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3 Random vectors and multivariate normal distribution

As we saw in Chapter 1, a natural way to think about repeated measurement data is as a series of

random vectors, one vector corresponding to each unit. Because the way in which these vectors of

measurements turn out is governed by probability, we need to discuss extensions of usual univari-

ate probability distributions for (scalar) random variables to multivariate probability distributions

governing random vectors.

3.1 Preliminaries

First, it is wise to review the important concepts of random variable and probability distribution and

how we use these to model individual observations.

RANDOM VARIABLE: We may think of a random variable Y as a characteristic whose values may

vary. The way it takes on values is described by a probability distribution.

CONVENTION, REPEATED: It is customary to use upper case letters, e.g Y , to denote a generic

random variable and lower case letters, e.g. y, to denote a particular value that the random variable

may take on or that may be observed (data).

EXAMPLE: Suppose we are interested in the characteristic “body weight of rats” in the population of

all possible rats of a certain age, gender, and type. We might let

Y = body weight of a (randomly chosen) rat

from this population. Y is a random variable.

We may conceptualize that body weights of rats are distributed in this population in the sense that

some values are more common (i.e. more rats have them) than others. If we randomly select a rat

from the population, then the chance it has a certain body weight will be governed by this distribution

of weights in the population. Formally, values that Y may take on are distributed in the population

according to an associated probability distribution that describes how likely the values are in the

population.

In a moment, we will consider more carefully why rat weights we might see vary. First, we recall the

following.
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(POPULATION) MEAN AND VARIANCE: Recall that the mean and variance of a probability

distribution summarize notions of “center” and “spread” or “variability” of all possible values. Consider

a random variable Y with an associated probability distribution.

The population mean may be thought of as the average of all possible values that Y could take on,

so the average of all possible values across the entire distribution. Note that some values occur more

frequently (are more likely) than others, so this average reflects this. We write

E(Y ). (3.1)

to denote this average, the population mean. The expectation operator E denotes that the

“averaging” operation over all possible values of its argument is to be carried out. Formally, the average

may be thought of as a “weighted” average, where each possible value is represented in accordance to

the probability with which it occurs in the population. The symbol “µ” is often used.

The population mean may be thought of as a way of describing the “center” of the distribution of all

possible values. The population mean is also referred to as the expected value or expectation of Y .

Recall that if we have a random sample of observations on a random variable Y , say Y1, . . . , Yn, then

the sample mean is just the average of these:

Y = n−1
n∑

j=1

Yj .

For example, if Y = rat weight, and we were to obtain a random sample of n = 50 rats and weigh each,

then Y represents the average we would obtain.

• The sample mean is a natural estimator for the population mean of the probability distribution

from which the random sample was drawn.

The population variance may be thought of as measuring the spread of all possible values that may

be observed, based on the squared deviations of each value from the “center” of the distribution of all

possible values. More formally, variance is based on averaging squared deviations across the population,

which is represented using the expectation operator, and is given by

var(Y ) = E{(Y − µ)2}, µ = E(Y ). (3.2)

(3.2) shows the interpretation of variance as an average of squared deviations from the mean across the

population, taking into account that some values are more likely (occur with higher probability) than

others.

PAGE 33



CHAPTER 3 ST 732, M. DAVIDIAN

• The use of squared deviations takes into account magnitude of the distance from the “center” but

not direction, so is attempting to measure only “spread” (in either direction).

The symbol “σ2” is often used generically to represent population variance. Figure 1 shows two normal

distributions with the same mean but different variances σ2
1 < σ2

2, illustrating how variance describes

the “spread” of possible values.

Figure 1: Normal distributions with mean µ but different variances
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Variance is on the scale of the response, squared. A measure of spread that is on the same scale as the

response is the population standard deviation, defined as
√

var(Y ). The symbol σ is often used.

Recall that for a random sample as above, the sample variance is (almost) the average of the squared

deviations of each observation Yj from the sample mean Y .

S2 = (n − 1)−1
n∑

j=1

(Yj − Y )2.

• The sample variance is used as an estimator for population variance. Division by (n− 1) rather

than n is used so that the estimator is unbiased, i.e estimates the true population variance well

even if the sample size n is small.

• The sample standard deviation is just the square root of the sample variance, often represented

by the symbol S.
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GENERAL FACTS: If b is a fixed scalar and Y is a random variable, then

• E(bY ) = bE(Y ) = bµ; i.e. all values in the average are just multiplied by b. Also, E(Y + b) =

E(Y ) + b; adding a constant to each value in the population will just shift the average by this

same amount.

• var(bY ) = E{(bY −bµ)2} = b2var(Y ); i.e. all values in the average are just multiplied by b2. Also,

var(Y + b) = var(Y ); adding a constant to each value in the population does not affect how they

vary about the mean (which is also shifted by this amount).

SOURCES OF VARIATION: We now consider why the values of a characteristic that we might observe

vary. Consider again the rat weight example.

• Biological variation. It is well-known that biological entities are different; although living things

of the same type tend to be similar in their characteristics, they are not exactly the same (except

perhaps in the case of genetically-identical clones). Thus, even if we focus on rats of the same

strain, age, and gender, we expect variation in the possible weights of such rats that we might

observe due to inherent, natural biological variation.

Let Y represent the weight of a randomly chosen rat, with probability distribution having mean

µ. If all rats were biologically identical, then the population variance of Y would be equal to 0,

and we would expect all rats to have exactly weight µ. Of course, because rat weights vary as a

consequence of biological factors, the variance is > 0, and thus the weight of a randomly chosen

rat is not equal to µ but rather deviates from µ by some positive or negative amount. From this

view, we might think of Y as being represented by

Y = µ + b, (3.3)

where b is a random variable, with population mean E(b) = 0 and variance var(b) = σ2
b , say.

Here, Y is “decomposed” into its mean value (a systematic component) and a random devia-

tion b that represents by how much a rat weight might deviate from the mean rat weight due to

inherent biological factors.

(3.3) is a simple statistical model that emphasizes that we believe rat weights we might see vary

because of biological phenomena. Note that (3.3) implies that E(Y ) = µ and var(Y ) = σ2
b .
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• Measurement error. We have discussed rat weight as though, once we have a rat in hand, we

may know its weight exactly. However, a scale usually must be used. Ideally, a scale should

register the true weight of an item each time it is weighed, but, because such devices are imperfect,

measurements on the same item may vary time after time. The amount by which the measurement

differs from the truth may be thought of as an error; i.e. a deviation up or down from the true

value that could be observed with a “perfect” device. A “fair” or unbiased device does not

systematically register high or low most of the time; rather, the errors may go in either direction

with no pattern.

Thus, if we only have an unbiased scale on which to weigh rats, a rat weight we might observe

reflects not only the true weight of the rat, which varies across rats, but also the error in taking the

measurement. We might think of a random variable e, say, that represents the error that might

contaminate a measurement of rat weight, taking on possible values in a hypothetical “population”

of all such errors the scale might commit.

We still believe rat weights vary due to biological variation, but what we see is also subject to

measurement error. It thus makes sense to revise our thinking of what Y represents, and think

of Y = “measured weight of a randomly chosen rat.” The population of all possible values Y

could take on is all possible values of rat weight we might measure; i.e., all values consisting of a

true weight of a rat from the population of all rats contaminated by a measurement error from

the population of all possible such errors.

With this thinking, it is natural to represent Y as

Y = µ + b + e = µ + ε, (3.4)

where b is as in (3.3). e is the deviation due to measurement error, with E(e) = 0 and var(e) = σ2
e ,

representing an unbiased but imprecise scale.

In (3.4), ε = b + e represents the aggregate deviation due to the effects of both biological

variation and measurement error. Here, E(ε) = 0 and var(ε) = σ2 = σ2
b + σ2

e , so that E(Y ) = µ

and var(Y ) = σ2 according to the model (3.4). Here, σ2 reflects the “spread” of measured rat

weights and depends on both the spread in true rat weights and the spread in errors that could

be committed in measuring them.

There are still further sources of variation that we could consider; we defer discussion to later in the

course. For now, the important message is that, in considering statistical models, it is critical to be

aware of different sources of variation that cause observations to vary. This is especially important

with longitudinal data, as we will see.
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We now consider these concepts in the context of a familiar statistical model.

SIMPLE LINEAR REGRESSION: Consider the simple linear regression model. At each fixed value

x1, . . . , xn, we observe a corresponding random variable Yj , j = 1, . . . , n. For example, suppose that

the xj are doses of a drug. For each xj , a rat is randomly chosen and given this dose. The associated

response for the jth rat (given dose xj) may be represented by Yj .

The simple linear regression model as usually stated is

Yj = β0 + β1xj + εj ,

where εj is a random variable with mean 0 and variance σ2; that is E(εj) = 0, var(εj) = σ2. Thus,

E(Yj) = β0 + β1xj and var(Yj) = σ2.

This model says that, ideally, at each xj , the response of interest, Yj , should be exactly equal to the

fixed value β0 + β1xj , the mean of Yj . However, because of factors like (i) biological variation and (ii)

measurement error, the values we might see at xj vary. In the model, εj represents the deviation from

β0 + β1xj that might occur because of the aggregate effect of these sources of variation.

If Yj is a continuous random variable, it is often the case that the normal distribution is a reasonable

probability model for the population of εj values; that is,

εj ∼ N (0, σ2).

This says that the total effect of all sources of variation is to create deviations from the mean of Yj that

may be equally likely in either direction as dictated by the symmetric normal probability distribution.

Under this assumption, we have that the population of observations we might see at a particular xj is

also normal and centered at β0 + β1xj ; i.e.

Yj ∼ N (β0 + β1xj , σ2).

• This model says that the chance of seeing Yj values above or below the mean β0 + β1xj is the

same (symmetry).

• This is an especially good model when the predominant source of variation (represented by the

εj) is due to a measuring device.

• It may or may not be such a good model when the predominant source of variation is due to

biological phenomena (more later in the course!).
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The model thus says that, at each xj , there is a population of possible Yj values we might see, with

mean β0 + β1xj and variance σ2. We can represent this pictorially by considering Figure 2.

Figure 2: Simple linear regression
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“ERROR”: An unfortunate convention in the literature is that the εj are referred to as errors, which

causes some people to believe that they represent solely deviation due to measurement error. We prefer

the term deviation to emphasize that Yj values may deviate from β0 +β1xj due to the combined effects

of several sources (but not limited to measurement error).

INDEPENDENCE: An important assumption for simple linear regression and, indeed, more general

problems, is that the random variables Yj , or equivalently, the εj , are independent.

(Statistical) independence is a formal statistical concept with an important practical interpretation. In

particular, in our simple linear regression model, this says that the way in which Yj at xj takes on its

values is completely unrelated to the way in which Yj′ observed at another position xj′ takes on its

values. This is certainly a reasonable assumption in many situations.

• In our example, where xj are doses of a drug, each given to a different rat, there is no reason to

believe that responses from different rats should be related in any way. Thus, the way in which

Yj values turn out at different xj would be totally unrelated.
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The consequence of independence is that we may think of data on an observation-by-observation

basis; because the behavior of each observation is unrelated to that of others, we may talk about each

one in its own right, without reference to the others.

Although this way of thinking may be relevant for regression problems where the data were collected

according to a scheme like that in the example above, as we will see, it may not be relevant for

longitudinal data.

3.2 Random vectors

As we have already mentioned, when several observations are taken on the same unit, it will be

convenient, and in fact, necessary, to talk about them together. We thus must extend our way of

thinking about random variables and probability distributions.

RANDOM VECTOR: A random vector is a vector whose elements are random variables. Let

Y =




Y1

Y2

...

Yn




be a (n × 1) random vector.

• Each element of Y , Yj , j = 1, . . . , n, is a random variable with its own mean, variance, and

probability distribution; e.g.

E(Yj) = µj , var(yj) = E{(Yj − µj)
2} = σ2

j .

We might furthermore have that Yj is normally distributed; i.e.

Yj ∼ N (µj , σ
2
j ).

• Thus, if we talk about a particular element of Y in its own right, we may speak in terms of its

particular probability distribution, mean, and variance.

• Probability distributions for single random variables are often referred to as univariate, because

they refer only to how one (scalar) random variable takes on its values.
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JOINT VARIATION: However, if we think of the elements of Y together, we must consider the fact

that they come together in a group, so that there might be relationships among them. Specifically,

if we think of Y as containing possible observations on the same unit at times indexed by j, there is

reason to expect that the value observed at one time and that observed at another time may turn out

the way they do in a “common” fashion. For example,

• If Y consists of the heights of a pine seedling measured on each of n consecutive days, we might

expect a “large” value one day to be followed by a “large” value the next day.

• If Y consists of the lengths of baby rats in a litter of size n from a particular mother, we might

expect all the babies in a litter to be “large” or “small” relative to babies from other litters.

This suggests that if observations can be naturally thought to arise together, then they may not be

legitimately viewed as independent, but rather related somehow.

• In particular, they may be thought to vary together, or covary.

• This suggests that we need to think of how they take on values jointly.

JOINT PROBABILITY DISTRIBUTION: Just as we think of a probability distribution for a random

variable as describing the frequency with which the variable may take on values, we may think of a

joint probability distribution that describes the frequency with which an entire set of random variables

takes on values together. Such a distribution is referred to as multivariate for obvious reasons. We

will consider the specific case of the multivariate normal distribution shortly.

We may thus think of any two random variables in Y , Yj and Yk, say, as having a joint probability

distribution that describes how they take on values together.

COVARIANCE: A measure of how two random variable vary together is the covariance. Formally,

suppose Yj and Yk are two random variables that vary together. Each of them has its own probability

distribution with means µj and µk, respectively, which is relevant when we think of them separately.

They also have a joint probability distribution, which is relevant when we think of them together. Then

we define the covariance between Yj and Yk as

cov(Yj , Yk) = E{(Yj − µj)(Yk − µk)}. (3.5)

Here, the expectation operator denotes average over all possible pairs of values Yj and Yk may take on

together according to their joint probability distribution.
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Inspection of (3.5) shows

• Covariance is defined as the average across all possible values that Yj and Yk may take on jointly

of the product of the deviations of Yj and Yk from their respective means.

• Thus note that if “large” values (“larger” than their means) of Yj and Yk tend to happen together

(and thus “small” values of Yj and Yk tend to happen together), then the two deviations (Yj −µj)

and (Yk − µk) will tend to be positive together and negative together, so that the product

(Yj − µj)(Yk − µk) (3.6)

will tend to be positive for most of the pairs of values in the population. Thus, the average in

(3.5) will likely be positive.

• Conversely, if “large” values of Yj tend to happen coincidently with “small” values of Yk and vice

versa, then the deviation (Yj − µj) will tend to be positive when (Yk − µk) tends to be negative,

and vice versa. Thus the product (3.6) will tend to be negative for most of the pairs of values in

the population. Thus, the average in (3.5) will likely be negative.

• Moreover, if in truth Yj and Yk are unrelated, so that “large” Yj are likely to happen with “small”

Yk and “large” Yk and vice versa, then we would expect the deviations (Yj −µj) and (Yk −µk) to

be positive and negative in no real systematic way. Thus, (3.6) may be negative or positive with

no special tendency, and the average in (3.5) would likely be zero.

Thus, the quantity of covariance defined in (3.5) makes intuitive sense as a measure of how “associated”

values of Yj are with values of Yk.

• In the last bullet above, Yj and Yk are unrelated, and we argued that cov(Yj , Yk) = 0. In fact,

formally, if Yj and Yk are statistically independent, then it follows that cov(Yj , Yk) = 0.

• Note that cov(Yj , Yk) = cov(Yk, Yj).

• Fact: the covariance of a random variable Yj and itself,

cov(Yj , Yj) = E{(Yj − µj)(Yj − µj)} = var(Yj) = σ2
j .

• Fact: If we have two random variables, Yj and Yk, then

var(Yj + Yk) = var(Yj) + var(Yk) + 2cov(Yj , Yk).
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That is, the variance of the population consisting of all possible values of the sum Yj + Yk is the

sum of the variances for each population, adjusted by how “associated” the two values are. Note

that if Yj and Yk are independent, var(Yj + Yk) = var(Yj) + var(Yk).

We now see how all of this information is summarized.

EXPECTATION OF A RANDOM VECTOR: For an entire n-dimensional vector random Y , we sum-

marize the means for each element in a vector

µ =




E(Y1)

E(Y2)
...

E(Yn)




=




µ1

µ2

...

µn




.

We define the expected value or mean of Y as

E(Y ) = µ;

the expectation operation is applied to each element in the vector Y , yielding the vector µ of means.

RANDOM MATRIX: A random matrix is simply a matrix whose elements are random variables; we

will see a specific example of importance to us in a moment. Formally, if Y is a (r × c) matrix with

element Yjk, each a random variable, then each element has an expectation, E(Yjk) = µjk, say. Then

the expected value or mean of Y is defined as the corresponding matrix of means; i.e.

E(Y) =




E(Y11) E(Y12) · · · E(Y1c)
...

...
...

...

E(Yr1) E(Yr2) · · · E(Yrc)




.

COVARIANCE MATRIX: We now see how this concept is used to summarize information on covariance

among the elements of a random vector. Note that

(Y − µ)(Y − µ)′ =




(Y1 − µ1)
2 (Y1 − µ1)(Y2 − µ2) · · · (Y1 − µ1)(Yn − µn)

(Y2 − µ2)(Y1 − µ1) (Y2 − µ2)
2 · · · (Y2 − µ2)(Yn − µn)

...
...

. . .
...

(Yn − µn)(Y1 − µ1) (Yn − µn)(Y2 − µ2) · · · (Yn − µn)2




,

which is a random matrix.

PAGE 42



CHAPTER 3 ST 732, M. DAVIDIAN

Note then that

E{(Y − µ)(Y − µ)′} =




E(Y1 − µ1)
2 E(Y1 − µ1)(Y2 − µ2) · · · E(Y1 − µ1)(Yn − µn)

E(Y2 − µ2)(Y1 − µ1) E(Y2 − µ2)
2 · · · E(Y2 − µ2)(Yn − µn)

...
...

. . .
...

E(Yn − µn)(Y1 − µ1) E(Yn − µn)(Y2 − µ2) · · · E(Yn − µn)2




=




σ2
1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ2
n




= Σ,

say, where for j, k = 1, . . . , n, var(Yj) = σ2
j and we define

cov(Yj , Yk) = σjk.

The matrix Σ is called the covariance matrix or variance-covariance matrix of Y .

• Note that σjk = σkj , so that Σ is a symmetric, square matrix.

• We will write succinctly var(Y ) = Σ to state that the random vector Y has covariance matrix Σ.

JOINT PROBABILITY DISTRIBUTION: It follows that, if we consider the joint probability distribu-

tion describing how the entire set of elements of Y take on values together, µ and Σ are the features

of this distribution characterizing “center” and “spread and association.”

• µ and Σ are referred to as the population mean and population covariance (matrix) for the

population of data vectors represented by the joint probability distribution.

• The symbols µ and Σ are often used generically to represent population mean and covariance, as

above.
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CORRELATION: It is informative to separate the information on “spread” contained in variances σ2
j

from that describing “association.” Thus, we define a particular measure of association that takes into

account the fact that different elements of Y may vary differently on their own.

The population correlation coefficient between Yj and Yk is defined as

ρjk =
σjk√

σ2
j

√
σ2

k

.

Of course, σj =
√

σ2
j is the population standard deviation of Yj , on the same scale of measurement as

Yj , and similarly for Yk.

• ρjk scales the information on association in the covariance in accordance with the magnitude of

variation in each random variable, creating a “unitless” measure. Thus, it allows one to think of

the associations among variables measured on different scales.

• ρjk = ρkj .

• Note that if σjk = σjσk, then ρjk = 1. Intuitively, if this is true, it says that the ways Yj and

Yk vary separately is identical to how they vary together, so that if we know one, we know the

other. Thus, a correlation of 1 indicates that the two random variables are “perfectly positively

associated.” Similarly, if σjk = −σjσk, then ρjk = −1 and by the same reasoning they are

“perfectly negatively associated.”

• Clearly, ρjj = 1, so a random variable is perfectly positively correlated with itself.

• It may be shown that correlations must satisfy −1 ≤ ρjk ≤ 1.

• If σjk = 0 then ρjk = 0, so if Yj and Yk are independent, then they have 0 correlation.

CORRELATION MATRIX: It is customary to summarize the information on correlations in a matrix:

The correlation matrix Γ is defined as

Γ =




1 ρ12 · · · ρ1n

ρ21 1 · · · ρ1n

...
...

. . .
...

ρn1 ρn2 · · · 1




.

For now, we use the symbol Γ to denote the correlation matrix of a random vector.
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ALTERNATIVE REPRESENTATION OF COVARIANCE MATRIX: Note that knowledge of the vari-

ances σ2
1, . . . , σ

2
n and the correlation matrix Γ is equivalent to knowledge of Σ, and vice versa. It is often

easier to think of associations among random variables on the unitless correlation scale than in terms

of covariance; thus, it is often convenient to write the covariance matrix another way that presents the

correlations explicitly.

Define the “standard deviation” matrix

T 1/2 =




σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σn




.

The “1/2” reminds us that this is a diagonal matrix with the square roots of the variances on the

diagonal. Then it may be verified that (try it)

T 1/2ΓT 1/2 = Σ. (3.7)

The representation (3.7) will prove convenient when we wish to discuss associations implied by models

for longitudinal data in terms of correlations. Moreover, it is useful to appreciate (3.7), as it allows

calculations involving Σ that we will see later to be implemented easily on a computer.

GENERAL FACTS: As we will see later, we will often be interested in linear combinations of the

elements of a random vector Y ; that is, functions of the form

c1Y1 + · · · cnYn,

which may be written succinctly as c′Y , where c is the column vector

c =




c1

...

cn




.

• Note that c′Y is a scalar quantity.

It is possible using facts on the multiplication random variables by scalars (see above) and the definitions

of µ and Σ to show that

E(c′Y ) = c′µ var(c′Y ) = c′Σc.

(Try to verify these.)
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More generally, if we have a set of q such linear combinations defined by vectors c1, . . . , cq, we may

summarize them all in a matrix whose rows are the c′k; i.e.

C =




c11 · · · c1n

...
. . .

...

cq1 · · · cqn




.

Then CY is a (q × 1) random vector. For example, if we consider the simple linear model in matrix

notation, we noted earlier that if Y is the random vector consisting of the observations, then the least

squares estimator of β is given by

β̂ = (X ′X)−1X ′Y ,

which is such a linear combination. It may be shown using the above that

E(CY ) = Cµ var(CY ) = CΣC ′.

Finally, the results above may be generalized. If A is a (q × 1) vector, then

• E(CY + a) = Cµ + a.

• var(CY + a) = CΣC ′.

• We will make extensive use of this result.

• It is important to recognize that there is nothing mysterious about these results – they merely

represent a streamlined way of summarizing information on operations performed on all elements

of a random vector succinctly. For example, the first result on E(CY + a) just summarizes what

the expected value of several different combinations of the elements of Y is, where each is shifted

by a constant (the corresponding element in a). Operationally, the results follow from applying

the above definitions and matrix operations.

3.3 The multivariate normal distribution

A fundamental theme in much of statistical methodology is that the normal probability distribution

is a reasonable model for the population of possible values taken on by many random variables of

interest. In particular, the normal distribution is often (but not always) a good approximation to the

true probability distribution for a random variable y when the random variable is continuous. Later

in the course, we will discuss other probability distributions that are better approximations when the

random variable of interest is continuous or discrete.
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If we have a random vector Y with elements that are continuous random variables, then, it is natural

to consider the normal distribution as a probability model for each element Yj . However, as we have

discussed, we are likely to be concerned about associations among the elements of Y . Thus, it does not

suffice to describe each of the elements Yj separately; rather, we seek a probability model that describes

their joint behavior. As we have noted, such probability distributions are called multivariate for

obvious reasons.

The multivariate normal distribution is the extension of the normal distribution of a single random

variable to a random vector composed of elements that are each normally distributed. Through its

form, it naturally takes into account correlation among the elements of Y ; moreover, it gives a basis

for a way of thinking about an extension of “least squares” that is relevant when observations are not

independent but rather are correlated.

NORMAL PROBABILITY DENSITY: Recall that, for a random variable y, the normal distribution

has probability density function

f(y) =
1

(2π)1/2σ
exp

{
−(y − µ)2/(2σ2)

}
. (3.8)

This function has the shape shown in Figure 3. The shape will vary in terms of “center” and “spread”

according to the values of the population mean µ and variance σ2 (e.g. recall Figure 1).

Figure 3: Normal density function with mean µ.
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Several features are evident from the form of (3.8):

• The form of the function is determined by µ and σ2. Thus, if we know the population mean and

variance of a random variable Y , and we know it is normally distributed, we know everything

about the probabilities associated with values of Y , because we then know the function (3.8)

completely.

• The form of (3.8) depends critically on the term

−(y − µ)2

σ2
= (y − µ)(σ2)−1(y − µ). (3.9)

Note that this term depends on the squared deviation (y − µ)2.

• The deviation is standardized by the standard deviation σ, which has the same units as y, so

that it is put on a unitless basis.

• This standardized deviation has the interpretation of a distance measure – it measures how far y

is from µ, and then puts the result on a unitless basis relative to the “spread” about µ expected.

• Thus, the normal distribution and methods such as least squares, which depends on minimizing

a sum of squared deviations, have an intimate connection. We will use this connection to motivate

the interpretation of the form of multivariate normal distribution informally now. Later in the

course, we will be more formal about this connection.

SIMPLE LINEAR REGRESSION: For now, to appreciate this form and its extension, consider the

method of least squares for fitting a simple linear regression. (The same considerations apply to multiple

linear regression, which will be discussed later in this chapter.) As before, at each fixed value x1, . . . , xn,

there is a corresponding random variable Yj , j = 1, . . . , n, which is assumed to arise from

Yj = β0 + β1xj + εj , β = (β0, β1)
′

The further assumption is that Yj are each normally distributed with means µj = β0+β1xj and variance

σ2.

• Thus, each Yj ∼ N (µj , σ
2), so that they have different means but the same variance.

• Furthermore, the Yj are assumed to be independent.

PAGE 48



CHAPTER 3 ST 732, M. DAVIDIAN

The method of least squares is to minimize in β the sum of squared deviations
∑n

j=1(Yj − µj)
2 which

is the same as minimizing
n∑

j=1

(Yj − µj)
2/σ2 (3.10)

as σ2 is just a constant. Pictorially, realizations of such deviations are shown in Figure 4.

Figure 4: Deviations from the mean in simple linear regression
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IMPORTANT POINTS:

• Each deviation gets “equal weight” in (3.10) – all are “weighted” by the same constant, σ2.

• This makes sense – if each Yj has the same variance, then each is subject to the same magnitude

of variation, so the information on the population at xj provided by Yj is of “equal quality.” Thus,

information from all Yj is treated as equally valuable in determining β.

• The deviations corresponding to each observation are summed, so that each contributes to (3.10)

in its own right, unrelated to the contributions of any others.

• (3.10) is like an overall distance measure of Yj values from their means µj (put on a unitless basis

relative to the “spread” expected for any Yj).
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MULTIVARIATE NORMAL PROBABILITY DENSITY: The joint probability distribution that is the

extension of (3.8) to a (n × 1) random vector Y , each of whose components are normally distributed

(but possibly associated), is given by

f(y) =
1

(2π)n/2
|Σ|−1/2 exp

{
−(y − µ)′Σ−1(y − µ)/2

}
(3.11)

• (3.11) describes the probabilities with which the random variable Y takes on values jointly in its

n elements.

• The form of (3.11) is determined by µ and Σ. Thus, as in the univariate case, if we know the

mean vector and covariance matrix of a random vector Y , and we know each of its elements are

normally distributed, then we know everything about the joint probabilities associated with values

y of Y .

• By analogy to (3.9), the form of f(y) depends critically on the term

(y − µ)′Σ−1(y − µ). (3.12)

Note that this is a quadratic form, so it is a scalar function of the elements of (y−µ) and Σ−1.

Specifically, if we refer to the elements of Σ−1 as σjk, i.e.

Σ−1 =




σ11 · · · σ1n

...
. . .

...

σn1 · · · σnn




,

then we may write

(y − µ)′Σ−1(y − µ) =
n∑

j=1

n∑

k=1

σjk(yj − µj)(yk − µk). (3.13)

Of course, the elements σjk will be complicated functions of the elements σ2
j , σjk of Σ, i.e. the

variances of the Yj and the covariances among them.

• This term thus depends on not only the squared deviations (yj − µj)
2 for each element in y

(which arise in the double sum when j = k), but also on the crossproducts (yj − µj)(yk − µk).

Each contribution of these squares and crossproducts is being “standardized” somehow by values

σjk that somehow involve the variances and covariances.

• Thus, although it is quite complicated, one gets the suspicion that (3.13) has an interpretation,

albeit more complex, as a distance measure, just as in the univariate case.
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BIVARIATE NORMAL DISTRIBUTION: To gain insight into this suspicion, and to get a better

understanding of the multivariate distribution, it is instructive to consider the special case n = 2, the

simplest example of a multivariate normal distribution (hence the name bivariate).

Here,

Y =




Y1

Y2


 , µ =




µ1

µ2


 , Σ =




σ2
1 σ12

σ12 σ2
2


 .

Using the inversion formula for a (2 × 2) matrix given in Chapter 2,

Σ−1 =
1

σ2
1σ

2
2 − σ2

12




σ2
2 −σ12

−σ12 σ2
1


 .

We also have that the correlation between Y1 and Y2 is given by

ρ12 =
σ12

σ1σ2
.

Using these results, it is an algebraic exercise to show that (try it!)

(y − µ)′Σ−1(y − µ) =
1

1 − ρ2
12

{
(y1 − µ1)

2

σ2
1

+
(y2 − µ2)

2

σ2
2

− 2ρ12
(y1 − µ1)

σ1

(y2 − µ2)

σ2

}
. (3.14)

Compare this expression to the general one (3.13).

Inspection of (3.14) shows that the quadratic form involves two components:

• The sum of standardized squared deviations

(y1 − µ1)
2

σ2
1

+
(y2 − µ2)

2

σ2
2

.

This sum alone is in the spirit of the sum of squared deviations in least squares, with the difference

that each deviation is now weighted in accordance with its variance. This makes sense – because

the variances of Y1 and Y2 differ, information on the population of Y1 values is of “different quality”

than that on the population of Y2 values. If variance is “large,” the quality of information is poorer;

thus, the larger the variance, the smaller the “weight,” so that information of “higher quality”

receives more weight in the overall measure. Indeed, then, this is like a “distance measure,” where

each contribution receives an appropriate weight.
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• In addition, there is an “extra” term that makes (3.14) have a different form than just a sum of

weighted squared deviations:

−2ρ12
(y1 − µ1)

σ1

(y2 − µ2)

σ2
.

This term depends on the crossproduct, where each deviation is again weighted in accordance

with its variance. This term modifies the “distance measure” in a way that is connected with

the association between Y1 and Y2 through their crossproduct and their correlation ρ12. Note

that the larger this correlation in magnitude (either positive or negative), the more we modify the

usual sum of squared deviations.

• Note that the entire quadratic form also involves the multiplicative factor 1/(1 − ρ2
12), which is

greater than 1 if |ρ12| > 0. This factor scales the overall distance measure in accordance with the

magnitude of the association.

INTERPRETATION: Based on the above observations, we have the following practical interpretation

of (3.14):

• (3.14) is an overall measure of distance of the value y of Y from its mean µ.

• It contains the usual distance measure, a sum of appropriately weighted squared deviations.

• However, if Y1 and Y2 are positively correlated, ρ12 > 0, it is likely that the crossproduct

(Y1 −µ1)(Y2 −µ2) is positive. The measure of distance is thus reduced (we subtract off a positive

quantity). This makes sense – if Y1 and Y2 are positively correlated, knowing one tells us a lot

about the other. Thus, we won’t have to “travel as far” to get from Y1 to µ1 and Y2 to µ2.

• Similarly, if Y1 and Y2 are negatively correlated, ρ12 < 0, it is likely that the crossproduct

(Y1 − µ1)(Y2 − µ2) is negative. The measure of distance is again reduced (we subtract off a

positive quantity). Again, if Y1 and Y2 are negatively correlated, knowing one still tells us a lot

about the other (in the opposite direction).

• Note that if ρ12 = 0, which says that there is no association between values taken on by Y1 and

Y2, then the usual distance measure is not modified – there is “nothing to be gained” in traveling

from Y1 to µ1 by knowing Y2, and vice versa.
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This interpretation may be more greatly appreciated by examining pictures of the bivariate normal

density for different values of the correlation ρ12. Note that the density is now an entire surface in 3

dimensions rather than just a curve in the plane, because account is taken of all possible pairs of values

of Y1 and Y2. Figure 5 shows a the bivariate density function with µ1 = 40, µ2 = 40, σ2
1 = 5, σ2

2 = 5 for

ρ12 = 0.8 and ρ12 = 0.0.

Figure 5: Bivariate normal distributions with different correlations
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• The two panels in each row are the surface and a “bird’s-eye” view for the 2 ρ12 values.

• For ρ12 = 0.8, a case of strong positive correlation, note that the picture is “tilted” at a 45 degree

angle and is quite narrow. This reflects the implication of positive correlation – values of Y1 and

Y2 are highly associated. Thus, the “overall distance” of a pair (Y1, Y2) from the “center” µ is

constrained by this association.

• For ρ12 = 0, Y1 and Y2 are not at all associated. Note now that the picture is not “tilted” – for a

given value of Y1, Y2 can be “anything” within the relevant range of values for each. The “overall”

distance of a pair (Y1, Y2) from the “center” µ is not constrained by anything.
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INDEPENDENCE: Note that if Y1 and Y2 are independent, then ρ12 = 0. In this case, the second term

in the exponent of (3.14) disappears, and the entire quadratic form reduces to

(y1 − µ1)
2

σ2
1

+
(y2 − µ2)

2

σ2
2

.

This is just the usual sum of weighted squared deviations.

EXTENSION: As you can imagine, these same concepts carry over to higher dimensions n > 2 in an

analogous fashion; although the mechanics are more difficult, the ideas and implications are the same.

• In general, the quadratic form (y − µ)′Σ−1(y − µ) is a distance measure taking into account

associations among the elements of Y , Y1, . . . , Yn, in the sense described above.

• When the Yj are all mutually independent, the quadratic form will reduce to a weighted sum of

squared deviations, as observed in particular for the bivariate case. It is actually possible to see

this directly.

If Yj are independent, then all the correlations ρjk = 0, as are the covariances σjk, and it follows

that Σ is a diagonal matrix. Thus, if

Σ =




σ2
1 0 · · · 0
...

...
...

0 0 · · · σ2
n




,

then

Σ−1 =




1/σ2
1 0 · · · 0

...
...

...

0 0 · · · 1/σ2
n




,

so that (verify)

(y − µ)′Σ−1(y − µ) =
n∑

j=1

(yj − µj)
2/σ2

j .

Note also that, as Σ is diagonal, we have

|Σ| = σ2
1σ

2
2 · · ·σ2

n.

Thus, f(y) becomes

f(y) =
1

(2π)1/2σ1
exp{−(y1 − µ1)

2/(2σ2
1)} · · ·

1

(2π)1/2σn
exp{−(yn − µn)2/(2σ2

n)}; (3.15)

f(y) reduces to the product of individual normal densities. This is a defining characteristic of

statistical independence; thus, we see that if Y1, . . . , Yn are each normally distributed and

uncorrelated, they are independent. Of course, this independence assumption forms the basis for

the usual method of least squares.
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SIMPLE LINEAR REGRESSION, CONTINUED: We now apply the above concepts to extension of

usual least squares. We have seen that estimation of β is based on minimizing an appropriate distance

measure. For classical least squares under the assumptions of

(i) constant variance

(ii) independence

the distance measure to be minimized is a sum of squared deviations, where each receives the same

weight.

• Consider relaxation of (i); i.e. suppose we believe that Y1, . . . , Yn were each normally distributed

and uncorrelated (which implies independent or totally unrelated), but that var(Yj) is not the

same at each xj . This situation is represented pictorially in Figure 6.

Figure 6: Simple linear regression with nonconstant variance
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Under these conditions, we believe that the joint probability density of Y is given by (3.15),

so we would want to obtain the estimator for β that minimizes the overall distance measure

associated with this, the one that takes the fact that there are different variances, and hence

different “quality” of information, at each xj ; i.e. the weighted sum of squared deviations

n∑

j=1

(Yj − µj)
2/σ2

j .

Estimation of β in linear regression based on minimization of this distance measure is often called

weighted least squares for obvious reasons.
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(Note that, to actually carry this out in practice, we would need to know the values of each σ2
j ,

which is unnecessary when all the σ2
j are the same. We will take up this issue later.)

• Consider relaxation both of (i) and (ii); we believe that Y1, . . . , Yn are each normally distributed

but correlated with possibly different variances at each xj . In this case, we believe that y follows

a general multivariate normal distribution. Thus, we would want to base estimation of β on the

overall distance measure associated with this probability density, which takes both these features

into account; i.e. we would minimize the quadratic form

(Y − µ)′Σ−1(Y − µ).

Estimation of β in linear regression based on such a general distance measure is also sometimes

called weighted least squares, where it is understood that the “weighting” also involves infor-

mation on correlations (through terms involving crossproducts).

(Again, to carry this out in practice, we would need to know the entire matrix Σ; more later.)

NOTATION: In general, we will use the following notation. If Y is a (n × 1) random vector with a

multivariate normal distribution, with mean vector µ and covariance matrix Σ, we will write this as

Y ∼ Nn(µ,Σ).

• The subscript n reminds us that the distribution is n-variate

• We may at times omit the subscript in places where the dimension is obvious.

PROPERTIES:

• If Y ∼ Nn(µ,Σ), then if we have a linear combination of Y , CY , where C is (q × n), then

CY ∼ Nn(Cµ, CΣC ′).

• If also Z ∼ Nn(τ ,Γ) and is independent of Y , then Z + Y ∼ Nn(µ + τ ,Σ + Γ) (as long as Σ

and Γ are nonsingular).

• We will use these two facts alone and together.
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3.4 Multiple linear regression

So far, we have illustrated the usefulness of matrix notation and some key points in the context of the

problem of simple linear regression, which we have referred to informally throughout our discussion.

Now that we have discussed the multivariate normal distribution, it is worthwhile to review formally

the usual multiple linear regression model, of which the simple linear regression model is a special case,

and summarize what we have discussed from the broader perspective we have developed in terms of this

model in one place. This will prove useful later, when we consider more complex models for longitudinal

data.

SITUATION: The situation of the general multiple linear regression model is as follows.

• We have responses Y1, . . . , Yn, the jth of which is to be taken at a setting of k covariates (also

called predictors or independent variables) xj1, xj2, . . . , xjk.

• For example, an experiment may be conducted involving n men. Each man spends 30 minutes

walking on a treadmill, and at the end of this period, Y = his oxygen intake rate (ml/kg/min)

is measured. Also recorded are x1 = age (years), x2 = weight (kg) x3 = heart rate while resting

(beats/min), and x4 = oxygen rate while resting (ml/kg/min). Thus, for the jth man, we have

response

Yj = oxygen intake rate after 30 min

and his covariate values xj1, . . . , xj4.

The objective is to develop a statistical model that represents oxygen intake rate after 30 minutes

on the treadmill as a function of the covariates. One possible use for the model may be to get a

sense of how oxygen rates after 30 minutes might be for men with certain baseline characteristics

(age, weight, resting physiology) in order to develop guidelines for an exercise program.

• A standard model under such conditions is to assume that each covariate affects the response in

a linear fashion. Specifically, if there are k covariates (k = 4 above), then we assume

Yj = β0 + β1xj1 + · · · + βkxjk + εj , µj = β0 + β1xj1 + · · · + βkxjk. (3.16)

Here, εj is a random deviation with mean 0 and variance σ2 that characterizes how the observations

on Yj deviate from the mean value µj due to the aggregate effects of relevant sources of

variation.
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• More formally, under this model, we believe that there is a population of all possible Yj values that

could be seen for, in the case of our example, men with the particular covariate values xj1, . . . , xjk.

This population is thought to have mean µj given above. εj reflects how such an observation might

deviate from this mean.

• The model itself has a particular interpretation. It says that if the value of one of the covariates,

xk, say, is increased by one unit, then the value of the mean increases by the amount βk.

• The usual assumption is that at any setting of the covariates, the population of possible Yj values

is well-represented by a normal distribution with mean µj and variance σ2. Note that the

variance σ2 is the same regardless of the covariate setting. More formally, we may state this as

εj ∼ N (0, σ2) or equivalently Yj ∼ N (µj , σ
2).

• Furthermore, it is usually assumed that the Yj are independent. This would certainly make

sense in our example – we would expect that if the men were completely unrelated (chosen at

random from the population of all men of interest), then there should be no reason to expect

that the response observed for any one man would have anything to do with that observed for

another.

• The model is usually represented in matrix terms: letting the row vector x′

j = (1, xj1, . . . , xjk),

the model is written

Yj = x′

jβ + εj , Y = Xβ + ε,

with Y = (Y1, . . . , Yn)′, ε = (ε1, . . . , εn)′,

X =




1 x11 · · · x1k

...
...

...
...

1 xn1 · · · xnk




, β =




β0

β1

...

βk




(p × 1),

where p = k + 1 is the dimension of β, so that the (n × p) design matrix X has rows x′

j .
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• Thus, thinking of the data as the random vector Y , we may summarize the assumptions of

normality, independence, and constant variance succinctly. We may think of Y (n × 1) as

having a multivariate normal distribution with mean Xβ. Because the elements of Y are assumed

independent, all covariances among the Yj are 0, and the covariance matrix of Y is diagonal.

Moreover, with constant variance σ2, the variance is the same for each Yj . Thus, the covariance

matrix is given by 


σ2 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 · · · 0 σ2




= σ2I,

where I is a (n × n) identity matrix.

We thus may write

Y ∼ Nn(Xβ, σ2I).

• Note that the simple linear regression model is a special case of this with k = 1. The only

real difference is in the complexity of the assumed model for the mean of the population of Yj

values; for the general multiple linear regression model, this depends on k covariates. The simple

linear regression case is instructive because we are able to depict things graphically with ease; for

example, we may plot the relationship in a simple x-y plane. For the general model, this is not

possible, but in principle the issues are the same.

LEAST SQUARES ESTIMATION: The goal of an analysis of data of this form under assumption of

the multiple linear regression model (3.16) is to estimate the regression parameter β using the data

in order to characterize the relationship.

Under the usual assumptions discussed above, i.e.

• Yj (and equivalently εj) are normally distributed with variance σ2 for all j

• Yj (and equivalently εj) are independent

the usual estimator for β is found by minimizing the sum of squared deviations

n∑

j=1

(Yj − β0 − xj1β1 − · · · − xjpβk)
2.
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In matrix terms, the sum of squared deviations may be written

(Y − Xβ)′(Y − Xβ). (3.17)

In these terms, the sum of squared deviations may be seen to be just a quadratic form.

• Note that we may write these equivalently as

n∑

j=1

(Yj − β0 − xj1β1 − · · · − xjkβk)
2/σ2,

and

(Y − Xβ)′I(Y − Xβ)/σ2;

because σ2 does not involve β, we may equally well talk about minimizing these quantities.

Of course, as we have previously discussed, this shows that all observations are getting “equal

weight” in determining β, which is sensible if we believe that the populations of all values of

Yj at any covariate setting are equally variable (same σ2). We now see that we are minimizing

the distance measure associated with a multivariate normal distribution where all of the Yj are

mutually independent with the same variance (all covariances/correlations = 0).

• Minimizing (3.17) means that we are trying to find the value of β that minimizes the distance

between responses and the means; by doing so, we are attributing as much of the overall differences

among the Yj that we have seen to the fact that they arise from different settings of xj , and as

little as possible to random variation.

• Because the quadratic form (3.17) is just a scalar function of the p elements of β, it is possible

to use calculus to determine that values of these p elements that minimize the quadratic form.

Formally, one would take the derivatives of (3.17) with respect to each of β0, β1, . . . , βk and set

these p expressions equal to zero. These p expressions represent a system of equations that may

be solved to obtain the solution, the estimator β̂.
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• The set of p simultaneous equations that arise from taking derivatives of (3.17), expressed in

matrix notation, is

−2X ′Y + 2X ′Xβ = 0 or X ′Y = X ′Xβ.

We wish to solve for β. Note that X ′X is a square matrix (p × p) and X ′y is a (p × 1) vector.

Recall in Chapter 2 we saw how to solve a set of simultaneous equations like this; thus, we may

invoke that procedure to solve

X ′Y = X ′Xβ.

as long as the inverse of X ′X exists.

• Assuming this is the case, from Chapter 2, we know that X ′X will be of full rank (rank =

number of rows and columns = p) if X has rank p. We also know from Chapter 2 that if a square

matrix is of full rank, it is nonsingular, so its inverse exists. Thus, assuming X is of full rank,

we have that (X ′X)−1 exists, and we may premultiply both sides by (X ′X)−1 to obtain

(X ′X)−1X ′Y = (X ′X)−1X ′Xβ

= β.

• Thus, the least squares estimator for β is given by

β̂ = (X ′X)−1X ′Y . (3.18)

• Computation for general p is not feasible by hand, of course; particularly nasty is the inversion of

the matrix X ′X. Software for multiple regression analysis includes routines for inverting a matrix

of any dimension; thus, estimation of β by least squares for a general multiple linear regression

model is best carried out in this fashion.
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ESTIMATION OF σ2: It is often of interest to estimate σ2, the assumed common variance. The usual

estimator is

σ̂2 = (n − p)−1
n∑

j=1

(Yj − x′

jβ̂)2 = (n − p)−1(Y − Xβ̂)′(Y − Xβ̂).

• This makes intuitive sense. Each squared deviation (Yj − x′

jβ)2 contains information about the

“spread” of values of Yj at xj . As we assume that this spread is the same for all xj , a natural

approach to estimating its magnitude, represented by the variance σ2, would be to pool this

information across all n deviations. Because we don’t know β, we replace it by the estimator β̂.

• We will see a more formal rationale later.

SAMPLING DISTRIBUTION: When we estimate a parameter (like β or σ2) that describes a popu-

lation by an estimator (like β̂ or σ̂2), the estimator is some function of the responses, Y here. Thus,

the quality of the estimator, i.e. how reliable it is, depends on the variation inherent in the responses

and how much data on the responses we have.

• If we consider every possible set of data we might have ended up with of size n, each one of these

would give rise to a value of the estimator. We may think then of the population of all possible

values of the estimator we might have ended up with.

• We would hope that the mean of this population would be equal to the true value of the

parameter we are trying to estimate. This property is called unbiasedness.

• We would also hope that the variability in this population isn’t too large.

• If the values vary a lot across all possible data sets, then the estimator is not very reliable.

Indeed, we ended up with a particular data set, which yielded a particular estimate; however, had

we ended up with another data set, we might have ended up with quite a different estimate.

• If on the other hand these values vary little across all possible data sets, then the estimator is

reliable. Had we ended up with another set of data, we would have ended up with an estimate

that is quite similar to the one we have.

Thus, it is of interest to characterize the population of all possible values of an estimator. Because the

estimator depends on the response, the properties of this population will depend on those of Y . More

formally, we may think of the probability distribution of the estimator, describing how it takes on

all its possible values. This probability distribution will be connected with that of the Y .
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A probability distribution that characterizes the population of all possible values of an estimator is

called a sampling distribution.

To understand the nature of the sampling distribution of β̂, we thus consider the probability distribution

of

β̂ = (X ′X)−1X ′Y , (3.19)

which is a linear combination of the elements of Y . We may thus apply earlier facts to derive

mathematically the sampling distribution.

• We may determine the mean of this distribution by applying the expectation operator to the

expression (3.19); this represents averaging across all possible values of the expression (which

follow from all possible values of Y ). Now Y ∼ Nn(Xβ, σ2I) under the usual assumptions, thus

E(Y ) = Xβ. Thus, using the results in section 3.2,

E(β̂) = E{(X ′X)−1X ′Y } = (X ′X)−1X ′E(Y ) = (X ′X)−1X ′Xβ = β,

showing that β̂ under our assumptions is an unbiased estimator of β.

• We may also determine the variance of this distribution. Formally, this would mean applying the

expectation operator to

{(X ′X)−1X ′Y − β}{(X ′X)−1X ′Y − β}′;

i.e. finding the covariance matrix of (3.19). Rather than doing this directly, it is simpler to exploit

the results in section 3.2, which yield

var{(X ′X)−1X ′Y } = (X ′X)−1X ′var(Y ){(X ′X)−1X ′}′

= (X ′X)−1X ′(σ2I)X(X ′X)−1 = σ2(X ′X)−1.

Note that the variability of the population of all possible values of β̂ depends directly on σ2, the

variation in the response. It also depends on n, the sample size, because X is of dimension (n×p).

• In fact, we may say more – because under our assumptions Y has a multivariate normal distribu-

tion, it follows that the probability distribution of all possible values of β̂ is multivariate normal

with this mean and covariance matrix; i.e.

β̂ ∼ Np{β, σ2(X ′X)−1}.
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This result is used to obtain estimated standard errors for the components of β̂; i.e. estimates of the

standard deviation of the sampling distributions of each component of β̂.

• In practice, σ2 is unknown, thus, it is replaced with the estimate σ̂2.

• The estimated standard error of the kth element of β̂ is then the square root of the kth diagonal

element of σ̂2(X ′X)−1.

It is also possible to derive a sampling distribution for σ̂2. For now, we will note that it is possible to

show that σ̂2 is an unbiased estimator of σ2. That is, it may be shown that

E{(n − p)−1(Y − Xβ̂)′(Y − Xβ̂)} = σ2.

This may be shown by the following steps:

• First, it may be demonstrated that (try it!)

(Y − Xβ̂)′(Y − Xβ̂) = Y ′Y − Y ′Xβ̂ − β̂
′

X ′Y + β̂
′

X ′Xβ̂

= Y ′{I − X(X ′X)−1X ′}Y

We have just expressed the original quadratic form in a different way, which is still a quadratic

form.

• Fact: It may be shown that if Y is any random vector with mean µ and covariance matrix Σ that

for any square matrix A,

E(Y ′AY ) = tr(AΣ) + µ′Aµ.

Applying this to our problem, we have µ = Xβ, Σ = σ2I, and A = I − X(X ′X)−1X. Thus,

using results in Chapter 2,

E(Y − Xβ̂)′(Y − Xβ̂) = tr[{I − X(X ′X)−1X ′}σ2I] + β′X ′{I − X(X ′X)−1X ′}Xβ

= σ2tr{I − X(X ′X)−1X ′} + β′X ′{I − X(X ′X)−1X ′}Xβ.

Thus, to find E(Y − Xβ̂)′(Y − Xβ̂), we must evaluate each term.
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• We also have: If X is any (n × p) matrix of full rank, writing Iq to emphasize the dimension of

the identity matrix of dimension q, then

tr{X(X ′X)−1X ′} = tr{(X ′X)−1X ′X} = tr(Ip) = p,

so that

tr{In − X(X ′X)−1X ′} = tr(In) − tr(Ip) = n − p.

Furthermore,

{I − X(X ′X)−1X ′}X = X − X(X ′X)−1X ′X = X − X = 0.

Applying these to the above expression, we obtain

E(Y − Xβ̂)′(Y − Xβ̂) = σ2(n − p) + 0 = σ2(n − p).

Thus, we have E{(n − p)−1(Y − Xβ̂)′(Y − Xβ̂)} = σ2, as desired.

EXTENSION: The discussion above focused on the usual multiple linear regression model, where it is

assumed that

Y ∼ Nn(Xβ, σ2I).

In some situations, although it may be reasonable to think that the population of possible values of Yj

at xj might be normally distributed, the assumptions of constant variance and independence may not

be realistic.

• For example, recall the treadmill example, where Yj was oxygen intake rate after 20 minutes on

the treadmill for man j with covariates (age, weight, baseline characteristics) xj . Now each Yj was

measured on a different man, so the assumption of independence among the Yj seems realistic.

• However, the assumption of constant variance may be suspect. Young men in their 20s will all

tend to be relatively fit, simply by virtue of their age, so we might expect their rates of oxygen

intake to not vary too much. Older men in their 50s and beyond, on the other hand, might be

quite variable in their fitness – some may have exercised regularly, while others may be quite

sedentary. Thus, we might expect oxygen intake rates for older men to be more variable than for

younger men. More formally, we might expect the distributions of possible values of Yj at different

settings of xj to exhibit different variances as the ages of men differ.
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• Recall the pine seedling example. Suppose the seedling is planted and its height is measured on

each of n consecutive days. Here, Yj would be the height measured at time xj , say, where xj is

the time measured in days from planting. We might model the mean of Yj as a function of xj , e.g.

Yj = β0 + β1xj + β2x
2
j + εj ,

a quadratic function of time. After n days, we have the vector Y . As discussed earlier, however,

it may not be realistic to think that the elements of Y are all mutually independent. In fact, we

do not expect the height to follow the “smooth” quadratic trend; rather, it “fluctuates” about it;

e.g. the seedling may undergo “growth spurts” or “dormant periods” along the way. Thus, we

would expect to see a “large” value of Y on one day followed by a “large” value the next day.

Thus, the elements of Yj covary (are correlated).

In these situations, we still wish to consider a multiple linear regression model; however, the standard

assumptions do not apply. More formally, we may still believe that each Yj follows a normal distribution,

so that Y is multivariate normal, but the assumption that

var(Y ) = σ2I

for some constant σ2 is no longer relevant. Rather, we think that

var(Y ) = Σ

for some covariance matrix Σ that summarizes the variances of each Yj and the covariances thought to

exist among them. Under these conditions, we would rather assume

Y ∼ Nn(Xβ,Σ).

Clearly, the usual method of least squares, discussed above, is inappropriate for estimating β; it mini-

mizes an inappropriate distance criterion.

WEIGHTED LEAST SQUARES: The appropriate distance condition is

(Y − Xβ)′Σ−1(Y − Xβ). (3.20)

Ideally, we would rather estimate β by minimizing (3.20), because it takes appropriate account of the

possibly different variances and the covariances among elements of Y .

• In the constant variance/independence situation, recall that σ2, the assumed common variance,

is not involved in estimation of β.
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• In addition, if σ2 is unknown, as is usually the case in practice, we saw that an intuitively appealing,

unbiased estimator σ̂2 may be derived, which is based on “pooling” information on the common

σ2.

• Here, however, with possibly different variances for different Yj , and different covariances among

different pairs (Yj , Yk), things seem much more difficult! As we will see momentarily, estimation

of β by minimizing (3.20) will now involve Σ, which further complicates matters.

• We will delay discussion of the issue of how to estimate Σ in the event that it is unknown until

we talk about longitudinal data from several individuals later.

For now, assume that Σ is known, which is clearly unrealistic in practice, to gain insight into the

principle of minimizing (3.20).

• Analogous to the simpler case of constant variance/independence, to determine the value β̂ that

minimizes (3.20), one may use calculus to derive a set of p simultaneous equations to solve, which

turn out to be

−2X ′Σ−1Y + 2X ′Σ−1Xβ = 0,

which leads to the solution

β̂ = (X ′Σ−1X)−1X ′Σ−1Y . (3.21)

β̂ in (3.21) is often called the weighted least squares estimator.

• Note that β̂ is still a linear function of the elements of Y .

• Thus, it is straightforward to derive its sampling distribution. β̂ is unbiased, as

E(β̂) = (X ′Σ−1X)−1X ′Σ−1Xβ = β.

var(β̂) = (X ′Σ−1X)−1X ′Σ−1ΣΣ−1X(X ′Σ−1X)−1 = (X ′Σ−1X)−1.

• Furthermore, because Y is multivariate normal, we have

β̂ ∼ Np{β, (X ′Σ−1X)−1}.

• Thus, if we knew Σ, we would be able to construct estimated standard errors for elements of β̂,

etc.

The notion of weighted least squares will play a major role in our subsequent development of methods

for longitudinal data. We will revisit it and tackle the issue of how to estimate Σ later.
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