natu-

rally taking into account variation from both sources separately.
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Thus, in both cases, although the perspective starts out differently, we end up with a model for mean

response E(Yij) that is a linear function of fixed parameters β of interest. We can end up with the

same linear mean model from either perspective. So, even if two data analysts start out with these

different perspectives, they are likely to arrive at the same mean model, and either of their interpretations

of the model will be valid. The difference will be in what they end up assuming about covariance.

As we will discuss, when we consider models of the generalized linear model type that are no longer

linear, it is no longer the case that the population-averaged and subject-specific perspectives neces-

sarily can lead to the same mean model! Moreover, as a result, the interpretations of the different

types of models are no longer both valid at the same time. This unfortunate problem is the result of

the nonlinearity of the generalized linear models.

Historically, as a consequence of all of these issues, models and method for nonnormal responses that

individually would follow generalized linear models were not widely available. The main impediments

were that

• there are not easy multivariate generalizations of the necessary probability distributions, and

• population-averaged and subject-specific approaches do not necessarily lead to the same models

for mean response.

Because there was no easy resolution to these problems, no one knew quite what to do. Then, in the

mid-1980’s, a paper appeared in the statistical literature that brought to the attention of statisticians

an approach for modeling these data, along with an associated fitting method, that made good practical

sense from a population-averaged perspective. The paper, Liang and Zeger (1986), generated a huge

amount of interest in this approach.

In this chapter, we will introduce this approach and the associated fitting method known as generalized

estimating equations, or GEEs. We will also show how to use PROC GENMOD in SAS to carry out such

analyses. As we will detail in the next section, the modeling of data vectors follows from a population-

averaged perspective, where the mean response of a data vector is modeled explicitly as a function

of time, parameters β, and possibly other covariates. No subject-specific random effects are involved.

We will contrast this approach with one that does use subject-specific random effects in Section 12.5

and in the next chapter.
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12.2 Population-averaged model

RECALL: The population-averaged approach is focused on modeling the mean response across

the population of units at each time point as a function of time. Thus, the model describes how the

averages across the population of responses at different time points are related over time. The model

usually describes the mean response at any time tij , say, for unit i as a function of fixed parameters β,

time tij , and possibly additional covariates. The model is set up so that questions about how the mean

response changes as a function of time and other covariates may be phrased in terms of questions about

the value of contrasts of the elements of β.

PROBLEM: In the case of normally distributed responses, if we specify such a mean response model

and a model for the covariance matrix of a data vector, we have provided all the necessary ingredi-

ents to write down a multivariate normal probability distribution that we believe describes the

population(s) of data vectors.

• Technically, if we can provide a mean vector and a covariance matrix, this is all we need to fully

describe a corresponding multivariate normal distribution.

• This is a desirable feature of the multivariate normal distribution – it is fully characterized

by a mean and covariance matrix.

In the case of nonnormally distributed response, if we specify such a mean response model and a model

for the covariance matrix, we have not necessarily provided all the necessary ingredients to write down

a corresponding multivariate probability distribution that we believe describes a population of data

vectors. Here is a brief heuristic explanation:

• Technically, to develop multivariate extensions of probability distributions like the those un-

derlying generalized linear models, it is not enough to provide just a mean vector and covariance

matrix.

• Because in these probability distributions the mean and variance of an observation are related in

a specific way, it turns out that it is much more difficult to fully describe a multivariate probability

distribution for several such observations in a data vector. To do so requires not only mean and

covariance matrix models, but additional assumptions about more complicated properties

of observations taken three, four, . . ., n at a time.

• With only the data at hand to guide the data analyst, it may be too difficult and risky to make
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all of the assumptions required about these complicated properties. Furthermore, the resulting

probability models can be so complex that fitting them to real data may be an insurmountable

challenge.

APPROACH: The approach popularized by Liang and Zeger (1986) is to forget about trying to model

the whole multivariate probability distribution of a data vector. Instead, the idea is just to model the

mean response and the covariance matrix of a data vector as in the normal case, and leave it at

that.

• The problem with this approach is that, consequently, there is no multivariate probability distribu-

tion upon which to base fitting methods and inference on parameters (like maximum likelihood).

• However, Liang and Zeger (1986) described an alternative approach to model fitting for such

mean-covariance models for nonnormal longitudinal data that does not require specification

of a full probability model but rather just requires the mean and covariance matrix. We discuss

this method in the next section.

Here, we describe the modeling strategy.

MEAN–VARIANCE MODEL: The idea is to take generalized linear models for individual observa-

tions as the starting point.

• If we consider a single component of a data vector Y i consisting of counts, binary responses,

or continuous positive response with constant CV at different times, the distribution of possible

values across the population of units might be well-represented by the Poisson, Bernoulli, and

gamma probability models, respectively.

• Thus, the distribution of each observation in a data vector is taken to have ideally a mean and

variance model of the type relevant to or imposed by these distributions.
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EXAMPLE – EPILEPTIC SEIZURE DATA: Recall Example 4 from Chapter 1, given by Thall and

Vail (1990). Here, 59 subjects suffering from epileptic seizures were assigned at random to receive either

a placebo (subjects 1–28) or the anti-seizure drug progabide (subjects 29–59) in addition to a standard

chemotherapy regimen all were taking. On each subject, the investigators recorded the subject’s age,

ai, say for the ith subject, i = 1, . . . , 59, a baseline number of seizures experienced by each subject

over the 8-week period prior to the start of the study, and then the number of seizures over a 2 week

period for four visits following initiation of assigned treatment. Let δi be the treatment indicator for

the ith patient,

δi = 0 for placebo subjects

= 1 for progabide subjects

Before we consider a model for these data, we discuss an issue that has been of some debate among

practitioners, that of “how to handle “baseline?”

In all of our examples up till now involving different groups, we have treated a baseline response, that

is, a measure of the response taken at the start of a study (and prior to administration of treatment if

there is one) as part of the overall response vector Y i. This takes automatic account of the information

in the baseline response, its correlation with other responses, and the fact that different subjects have

different baseline characteristics.

However, a common approach is to instead view the response vector as just the post-baseline responses

and treat the baseline response as a covariate in a model for mean of this response vector. The idea

is that this takes into account, or “adjusts for,” the fact that different subjects have different baseline

response characteristics.

Here, the baseline response and subsequent responses are not on the same scale; the baseline response

is the number of seizures recorded over an 8-week period prior to the start of the study (initiation of

assigned treatment) while the post-baseline responses are the number recorded in the 2-week period

between the four visits. This discrepancy might especially motivate an analyst to treat baseline as a

covariate, as it does not seem comparable with the rest of the response variables. In fact, the original

analysis of these data by Thall and Vail (1980) did this.

However, this seems to be suboptimal, as it would seem to ignore the fact that baseline response would

be expected to vary within subjects; that is, baseline response is a random variable. It is a simple

matter to address the scaling issue; in the current study, one may divide the baseline responses by 4 to

place them on a two-week basis.
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The more fundamental issue is whether it is a good idea to treat a baseline response as a covariate in

order to take into account the fact that units differ in their responses prior to treatment or whether it

is preferable to treat the baseline value as part of the response vector for each unit. In the case of a

linear mean response, it turns out that the two strategies can be equivalent, which is why we have

not discussed this until now. However, when the model for mean response is nonlinear, this no longer

holds.

Our position is that as a general strategy, it is preferable to treat a baseline response as part of the

response vector rather than as a covariate. There are theoretical reasons, beyond our scope here, that

support this position. We continue to follow this strategy for the rest of this course.

A very nice, detailed discussion of this issue is given by Fitzmaurice, Laird, and Ware (2004, Section

5.7).

Returning to the seizure data, adopting this view, we take the data vector corresponding to subject i

to be Y i = (Yi1, Yi2, . . . , Yi5)
′, where Yi1 is the baseline response based on 8 weeks, and Yi2, . . . , Yi5 are

the responses at each of visits 1–4 based on 2 weeks (we discuss how to take into account the different

time periods momentarily).

Before we specify the model, we consider some summary statistics. This was a randomized study, so

we would expect subjects in the two groups to be similar in their characteristics prior to administration

of the treatment. This seems plausible; the following table lists sample means (standard deviations) of

age and baseline 8-week seizure counts (Yi1) for each group.

Age Baseline

Placebo 29.6 (6.0) 30.8 (26.1)

Progabide 27.7 (6.6) 31.6 (27.9)

Notice that the subjects vary considerably in their baseline seizure counts.

Table 1 lists sample mean seizure counts at baseline and each visit time; those for baseline are divided

by 4 to put them on the same 2-week scale as the others.
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Table 1: Sample mean seizure counts at baseline and each visit time for the 28 subjects assigned to

placebo and 30 subjects assigned to progabide.

Visit Placebo Progabide

0 (baseline) 7.70 7.90

1 9.35 8.58

2 8.29 8.42

3 8.79 8.13

4 7.96 6.71

average over 8.60 7.96

visits 1–4

The raw sample means suggest a possible slight initial increase in 2-week seizure count followed by a

“leveling-off,” with a possible lowering by visit 4 in the progabide group.

Based on these observations, we might adopt a model for mean response that allows the possibility of

a different mean at baseline and visits 1–4, where the mean at visits 1–4 is the same, and these might

be different by group. Because the responses may be small counts for some subjects and are indeed

counts for all, it is natural to consider a loglinear model.

Define vij = 0 if j = 1 (baseline) and vij = 1 otherwise (visits 1–4), and let oij = 8 if j = 1 and oij = 2

otherwise, so that oij records the observation period on which Yij is based (8 or 2 weeks). Then the

following loglinear model incorporates these features:

E(Yij) = exp(log oij + β0 + β1vij + β2δi + β3δivij), (12.1)

where thus β = (β0, β1, . . . , β3)
′ is the vector of fixed regression parameters characterizing the mean

response vector for any subject.

• The fixed quantity log oij cleverly takes account of the different observation periods for baseline

and post-treatment visits. If we take the log of both sides of (12.1) and subtract log oi from both

sides, we get

log{E(Yij)} − log oij = log{E(Yij/oij)} = β0 + β1vij + β2δi + β3δivij ,

so this is equivalent to modeling the means of Yi1/8 and Yij/2 for j = 2, . . . , 5.

PAGE 473



CHAPTER 12 ST 732, M. DAVIDIAN

• Model (12.1) says that, at baseline, the mean response is

log{E(Yi1/8)} = β0 + β2δi

while for visits 1–4 the mean is

log{E(Yij/2)} = β0 + β1 + β2δi + β3δi,

which is the same for all 4 post-baseline visits and may be viewed as reflecting the “overall”

behavior averaged across them. Here, β1 is the amount by which the logarithm of the mean

“shifts” after the study begins. β2 allows the baseline mean to be different by treatment, and β3

reflects the additional amount by which the mean differs by treatment after treatment starts.

As the study was randomized, we would not necessarily expect baseline mean responses to be

different by treatment; certainly the sample means given above do not support this. We might

thus eliminate this term from the model.

• A fancier model might allow the mean response to change smoothly with time (measured in weeks)

following visit 1 somehow. One possibility would be to allow a straight-line relationship between

baseline and visit 1, and then another straight-line relationship from visit 1 onward.

• Alternatively, the sample means seem to suggest that the effect of the progabide may not become

apparent until the last visit. We consider such a model later in this chapter. We also consider

taking into account age.

• On the original scale, note that as before that, for a loglinear model like (12.1), receiving treatment

versus not has the effect of causing a multiplicative change in mean response. In particular,

exp(β3) is the multiplicative effect of progabide relative to placebo post-baseline. If β3 is positive,

then the multiplicative factor is greater than one, and the mean response increases; if β2 is

negative, then the multiplicative factor is less than one, and the mean response decreases.

EXAMPLE – WHEEZING DATA: Recall Example 5 from Chapter 1, given by Lipsitz, Laird, and

Harrington (1992). These data are from a large public health study (the Six Cities study) and concerned

the association between maternal smoking and respiratory health of children. In section 12.7, we will

consider a subset of the full data set, data on 32 of these children. Each child was examined once a year

at a clinic visit (visits at ages 9, 10, 11, and 12) for evidence of “wheezing” – the response was recorded

as a binary variable (0=wheezing absent, 1=wheezing present).
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In addition, the mother’s current smoking status was recorded (0=none, 1=moderate, 2=heavy). For

some children, visits were missed, so that both the response (wheezing indicator) and maternal smoking

status were missing; for our purposes, we will assume that the reasons for this missingness are not

related to the focus of study. (See Chapter 13 for more on missing data.)

Let Yij be the wheezing indicator (=0 or 1) on the ith child at the jth age tij , where tij ideally takes

on all the values 9, 10, 11, 12. Thus, j = 1, . . . , ni for any child, with ni ≤ 4. As the response is binary,

a logistic regression model would be appropriate for representing E(Yij). For child i, let

δ0ij = 1 if smoking=none at tij

= 0 otherwise

δ1ij = 1 if smoking=moderate at tij

= 0 otherwise

ci = 0 if city=Portage

= 1 if city=Kingston

Recall the discussion in Chapter 10 regarding time-dependent covariates. As maternal smoking

is a time-dependent covariate, the considerations raised in that discussion are relevant. Here, we are

interested in a model for mean response for the jth element of a data vector, E(Yij).

• As a mother’s smoking behavior is something we only can observe, we should probably be more

careful and acknowledge that it should be thought of as random; thus, we would think of the

pair δij = (δ0ij , δ1ij)
′ as a random vector characterizing the observed smoking behavior at age

j. Thus, following the discussion in Chapter 10, we are really modeling the E(Yij |δi1, . . . , δini
).

• The model used by Lipsitz, Laird, and Harrington (1992) takes E(Yij) as depending on a mother’s

smoking status (δ0ij , δ1ij) at time j only; that is, they assume

E(Yij |δi1, . . . , δini
) = E(Yij |δij) = E(Yij |δ0ij , δ1ij).

One possible rationale is that, because measurements are so far apart in time (one year), it might

be believed that a mother’s smoking behavior at one time is not associated with respiratory

problems at another time. However, given the discussion in Chapter 10, this is something that

must be considered critically.

In this example, an objective (see Chapter 1) is to understand whether maternal smoking behavior has

an effect on wheezing.
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A little thought suggests that this is indeed a complicated question; the children have not been subjected

to a “one-time” treatment (smoking or not) that distinguishes them into groups, as in previous examples.

Rather, the “treatment” changes with time and may be related to the response in a complicated way,

as discussed in Chapter 10. It is not at all clear that a simple model like that above addresses this.

Indeed, this question would seem to involve a causal interpretation! At best, all we can hope for is to

understand associations.

Thus, writing down an appropriate model for E(Yij) requires considerable thought and a clear idea of

how the model is to be used.

• It is sometimes argued that, if the goal is to use the model only to estimate a future child’s risk

of wheezing based on information at a particular time point only, then a model for E(Yij) as a

function of (δ0ij , δ1ij) at j only may be of interest, even if it doesn’t capture the true underlying

mechanism leading to wheezing.

• However, this is almost always not the goal! Rather, the objective is as above: to assess and

compare the effects of smoking patterns on wheezing patterns. Trying to do this based on the

simple model we discuss next is likely to result in flawed and meaningless interpretations.

Further discussion is beyond the scope of this course; however, it is critical that the data analyst

confronted with data such as these appreciate that there are profound issues involved in modeling

them! Frankly, one should be extremely careful when dealing with time dependent covariates

and longitudinal data.

• We again refer the reader to Fitzmaurice, Laird, and Ware (2004) for discussion. A very technical

paper that also discusses this issue is from the literature on causal inference [Robins, Greenland,

and Hu (1999)].

With the above caveats in mind, we show for illustration a model similar to that proposed by Lipsitz,

Laird, and Harrington (1992). The model is

E(Yij) =
exp(β0 + β1ci + β2δ0ij + β3δ1ij)

1 + exp(β0 + β1ci + β2δ0ij + β3δ1ij)
, (12.2)

where thus β = (β0, β1, . . . , β3)
′ is the vector of fixed regression parameters characterizing the mean

response vector for any subject. Of course, this implies (see the previous chapter) that the log odds is

given by

log

(
E(Yij)

1 − E(Yij)

)
= β0 + β1ci + β2δ0ij + β3δ1ij .
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• Model (12.2) thus says that the log odds of having a wheezing response relative to not having

it depends (linearly) on city and maternal smoking status. We could additionally add an “age”

term to allow dependence on age (maybe as children grow older their tendency toward wheezing

changes).

• Specifically, the model says that the log odds at age tij is equal to β0 for a child from Portage

whose mother is a heavy smoker at tij , since under these conditions ci = δ0ij = δ1ij = 0. For

a child from Kingston, the log odds would change by adding the amount β1; for a child whose

mother was a non (moderate) smoker, the log odds would change by adding the amount β2 (β3).

• With the model written as (12.2), we see that, because the logistic function increases (decreases)

as the linear predictor increases (decreases), we see that the probability of wheezing at time tij ,

E(Yij), will, for example, increase if β1 > 0 and a child is from Kingston (ci = 1) rather than

Portage (ci = 0). If β1 < 0, then the probability of wheezing is smaller for a child from Kingston

than for one from Portage. Similarly, if β2 < 0, this would say that the probability of wheezing

is smaller for a child whose mother is a non- rather than heavy smoker (and similarly for β3 < 0

and moderate smoking).

VARIANCE: The above examples illustrate how one might model the mean response as a function of

time and other covariates using the types of models appropriate for nonnormal data. The next part of

the modeling strategy is to model the variance of each element of the data vector.

• Recall that in the population-averaged approach, the covariance matrix of a data vector is modeled

directly; i.e. the model selected incorporates the aggregate effects both of within- and among-

unit variation. Thus, the diagonal elements of the covariance matrix represent the combined

effects of variance from both sources.

• Thus, in the approach here, when we specify a model for variance of an element Yij , we are

modeling the aggregate variance from both sources.

Thus, for the different types of data, the model for var(Yij) is meant to represent the overall variance

of Yij from both sources. That is, the distribution of each observation in a data vector across the

population of all units and including variability in taking measurements is assumed to have variance

related to the assumed mean for Yij as in the models above. How variance is related to the mean

depends on the type of data:
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• For example, for binary responses Yij taken on unit i at times tij , variance would be taken to be

that of a binary random variable as imposed by the Bernoulli distribution; i.e.

var(Yij) = E(Yij){1 − E(Yij)}. (12.3)

Thus, for the wheezing data, variance would be modeled as in (12.3) with E(Yij) as in (12.1).

• For responses Yij in the form of counts taken at times tij on unit i, variance would be taken to

be that of a Poisson random variable; i.e.

var(Yij) = E(Yij) (12.4)

• For positive responses with constant coefficient of variation, variance would be modeled as

var(Yij) = σ2{E(Yij)}2, where E(Yij) is modeled by a suitable function like the loglinear or

reciprocal model.

OVERDISPERSION: Sometimes, these models for variance turn out to be inadequate for representing

all the variation in observations taken at a particular time across units. There are many reasons why

this may be the case:

• The aggregate effects of (i) error introduced by taking measurements and (ii) variation because

units differ add up to be more than would be expected if we only considered observations on a

particular unit.

• There may be other factors involved in data collection that make things look more variable than

the usual assumptions might indicate; e.g. the subjects in the seizure study may have not kept

accurate records of the number of seizures that they experienced during a particular period, and

perhaps recalled it as being greater or less than it actually was. This is usually not a problem for

binary data, since it is generally easy to reliably record whether the event of interest occurred.

Theses issue could make the variance in the population of all possible observations across all units

appear to be more variable than expected. Note that the second issue could arise even in the cases

considered in Chapter 11. The extension we are about to discuss may be applied to ordinary generalized

linear regression modeling as well in this case.
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The phenomenon where variance may be greater than that dictated by a standard model based on one

of these distributions is called overdispersion. To take this phenomenon into account, it is customary

to be a little more flexible about modeling overall variance in some of these models.

• For example, for count data, it is standard to modify the variance model to allow for an additional

scale or overdispersion parameter; i.e.

var(Yij) = φE(Yij). (12.5)

• For binary data, this is not generally required; if we wrote a model

var(Yij) = φE(Yij){1 − E(Yij)},

we would expect φ to be estimated as equal to 1, as the variance of a binary response should be

just E(Yij){1 − E(Yij)}

Fancier ways to deal with “overdispersion” are described in, for example McCullagh and Nelder (1989).

“WORKING” CORRELATION MATRIX: The last requirement is to specify a model describing cor-

relation among pairs of observations on the same data vector. Again, because the modeling is of the

population-averaged type, the model for correlation is attempting to represent how all sources of

variation that could lead to associations among observations “add up,” the aggregate of

• Correlation due to the within-subject “fluctuations” on a particular unit (and possibly measure-

ment error).

• Correlation due to the simple fact the observations on the same unit are “more alike” than those

from different units.

The models that are chosen to represent the overall correlation are the same ones used in modeling

normally distributed data that were discussed in Chapter 8. In the current context one thinks of associ-

ations exclusively in terms of correlations, as the variance is modeled by thinking about it separately

from associations. Popular models are the ones in Chapter 8, which we write here in terms of the

correlation matrices they dictate:
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• Unstructured correlation: For observations taken at the same time points for different units,

this assumption places no restriction on the nature of associations among elements of a data

vector. If Yij and Yik, j, k = 1, . . . , n, are two observations on the same unit where all units are

observed at the same n times, and if ρjk represents the correlation between Yij and Yik, then

ρjk = 1 if j = k and −1 ≤ ρjk ≤ 1 if j 6= k. The implied correlation matrix for a data vector with

all n observations is the (n × n) matrix




1 ρ12 · · · ρ1n

ρ21 1 · · · ρ2n

...
...

...
...

ρn1 · · · ρn,n−1 1




,

where of course ρjk = ρkj for all j, k. Thus, the unstructured “working” correlation assumption

depends on n(n − 1)/2 distinct correlation parameters.

• Compound symmetry (exchangeable) correlation: This assumption says that the correla-

tion between distinct observations on the same unit is the same regardless of when in time the

observations were taken. In principle, this model could be used with balanced data, ideally bal-

anced data with missing values, and unbalanced data where time points are different for different

units. This structure may be written in terms of a single correlation parameter 0 < ρ < 1; i.e.




1 ρ · · · ρ

ρ 1 · · · ρ
...

...
...

...

ρ · · · ρ 1




.

• One-dependent: This assumption says that only observations adjacent in time are correlated

by the same amount −1 < ρ < 1. In principle, this model could be used with any situation;

however, for unbalanced data with different time points, it may not make sense, as we discussed

in Chapter 8. The model may be written




1 ρ 0 · · · 0

ρ 1 ρ · · · 0
...

...
...

...
...

0 · · · 0 ρ 1




.
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• AR(1) correlation: This assumption says that correlation among observations “tails off;” if

−1 < ρ < 1, the model is 


1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
...

...
...

...

ρn−1 · · · ρ2 ρ 1




.

In principle, this model could be used with any situation; however, again, for unbalanced data

with different time points, it may not make sense.

Note that in the case of ideally balanced data, if some data vectors are missing some observations, then

the forms of these matrices must be constructed carefully to reflect this, as discussed in Chapter 8. E.g.,

for n = 5 and a vector missing the observations corresponding to j = 2 and 4, the unstructured matrix

would be constructed as 


1 ρ13 ρ15

ρ13 1 ρ35

ρ15 ρ35 1




,

where we have used the fact that ρjk = ρkj .

For unbalanced data where the observations on each unit are taken at possibly different times, the

models such as the Markov model discussed in Chapter 8 may be used in the obvious way; currently,

this capability is not part of PROC GENMOD in SAS. The examples we consider in this chapter are from

longitudinal studies designed (ideally) to be balanced.

The correlation model so specified is popularly referred to in the context of these models as the “working

correlation matrix.” This designation is given because it is well-recognized that such modeling carries

with it much uncertainty; as we have discussed, we are attempting to capture variance and correlation

from all sources with a single model. Thus, the model is considered to be only a “working” model

rather than necessarily representing what is probably a very complex truth. “Working” correlation

became popular in the context of modeling longitudinal data with generalized linear models; however,

it is equally applicable when discussing the the modeling of Chapter 8 in the normal case. Thus, although

this term gained popularity in nonnormal data situations, it has come to be used in the linear, normal

case, too. As we have seen in the linear, normal case, introducing random effects is an alternative way

to generate covariance models that may have an easier time at capturing both sources of variation.
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ALL TOGETHER: Combining the models for variance and correlation gives a model for the covariance

matrix for a data vector Y i. It is customary to represent this in the “alternative” form in Equation (3.7).

Suppose that unit i has a vector of associated covariates, possibly including time tij , xij .

• It may well be the case that xij does not vary with j, or varies with j only through tij . In this

case, covariates are time-independent.

• Following our previous discussion, it may be that xij includes time-dependent covariates. It

may even include values of such covariates or even responses at other j!

Thus, the notation xij is meant to include all components deemed relevant at j.

We write the mean response model as

µij = E(Yij) = f(x′

ijβ),

where f is one of the functions such as the exponential (loglinear) or logistic regression models. Then

the variance of Yij is modeled by some function of the mean response µij ; e.g.

var(Yij) = φV (µij),

where we include a dispersion parameter φ. The standard deviation of Yij is given by {φV (µij)}1/2.

Suppose that unit i has ni observations, so that j = 1, . . . , ni. Define the standard deviation matrix

for unit i as the (ni × ni) diagonal matrix whose diagonal elements are the standard deviations of the

Yij under this model, except for the dispersion parameter; that is, let

T
1/2
i =




{V (µi1)}1/2 0 · · · 0

0 {V (µi2)}1/2 · · · 0
...

...
...

...

0 · · · 0 {V (µini
)}1/2




. (12.6)

Let Γi be the (ni × ni) correlation matrix under one of the assumptions above, properly constructed

for this unit’s time pattern. Then we may write the covariance matrix Σi for the data vector Y i

implied by the assumptions as (verify)

Σi = φT
1/2
i ΓiT

1/2
i ;

note that we have multiplied by the overdispersion parameter φ = φ1/2φ1/2 to complete the specification

of the standard deviations in each matrix T
1/2
i .
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Note that the “i” subscript is needed on both T
1/2
i and Γi to remind us that the dimensions of these

matrices and the diagonal elements of T
1/2
i depend on the particular unit i with its own mean response

vector and number of observations ni.

SUMMARY: We may now summarize the modeling strategy and resulting statistical model. To specify

a population-averaged model for mean and covariance matrix of a data vector for nonnormal responses

using this approach:

• The mean response of a data vector Y i is modeled as a function of time, other covariates, and

parameters β by using a generalized linear model-type mean structure to represent the mean

response of each element of Y i.

• The variance of each element of Y i is modeled by the function of the mean that is appropriate

for the type of data; e.g. count data are taken to have the Poisson variance structure, which

says that variance of any element of Y i is equal to the corresponding model for the mean. These

models are often modified to allow for the greater variation both within- and among-units by the

addition of a dispersion parameter φ.

• Correlation among observations on the same unit (elements of Y i) is represented by choosing

a model, such as the correlation structures corresponding to the AR(1), one-dependent, Markov,

or other specifications. Because there is some uncertainty in doing this and (as we’ll see) no

formal way to check it, the chosen model is referred to as the “working correlation matrix” to

emphasize this fact.

With these considerations, we have the following statistical model for the mean vector and covariance

matrix of a data vector Y i consisting of observations Yij , j = 1, . . . , ni on unit i. If

• Mean response of Yij is modeled by a suitable function f of a linear predictor x′

ijβ

• Variance is thus modeled as some function V of mean response times a dispersion parameter φ,

which defines a standard deviation matrix T
1/2
i as in (12.6) above,

• Correlation is modeled by a “working” correlation assumption Γi

E(Y i) =




f(x′

i1β)

f(x′

i2β)
...

f(x′

ini
β)




= f i(β), var(Y i) = φT
1/2
i ΓiT

1/2
i = Σi = φΛi. (12.7)
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Let ω refer to the distinct unknown parameters that fully describe the chosen “working” correlation

matrix Γi. For example, for the compound symmetry, AR(1), and one-dependent structure, ω = ρ;

for the unstructured model, ω consists of the distinct possible correlation parameters ρjk for the data

vector of maximal size n.

As always, it is assumed that the individual data vectors Y i are independent across individual units.

As noted above, however, we are not in a position to specify a full multivariate probability distribution

corresponding to this mean and covariance model.

12.3 Generalized estimating equations

The considerations in the last section allow specification of a model for the mean and covariance of a

data vector of the form (12.7). However, because this is not sufficient to specify an entire appropriate

multivariate probability distribution, it is not possible to appeal immediately to the principle of

maximum likelihood to develop a framework for estimation and testing.

IDEA: Although we do not have a basis for the maximum likelihood, why not try to emulate situations

where there is such a basis? We have two situations to which we can appeal:

• The normal case with a linear mean model, discussed in Chapter 8. Here, the model was

E(Y i) = X iβ, var(Y i) = Σi

for suitable choice of covariance matrix Σi depending on a vector of parameters ω, say. Assuming

that the Y i follow a multivariate normal, we were led to the estimator for β

β̂ =

(
m∑

i=1

X ′

iΣ̂
−1
i Xi

)
−1 m∑

i=1

X ′

iΣ̂
−1
i Y i, (12.8)

where Σ̂i is the covariance matrix with the estimator for ω plugged in. It may be shown (try it!)

that it is possible to rewrite (12.8) in the following form:

m∑

i=1

X ′

iΣ̂
−1
i (Y i − Xiβ̂) = 0. (12.9)

That is, the estimator for β solves an a set of p equations for β (p × 1) (with the estimator for

ω plugged in).
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• In the case of ordinary generalized linear models, recall that considering maximum likelihood,

which was possible in that case, led to solving a set of equations of the form (11.18); i.e.

n∑

j=1

1

V {f(x′

jβ)}{Yj − f(x′

jβ)}f ′(x′

jβ)xj = 0, (12.10)

where f ′(u) =
d

du
f(u), the derivative of f with respect to its argument. The method of iteratively

reweighted least squares was used to solve this equation. Note that if there is a scale parameter,

it need not be taken into account in this calculation.

• Comparing (12.9) and (12.10), we see that there is a similar theme – the equations are linear

functions of deviations of observations from their assumed mean are weighted in accordance

with their covariance (for vectors) and variance (for individual observations). The variance or

covariance matrix is not entirely known but is evaluated at estimates of the unknown quantities

it contains (ω in the first case and β in the second case).

GENERALIZED ESTIMATING EQUATION: From these observations, a natural approach for fitting

model (12.7) is suggested: solve an estimating equation consisting of p equations for β (p × 1) that

(i) is a linear function of deviations

Y i − f i(β),

and (ii) weights these deviations in the same way as in (12.9) and (12.10), using the inverse of the

assumed covariance matrix Σi of a data vector with an estimator for the unknown parameters ω in the

“working” correlation matrix plugged in.

Note that even if there is a scale parameter, we really need only use the inverse of Λi in (12.7). As

in (12.10), Σi and Λi will also depend on β through the variance functions V {f(x′

ijβ)}; more in a

moment.

These results lead to consideration of the following equation to be solved for β (with a suitable estimator

for ω plugged in):
m∑

i=1

∆′

iΛ̂
−1
i {Y i − f i(β̂)} = 0, (12.11)

where ∆i is the (ni × p) matrix whose (j, s) element (j = 1, . . . , ni, s = 1, . . . , p) is the derivative of

f(x′

ijβ) with respect to the sth element of β, and Λ̂i is the matrix Λi in (12.7) with an estimator for

ω plugged in (see below). Note that φ can be disregarded here.

The matrix ∆i is a function of β. It is also a function of X i, which here is defined as the (ni×p) matrix

whose rows are x′

ij . It is possible to write out the form of ∆i precisely in terms of X i and the elements

f ′(x′

ijβ); this is peripheral to our discussion here; see Liang and Zeger (1986) for the gory details.
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An equation of the form (12.11) to be solved to estimate a parameter β in a mean response model is

referred to popularly as a generalized estimating equation, or GEE for short.

ESTIMATION OF ω: To use (12.11) to estimate β, an estimator for ω is required. There are a number

of methods that have been proposed to obtain such estimators; the books by Diggle, Heagerty, Liang,

and Zeger (2002) and Vonesh and Carter (1997) discuss this in detail. One intuitive way, and that used

by PROC GENMOD in SAS and originally proposed by Liang and Zeger (1986), is to base the estimation

on appropriate functions of deviations

Y i − f i(β̂),

where β̂ is some estimator for β.

• For example, one could fit the mean model for all m individuals assuming independence among

all observations using the techniques of Chapter 11 to obtain such an estimate. This estimate

could be used to form deviations and thus to estimate ω.

To see how this might work, let

rij =
Yij − f(x′

ijβ̂)

[V {f(x′

ijβ̂)}1/2

be the deviation corresponding to the jth observation on unit i divided by an estimate of its standard

deviation. Then the dispersion parameter φ is usually estimated by

φ̂ = (N − p)−1
m∑

i=1

ni∑

j=1

{Yij − f(x′

ijβ̂)}2

V {f(x′

ijβ̂)}
= (N − p)−1

m∑

i=1

ni∑

j=1

r2
ij . (12.12)

Compare this to the Pearson chi-square in ordinary generalized linear models in Chapter 11; it is the

same function but taken across all deviations for all units.

• If Γi corresponds to the unstructured correlation assumption, then estimate ρjk by

ρ̂jk = m−1φ̂−1
m∑

i=1

rijrik.

• If Γi corresponds to the compound symmetry structure, then the single parameter ρ may be

estimated by

ρ̂ = m−1φ̂−1
m∑

i=1

(ni − 1)−1
ni−1∑

j=1

rijri,j+1.

Note that the rationale here is to consider only adjacent pairs, as you might expect.

ω for other covariance models may be estimated by a similar approach.
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ALL TOGETHER: The above ideas may be combined to define an estimation scheme for β, ω, and φ

in the model (12.7). Heuristically, the scheme has the following form:

1. Obtain an initial estimator for β by assuming all observations across all individuals are inde-

pendent. This may be carried out using the method of IRWLS for ordinary generalized linear

models, as described in Chapter 11.

2. Using this estimator for β, estimate φ and then ω as appropriate for the assumed “working”

correlation matrix.

3. Use these estimators for β and ω to form an estimate of Λi, Λ̂i. Treat this as fixed in the

generalized estimating equation (12.11). The resulting equation may then be solved by a numerical

technique that is an extended version of the IRWLS method used in the ordinary case. Obtain

a new estimator β̂.

4. Return to step 2 if desired and repeat the process. Steps 2, 3, and 4 can be repeated until the

results of two successive tries stay the same (“convergence”).

The spirit of this scheme is implemented in the SAS procedure PROC GENMOD.

SAMPLING DISTRIBUTION: As before, it should not be surprising that we must appeal to large

sample theory to obtain an approximation to the sampling distribution of the estimator β̂ obtained

by solving the GEE. Here, “large sample” refers to the number of units, m; this is sensible; each Y i is

from a different unit.

The results may be stated as follows: For m “large,” the GEE estimator β̂ for β satisfies

β̂
·∼ N



β, φ

(
m∑

i=1

∆′

iΛ
−1
i ∆i

)
−1


 , (12.13)

where ∆i is as defined previously. As in the ordinary generalized linear model case, ∆i and Λi depend

on β and ω; moreover, φ is also unknown. Thus, for practical use, these quantities are replaced by

estimates. Specifically, define

V̂ β = φ̂

(
m∑

i=1

∆̂
′

iΛ̂
−1
i ∆̂i

)
−1

,

where ∆̂i and Λ̂i are ∆i and Λi with the final estimates of β and ω plugged in and φ̂ is the estimate

of φ. φ̂ would just be equal to 1 if no scale parameter is in the model. Again, we use the notation V̂ β

to represent the estimated covariance matrix of β̂.
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As usual, standard errors for the elements of β̂ may be obtained as the square roots of the diagonal

elements of V̂ β .

HYPOTHESIS TESTS: As in the ordinary generalized linear model case, Wald testing procedures are

used to test null hypotheses of the form

H0 : Lβ = h.

As usual, we have the large sample approximation

Lβ̂
·∼ N (Lβ, LV̂ βL′),

which may be used to construct test statistics and confidence intervals in a fashion identical to that

discussed previously; for example, if L is a row vector, then the test may be based on comparing

z =
Lβ̂ − h

SE(Lβ̂)

to the critical values from the standard normal distribution. For more general L, one may form the

Wald χ2 statistic More generally, the Wald χ2 test statistic

(Lβ̂ − h)′(LV̂ βL′)−1(Lβ̂ − h)

and compare to the appropriate χ2 critical value with degrees of freedom equal to the number of rows

of L.

12.4 “Robust” estimator for sampling covariance

ISSUE: It is important to recognize that the GEE fitting method for estimating the parameters in

model (12.7) is not a maximum likelihood method; rather, it was arrived at from an ad hoc perspective.

As a result, it is not possible to derive quantities like AIC and BIC to compare different “working”

correlation matrices to determine which assumption is most suitable. Consequently, it is sensible to be

concerned that the validity of inferences on β such as the estimator itself, calculation of approximate

confidence intervals, and tests may be compromised if the assumption on correlation is incorrect.

SOLUTION: One solution to this dilemma is to modify the estimated covariance matrix V̂ β to allow

for the possibility that the choice of Γi used in the model is incorrect. The modified version of V̂ β is

V̂
R

β =

(
m∑

i=1

∆̂
′

iΛ̂
−1
i ∆̂i

)
−1( m∑

i=1

∆̂
′

iΛ̂
−1
i ŜiΛ̂

−1
i ∆̂i

)(
m∑

i=1

∆̂
′

iΛ̂
−1
i ∆̂i

)
−1

, (12.14)

where

Ŝi = {Y i − f i(β̂)}{Y i − f i(β̂)}′.
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• Even if the model has a scale parameter. (12.14) does not require an estimate of it.

• Note that if Ŝi were equal to Σ̂i = φ̂Λ̂i, then (12.14) would be equivalent to V̂ β (verify).

• The rationale for the modification may be appreciated by considering the definition of the true

covariance matrix for Y i; specifically,

var(Y i) = E{Y i − f i(β)}{Y i − f i(β)}′.

In the model, we have chosen Σi (through choosing Γi as our assumption about var(Y i). By

including the “middle” term in (12.14), we are thus hoping to “balance out” an alternative guess

for var(Y i) against the assumed model Σi.

• It turns out that, for large m, V̂
R

β will provide a reliable estimate of the true sampling covariance

matrix of β̂ even if the chosen model Σi (Γi) is incorrect. In contrast, if the model is incorrect,

V̂ β will not provide a reliable estimate.

The alternative estimate of the sampling covariance matrix of β̂ V̂
R

β is often referred to as the robust

covariance matrix estimate. The term is derived from the fact that V̂
R

β is “robust” to the fact that we

may be incorrect about Γi. V̂ β is often referred to as the model-based covariance matrix estimate,

because it uses the model assumption on Γi with no attempt to correct for the possibility it is wrong.

This “robust” modification may also be applied to the linear, normal models in Chapter 8. To get “ro-

bust” standard errors, use the empirical option in the proc mixed statement: proc mixed empirical

data=;

The decision whether to use the model-based estimate V̂ β or the robust estimate V̂
R

β is an “art-

form.” No consensus exists on which one is to be preferred in finite samples in practical problems. If

they are very different, some people take that as an indication that the original assumption is wrong.

On the other hand, if one or more of the Y i vectors contains “unusual” values that are very unlikely

to be seen, this would be enough to “throw off” the estimate V̂
R

β . Because there is no “iron-clad” rule,

we offer no recommendation on which to use.

12.5 Contrasting population-averaged and subject-specific approaches

The model (12.7) is, as stated, a population-averaged model. The mean of a data vector and its

covariance matrix are modeled explicitly. As a result, from our discussions in Chapter 9, we know

that β has the interpretation as the parameters that describe the relationship of the mean response

over time and other covariates.
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An alternative perspective we discussed was that of the subject-specific approach. In this approach,

one starts with thinking about individual unit trajectories rather than about the mean (average)

across all units. In the linear model case, we did this by the introduction of random effects; e.g., the

random coefficient model that says each unit has its own intercept and slope β0i and β1i, which in

turn are represented as

β0i = β0 + b0i, β1i = β1 + b1i, β = (β0, β1)
′.

In this model, the interpretation of β is as the “typical” value of intercept and slope in the population.

It just so happened that in the case of a linear model for either the mean response or individual

trajectory, one arrives at the same mean response model. Thus, in this case, the distinction between

these two interpretations was not important – either was valid.

SUBJECT-SPECIFIC GENERALIZED LINEAR MODEL: It is natural to consider the subject-

specific approach in the case where the functions of generalized linear models are appropriate. For

example, recall the seizure data, where the response is a count. By analogy to linear random coefficient

and mixed effects models, suppose we decided to model the individual trajectory of counts for an

individual subject as a subject-specific loglinear regression model. That is, suppose we wrote the

“mean” for subject i as a function of subject-specific parameters β0i and β3i as

exp(β0i + β3itij) (12.15)

In (12.15), β0i and β3i thus describe the subject’s own (conditional) mean response as a function of

time and individual “intercept” and “slope” on the log scale. Under this perspective, each subject has

his/her own such parameters β0i and β3i that characterize his/her own mean response over time.

Now, just as we did earlier, suppose we thought of the β0i and β4i as arising from populations of such

values. For example, suppose that

β3i = β3 + b3i,

where b3i is a random effect for subject i with mean 0. b3i describes how subject i deviates from the

“typical” value β3. Similarly, we might suppose that

β0i = β0 + b0i

for another mean-zero random effect b0i.
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To incorporate the covariate information on treatment and age, we might assume that the “typical”

rate of change of log mean with time does not depend on these covariates, but maybe the “typical”

intercept does; e.g., we could write an alternative model depending on covariates ai and δi, say, as

β0i = β0 + β1ai + β2δi + b0i.

Putting all of this together, we arrive at a model for the “mean” for subject i, depending on the random

effect vector bi = (b0i, b3i)
′:

E(Yij | bi) = exp(β0 + β1ai + β2δi + b0i + β3tij + b3itij) (12.16)

Following with the analogy, we could assume that the random effects bi ∼ N (0, D) for some covariance

matrix D.

We could write this model another way. Let βi = (β0i, β3i). The we have a first-stage model that says

the conditional mean for Y i, given bi on which βi depends is f i(βi), where

f i(βi) =




exp(β0i + β3iti1)
...

exp(β0i + β3itini
)




.

At the second stage, we could assume

βi = Aiβ + bi;

for the model above, β = (β0, β1, β2, β3)
′ and, for subject i

Ai =




1 ai δi 0

0 0 0 1


 .

(Verify.)

ARE THE TWO MODELS THE SAME? All of this is very similar to what we did in the normal, linear

case. In that case, both approaches led to the same representation of the ultimate mean response vector

E(Y i), but with different covariance matrices. The population-averaged model for mean response is

E(Y i) = X iβ. In the subject-specific general linear mixed model, by contrast, the “individual mean”

is

E(Y i | bi) = X iβ + Zibi. (12.17)

But this “individual mean” has expectation

E{Xiβ + Zibi} = X iβ,

since bi has mean zero, which is identical to the population-averaged model.
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Here, our two competing models are the population-averaged model that says immediately that

E(Y i) has jth element

E(Yij) = exp(β0 + β1ai + β2δi + β3tij),

and, from (12.16), the subject-specific model that says E(Y i | bi) has jth element

exp(β0 + β1ai + β2δi + b0i + β3tij + b3itij).

If the models were the same, we would expect that the expectation of this would be identical to

E(Yij) above. However, this is not the case. Note that we need to evaluate

E {exp(β0 + β1bi + β2ai + β3δi + b0i + β3tij + b3itij)} .

Contrast this with the calculation in (12.17) above – because that function of bi was linear, evaluating

the expectation was straightforward. Here, however, evaluating the expectation is not straightforward,

because it involves a complicated nonlinear function of bi = (b0i, b3i)
′. Even though bi are normal, the

expectation of this nonlinear function is not possible to evaluate by a simple rule as in the linear case.

As a result, it is not true that the expectation is identical to E(Yij) above.

RESULT: This is a general phenomenon, although we showed it just for a specific model. In a nonlinear

model, it is no longer true that the population-averaged and subject-specific perspectives lead to the

same model for mean response E(Y i). Thus, the two models are different. Furthermore, the parameter

we called β in each model has a different interpretation; e.g. in the seizure example,

• β for the population-averaged model has the interpretation as the value that leads to the “typical”

or mean response vector

• β for the subject-specific model has the interpretation as the value that is the “typical” value of

“intercept” and “slope” of log mean.

This may seem like a subtle and difficult-to-understand difference, which it is. But the main point is

that the two different modeling strategies lead to two different ways to describe the data with different

interpretations. Obviously, in these more complex models, the distinction matters. See Chapter 13 for

more.
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12.6 Discussion

The presentation here just scratches the surface of the area of population-averaged modeling for longi-

tudinal data that may not be normally distributed. In fact, this is still an area of active research, and

papers on the subject may be found in current issues of Journal of the American Statistical Association,

Biometrics, and others. See the books by Diggle, Liang, and Zeger (1995) and Vonesh and Carter (1997)

for more extensive treatment.

12.7 Implementation with SAS

We illustrate how to carry out fitting of population-averaged generalized linear models for longitudinal

data via the use of generalized estimating equations for the two examples discussed in this chapter:

1. The epileptic seizure data

2. Wheezing data from the Six Cities study

our main focus is on the use of PROC GENMOD to fit models like those in the examples. We show how to

specify different “working” correlation models via the repeated statement in this procedure, both for

balanced (the seizure data) and unbalanced (the wheezing data) cases and how to interpret the output.

ASIDE: It is possible to implement this fitting, and more variations on it, in SAS in other ways –

one possibility is through use of the GLIMMIX SAS macro, developed at SAS, that is meant to be used

for fitting generalized linear mixed models, which are subject-specific models for nonnormal

longitudinal data incorporating random effects, as the name suggests (see Chapter 13). This is similar

in spirit to using PROC MIXED to fit linear population-averaged regression models to normal data; these

models contain no random effects, yet this procedure may be used to fit them, as we have seen. The

details are beyond the scope of this course.
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EXAMPLE 1 – EPILEPTIC SEIZURE DATA: We first consider the model (12.1),

E(Yij) = exp(log oij + β0 + β1vij + β2δi + β3vijδi),

discussed earlier. We fit this model using several working correlation matrices. Here, the coefficient

of greatest interest is β3, which reflects whether post-baseline mean response is different in the two

treatment groups.

There is one “unusual” subject (subject 207 in the progabide group) whose seizure counts are very high;

this subject had a baseline count of 151 in the 8 week pre-treatment period. This subject’s data are

sufficiently unusual relative to those for the rest of the participants that it is natural to be concerned

over whether the conclusions are sensitive to them. To investigate, we fit the model excluding the data

for this subject.

Finally, we also allow for the possibility that the mean response changes at the 4th visit and include

age as a covariate to take account of possible association of baseline seizure characteristics with age

of the subject. For the first issue, we define an additional indicator variable v4ij = 0 unless j = 5

corresponding to the visit 4. The model is modified to

E(Yij) = exp(log oij + β0 + β1vij + β2δi + β3vijδi + β4v4ij + β5v4ijδi).

The parameter β5 reflects whether the difference in post-baseline mean response in fact changes at the

fourth visit, while β4 allows the possibility that the mean response “shifts” at the 4th visit relative to

the earlier ones.

To incorporate oij , in the program we use the offset option in the model statement of proc genmod.
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PROGRAM:

/******************************************************************

CHAPTER 12, EXAMPLE 1

Fit a loglinear regression model to the epileptic seizure data.
These are count data, thus we use the Poisson mean/variance
assumptions. This model is fitted with different working
correlation matrics.

******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

The data look like (first 8 records on first 2 subjects)

104 11 0 0 11 31
104 5 1 0 11 31
104 3 2 0 11 31
104 3 3 0 11 31
104 3 4 0 11 31
106 11 0 0 11 30
106 3 1 0 11 30
106 5 2 0 11 30
106 3 3 0 11 30
106 3 4 0 11 30

.

.

.

column 1 subject
column 2 number of seizures
column 3 visit (baseine (0) and 1--4 biweekly visits)
column 4 =0 if placebo, = 1 if progabide
column 5 baseline number of seizures in 8 weeks prior to study
column 6 age

******************************************************************/

data seizure; infile ’seize.dat’;
input subject seize visit trt base age;

run;

/*****************************************************************

Fit the loglinear regression model using PROC GENMOD and
three different working correlation matrix assumptions:

- unstructured
- compound symmetry (exchangeable)
- AR(1)

Subject 207 has what appear to be very unusual data -- for
this subject, both baseline and study-period numbers of seizures
are huge, much larger than any other subject. In some published
analyses, this subjectis deleted. See Diggle, Heagerty, Liang,
and Zeger (2002) and Thall and Vail (1990) for more on this subject.
We carry out the analyses with and without this subject.

We fit the mean model in equation (12.1) first. We then add age
as a covariate to allow for systematic differences in baseline response
due to age. We use log(age) as has been the case in other analyses.

The DIST=POISSON option in the model statement specifies
that the Poisson requirement that mean = variance, be used.
The LINK=LOG option asks for the loglinear model. Other
LINK= choices are available.

The REPEATED statement specifies the "working" correlation
structure to be assumed. The CORRW option in the REPEATED
statement prints out the estimated working correlation matrix
under the assumption given in the TYPE= option. The COVB
option prints out the estimated covariance matrix of the estimate
of beta -- both the usual estimate and the "robust" version
are printed. The MODELSE option specifies that the standard
error estimates printed for the elements of betahat are based
on the usual theory. By default, the ones based on the "robust"
version of the sampling covariance matrix are printed, too.

The dispersion parameter phi is estimated rather then being held
fixed at 1 -- this allows for the possibility of "overdispersion"

The new version of SAS will not allow the response to be a noninteger
when we declare dist = poisson. Thus, analyzing seize/o is not
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possible. Instead, one can use the OFFSET option in the MODEL
statement. This will fit the model exactly how it is written in
model (12.1) -- the term log(o_ij) is the known "offset." To get
SAS to include this "offset," we form the variable logo in the
data set and then declare logo to be an offset.

******************************************************************/

data seizure; set seizure;
logage=log(age);
o=2; v=1;
if visit=0 then o=8;
if visit=0 then v=0;
logo=log(o);

run;

title "UNSTRUCTURED CORRELATION";
proc genmod data=seizure;
class subject;
model seize = v trt trt*v / dist = poisson link = log offset=logo;
repeated subject=subject / type=un corrw covb modelse;

run;

title "EXCHANGEABLE (COMPOUND SYMMETRY) CORRELATION";
proc genmod data=seizure;
class subject;
model seize = v trt trt*v / dist = poisson link = log offset=logo;
repeated subject=subject / type=cs corrw covb modelse;

run;

title "AR(1) CORRELATION";
proc genmod data=seizure;
class subject;
model seize = v trt trt*v / dist = poisson link = log offset=logo;
repeated subject=subject / type=ar(1) corrw covb modelse;

run;

/******************************************************************

Delete the unusual subject and run again; we only use the
compound symmetric covariance for the rest of the analyses.

******************************************************************/

data weird; set seizure;
if subject=207 then delete;

run;

title "SUBJECT 207 DELETED";
proc genmod data=weird;
class subject;
model seize = v trt trt*v / dist = poisson link = log offset=logo;
repeated subject=subject / type=cs corrw covb modelse;

run;

/******************************************************************

Now we fit two additional models on the full data (with 207).
In the first, we add logage as a covariate. In the second,
we allow an additional shift at visit 4. To do this,
we define visit4 to be an indicator of the last visit.

******************************************************************/

data seizure; set seizure;
visit4=1;
if visit<4 then visit4=0;

run;

title "AGE ADDED";
proc genmod data=seizure;
class subject;
model seize = logage v trt trt*v / dist = poisson link = log offset=logo;
repeated subject=subject / type=cs corrw covb modelse;

run;

title "MODIFIED MODEL";
proc genmod data=seizure;
class subject;
model seize = v visit4 trt trt*v trt*visit4 /

dist = poisson link = log offset=logo;
repeated subject=subject / type=cs corrw covb modelse;

run;
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OUTPUT: Following the output, we comment on a few aspects of the output.

UNSTRUCTURED CORRELATION 1

The GENMOD Procedure

Model Information

Data Set WORK.SEIZURE
Distribution Poisson
Link Function Log
Dependent Variable seize
Offset Variable logo

Number of Observations Read 295
Number of Observations Used 295

Class Level Information

Class Levels Values

subject 59 101 102 103 104 106 107 108 110 111 112 113 114
116 117 118 121 122 123 124 126 128 129 130 135
137 139 141 143 145 147 201 202 203 204 205 206
207 208 209 210 211 213 214 215 217 218 219 220
221 222 225 226 227 228 230 232 234 236 238

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 v
Prm3 trt
Prm4 v*trt

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 291 3577.8316 12.2950
Scaled Deviance 291 3577.8316 12.2950
Pearson Chi-Square 291 5733.4815 19.7027
Scaled Pearson X2 291 5733.4815 19.7027
Log Likelihood 6665.9803

Algorithm converged.

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 1.3476 0.0341 1.2809 1.4144 1565.44 <.0001
v 1 0.1108 0.0469 0.0189 0.2027 5.58 0.0181

UNSTRUCTURED CORRELATION 2
The GENMOD Procedure

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

trt 1 0.0265 0.0467 -0.0650 0.1180 0.32 0.5702
v*trt 1 -0.1037 0.0651 -0.2312 0.0238 2.54 0.1110
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure Unstructured
Subject Effect subject (59 levels)
Number of Clusters 59
Correlation Matrix Dimension 5
Maximum Cluster Size 5
Minimum Cluster Size 5

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4

Prm1 0.01205 0.01924 -0.01205 -0.01924
Prm2 0.01924 0.03091 -0.01924 -0.03091
Prm3 -0.01205 -0.01924 0.02220 0.03696
Prm4 -0.01924 -0.03091 0.03696 0.06209

Covariance Matrix (Empirical)
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Prm1 Prm2 Prm3 Prm4

Prm1 0.23193 0.0007209 -0.23193 -0.000721
Prm2 0.0007209 0.01564 -0.000721 -0.01564
Prm3 -0.23193 -0.000721 0.32478 -0.03058
Prm4 -0.000721 -0.01564 -0.03058 0.06334

Algorithm converged.

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.9435 0.7324 0.8213 0.6856
Row2 0.9435 1.0000 0.8187 0.9435 0.7819
Row3 0.7324 0.8187 1.0000 0.7146 0.5375
Row4 0.8213 0.9435 0.7146 1.0000 0.6841
Row5 0.6856 0.7819 0.5375 0.6841 1.0000

UNSTRUCTURED CORRELATION 3
The GENMOD Procedure

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.1186 0.4816 0.1747 2.0625 2.32 0.0202
v 0.1233 0.1251 -0.1218 0.3684 0.99 0.3241
trt 0.0711 0.5699 -1.0459 1.1881 0.12 0.9007
v*trt -0.1140 0.2517 -0.6072 0.3793 -0.45 0.6507

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.1186 0.1098 0.9034 1.3338 10.19 <.0001
v 0.1233 0.1758 -0.2213 0.4679 0.70 0.4831
trt 0.0711 0.1490 -0.2209 0.3631 0.48 0.6331
v*trt -0.1140 0.2492 -0.6023 0.3744 -0.46 0.6474
Scale 4.9502 . . . . .

NOTE: The scale parameter for GEE estimation was computed as the square root
of the normalized Pearson’s chi-square.

EXCHANGEABLE (COMPOUND SYMMETRY) CORRELATION 4
The GENMOD Procedure

Model Information

Data Set WORK.SEIZURE
Distribution Poisson
Link Function Log
Dependent Variable seize
Offset Variable logo

Number of Observations Read 295
Number of Observations Used 295

Class Level Information

Class Levels Values

subject 59 101 102 103 104 106 107 108 110 111 112 113 114
116 117 118 121 122 123 124 126 128 129 130 135
137 139 141 143 145 147 201 202 203 204 205 206
207 208 209 210 211 213 214 215 217 218 219 220
221 222 225 226 227 228 230 232 234 236 238

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 v
Prm3 trt
Prm4 v*trt

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 291 3577.8316 12.2950
Scaled Deviance 291 3577.8316 12.2950
Pearson Chi-Square 291 5733.4815 19.7027
Scaled Pearson X2 291 5733.4815 19.7027
Log Likelihood 6665.9803
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Algorithm converged.

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 1.3476 0.0341 1.2809 1.4144 1565.44 <.0001
v 1 0.1108 0.0469 0.0189 0.2027 5.58 0.0181

EXCHANGEABLE (COMPOUND SYMMETRY) CORRELATION 5
The GENMOD Procedure

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

trt 1 0.0265 0.0467 -0.0650 0.1180 0.32 0.5702
v*trt 1 -0.1037 0.0651 -0.2312 0.0238 2.54 0.1110
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure Exchangeable
Subject Effect subject (59 levels)
Number of Clusters 59
Correlation Matrix Dimension 5
Maximum Cluster Size 5
Minimum Cluster Size 5

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4

Prm1 0.02286 0.01051 -0.02286 -0.01051
Prm2 0.01051 0.02393 -0.01051 -0.02393
Prm3 -0.02286 -0.01051 0.04296 0.02132
Prm4 -0.01051 -0.02393 0.02132 0.04838

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4

Prm1 0.02476 -0.001152 -0.02476 0.001152
Prm2 -0.001152 0.01348 0.001152 -0.01348
Prm3 -0.02476 0.001152 0.04922 0.01525
Prm4 0.001152 -0.01348 0.01525 0.04563

Algorithm converged.

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.7716 0.7716 0.7716 0.7716
Row2 0.7716 1.0000 0.7716 0.7716 0.7716
Row3 0.7716 0.7716 1.0000 0.7716 0.7716
Row4 0.7716 0.7716 0.7716 1.0000 0.7716
Row5 0.7716 0.7716 0.7716 0.7716 1.0000

EXCHANGEABLE (COMPOUND SYMMETRY) CORRELATION 6
The GENMOD Procedure

Exchangeable Working
Correlation

Correlation 0.7715879669

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3476 0.1574 1.0392 1.6560 8.56 <.0001
v 0.1108 0.1161 -0.1168 0.3383 0.95 0.3399
trt 0.0265 0.2219 -0.4083 0.4613 0.12 0.9049
v*trt -0.1037 0.2136 -0.5223 0.3150 -0.49 0.6274

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3476 0.1512 1.0513 1.6439 8.91 <.0001
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v 0.1108 0.1547 -0.1924 0.4140 0.72 0.4739
trt 0.0265 0.2073 -0.3797 0.4328 0.13 0.8982
v*trt -0.1037 0.2199 -0.5348 0.3274 -0.47 0.6374
Scale 4.4388 . . . . .

NOTE: The scale parameter for GEE estimation was computed as the square root
of the normalized Pearson’s chi-square.

AR(1) CORRELATION 7
The GENMOD Procedure

Model Information

Data Set WORK.SEIZURE
Distribution Poisson
Link Function Log
Dependent Variable seize
Offset Variable logo

Number of Observations Read 295
Number of Observations Used 295

Class Level Information

Class Levels Values

subject 59 101 102 103 104 106 107 108 110 111 112 113 114
116 117 118 121 122 123 124 126 128 129 130 135
137 139 141 143 145 147 201 202 203 204 205 206
207 208 209 210 211 213 214 215 217 218 219 220
221 222 225 226 227 228 230 232 234 236 238

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 v
Prm3 trt
Prm4 v*trt

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 291 3577.8316 12.2950
Scaled Deviance 291 3577.8316 12.2950
Pearson Chi-Square 291 5733.4815 19.7027
Scaled Pearson X2 291 5733.4815 19.7027
Log Likelihood 6665.9803

Algorithm converged.

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 1.3476 0.0341 1.2809 1.4144 1565.44 <.0001
v 1 0.1108 0.0469 0.0189 0.2027 5.58 0.0181

AR(1) CORRELATION 8
The GENMOD Procedure

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

trt 1 0.0265 0.0467 -0.0650 0.1180 0.32 0.5702
v*trt 1 -0.1037 0.0651 -0.2312 0.0238 2.54 0.1110
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure AR(1)
Subject Effect subject (59 levels)
Number of Clusters 59
Correlation Matrix Dimension 5
Maximum Cluster Size 5
Minimum Cluster Size 5

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4

Prm1 0.02046 0.007458 -0.02046 -0.007458
Prm2 0.007458 0.02829 -0.007458 -0.02829
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Prm3 -0.02046 -0.007458 0.03859 0.01571
Prm4 -0.007458 -0.02829 0.01571 0.05781

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4

Prm1 0.02620 -0.003809 -0.02620 0.003809
Prm2 -0.003809 0.01248 0.003809 -0.01248
Prm3 -0.02620 0.003809 0.04494 0.01198
Prm4 0.003809 -0.01248 0.01198 0.06782

Algorithm converged.

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.8131 0.6611 0.5375 0.4371
Row2 0.8131 1.0000 0.8131 0.6611 0.5375
Row3 0.6611 0.8131 1.0000 0.8131 0.6611
Row4 0.5375 0.6611 0.8131 1.0000 0.8131
Row5 0.4371 0.5375 0.6611 0.8131 1.0000

AR(1) CORRELATION 9
The GENMOD Procedure

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3119 0.1619 0.9947 1.6292 8.10 <.0001
v 0.1515 0.1117 -0.0675 0.3704 1.36 0.1751
trt 0.0188 0.2120 -0.3968 0.4343 0.09 0.9295
v*trt -0.1283 0.2604 -0.6388 0.3821 -0.49 0.6222

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3119 0.1430 1.0316 1.5923 9.17 <.0001
v 0.1515 0.1682 -0.1782 0.4811 0.90 0.3678
trt 0.0188 0.1965 -0.3663 0.4038 0.10 0.9240
v*trt -0.1283 0.2404 -0.5996 0.3429 -0.53 0.5935
Scale 4.4907 . . . . .

NOTE: The scale parameter for GEE estimation was computed as the square root
of the normalized Pearson’s chi-square.

SUBJECT 207 DELETED 10
The GENMOD Procedure

Model Information

Data Set WORK.WEIRD
Distribution Poisson
Link Function Log
Dependent Variable seize
Offset Variable logo

Number of Observations Read 290
Number of Observations Used 290

Class Level Information

Class Levels Values

subject 58 101 102 103 104 106 107 108 110 111 112 113 114
116 117 118 121 122 123 124 126 128 129 130 135
137 139 141 143 145 147 201 202 203 204 205 206
208 209 210 211 213 214 215 217 218 219 220 221
222 225 226 227 228 230 232 234 236 238

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 v
Prm3 trt
Prm4 v*trt

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF
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Deviance 286 2413.0245 8.4371
Scaled Deviance 286 2413.0245 8.4371
Pearson Chi-Square 286 3015.1555 10.5425
Scaled Pearson X2 286 3015.1555 10.5425
Log Likelihood 5631.7547

Algorithm converged.

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 1.3476 0.0341 1.2809 1.4144 1565.44 <.0001
v 1 0.1108 0.0469 0.0189 0.2027 5.58 0.0181

SUBJECT 207 DELETED 11
The GENMOD Procedure

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

trt 1 -0.1080 0.0486 -0.2034 -0.0127 4.93 0.0264
v*trt 1 -0.3016 0.0697 -0.4383 -0.1649 18.70 <.0001
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure Exchangeable
Subject Effect subject (58 levels)
Number of Clusters 58
Correlation Matrix Dimension 5
Maximum Cluster Size 5
Minimum Cluster Size 5

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4

Prm1 0.01223 0.001520 -0.01223 -0.001520
Prm2 0.001520 0.01519 -0.001520 -0.01519
Prm3 -0.01223 -0.001520 0.02495 0.005427
Prm4 -0.001520 -0.01519 0.005427 0.03748

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4

Prm1 0.02476 -0.001152 -0.02476 0.001152
Prm2 -0.001152 0.01348 0.001152 -0.01348
Prm3 -0.02476 0.001152 0.03751 -0.002999
Prm4 0.001152 -0.01348 -0.002999 0.02931

Algorithm converged.

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.5941 0.5941 0.5941 0.5941
Row2 0.5941 1.0000 0.5941 0.5941 0.5941
Row3 0.5941 0.5941 1.0000 0.5941 0.5941
Row4 0.5941 0.5941 0.5941 1.0000 0.5941
Row5 0.5941 0.5941 0.5941 0.5941 1.0000

SUBJECT 207 DELETED 12

The GENMOD Procedure

Exchangeable Working
Correlation

Correlation 0.5941485833

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3476 0.1574 1.0392 1.6560 8.56 <.0001
v 0.1108 0.1161 -0.1168 0.3383 0.95 0.3399
trt -0.1080 0.1937 -0.4876 0.2716 -0.56 0.5770
v*trt -0.3016 0.1712 -0.6371 0.0339 -1.76 0.0781
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Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3476 0.1106 1.1309 1.5644 12.19 <.0001
v 0.1108 0.1233 -0.1308 0.3524 0.90 0.3687
trt -0.1080 0.1579 -0.4176 0.2015 -0.68 0.4940
v*trt -0.3016 0.1936 -0.6811 0.0779 -1.56 0.1193
Scale 3.2469 . . . . .

NOTE: The scale parameter for GEE estimation was computed as the square root
of the normalized Pearson’s chi-square.

AGE ADDED 13
The GENMOD Procedure

Model Information

Data Set WORK.SEIZURE
Distribution Poisson
Link Function Log
Dependent Variable seize
Offset Variable logo

Number of Observations Read 295
Number of Observations Used 295

Class Level Information

Class Levels Values

subject 59 101 102 103 104 106 107 108 110 111 112 113 114
116 117 118 121 122 123 124 126 128 129 130 135
137 139 141 143 145 147 201 202 203 204 205 206
207 208 209 210 211 213 214 215 217 218 219 220
221 222 225 226 227 228 230 232 234 236 238

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 logage
Prm3 v
Prm4 trt
Prm5 v*trt

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 290 3520.0007 12.1379
Scaled Deviance 290 3520.0007 12.1379
Pearson Chi-Square 290 5476.2836 18.8837
Scaled Pearson X2 290 5476.2836 18.8837
Log Likelihood 6694.8957

Algorithm converged.

AGE ADDED 14
The GENMOD Procedure

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 3.2206 0.2482 2.7340 3.7071 168.30 <.0001
logage 1 -0.5616 0.0740 -0.7066 -0.4166 57.61 <.0001
v 1 0.1108 0.0469 0.0189 0.2027 5.58 0.0181
trt 1 -0.0043 0.0469 -0.0962 0.0876 0.01 0.9271
v*trt 1 -0.1037 0.0651 -0.2312 0.0238 2.54 0.1110
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure Exchangeable
Subject Effect subject (59 levels)
Number of Clusters 59
Correlation Matrix Dimension 5
Maximum Cluster Size 5
Minimum Cluster Size 5

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4 Prm5
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Prm1 1.88238 -0.56242 0.009622 -0.05729 -0.009622
Prm2 -0.56242 0.17001 -4.92E-18 0.01073 -4.7E-17
Prm3 0.009622 -4.92E-18 0.02306 -0.009622 -0.02306
Prm4 -0.05729 0.01073 -0.009622 0.04165 0.01956
Prm5 -0.009622 -4.7E-17 -0.02306 0.01956 0.04657

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4 Prm5

Prm1 1.88843 -0.56699 -0.02199 0.01540 0.03990
Prm2 -0.56699 0.17266 0.006605 -0.01262 -0.01202
Prm3 -0.02199 0.006605 0.01348 0.0005524 -0.01348
Prm4 0.01540 -0.01262 0.0005524 0.04566 0.01574
Prm5 0.03990 -0.01202 -0.01348 0.01574 0.04563

Algorithm converged.

AGE ADDED 15

The GENMOD Procedure

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.7617 0.7617 0.7617 0.7617
Row2 0.7617 1.0000 0.7617 0.7617 0.7617
Row3 0.7617 0.7617 1.0000 0.7617 0.7617
Row4 0.7617 0.7617 0.7617 1.0000 0.7617
Row5 0.7617 0.7617 0.7617 0.7617 1.0000

Exchangeable Working
Correlation

Correlation 0.7617417343

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 4.4338 1.3742 1.7404 7.1272 3.23 0.0013
logage -0.9275 0.4155 -1.7419 -0.1131 -2.23 0.0256
v 0.1108 0.1161 -0.1168 0.3383 0.95 0.3399
trt -0.0266 0.2137 -0.4454 0.3923 -0.12 0.9011
v*trt -0.1037 0.2136 -0.5223 0.3150 -0.49 0.6274

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 4.4338 1.3720 1.7447 7.1228 3.23 0.0012
logage -0.9275 0.4123 -1.7356 -0.1194 -2.25 0.0245
v 0.1108 0.1519 -0.1869 0.4084 0.73 0.4656
trt -0.0266 0.2041 -0.4266 0.3735 -0.13 0.8965
v*trt -0.1037 0.2158 -0.5266 0.3193 -0.48 0.6309
Scale 4.3350 . . . . .

NOTE: The scale parameter for GEE estimation was computed as the square root
of the normalized Pearson’s chi-square.

MODIFIED MODEL 16
The GENMOD Procedure

Model Information

Data Set WORK.SEIZURE
Distribution Poisson
Link Function Log
Dependent Variable seize
Offset Variable logo

Number of Observations Read 295
Number of Observations Used 295

Class Level Information

Class Levels Values

subject 59 101 102 103 104 106 107 108 110 111 112 113 114
116 117 118 121 122 123 124 126 128 129 130 135
137 139 141 143 145 147 201 202 203 204 205 206
207 208 209 210 211 213 214 215 217 218 219 220
221 222 225 226 227 228 230 232 234 236 238
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Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 v
Prm3 visit4
Prm4 trt
Prm5 v*trt
Prm6 visit4*trt

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 289 3567.6314 12.3447
Scaled Deviance 289 3567.6314 12.3447
Pearson Chi-Square 289 5673.2719 19.6307
Scaled Pearson X2 289 5673.2719 19.6307
Log Likelihood 6671.0804

Algorithm converged.

MODIFIED MODEL 17

The GENMOD Procedure

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 1.3476 0.0341 1.2809 1.4144 1565.44 <.0001
v 1 0.1351 0.0501 0.0369 0.2333 7.27 0.0070
visit4 1 -0.1009 0.0764 -0.2506 0.0489 1.74 0.1867
trt 1 0.0265 0.0467 -0.0650 0.1180 0.32 0.5702
v*trt 1 -0.0769 0.0694 -0.2129 0.0591 1.23 0.2676
visit4*trt 1 -0.1210 0.1092 -0.3350 0.0931 1.23 0.2679
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure Exchangeable
Subject Effect subject (59 levels)
Number of Clusters 59
Correlation Matrix Dimension 5
Maximum Cluster Size 5
Minimum Cluster Size 5

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4 Prm5 Prm6

Prm1 0.02277 0.01031 0.001711 -0.02277 -0.01031 -0.001711
Prm2 0.01031 0.02436 -0.004423 -0.01031 -0.02436 0.004423
Prm3 0.001711 -0.004423 0.02569 -0.001711 0.004423 -0.02569
Prm4 -0.02277 -0.01031 -0.001711 0.04280 0.02052 0.005259
Prm5 -0.01031 -0.02436 0.004423 0.02052 0.04828 -0.006694
Prm6 -0.001711 0.004423 -0.02569 0.005259 -0.006694 0.05315

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4 Prm5 Prm6

Prm1 0.02476 -0.000931 -0.000952 -0.02476 0.0009314 0.0009516
Prm2 -0.000931 0.01770 -0.01079 0.0009314 -0.01770 0.01079
Prm3 -0.000952 -0.01079 0.01447 0.0009516 0.01079 -0.01447
Prm4 -0.02476 0.0009314 0.0009516 0.04922 0.01554 -0.001292
Prm5 0.0009314 -0.01770 0.01079 0.01554 0.05058 -0.01277
Prm6 0.0009516 0.01079 -0.01447 -0.001292 -0.01277 0.01681

Algorithm converged.

MODIFIED MODEL 18

The GENMOD Procedure

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.7772 0.7772 0.7772 0.7772
Row2 0.7772 1.0000 0.7772 0.7772 0.7772
Row3 0.7772 0.7772 1.0000 0.7772 0.7772
Row4 0.7772 0.7772 0.7772 1.0000 0.7772
Row5 0.7772 0.7772 0.7772 0.7772 1.0000

Exchangeable Working
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Correlation

Correlation 0.7771671618

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3476 0.1574 1.0392 1.6560 8.56 <.0001
v 0.1351 0.1330 -0.1257 0.3958 1.02 0.3099
visit4 -0.1009 0.1203 -0.3366 0.1349 -0.84 0.4017
trt 0.0265 0.2219 -0.4083 0.4613 0.12 0.9049
v*trt -0.0769 0.2249 -0.5177 0.3639 -0.34 0.7323
visit4*trt -0.1210 0.1297 -0.3751 0.1331 -0.93 0.3507

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.3476 0.1509 1.0518 1.6434 8.93 <.0001
v 0.1351 0.1561 -0.1708 0.4410 0.87 0.3868
visit4 -0.1009 0.1603 -0.4150 0.2133 -0.63 0.5292
trt 0.0265 0.2069 -0.3790 0.4320 0.13 0.8980
v*trt -0.0769 0.2197 -0.5076 0.3537 -0.35 0.7262
visit4*trt -0.1210 0.2305 -0.5728 0.3308 -0.52 0.5997
Scale 4.4307 . . . . .

NOTE: The scale parameter for GEE estimation was computed as the square root
of the normalized Pearson’s chi-square.

INTERPRETATION:

• Pages 1–3 report the fit of the first model assuming the unstructured “working” correlation struc-

ture; pages 4–6 show the results for the compound symmetry assumption, and pages 7–9 show the

results for the AR(1) assumption.

• On pages 1, 4, and 7, the table Analysis of Initial Parameter Estimates gives the estimates

of β under the independence assumption (thus, these tables are the same for each fit).

• The results of solving the GEE begin on pages 2, 5, and 8 with the Model Information head-

ing. The Covariance Matrix (Model Based) is the estimate V̂ β ; the Covariance Matrix

(Empirical) is the “robust” estimate V̂
R

β . They are somewhat similar for each fit, but differ-

ent enough. How different can be seen in the tables Analysis of GEE Parameter Estimates

that follow; that labeled Empirical Standard Error Estimates uses V̂
R

β to compute standard

errors; that labeled Model-Based Standard Error Estimates uses V̂ β .

• The fits are qualitatively very similar. In all cases, there does not seem to be any evidence that

β3 is different from zero.

• We have no formal method of choosing among the various “working” correlation assumptions.

A practical approach is to inspect the results as above for each one – if they are in qualitative

agreement, then we feel reasonably confident that results are not too dependent on the correlation

assumption.
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• Pages 10–12 show the results of the fit with the compound symmetric assumption and “un-

usual”subject 207 deleted. Note that now the results are suggestive of an effect of progabide;

β̂3 = −0.30 with a (robust) standard error of 0.17, yielding a p-value for a test of β3 = 0 of 0.08.

• Adding age to the model [as log(age)] does not alter the results. Taking special account of the

4th visit does not yield any additional insight. It seems that, perhaps due to the magnitude of

variation in the data and probable lack of a strong treatment effect, there is little evidence favoring

progabide over placebo.
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EXAMPLE 2 – WHEEZING DATA FROM THE SIX CITIES STUDY: Here, we consider fitting the

model (12.2) similar to that fitted in Lipsitz, Laird, and Harrington (1992),

E(Yij) =
exp(β0 + β1ci + β2δ0ij + β3δ1ij)

1 + exp(β0 + β1ci + β2δ0ij + β3δ1ij)
.

We consider as in the seizure example several different “working” correlation assumptions. The output

is in the same form as for the seizure example.

Recall, of course, our previous discussion about time-dependent covariates. The model for E(Yij) may

well suffer the flaws we mentioned earlier; this fitting is mainly for illustration.

A difference between this fit and that in the seizure example is that there are missing values for some

subjects. To make sure that SAS uses the correct convention to construct the covariance matrix for

each individual (and hence the estimate of ω), the within= option of the repeated statement is used

with the class variable time, which is identically equal to the numerical variable age. This has the

effect of telling the program that it should consult the variable time to make sure each observation is

classified correctly at its appropriate level of age.

Because these are binary data, we do not consider an overdispersion scale parameter. This is held fixed

at 1.0 in the analyses by default for binary data.

PAGE 508



CHAPTER 12 ST 732, M. DAVIDIAN

PROGRAM:

/******************************************************************

CHAPTER 12, EXAMPLE 2

Fit a logistic regression model to the "wheezing" data.
These are binary data, thus, we use the Bernoulli (bin)
mean/variance assumptions. The model is fitted with different
working correlation matrices.

******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

The data look like (first 4 records):

1 portage 9 0 1 10 0 1 11 0 1 12 0 0
2 kingston 9 1 1 10 2 1 11 2 0 12 2 0
3 kingston 9 0 1 10 0 0 11 1 0 12 1 0
4 portage 9 0 0 10 0 1 11 0 1 12 1 0

.

.

.

column 1 child
column 2 city
columns 3-5 age=9, smoking indiciator, wheezing response
columns 6-8 age=10, smoking indiciator, wheezing response
columns 9-11 age=11, smoking indiciator, wheezing response
columns 12-14 age=12, smoking indiciator, wheezing response

Some of the children have missing values for smoking and wheezing,
as shown in Chapter 1. There are 32 children all together. See the
output for the full data printed out one observation per line.

We read in the data using the "@@" symbol so that SAS will continue
to read for data on the same line and the OUTPUT statement to
write each block of three observations for each age in as a separate
data record. The resulting data set is one with a separate line for
each observation. City is a character variable, so the dollar
sign is used to read it in as such.

******************************************************************/

data wheeze; infile ’wheeze.dat’;
input child city $ @@;
do i=1 to 4;
input age smoke wheeze @@;
output;

end;
run;

proc print data=wheeze; run;

/*****************************************************************

Fit the logistic regression model using PROC GENMOD and
three different working correlation matrix assumptions:

- unstructured
- compound symmetry (exchangeable)
- AR(1)

We fit a model with linear predictor allowing effects of
city and maternal smoking status but no "interaction"
terms among these.

The DIST=BIN option in the MODEL statement specifies that the
Bernoulli mean-variance relationship be assumed. The LINK=LOGIT
option asks for the logistic mean model.

The REPEATED statement specifies the "working" correlation
structure to be assumed. The CORRW option in the REPEATED
statement prints out the estimated working correlation matrix
under the assumption given in the TYPE= option. The COVB
option prints out the estimated covariance matrix of the estimate
of beta -- both the usual estimate and the "robust" version
are printed. The MODELSE option specifies that the standard
error estimates printed for the elements of betahat are based
on the usual theory. By default, the ones based on the "robust"
version of the sampling covariance matrix are printed, too.

The dispersion parameter phi is held fixed at 1 by default.

The missing values are coded in the usual SAS way by periods (.).
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We delete these from the full data set, so that the data set input
to PROC GENMOD contains only the observed data. We assume that the
fact that these observations are missing has nothing to do with the
thing under study (which may or may not be true). Thus,
because these data are not balanced, we use the WITHIN option of
the REPEATED statement to give SAS the time variable AGE as a
classification variable so that it can figure out where the missing
values are and use this information in estimating the correlation
matrix.

In versions 7 and higher of SAS, PROC GENMOD will model by
default the probability that the response y=0 rather than
the conventional y=1! To make PROC GENMOD model probability
y=1, as is standard, one must include the DESCENDING option in
the PROC GENMOD statement. In earlier versions of SAS, the
probability y=1 is modeled by default, as would be expected.

If the user is unsure which probability is being modeled, one
can check the .log file. In later versions of SAS, an explicit
statement about what is being modeled will appear. PROC GENMOD
output should also contain a statement about what is being
modeled.

******************************************************************/

data wheeze; set wheeze;
if wheeze=. then delete;
time=age;

run;

title "UNSTRUCTURED CORRELATION";
proc genmod data=wheeze descending;
class child city smoke time;
model wheeze = city smoke / dist=bin link=logit;
repeated subject=child / type=un corrw covb modelse within=time;

run;

title "COMPOUND SYMMETRY (EXCHANGEABLE) CORRELATION";
proc genmod data=wheeze descending;
class child city smoke time;
model wheeze = city smoke / dist=bin link=logit;
repeated subject=child / type=cs corrw covb modelse within=time;

run;

title "AR(1) CORRELATION";
proc genmod data=wheeze descending;
class child city smoke time;
model wheeze = city smoke / dist=bin link=logit;
repeated subject=child / type=ar(1) corrw covb modelse within=time;

run;
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OUTPUT: Following the output, we comment on a few aspects of the output.

The SAS System 1

Obs child city i age smoke wheeze

1 1 portage 1 9 0 1
2 1 portage 2 10 0 1
3 1 portage 3 11 0 1
4 1 portage 4 12 0 0
5 2 kingston 1 9 1 1
6 2 kingston 2 10 2 1
7 2 kingston 3 11 2 0
8 2 kingston 4 12 2 0
9 3 kingston 1 9 0 1
10 3 kingston 2 10 0 0
11 3 kingston 3 11 1 0
12 3 kingston 4 12 1 0
13 4 portage 1 9 0 0
14 4 portage 2 10 0 1
15 4 portage 3 11 0 1
16 4 portage 4 12 1 0
17 5 kingston 1 9 0 0
18 5 kingston 2 10 1 0
19 5 kingston 3 11 1 0
20 5 kingston 4 12 1 0
21 6 portage 1 9 0 0
22 6 portage 2 10 1 0
23 6 portage 3 11 1 0
24 6 portage 4 12 1 0
25 7 kingston 1 9 1 0
26 7 kingston 2 10 1 0
27 7 kingston 3 11 0 0
28 7 kingston 4 12 0 0
29 8 portage 1 9 1 0
30 8 portage 2 10 1 0
31 8 portage 3 11 1 0
32 8 portage 4 12 2 0
33 9 portage 1 9 2 1
34 9 portage 2 10 2 0
35 9 portage 3 11 1 0
36 9 portage 4 12 1 0
37 10 kingston 1 9 0 0
38 10 kingston 2 10 0 0
39 10 kingston 3 11 0 0
40 10 kingston 4 12 1 0
41 11 kingston 1 9 1 1
42 11 kingston 2 10 0 0
43 11 kingston 3 11 0 1
44 11 kingston 4 12 0 1
45 12 portage 1 9 1 0
46 12 portage 2 10 0 0
47 12 portage 3 11 0 0
48 12 portage 4 12 0 0
49 13 kingston 1 9 1 0
50 13 kingston 2 10 0 1
51 13 kingston 3 11 1 1
52 13 kingston 4 12 1 1
53 14 portage 1 9 1 0
54 14 portage 2 10 2 0
55 14 portage 3 11 1 0

The SAS System 2

Obs child city i age smoke wheeze

56 14 portage 4 12 2 1
57 15 kingston 1 9 1 0
58 15 kingston 2 10 1 0
59 15 kingston 3 11 1 0
60 15 kingston 4 12 2 1
61 16 portage 1 9 1 1
62 16 portage 2 10 1 1
63 16 portage 3 11 2 0
64 16 portage 4 12 1 0
65 17 portage 1 9 2 1
66 17 portage 2 10 2 0
67 17 portage 3 11 1 0
68 17 portage 4 12 1 0
69 18 kingston 1 9 0 0
70 18 kingston 2 10 0 0
71 18 kingston 3 11 0 0
72 18 kingston 4 12 0 0
73 19 portage 1 9 0 0
74 19 portage 2 10 . .
75 19 portage 3 11 . .
76 19 portage 4 12 . .
77 20 kingston 1 9 . .
78 20 kingston 2 10 0 1
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79 20 kingston 3 11 . .
80 20 kingston 4 12 . .
81 21 portage 1 9 . .
82 21 portage 2 10 . .
83 21 portage 3 11 2 1
84 21 portage 4 12 . .
85 22 kingston 1 9 . .
86 22 kingston 2 10 . .
87 22 kingston 3 11 . .
88 22 kingston 4 12 1 0
89 23 portage 1 9 2 0
90 23 portage 2 10 1 1
91 23 portage 3 11 . .
92 23 portage 4 12 . .
93 24 kingston 1 9 2 0
94 24 kingston 2 10 . .
95 24 kingston 3 11 0 0
96 24 kingston 4 12 . .
97 25 portage 1 9 0 1
98 25 portage 2 10 . .
99 25 portage 3 11 . .

100 25 portage 4 12 0 0
101 26 portage 1 9 . .
102 26 portage 2 10 0 0
103 26 portage 3 11 1 0
104 26 portage 4 12 . .
105 27 portage 1 9 . .
106 27 portage 2 10 1 0
107 27 portage 3 11 . .
108 27 portage 4 12 1 0
109 28 kingston 1 9 . .
110 28 kingston 2 10 . .

The SAS System 3
Obs child city i age smoke wheeze

111 28 kingston 3 11 2 0
112 28 kingston 4 12 1 1
113 29 portage 1 9 1 0
114 29 portage 2 10 0 0
115 29 portage 3 11 0 0
116 29 portage 4 12 . .
117 30 kingston 1 9 1 1
118 30 kingston 2 10 1 0
119 30 kingston 3 11 . .
120 30 kingston 4 12 1 1
121 31 kingston 1 9 1 0
122 31 kingston 2 10 . .
123 31 kingston 3 11 1 0
124 31 kingston 4 12 2 1
125 32 portage 1 9 . .
126 32 portage 2 10 1 1
127 32 portage 3 11 1 0
128 32 portage 4 12 1 0

UNSTRUCTURED CORRELATION 4
The GENMOD Procedure

Model Information

Data Set WORK.WHEEZE
Distribution Binomial
Link Function Logit
Dependent Variable wheeze

Number of Observations Read 100
Number of Observations Used 100
Number of Events 29
Number of Trials 100

Class Level Information

Class Levels Values

child 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32

city 2 kingston portage
smoke 3 0 1 2
time 4 9 10 11 12

Response Profile

Ordered Total
Value wheeze Frequency

1 1 29
2 0 71

PROC GENMOD is modeling the probability that wheeze=’1’.
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Parameter Information

Parameter Effect city smoke

Prm1 Intercept
Prm2 city kingston
Prm3 city portage
Prm4 smoke 0
Prm5 smoke 1
Prm6 smoke 2

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 96 117.9994 1.2292
Scaled Deviance 96 117.9994 1.2292
Pearson Chi-Square 96 99.6902 1.0384

UNSTRUCTURED CORRELATION 5
The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Scaled Pearson X2 96 99.6902 1.0384
Log Likelihood -58.9997

Algorithm converged.

Analysis Of Initial Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square

Intercept 1 -0.4559 0.5285 -1.4917 0.5799 0.74
city kingston 1 0.2382 0.4479 -0.6398 1.1161 0.28
city portage 0 0.0000 0.0000 0.0000 0.0000 .
smoke 0 1 -0.4494 0.6159 -1.6565 0.7577 0.53
smoke 1 1 -0.8751 0.6029 -2.0568 0.3067 2.11
smoke 2 0 0.0000 0.0000 0.0000 0.0000 .
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis Of Initial
Parameter Estimates

Parameter Pr > ChiSq

Intercept 0.3883
city kingston 0.5950
city portage .
smoke 0 0.4656
smoke 1 0.1467
smoke 2 .
Scale

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure Unstructured
Within-Subject Effect time (4 levels)
Subject Effect child (32 levels)
Number of Clusters 32
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 1

UNSTRUCTURED CORRELATION 6

The GENMOD Procedure

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm4 Prm5

Prm1 0.25733 -0.09887 -0.19993 -0.18313
Prm2 -0.09887 0.22799 -0.02525 -0.02022
Prm4 -0.19993 -0.02525 0.36412 0.20072
Prm5 -0.18313 -0.02022 0.20072 0.27654

Covariance Matrix (Empirical)

Prm1 Prm2 Prm4 Prm5

Prm1 0.19295 -0.05378 -0.16907 -0.23162
Prm2 -0.05378 0.21935 -0.03901 -0.06092
Prm4 -0.16907 -0.03901 0.32007 0.30071
Prm5 -0.23162 -0.06092 0.30071 0.46706
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Algorithm converged.

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.1967 0.1807 -0.1604
Row2 0.1967 1.0000 0.5531 -0.1131
Row3 0.1807 0.5531 1.0000 0.2524
Row4 -0.1604 -0.1131 0.2524 1.0000

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.6197 0.4393 -1.4806 0.2413 -1.41 0.1583
city kingston 0.3126 0.4683 -0.6053 1.2306 0.67 0.5044
city portage 0.0000 0.0000 0.0000 0.0000 . .
smoke 0 -0.3851 0.5657 -1.4940 0.7237 -0.68 0.4960
smoke 1 -0.4098 0.6834 -1.7493 0.9296 -0.60 0.5487
smoke 2 0.0000 0.0000 0.0000 0.0000 . .

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.6197 0.5073 -1.6139 0.3745 -1.22 0.2219
city kingston 0.3126 0.4775 -0.6232 1.2485 0.65 0.5126

UNSTRUCTURED CORRELATION 7
The GENMOD Procedure

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

city portage 0.0000 0.0000 0.0000 0.0000 . .
smoke 0 -0.3851 0.6034 -1.5678 0.7976 -0.64 0.5233
smoke 1 -0.4098 0.5259 -1.4405 0.6209 -0.78 0.4358
smoke 2 0.0000 0.0000 0.0000 0.0000 . .
Scale 1.0000 . . . . .

NOTE: The scale parameter was held fixed.

COMPOUND SYMMETRY (EXCHANGEABLE) CORRELATION 8
The GENMOD Procedure

Model Information

Data Set WORK.WHEEZE
Distribution Binomial
Link Function Logit
Dependent Variable wheeze

Number of Observations Read 100
Number of Observations Used 100
Number of Events 29
Number of Trials 100

Class Level Information

Class Levels Values

child 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32

city 2 kingston portage
smoke 3 0 1 2
time 4 9 10 11 12

Response Profile

Ordered Total
Value wheeze Frequency

1 1 29
2 0 71

PROC GENMOD is modeling the probability that wheeze=’1’.

Parameter Information

Parameter Effect city smoke

Prm1 Intercept
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Prm2 city kingston
Prm3 city portage
Prm4 smoke 0
Prm5 smoke 1
Prm6 smoke 2

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 96 117.9994 1.2292
Scaled Deviance 96 117.9994 1.2292
Pearson Chi-Square 96 99.6902 1.0384

COMPOUND SYMMETRY (EXCHANGEABLE) CORRELATION 9

The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Scaled Pearson X2 96 99.6902 1.0384
Log Likelihood -58.9997

Algorithm converged.

Analysis Of Initial Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square

Intercept 1 -0.4559 0.5285 -1.4917 0.5799 0.74
city kingston 1 0.2382 0.4479 -0.6398 1.1161 0.28
city portage 0 0.0000 0.0000 0.0000 0.0000 .
smoke 0 1 -0.4494 0.6159 -1.6565 0.7577 0.53
smoke 1 1 -0.8751 0.6029 -2.0568 0.3067 2.11
smoke 2 0 0.0000 0.0000 0.0000 0.0000 .
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis Of Initial
Parameter Estimates

Parameter Pr > ChiSq

Intercept 0.3883
city kingston 0.5950
city portage .
smoke 0 0.4656
smoke 1 0.1467
smoke 2 .
Scale

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure Exchangeable
Within-Subject Effect time (4 levels)
Subject Effect child (32 levels)
Number of Clusters 32
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 1

COMPOUND SYMMETRY (EXCHANGEABLE) CORRELATION 10

The GENMOD Procedure

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm4 Prm5

Prm1 0.30777 -0.11319 -0.24502 -0.22930
Prm2 -0.11319 0.25956 -0.02313 -0.01878
Prm4 -0.24502 -0.02313 0.40717 0.24963
Prm5 -0.22930 -0.01878 0.24963 0.35226

Covariance Matrix (Empirical)

Prm1 Prm2 Prm4 Prm5

Prm1 0.20021 -0.08869 -0.15237 -0.23871
Prm2 -0.08869 0.24782 -0.03222 -0.005869
Prm4 -0.15237 -0.03222 0.33433 0.28719
Prm5 -0.23871 -0.005869 0.28719 0.45634

Algorithm converged.

Working Correlation Matrix
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Col1 Col2 Col3 Col4

Row1 1.0000 0.1251 0.1251 0.1251
Row2 0.1251 1.0000 0.1251 0.1251
Row3 0.1251 0.1251 1.0000 0.1251
Row4 0.1251 0.1251 0.1251 1.0000

Exchangeable Working
Correlation

Correlation 0.1251298267

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.4771 0.4475 -1.3541 0.3999 -1.07 0.2863
city kingston 0.2456 0.4978 -0.7301 1.2213 0.49 0.6217
city portage 0.0000 0.0000 0.0000 0.0000 . .
smoke 0 -0.4006 0.5782 -1.5338 0.7327 -0.69 0.4885
smoke 1 -0.8492 0.6755 -2.1732 0.4748 -1.26 0.2087
smoke 2 0.0000 0.0000 0.0000 0.0000 . .

COMPOUND SYMMETRY (EXCHANGEABLE) CORRELATION 11
The GENMOD Procedure

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.4771 0.5548 -1.5644 0.6102 -0.86 0.3898
city kingston 0.2456 0.5095 -0.7529 1.2442 0.48 0.6297
city portage 0.0000 0.0000 0.0000 0.0000 . .
smoke 0 -0.4006 0.6381 -1.6512 0.8501 -0.63 0.5302
smoke 1 -0.8492 0.5935 -2.0125 0.3141 -1.43 0.1525
smoke 2 0.0000 0.0000 0.0000 0.0000 . .
Scale 1.0000 . . . . .

NOTE: The scale parameter was held fixed.

AR(1) CORRELATION 12
The GENMOD Procedure

Model Information

Data Set WORK.WHEEZE
Distribution Binomial
Link Function Logit
Dependent Variable wheeze

Number of Observations Read 100
Number of Observations Used 100
Number of Events 29
Number of Trials 100

Class Level Information

Class Levels Values

child 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32

city 2 kingston portage
smoke 3 0 1 2
time 4 9 10 11 12

Response Profile

Ordered Total
Value wheeze Frequency

1 1 29
2 0 71

PROC GENMOD is modeling the probability that wheeze=’1’.

Parameter Information

Parameter Effect city smoke

Prm1 Intercept
Prm2 city kingston
Prm3 city portage
Prm4 smoke 0
Prm5 smoke 1
Prm6 smoke 2
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Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 96 117.9994 1.2292
Scaled Deviance 96 117.9994 1.2292
Pearson Chi-Square 96 99.6902 1.0384

AR(1) CORRELATION 13
The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Scaled Pearson X2 96 99.6902 1.0384
Log Likelihood -58.9997

Algorithm converged.

Analysis Of Initial Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square

Intercept 1 -0.4559 0.5285 -1.4917 0.5799 0.74
city kingston 1 0.2382 0.4479 -0.6398 1.1161 0.28
city portage 0 0.0000 0.0000 0.0000 0.0000 .
smoke 0 1 -0.4494 0.6159 -1.6565 0.7577 0.53
smoke 1 1 -0.8751 0.6029 -2.0568 0.3067 2.11
smoke 2 0 0.0000 0.0000 0.0000 0.0000 .
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis Of Initial
Parameter Estimates

Parameter Pr > ChiSq

Intercept 0.3883
city kingston 0.5950
city portage .
smoke 0 0.4656
smoke 1 0.1467
smoke 2 .
Scale

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure AR(1)
Within-Subject Effect time (4 levels)
Subject Effect child (32 levels)
Number of Clusters 32
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 1

AR(1) CORRELATION 14

The GENMOD Procedure

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm4 Prm5

Prm1 0.31680 -0.12039 -0.24953 -0.22783
Prm2 -0.12039 0.27022 -0.02180 -0.01881
Prm4 -0.24953 -0.02180 0.42144 0.24916
Prm5 -0.22783 -0.01881 0.24916 0.34094

Covariance Matrix (Empirical)

Prm1 Prm2 Prm4 Prm5

Prm1 0.22402 -0.08293 -0.18320 -0.26011
Prm2 -0.08293 0.23368 -0.02015 -0.007078
Prm4 -0.18320 -0.02015 0.34711 0.30564
Prm5 -0.26011 -0.007078 0.30564 0.45771

Algorithm converged.

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.2740 0.0751 0.0206
Row2 0.2740 1.0000 0.2740 0.0751
Row3 0.0751 0.2740 1.0000 0.2740
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Row4 0.0206 0.0751 0.2740 1.0000

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.5442 0.4733 -1.4719 0.3835 -1.15 0.2502
city kingston 0.2755 0.4834 -0.6720 1.2230 0.57 0.5687
city portage 0.0000 0.0000 0.0000 0.0000 . .
smoke 0 -0.3776 0.5892 -1.5323 0.7771 -0.64 0.5216
smoke 1 -0.6861 0.6765 -2.0121 0.6399 -1.01 0.3105
smoke 2 0.0000 0.0000 0.0000 0.0000 . .

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.5442 0.5629 -1.6474 0.5590 -0.97 0.3336
city kingston 0.2755 0.5198 -0.7433 1.2943 0.53 0.5961

AR(1) CORRELATION 15
The GENMOD Procedure

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

city portage 0.0000 0.0000 0.0000 0.0000 . .
smoke 0 -0.3776 0.6492 -1.6500 0.8948 -0.58 0.5608
smoke 1 -0.6861 0.5839 -1.8305 0.4583 -1.18 0.2400
smoke 2 0.0000 0.0000 0.0000 0.0000 . .
Scale 1.0000 . . . . .

NOTE: The scale parameter was held fixed.

INTERPRETATION:

• In this example, the analyses in each “working” case appear to be far less sensitive to whether

V̂ β or V̂
R

β is used to construct standard errors; comparison of these matrices in each case shows

that they are fairly similar.

• It is perhaps because it does not appear that there is any effect of any of the covariates on prob-

ability of wheezing that the analyses all seem to agree. Note from Analysis of GEE Parameter

Estimates in each case that the signs (positive or negative) appear to be intuitively in the right

direction; e.g., the coefficients for the “smoking” indicators are negative, suggesting that probabil-

ity of wheezing is lower for children whose mothers do not smoke or only moderately smoke versus

those who have heavy-smokers for mothers. However, in no case is there evidence to suggest these

are different than zero. As there are only 32 children on which this analysis is based, perhaps the

sample size is too small to detect departures from the various null hypotheses being tested.

• Keep in mind that this interpretation only makes sense under the assumption that the model for

E(Yij) is correct!
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