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4 Introduction to modeling longitudinal data

We are now in a position to introduce a basic statistical model for longitudinal data. The models and

methods we discuss in subsequent chapters may be viewed as modifications of this model to incorporate

specific assumptions on sources of variation and the form of mean vectors.

We restrict our discussion here to the case of balanced data; i.e., where all units have repeated

measurements at the same n time points. Later, we will extend our thinking to handle the case of

unbalanced data.

4.1 Basic Statistical Model

Recall that the longitudinal (or more general repeated measurement data) situation involves observation

of the same response repeatedly over time (or some other condition) for each of a number of units

(individuals).

• In the simplest case, the units may be a random sample from a single population.

• More generally, the units may arise from different populations. Units may be randomly assigned

to different treatments or units may be of different types (e.g. male and female).

• In some cases, additional information on individual-unit characteristics like age and weight may

be recorded.

We first introduce a fundamental model for balanced longitudinal data for a single sample from a com-

mon population, and then discuss how it may be adapted to incorporate these more general situations.

MOST BASIC MODEL FOR BALANCED DATA: Suppose the response of interest is measured on

each individual at n times t1 < t2 < · · · < tn. The dental study (n = 4; t1, . . . , t4 = 8, 10, 12, 14) and

the guinea pig diet data (n = 6; t1, . . . , t6 = 1, 3, 4, 5, 6, 7) are balanced data sets (with units coming

from more than one population).

Consider the case where all the units are from a single population first. Corresponding to each tj ,

j = 1, . . . , n, there is a random variable Yj , j = 1, . . . , n, with a probability distribution that summarizes

the way in which responses at time tj among all units in the population take on their possible values.
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As we discuss in detail shortly, values of the response at any time tj may vary due to the effects of

relevant sources of variation.

We may think of the generic random vector

Y =




Y1

Y2

...

Yn




(4.1)

where the variables are arranged in increasing time order.

• Y in (4.1) has a multivariate probability distribution summarizing the way in which all responses

at times t1, . . . , tn among all units in the population take on their possible values jointly.

• This probability distribution has mean vector E(Y ) = µ with elements µj = E(Yj), j = 1, . . . , n,

and covariance matrix var(Y ) = Σ.

CONVENTION: Except when we discuss “classical” methods in the next two chapters, we will use i as

the subscript indexing units and j as the subscript indexing responses in time order within units.

We will also use m to denote the total number of units (across groups where relevant). E.g. for the

dental study and guinea pig diet data, m = 27 and m = 15, respectively.

Thus, in thinking about a random sample of units from a single population of interest, just as we do

for scalar response, we may thus think of m (n × 1) random vectors

Y 1, Y 2, . . . , Y m,

corresponding to each of m individuals, each of which has features (e.g. multivariate probability distri-

bution) identical to Y in (4.1).

For the ith such vector,

Y i =




Yi1

Yi2

...

Yin




,

such that

E(Y i) = µ, var(Y i) = Σ.
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• It is natural to be concerned that components Yij , j = 1, . . . , n, are correlated.

• In particular, this may be due to the simple fact that observations on the same unit may tend to

be “more alike” than those compared across different units; e.g. a guinea pig with “low” weight at

any given time relative to other pigs will likely be “low” relative to other pigs at any other time.

• Alternatively, correlation may be due to biological “fluctuations” within a unit, as in the pine

seedling example of the last chapter.

We will discuss these sources of variation for longitudinal data shortly. For now, it is realistic to expect

that

cov(Yij , Yik) 6= 0 for any j 6= k = 1, . . . , n.

in general, so that Σ is unlikely to be a diagonal matrix.

INDEPENDENCE ACROSS UNITS: On the other hand, if each Y i corresponds to a different indi-

vidual, and individuals are not related in any way (e.g. different children or guinea pigs, treated and

handled separately), then it seems reasonable to suppose that the way any observation may turn out at

any time for unit i is unrelated to the way any observation may turn out for another unit ` 6= i; that is,

observations from different vectors are independent.

• Under this view, the random vectors Y 1, Y 2, . . . , Y m are all mutually independent.

• It follows that if Yij is a response from unit i and Y`k is a response from unit `, cov(Yij , Y`k) = 0

even if j = k (same time point but different units).

BASIC STATISTICAL MODEL: Putting all this together, we have m mutually independent random

vectors Y i, i = 1, . . . , m, with E(Y i) = µ and var(Y i) = Σ.

• We may write this model equivalently similarly to the univariate case; specifically,

Y i = µ + εi, E(εi) = 0, var(εi) = Σ, (4.2)

where the εi, i = 1, . . . , m, are mutually independent.

• εi are random vector deviations such that εi = (εi1, . . . , εin)′, where each εij , j = 1, . . . , n,

E(εij) = 0 represents how Yij deviates from its mean µj due to aggregate effects of sources of

variation.
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• In addition, the εij are correlated, but εi are mutually independent across i.

Questions of scientific interest are characterized as questions about the elements of µ, as will be for-

malized in later chapters.

MULTIVARIATE NORMALITY: If the response is continuous, it may be reasonable to assume that

the Yij and εij are normally distributed. In this case, adding the further assumption that εi ∼ N (0,Σ),

(4.2) implies

Y i ∼ Nn(µ,Σ), i = 1, . . . , m,

where the Y i are mutually independent.

EXTENSION TO MORE THAN ONE POPULATION: Suppose that individuals may be thought of as

sampled randomly from q different populations; e.g. q = 2 (males and females) in the dental study.

• We may again think of Y i, m independent random vectors, where, if Y i corresponds to a unit

from group `, ` = 1, . . . , q, then Y i has a multivariate probability distribution with

E(Y i) = µ`, var(Y i) = Σ`.

That is, each population may have a different mean vector and covariance matrix.

• Equivalently, we may express this as

Y i = µ` + εi, E(εi) = 0, var(εi) = Σ` for i from group ` = 1, . . . , q.

• We might also assume εi ∼ N (0,Σ`) for units in group `, so that

Y i ∼ N (µ`,Σ`)

for i from group `.

• If furthermore it is reasonable to assume that all sources of variation act similarly in each popu-

lation, we might assume that Σ` = Σ, a common covariance matrix for all populations.

With univariate responses, it is often reasonable to assume that population membership may

imply a change in mean response but not affect the nature of variation; e.g. the primary effect

of a treatment may be to shift responses on average relative to those for another, but to leave

variability unchanged. This reduces to the assumption of equal variances.

For the longitudinal case, such an assumption may also be reasonable, but is more involved, as

assuming the same “variation” in all groups must take into account both variance and covaria-

tion.
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• Under this assumption, the model becomes

Y i = µ` + εi, E(εi) = 0, var(εi) = Σ for i from group ` = 1, . . . , q,

for a covariance matrix Σ common to all groups.

• Note that even though Σ is common to all populations, the diagonal elements of Σ may be

different across j = 1, . . . , n, so that variance may be different at different times; however, at any

given time, the variance is the same for all groups.

• Similarly, the covariances in Σ between the jth and kth elements of Y i may be different for

different choices of j and k, but for any particular pair (j, k), the covariance is the same for all

groups.

EXTENSION TO INDIVIDUAL INFORMATION: We may extend this thinking to take into account

other individual covariate information besides population membership by analogy to regression models

for univariate response.

• E.g., suppose age ai at the first time point is recorded for each unit i = 1, . . . , m.

• We may envision for each age ai a multivariate probability distribution describing the possible

values of Y i. The mean vector of this distribution would naturally depend on ai.

• We write this for now as E(Y i) = µi, where µi is the mean of random vectors from the population

corresponding to age ai, and the subscript i implies that the mean is “unique” to i in the sense

that it depends on ai somehow.

• Assuming that variation is similar regardless of age, we may write

Y i = µi + εi, E(εi) = 0, var(εi) = Σ.

We defer discussion of how dependence of µi on ai (and other factors) might be characterized to

later chapters.

All of the foregoing models represent random vectors Y i in terms of a mean vector plus a random

deviation vector εi that captures the aggregate effect of all sources of variation. This emphasizes the

two key aspects of modeling longitudinal data:

(1) Characterizing mean vectors in these models in a way that best captures how mean response

changes with time and depends on other factors, such as group or age, in order to address questions

of scientific interest;
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(2) Taking into account important sources of variation by characterizing the nature of the random

deviations εi, so that these questions may be addressed by taking faithful account of all variation

in the data.

Models we discuss in subsequent chapters may be viewed as particular cases of this representation,

where (1) and (2) are approached differently.

We first take up the issue in (2), that of the sources of variation that εi may reflect.

4.2 Sources of variation in longitudinal data

For longitudinal data, potential sources of variation usually are thought of as being of two main types:

• Among-unit variation

• Within-units variation.

It is useful to conceptualize the way in which longitudinal response vectors may be thought to arise.

There are different perspectives on this; here, we consider one popular approach. For simplicity, consider

the case of a single population and the model

Y i = µ + εi.

The ideas are relevant more generally.

Figure 1 provides a convenient backdrop for thinking about the sources that might make up εi.

• Panel (a) shows the values actually observed for m = 3 units; these values include the effects of

all sources of variation.

• Panel (b) is a conceptual representation of possible underlying features of the situation.

The open circles on the thick, solid line represent the elements of µ at each of the n = 9 time

points. E.g., the leftmost circle represents the mean µ1 of all possible values that could be observed

at t1, thus averaging all deviations εi1 due to all among- and within-unit sources over all units i.

The means over time lie on a straight line, but this need not be true in general.

The solid diamonds represent the actual observations for each individual. If we focus on the first

time point, for example, it is clear that the observations for each i vary about µ1.
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Figure 1: (a) Hypothetical longitudinal data from m = 3 units at n = 9 time points. (b) Conceptual

representation of sources of variation. The open circles connected by the thick solid line represent the

means µj, j = 1, . . . , n for the populations of all possible observations at each of the n time points.

The thin solid lines represent “trends” for each unit. The dotted lines represent the pattern of error-

free responses for the unit over time, which fluctuate about the trend. The diamonds represent the

observations of these responses, which are subject to measurement error.
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• For each individual, we may envision a “trend,” depicted by the solid lines (the trend need not

follow a straight line in general). The “trend” places the unit in the population.

The vertical position of this trend at any time point dictates whether the individual is “high”

or “low” relative to the corresponding mean in µ. Thus, these “trends” highlight (biological)

variation among units.

Some units may be consistently “high” or “low,” others may be “high” at some times and “low”

at others relative to the mean.

• The dotted lines represent “fluctuations” about the smoother (straight-line) trend, representing

variation in how responses for that individual may evolve. In the pine seedling example cited

earlier, with response height of a growing plant over time, although the overall pattern of growth

may “track” a smooth trend, natural variation in the growth process may cause the responses to

fluctuate about the trend.

This phenomenon necessarily occurs within units; (biological) fluctuations about the trend are

the result of processes taking place only within that unit.
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Note that values on the dotted line that are very close in time tend to be “larger” or “smaller”

than the trend together, while those farther apart seem just as likely to be larger or smaller than

the trend, with no relationship.

• Finally, the observations for a unit (diamonds) do not lie exactly on the dotted lines, but vary

about them. This is due to measurement error. Again, such errors take place within the unit

itself in the sense that the measuring process occurs at the specific-unit level.

We may formalize this thinking by refining how we view the basic model Y i = µ + εi. The jth element

of Y i, Yij , may be thought of as being the sum of several components, each corresponding to a different

source of variation; i.e.

Yij = µj + εij = µj + bij + eij = µj + bij + e1ij + e2ij , (4.3)

where E(bij) = 0, E(e1ij) = 0, and E(e2ij) = 0.

• bij is a deviation representing among unit variation at time tj due to the fact that unit i “sits”

somewhere in the population relative to µj due to biological variation.

We may think of bij as dictating the “inherent trend” for i at tj .

• e1ij represents the additional deviation due to within-unit fluctuations about the trend.

• e2ij is the deviation due to measurement error (within-units).

• The sum eij = e1ij + e2ij denotes the aggregate deviation due to all within-unit sources.

• The sum εij = bij + e1ij + e2ij thus represents the aggregate deviation from µj due to all sources.

Stacking the εij , bij , and eij , we may write

εi = bi + ei = bi + e1i + e2i,

which emphasizes that εi includes components due to among- and within-unit sources of variation.

SOURCES OF CORRELATION: This representation provides a framework for thinking about assump-

tions on among- and within-unit variation and how correlation among the Yij (equivalently, among the

εij) may be thought to arise.

• The bij determines the “inherent trend” in the sense that µj + bij represents position of the

“inherent trajectory” for unit i at time j. The Yij thus all tend to be in the vicinity of this trend

across time (j) for unit i. As can be seen from Figure 1, this makes the observations on i “more

alike” relative to observations from units.
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Accordingly, we expect that the elements of εi (and hence those of Y i) are correlated due to the

fact that they share this common, underlying trend. We may refer to correlation arising in this

way as correlation due to among-unit sources.

In subsequent chapters, we will see that different longitudinal data models may make specific

assumptions about terms like bij that represent among-unit variation and hence this source of

correlation.

• Because e1ij are deviations due to the “fluctuation” process, it is natural to think that the e1ij

might be correlated across j. If the process is “high” relative to the inherent trend at time tj

(so e1ij is positive), it might be expected to be “high” at times tj′ close to tj (e1ij′ positive) as

well. Thus, we might expect the elements of εi and thus Y i to be correlated as a consequence

of such fluctuations (because the elements of e1i are correlated).

We may refer to correlation arising in this way as correlation due to within-unit sources.

Note that if the fluctuations occur in a very short time span relative to the spacing of the tj ,

whether the process is “high” at tj may have little or no relation to whether it is high at adjacent

times. In this case, we might believe such within-unit correlation is negligible. As we will see,

this is a common assumption, often justified by noting that the tj are far apart in time.

• The overall pattern of correlation for εi (and hence Y i) may be thought of as resulting from the

combined effects of these two sources (among- and within-units).

• As measuring devices tend to commit “haphazard” errors every time they are used, it may be

reasonable to assume that the e2ij are independent across j. Thus, we expect no contribution

to the overall pattern of correlation.

To complete the thinking, we must also consider the variances of the bij , e1ij , and e2ij . We defer

discussion of this to later chapters in the context of specific models.

4.3 Exploring mean and covariance structure

The aggregate effect of all sources of variation, such as those identified in the conceptual scheme of

Section 4.2, dictates the form of the covariance matrix of εi and hence that of Y i.
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As was emphasized earlier in our discussion of weighted least squares, if observations are correlated

and have possibly different variances, it is important to acknowledge this in estimating parameters of

interest such as population means so that differences in data quality and associations are taken into

adequate account. Thus, an accurate representation of var(εi) is critically important.

A first step in an analysis is often to examine the data for clues about the likely nature of the form of

this covariance matrix as well as the structure of the means and how they change over time.

Consider first the model for a single population

Y i = µ + εi, E(εi) = 0, var(εi) = Σ.

Based on observed data, we would like to gain insight into the likely forms of µ and Σ.

• We illustrate with the data for the 11 girls in the dental study, so for now take m = 11 and n = 4.

• Thus, the µj , j = 1, . . . , 4, of µ are the population mean distance for girls at ages 8, 10, 12,

and 14, the diagonal elements of Σ are the population variances of distance at each age, and the

off-diagonal elements of Σ represent the covariances among distances at different ages.

Spaghetti plots for both the boys and girls are given in in Figure 2.

Figure 2: Spaghetti plots of the dental data. The open circles represent the sample mean distance at

each age; these are connected by the thick line to highlight the relationship among means over time.
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SAMPLE MEAN VECTOR: As we have discussed, the natural estimator for the mean µj at the jth

time point is the sample mean

Y ·j = m−1
m∑

i=1

Yij ,

where the “dot” subscript indicates averaging over the first index i (i.e. across units). The sample mean

may be calculated for each time point j = 1, . . . , n, suggesting that the obvious estimator for µ is the

vector whose elements are the Y ·j , the sample mean vector given by

Y = m−1
m∑

i=1

Y i =




Y ·1

...

Y ·n




.

• It is straightforward to show that the random vector Y is an unbiased estimator for µ; i.e.

E(Y ) = µ.

We may apply this estimator to the dental study data on girls to obtain the estimate (rounded to three

decimal places)

y =




21.182

22.227

23.091

24.091




.

In the left panel of Figure 2, these values are plotted for each age by the open circles.

• The thick solid line, which connects the Y ·j , gives a visual impression of a “smooth,” indeed

straight line, relationship over time among the µj .

• Of course, we have no data at ages intermediate to those in the study, so it is possible that mean

distance in the intervals between these times deviates from a straight line relationship. However,

from a biological point of view, it seems sensible to suppose that dental distance would increase

steadily over time, at least on average, rather than “jumping” around.

Graphical inspection of sample mean vectors is an important tool for understanding possible relation-

ships among means over time. When there are q > 1 groups an obvious strategy is to carry this out

separately for the data from each group, so that possible differences in means can be evaluated.

For the dental data on the 16 boys, the estimated mean turns out to be y = (22.875, 23.813, 25.719, 27.469)′;

this is shown as the thick solid line with open circles in the right panel of Figure 2. This estimate seems

to also look like a “straight line,” but with steepness possibly different from that for girls.
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SAMPLE COVARIANCE MATRIX: Gaining insight into the form of Σ may be carried out both

graphically and through an unbiased estimator for Σ and its associated correlation matrix.

• The diagonal elements of Σ are simply the variances σ2
j of the distributions of Yj values at each

time j = 1, . . . , n. Thus, based on m units, the natural estimator for σ2
j is the sample variance

at time j,

S2
j = (m − 1)−1

m∑

i=1

(Yij − Y ·j)
2,

which may be shown to be an unbiased estimator for σ2
j .

• The off-diagonal elements of Σ are the covariances

σjk = E{(Yj − µj)(Yk − µk)}.

Thus, a natural estimator for σjk is

Sjk = (m − 1)−1
m∑

i=1

(Yij − Y ·j)(Yik − Y ·k),

which may also be shown to be unbiased.

• The obvious estimator for Σ is thus the matrix in which the variances σ2
j and covariances σjk are

replaced by S2
j and Sjk. It is possible to represent this matrix succinctly (verify) as

Σ̂ = (m − 1)−1
m∑

i=1

(Y i − Y )(Y i − Y )′.

This is known as the sample covariance matrix.

• The sum
∑m

i=1(Y i − Y )(Y i − Y )′ is often called the sum of squares and cross-products

(SS&CP) matrix, as its entries are the sums of squared deviations and cross-products of deviations

from the sample mean.

• The sample covariance matrix is exactly as we would expect; recall that the covariance matrix

itself is defined as

Σ = E{(Y − µ)(Y − µ)′}.

The sample covariance matrix may be used to estimate the covariance matrix. However, although the

diagonal elements may provide information on the true variances at each time point, the off-diagonal ele-

ments may be difficult to interpret. Given the unitless nature of correlation, it may be more informative

to learn about associations from estimates of correlation.
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SAMPLE CORRELATION MATRIX: If Σ̂ is an estimator for a covariance matrix Σ with elements

Σ̂jk, j, k = 1, . . . , n, then the natural estimator for the associated correlation matrix Γ is Γ̂, the (n×n)

matrix Γ̂ with ones on the diagonal (as required for a correlation matrix) and (j, k) off-diagonal element

Σ̂jk√
Σ̂jjΣ̂kk

.

• For a single population, where Σ̂ is the sample covariance matrix, the off-diagonal elements are

Sjk

SjSk
, (4.4)

which are obvious estimators for the correlations

ρjk =
σjk

σjσk
.

• In this case, the estimated matrix Γ̂ is called the sample correlation matrix, as it is an estimate

of the correlation matrix corresponding to the sample covariance matrix for the single population.

• The expression in (4.4) is known as the sample correlation coefficient between the observations

at times tj and tk, as it estimates the correlation coefficient ρjk.

Shortly, we shall see how to estimate common covariance and correlation matrices based on data from

several populations.

For the 11 girls in the dental study, we obtain the estimated covariance and correlation matrices (rounded

to three decimal places)

Σ̂G =




4.514 3.355 4.332 4.357

3.355 3.618 4.027 4.077

4.332 4.027 5.591 5.466

4.357 4.077 5.466 5.941




, Γ̂G =




1.000 0.830 0.862 0.841

0.830 1.000 0.895 0.879

0.862 0.895 1.000 0.948

0.841 0.879 0.948 1.000




.

• The diagonal elements of Σ̂G suggest that the aggregate variance in dental distances roughly

increases over time from age 8 to 14.

However, keep in mind that the values shown are estimates of the corresponding parameters based

on only m = 11 observations; thus, they are subject to the usual uncertainty of estimation. It is

thus sensible to not “over-interpret” the numbers but rather to only examine them for suggestive

features.
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• The off-diagonal elements of Γ represent the aggregate pattern of correlation due to among- and

within-girl sources. Here, the estimate of this correlation for any pair of time points is positive

and close to one, suggesting that “high” values at one time are strongly associated with “high”

values at another time, regardless of how far apart in time the observations occur.

In light of Figure 2, this is really not surprising. The data for individual girls in the figure show

pronounced trends that for the most part place a girl’s trajectory above or below the estimated

mean profile (thick line). Thus, a girl such as the topmost one is “high” throughout time, suggest-

ing a strong component of among-girl variation in the population, and the estimates of correlation

are likely reflecting this.

• Again, it is not prudent to attach importance to the numbers and differences among them, as they

are estimates from a rather small sample, so the observed difference between 0.948 and 0.830 may

or may not reflect a real difference in the true correlations.

SCATTERPLOT MATRICES: A useful supplement to numerical estimates is a graphical display of the

observed data known as a scatterplot matrix.

As correlation reflects associations among observations at different time points, initially one would think

that a natural way of graphically assessing these associations would be to make the following plot.

• For each pair of times tj and tk, graph the observed data values (yij , yik) for all i = 1, . . . , m units,

with yij values on the horizontal axis and yik values on the vertical axis. The observed pattern

might be suggestive of the nature of association among responses at times tj and tk.

• This is not exactly correct; in particular, if the means µj and µk and variances σ2
j and σ2

k are not

the same, the patterns in the pairwise plots will in part be a consequence of this. It would make

better sense to plot the “centered” and “scaled” versions of these; i.e. plot the pairs

(
yij − µj

σj
,
yik − µk

σk

)
.

• Given we do not know the µj or σj , a natural strategy is to replace these by estimates and instead

plot the pairs (
yij − y

·j

sj
,
yik − y

·k

sk

)
.

Following this reasoning, it is common to make these plots for all pairs (j, k), where j 6= k.

Figure 3 shows the scatterplot matrix for the girls in the dental study.
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Figure 3: Scatterplot matrix for the girls in the dental study.
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In each panel, the apparent association among centered and scaled distance observations appears strong.

The fact that the trend is from lower left to upper right in each panel, so that large centered and scaled

values at one time correspond to large ones at another time, indicates that the association is positive

for each pair of time points. Moreover, the nature of the association seems fairly similar regardless

of the separation in time; i.e. the pattern of the plot corresponding to ages 8 and 14 shows a similar

qualitative trend to those corresponding to ages 8 and 10, ages 8 and 12, and so on.

The evidence in the plots coincides with the numerical summary provided by the sample correlation

matrix, which suggests that correlation is of similar magnitude and direction for any pair of times.

Some remarks:

• Visual display offers the data analyst another perspective on the likely pattern of aggregate cor-

relation in the data in addition to that provided by the estimated correlation matrix. This

information taken with that on variance in the sample covariance matrix can help the analyst to

identify whether the pattern of variation has systematic features. If such systematic features

are identified, it may be possible to adopt a model for var(εi) that embodies them, allowing an

accurate characterization. We take up this issue shortly.

• The same principles may be applied in more complicated settings; e.g. with more than one group.

Here, one could estimate the covariance matrix Σ` and associated correlation matrix Γ`, say, for

each group ` separately and construct a separate scatterplot matrix.

• In the case of q > 1 groups, a natural objective would be to assess whether in fact it is reasonable

to assume that the covariance matrix is the same for all groups.
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POOLED SAMPLE COVARIANCE AND CORRELATION MATRICES: To illustrate this last point,

consider the data for boys in the dental study. It may be shown that the sample covariance and

correlation matrices are

Σ̂B =




6.017 2.292 3.629 1.613

2.292 4.563 2.194 2.810

3.629 2.194 7.032 3.241

1.613 2.810 3.241 4.349




, Γ̂B =




1.000 0.437 0.558 0.315

0.437 1.000 0.387 0.631

0.558 0.387 1.000 0.586

0.315 0.631 0.586 1.000




.

• Comparing to Σ̂G for girls, aggregate variance does not seem to increase over time and seems

larger than that for girls at all but the last time. (These estimates are based on small samples,

11 and 16 units, so should be interpreted with care.)

• Comparing to Γ̂G for girls suggests that correlation for boys, although positive, is of smaller

magnitude. Moreover, the estimated correlations for boys tend to “jump around” more than

those for girls.

Figure 4 shows the scatterplot matrix for boys.

Figure 4: Scatterplot matrix for the boys in the dental study.
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Comparing this figure to that for girls in Figure 3 reveals that the trend in each panel seems less

profound for boys, although it is still positive in every case.

Overall, there seems to be informal evidence that both the mean and pattern of variance and cor-

relation in the populations of girls and boys may be different. We will study longitudinal data models

that allow such features to be taken into account.
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Although this seems to be the case here, in many situations, the evidence may not be strong enough to

suggest a difference in variation across groups, or scientific considerations may dictate that an assump-

tion of a common pattern of overall variation is reasonable.

Under these conditions, it is natural to combine the information on variation across groups in order to

examine the features of the assumed common structure. Since ordinarily interest focuses on whether the

µ` are the same, as we will see, such an assessment continues to assume that the µ` may be different.

The assumed common covariance matrix Σ and its corresponding correlation matrix Γ from data for q

groups may be estimated as follows. Assume that there are r` units from the `th population, so that

m, the total number of units, is such that m = r1 + · · · + rq.

• As we continue to believe the µ` are different, estimate these by the sample means Y `, say, for

each group.

• Let Σ̂` denote the sample covariance matrix calculated for each group separately (based on Y `).

• A natural strategy if we believe that there is a common covariance matrix Σ is then to use as an

estimator for Σ a weighted average of the Σ̂`, ` = 1, . . . , q, that takes into account the differing

amount of information from each group:

Σ̂ = (m − q)−1{(r1 − 1)Σ̂1 + · · · + (rq − 1)Σ̂q}.

This matrix is referred to as the pooled sample covariance matrix.

• If the number of units from each group is the same, so that r` ≡ r, say, then Σ̂ reduces to a

simple average; i.e. Σ̂ = (1/q)(Σ̂1 + · · · + Σ̂q).

• The quantity in braces is often called the Error SS&CP matrix, as we will see later.

• The pooled sample correlation matrix estimating the assumed common correlation matrix Γ

is naturally defined as the estimated correlation matrix corresponding to Σ̂.

From the definition, the diagonal elements of the pooled sample covariance matrix are weighted averages

of the sample variances from each group. That is, if S
(`)2
j is the sample variance of the observations

from group ` at time j, then the (j, j) element of Σ̂, Σ̂jj , say, is equal to

Σ̂jj = (m − q){(r1 − 1)S
(1)2
j + · · · + (rq − 1)S

(q)2
j },

the so-called pooled sample variance at time tj .
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If the analyst is willing to adopt the assumption of a common covariance matrix for all groups, then

inspection of the pooled estimate may be carried out as in the case of a single population. Similarly,

a pooled scatterplot matrix would be based on centered and scaled versions of the yij , where the

“centering” continues to be based on the sample means for each group but the “scaling” is based on

the common estimate of variance for yij from Σ̂. In particular, one would plot the observed pairs


yij − y

(`)
·j√

Σ̂jj

,
yik − y

(`)
·k√

Σ̂kk




for all units i = 1, . . . , m from all groups ` = 1, . . . , q on the same graph for each pair of times tj and tk.

DENTAL STUDY: Although we are not convinced that it is appropriate to assume a common covariance

matrix for boys and girls in the dental study, for illustration we calculate the pooled sample covariance

and correlation matrix to obtain:

Σ̂ = (1/25)(10Σ̂G + 15Σ̂B) =




5.415 2.717 3.910 2.710

2.717 4.185 2.927 3.317

3.910 2.927 6.456 4.131

2.710 3.317 4.131 4.986




and

Γ̂ =




1.000 0.571 0.661 0.522

0.571 1.000 0.563 0.726

0.661 0.563 1.000 0.728

0.522 0.726 0.728 1.000




.

• Inspection of the diagonal elements shows that the pooled estimates seem to be a “compromise”

between the two group-specific estimates. This in fact illustrates how the pooled estimates combine

information across groups.

• For brevity, we do not display the combined scatterplot matrix for these data. Not surprisingly,

the pattern is somewhere “in between” those exhibited in Figures 3 and 4.

We have assumed throughout that we have balanced data. When the data are not balanced, either

because some individuals are missing observations at intended times or because the times are different

for different units, application of the above methods can be misleading. Later in the course, we consider

methods for unbalanced data.
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4.4 Popular models for covariance structure

As we have noted previously, if estimated covariance and correlation matrices show systematic fea-

tures, the analyst may be led to consider models for covariance and associated correlation matrices.

We will see later in the course that common models and associated methods for longitudinal data either

explicitly or implicitly involve adopting particular models for var(εi).

In anticipation this, here, we introduce some popular such covariance models that embody different sys-

tematic patterns that are often seen with longitudinal data. Each covariance model has a corresponding

correlation model. We consider these models for balanced data only; modification for unbalanced

data is discussed later.

UNSTRUCTURED COVARIANCE MODEL: In some situations, there may be no evidence of an ap-

parent systematic pattern of variance and correlation. In this case, the covariance matrix is said to

follow the unstructured model. The unstructured covariance model was adopted in the discussion of

the last section as an initial assumption to allow assessment of whether a model with more structure

could be substituted.

The unstructured covariance matrix allows n different variances, one for each time point, and n(n−1)/2

distinct off-diagonal elements representing the possibly different covariances for each pair of times, for

a total of n + n(n − 1)/2 = n(n + 1)/2 variances and covariances. (Because a covariance matrix is

symmetric, the off-diagonal elements at positions (j, k) and (k, j) are the same, so we need only count

each covariance once in totaling up the number of variances and covariances involved.)

Thus, if the unstructured model is assumed, there are numerous parameters describing variation that

must be estimated, particularly if n is large. E.g., if n = 5, which does not seem that large, there are

5(6)/2 =15 parameters involved. If there are q different groups, each with a different covariance matrix,

there will be q times this many variances and covariances.

If the pattern of covariance does show a systematic structure, then not acknowledging this by maintain-

ing the unstructured assumption involves estimation of many more parameters than might otherwise

be necessary, thus making inefficient use of the available data. We now consider models that represent

things in terms of far fewer parameters.

As we will see in the following, it is sometimes easier to discuss the correlation model first and then

discuss the covariance matrix models to which it may correspond.
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COMPOUND SYMMETRIC COVARIANCE MODELS: For both the boys and girls in the dental study,

the correlation between observations at any times tj and tk seemed similar, although the variances at

different times might be different.

These considerations suggest a covariance model that imposes equal correlation between all time points

but allows variance to differ at each time as follows. Suppose that ρ is a parameter representing the

common correlation for any two time points. For illustration, suppose that n = 5. Then the correlation

matrix is

Γ =




1 ρ ρ ρ ρ

ρ 1 ρ ρ ρ

ρ ρ 1 ρ ρ

ρ ρ ρ 1 ρ

ρ ρ ρ ρ 1




;

the same structure generalizes to any n. Here, −1 < ρ < 1. This is often referred to as the compound

symmetric or exchangeable correlation model, where the latter term emphasizes that the correlation

is the same even if we “exchange” two time points for two others.

Two popular covariance models with this correlation matrix are as follows.

• If σ2
j and σ2

k are the overall variances at tj and tk (possibly different at different times), and σjk

is the corresponding covariance, then it must be that

ρ =
σjk

σjσk
or σjk = σjσkρ.

We thus have a covariance matrix of the form, in the case n = 5,

Σ =




σ2
1 ρσ1σ2 ρσ1σ3 ρσ1σ4 ρσ1σ5

ρσ1σ2 σ2
2 ρσ2σ3 ρσ2σ4 ρσ2σ5

ρσ1σ3 ρσ2σ3 σ2
3 ρσ3σ4 ρσ3σ5

ρσ1σ4 ρσ2σ4 ρσ3σ4 σ2
4 ρσ4σ5

ρσ1σ5 ρσ2σ5 ρσ3σ5 ρσ4σ5 σ2
5




,

which of course generalizes to any n. This covariance matrix is often said to have a heteroge-

neous compound symmetric structure – compound symmetric because it has corresponding

correlation as above and heterogeneous because it incorporates the assumption of different, or

heterogeneous, variances at each time point. Note that this model may be described with n + 1

parameters, the correlation ρ and the n variances.
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• In some settings, the evidence may suggest that the overall variance at each time point is the

same, so that σ2
j = σ2 for some common value σ2 for all j = 1, . . . , n. Under this condition,

ρ =
σjk

σ2
so that σjk = σ2ρ for all j, k.

Under these conditions, the covariance matrix is, in the case n = 5.

Σ =




σ2 ρσ2 ρσ2 ρσ2 ρσ2

ρσ2 σ2 ρσ2 ρσ2 ρσ2

ρσ2 ρσ2 σ2 ρσ2 ρσ2

ρσ2 ρσ2 ρσ2 σ2 ρσ2

ρσ2 ρσ2 ρσ2 ρσ2 σ2




= σ2Γ.

This covariance matrix for any n is said to have the compound symmetric or exchangeable

structure with no qualification.

This model involves only two parameters, σ2 and ρ, for any n.

Remarks:

• From the diagnostic calculations and plots for the dental study data, the heterogeneous compound

symmetric covariance model seems like a plausible model for each of the boys and girls, although

the values of ρ and the variances at each time may be potentially different in each group.

• The unstructured and compound symmetric models do not emphasize the fact that observations

are collected over time; neither has “built-in” features that really only make sense when the n

observations are in a particular order. Recall the two sources of correlation that contribute to the

overall pattern: that arising from among-unit sources (e.g. units being “high” or “low”) and those

due to within-unit sources (e.g. “fluctuations” about a smooth trend and measurement error).

The compound symmetric models seem to emphasize the among-unit component.

The models we now discuss instead may be thought of as emphasizing the within-unit component

through structures that are plausible when correlation depends on the times of observation in some

way. As “fluctuations” determine this source of correlation, these models may be thought of as assuming

that the variation attributable to these fluctuations dominates that from other sources (among-units or

measurement error). These models have roots in the literature on time series analysis.
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ONE-DEPENDENT: Correlation due to within-unit fluctuation would be expected to be “stronger”

the closer observations are taken in time on a particular unit, as observations close in time would be

“more alike” than those far apart. Thus, we expect correlation due to within-unit sources to be largest

in magnitude among responses that are adjacent in time, that is, are at consecutive observation times,

and to become less pronounced as observations become farther apart. Relative to this magnitude

of correlation, that between two nonconsecutive observations might be for all practical purposes be

negligible.

A correlation matrix that reflects this (shown for n = 5) is

Γ =




1 ρ 0 0 0

ρ 1 ρ 0 0

0 ρ 1 ρ 0

0 0 ρ 1 ρ

0 0 0 ρ 1




.

Here, the correlation is the same, equal to ρ, −1 < ρ < 1, for any two consecutive observations. This

model is referred to as the one-dependent correlation structure, as dependence is nonnegligible only

for adjacent responses. Alternatively, such a matrix is also referred to as a banded Toeplitz matrix.

The one-dependent correlation model seems to make the most sense if observation times are equally-

spaced (separate by the same time interval).

If the overall variances σ2
j , j = 1, . . . , n, are possibly different at each time tj , the corresponding

covariance matrix (n = 5) looks like

Σ =




σ2
1 ρσ1σ2 0 0 0

ρσ1σ2 σ2
2 ρσ2σ3 0 0

0 ρσ2σ3 σ2
3 ρσ3σ4 0

0 0 ρσ3σ4 σ2
4 ρσ4σ5

0 0 0 ρσ4σ5 σ2
5




and is called a heterogeneous one-dependent or banded Toeplitz matrix, for obvious reasons. Of

course, this structure may be generalized to any n.
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If overall variance at each time point is the same, so that σ2
j = σ2 for all j, then this becomes

Σ =




σ2 ρσ2 0 0 0

ρσ2 σ2 ρσ2 0 0

0 ρσ2 σ2 ρσ2 0

0 0 ρσ2 σ2 ρσ2

0 0 0 ρσ2 σ2




= σ2Γ,

which is usually called a one-dependent or banded Toeplitz matrix without qualification.

It is possible to extend this structure to a two-dependent or higher model. For example, two-

dependence implies that observations one or two intervals apart in time are correlated, but those farther

apart are not.

The one-dependent correlation model implies that correlation “falls off” as observations become farther

apart in time in a rather dramatic way, so that only consecutive observations are correlated. Alterna-

tively, it may be the case that correlation “falls off” more gradually.

AUTOREGRESSIVE STRUCTURE OF ORDER 1: Again, this model makes sense sense when the

observation times are equally spaced. The autoregressive, or AR(1), correlation model, formalizes the

idea that the magnitude of correlation among observations “decays” as they become farther apart. In

particular, for n = 5, the AR(1) correlation matrix has the form

Γ =




1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1




,

where −1 < ρ < 1.

• As ρ is less than 1 in magnitude as we take it to higher powers, the result is values closer and

closer to zero. Thus, as the number of time intervals between pairs of observations increases, the

correlation decreases toward zero.

• With equally-spaced data, the time interval between tj and tj+1 is the same for all j; i.e., |tj −
tj+1| = d for j = 1, . . . , n− 1, where d is the length of the interval. Note then that the power of ρ

corresponds to the number of intervals by which a pair of observations is separated.
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As with the compound symmetric and one-dependent models, both heterogeneous and “standard”

covariance matrices with corresponding AR(1) correlation matrix are possible. In the case of overall

variances σ2
j that may differ across j, the heterogeneous covariance matrix in the case n = 5 has the

form

Σ =




σ2
1 ρσ1σ2 ρ2σ1σ3 ρ3σ1σ4 ρ4σ1σ5

ρσ1σ2 σ2
2 ρσ2σ3 ρ2σ2σ4 ρ3σ2σ5

ρ2σ1σ3 ρσ2σ3 σ2
3 ρσ3σ4 ρ2σ3σ5

ρ3σ1σ4 ρ2σ2σ4 ρσ3σ4 σ2
4 ρσ4σ5

ρ4σ1σ5 ρ3σ2σ5 ρ2σ3σ5 ρσ4σ5 σ2
5




.

When the variance is assumed equal to the same value σ2 for all j = 1, . . . , n, the covariance matrix has

the form (n = 5)

Σ =




σ2 ρσ2 ρ2σ2 ρ3σ2 ρ4σ2

ρσ2 σ2 ρσ2 ρ2σ2 ρ3σ2

ρ2σ2 ρσ2 σ2 ρσ2 ρ2σ2

ρ3σ2 ρ2σ2 ρσ2 σ2 ρσ2

ρ4σ2 ρ3σ2 ρ2σ2 ρσ2 σ2




= σ2Γ,

The one-dependent and AR(1) models really only seem sensible when the observation times are spaced at

equal intervals, as in the dental study data. This is not always the case; for instance, for longitudinal data

collected in clinical trials comparing treatments for disease, it is routine to collect responses frequently

at the beginning of therapy but then to take them at wider intervals later.

The following offers a generalization of the AR(1) model to allow the possibility of unequally-spaced

times.

MARKOV STRUCTURE: Suppose that the observation times t1, . . . , tn are not necessarily equally

spaced, and let

djk = |tj − tk|

be the length of time between times tj and tk for all j, k = 1, . . . , n. Then the Markov correlation

model has the form, shown here for n = 5,

Γ =




1 ρd12 ρd13 ρd14 ρd15

ρd12 1 ρd23 ρd24 ρd25

ρd13 ρd23 1 ρd34 ρd35

ρd14 ρd24 ρd34 1 ρd45

ρd15 ρd25 ρd35 ρd45 1




.
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• Here, we must have ρ ≥ 0 (why?).

• Comparing this to the AR(1) structure, the powers of ρ and thus the degree of decay of correlation

are also related to the length of the time interval between observations. Here, however, because

the time intervals djk are of unequal length, the powers are the actual lengths.

Corresponding covariance matrices are defined similarly to those in the one-dependent and AR(1) cases.

E.g., under the assumption of common variance σ2, we have

Σ =




σ2 σ2ρd12 σ2ρd13 σ2ρd14 σ2ρd15

σ2ρd12 σ2 σ2ρd23 σ2ρd24 σ2ρd25

σ2ρd13 σ2ρd23 σ2 σ2ρd34 σ2ρd35

σ2ρd14 σ2ρd24 σ2ρd34 σ2 σ2ρd45

σ2ρd15 σ2ρd25 σ2ρd35 σ2ρd45 σ2




= σ2Γ,

This model has two parameters, σ2 and ρ, for any n.

These are not the only such models available, but give a flavor of the types of considerations involved.

The documentation for the SAS procedure proc mixed, the use of which we will demonstrate in subse-

quent chapters, offers a rich catalog of possible covariance models.

If one believes that one of the foregoing models or some other model provides a realistic representation

of the pattern of variation and covariation in the data, then intuition suggests that a “better” estimate

of var(εi) could be obtained by exploiting this information. We will see this in action shortly.

We will also see that these models may be used not only to represent var(εi), but to represent covariance

matrices of components of εi corresponding to among- and within-unit variation.

4.5 Diagnostic calculations under stationarity

The one-dependent, AR(1), and Markov structures are popular models when it is thought that the

predominant source of correlation leading to the aggregate pattern is from within-individual sources.

All of these models are such that the correlation between Yij and Yik for any j 6= k depends only on

the time interval |tj − tk| and not only the specific times tj or tk themselves. This property is known

as stationarity.

• If stationarity is thought to hold, the analyst may wish to investigate which correlation structure

(e.g. one-dependent, AR(1), or other model for equally-spaced data) might be the best model.
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• Variance at each tj may be assessed by examining the sample covariance matrix.

• If one believes in stationarity, an investigation of correlation that takes this into account may offer

more refined information than one that does not, as we now demonstrate.

The rationale is as follows:

• When the tj , j = 1, . . . , n, are equally spaced, with time interval d, under stationarity, all pairs

of observations corresponding to times whose subscripts differ by 1, e.g. j and j + 1, are d time

units apart and are correlated in an identical fashion.

• Similarly, all pairs with subscripts differing by 2, e.g. j and j + 2 are 2d time units apart and

correlated in the same way. In general, pairs with subscripts j and j + u are ud time units apart

and share the same correlation.

• The value of subscripts for n time points must range between 1 and n. Thus, when we write j

and j + u, it is understood that the values of j and u are chosen so that all possible distinct pairs

of unequal subscripts in this range are represented. E.g. if j = 1, then u may take on the values

1, . . . , n− 1 to give all pairs corresponding to time t1 and all other times t2, . . . , tn. If j = 2, then

u may take on values 1, . . . , n−2, and so on. If j = n−1, then u = 1 gives the pair corresponding

to times tn−1, tn.

• For example, under the AR(1) model, for a particular u, pairs at times tj and tj+u for satisfy

corr(Yij , Yi,j+u) = ρu,

suggesting that the correlation between observations u time intervals apart may be assessed using

information from all such pairs.

AUTOCORRELATION FUNCTION: The autocorrelation function is just the correlation corre-

sponding to pairs of observations u time intervals apart thought of as a function of the number of

intervals. That is, for all j = 1, . . . , n − 1 and appropriate u,

ρ(u) = corr(Yij , Yi,j+u).

• This depends only on u and is the same for all j because of stationarity.

• The value of ρ(0) is taken to be equal to one, as with u = 0 ρ(0) is just the correlation between

an observation and itself.
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• The value u is often called the lag. The total number of possible lags is n − 1 for n time points.

• The autocorrelation function describes how correlation changes as the time between observations

gets farther apart, i.e. as u increases. As expected, the value of ρ(u) tends to decrease in

magnitude as u increases, reflecting the usual situation in which within-unit correlation “falls off”

as observations become more separated in time.

In practice, we may estimate the autocorrelation function if we are willing to assume that stationarity

holds. Inspection of the estimate can help the analyst decide which model might be appropriate; e.g. if

correlation falls off gradually with lag, it may suggest that an AR(1) model is appropriate.

For data from a single population, it is natural to base estimation of ρ(u) for each u = 1, . . . , n − 1 on

all pairs of observations (Yij , Yi,j+u) across all individuals i = 1, . . . , m and relevant choices of j.

• Care must be taken to ensure that the fact that responses have different means and overall

variances at each tj is taken into account, as with scatterplot matrices.

• Thus, we consider “centered” and “scaled” observations. In particular, ρ(u) for a particular lag

u may be estimated by calculating the sample correlation coefficient treating all pairs of the

form
Yij − Y ·j

Sj
,
Yi,j+u − Y ·j+u

Sj+u

as if they were observations on two random variables from a sample of m individuals, where each

individual contributes more than one pair.

• The resulting estimator as a function of u is called the sample autocorrelation function, which

we denote as ρ̂(u).

• ρ̂(u) may be calculated and plotted against u to provide the analyst with both numerical and

visual information on the nature of correlation if the stationarity assumption is plausible.

We illustrate using the data from girls in the dental study. Here, the time interval is of length d = 2

years, and n = 4, so u can take on values 1, . . . , n − 1 = 3.

• When u = 1, each girl has three pairs of values separated by d units (i.e. one time interval), the

values at (t1, t2), (t2, t3), and (t3, t4). Thus, there is a total of 33 possible pairs from all 11 girls.

• When u = 2, there are two pairs per girl, at (t1, t3) and (t2, t4), or 22 total pairs.
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• When u = 3, each girl contributes a single pair at (t1, t4), 11 pairs in total).

Thus, the calculation of ρ̂(u) is carried out by calculating the sample correlation coefficient from 33, 22,

and 11 observations for u = 1, 2, and 3, respectively, and yields

u 1 2 3

ρ̂(u) 0.891 0.871 0.841

Because each estimated value is based on a decreasing number of pairs, they are not of equal quality,

so should be interpreted with care.

The estimates suggest that, if we are willing to believe stationarity, as observations become farther

apart in time (u increasing), correlation seems to stay fairly constant. This agrees with the evidence

from the calculation of the sample covariance matrix and the scatterplot matrix in Figure 3.

Figure 5 shows a plot of the sample autocorrelation function, displaying the same information graphi-

cally.

Figure 5: Sample autocorrelation function for data from girls in the dental study.
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An alternative way of displaying information on correlation under the assumption of stationarity is to

plot the pairs for each choice of lag u. From above, there are 33 pairs corresponding to lag u = 1, 22

for lag u = 2, and 11 for lag u = 3. In Figure 6, these pairs are plotted for each u. The plot gives a

similar impression as the numerical estimate. An advantage of the plot is that it clearly shows that the

information on correlation (total number of pairs) decreases as u increases.

For more than one group, these procedures may be carried out separately for each group.
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Figure 6: Lag plots for data from girls in the dental study for lags u = 1, 2, and 3.
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When data are not equally spaced, extensions of the method for estimating the autocorrelation function

are available, but are beyond the scope of our discussion here. The reader is referred to Diggle, Heagerty,

Liang, and Zeger (2002).

It is important to recognize that whether stationarity holds is an assumption. The foregoing procedures

are relevant when this assumption is valid. Unfortunately, assessing with confidence whether stationarity

holds is not really possible in longitudinal data situations where the number of time points is usually

small. Because many popular models for correlation used in longitudinal data analysis embody the

stationarity assumption, it is often assumed without comment, and it is often reasonable.

4.6 Implementation with SAS

We demonstrate the use of various SAS procedures on the dental data. In particular, we show how the

following may be obtained:

• Sample mean vectors for each group (girls and boys)

• Group-specific sample covariance and correlation matrices

• Pooled sample covariance and correlation matrix

• Pairs for plotting scatterplot matrices for each group

• Autocorrelation functions for each gender and pairs for making lag plots
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There are actually numerous ways to obtain the pooled sample covariance and correlation matrices. We

show one way here, using SAS PROC DISCRIM. Additional ways can be found in the program on the

course web site.

EXAMPLE 1 – DENTAL STUDY DATA: The data are in the file dental.dat.

PROGRAM:

/*******************************************************************

EXAMPLE 1, CHAPTER 4

Using SAS to obtain sample mean vectors, sample covariance
matrices, and sample correlation matrices.

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

The data are not in the correct from for use with the SAS procedures
CORR and DISCRIM we use below. These procedures require that the
data be in the form of one record (line) per experimental unit.
The data in the file dental.dat are in the form of one record per
observation (so that each child has 4 data records).

In particular, the data set looks like

1 1 8 21 0
2 1 10 20 0
3 1 12 21.5 0
4 1 14 23 0
5 2 8 21 0

.

.

.

column 1 observation number
column 2 child id number
column 3 age
column 4 response (distance)
column 5 gender indicator (0=girl, 1=boy)

We thus create a new data set such that each record in the data
set represents all 4 observations on each child plus gender
identifier. To do this, we use some data manipulation features
of the SAS data step. The second data step does this.

We redefine the values of AGE so that we may use AGE as an "index"
in creating the new data set DENT2. The DATA step that creates
DENT2 demonstrates one way (using the notion of an ARRAY) to
transform a data set in the form of one observation per record
(the original form) into a data set in the form of one record per
individual. The data must be sorted prior to this operation; we
invoke PROC SORT for this purpose.

In the new data set, the observations at ages 8, 10, 12, and 14
are placed in variables AGE1, AGE2, AGE3, and AGE4, respectively.

We use PROC PRINT to print out the first 5 records (so data for
the first 5 children, all girls) using the OBS= feature of the
DATA= option.

*******************************************************************/

data dent1; infile ’dental.dat’;
input obsno child age distance gender;

run;

data dent1; set dent1;
if age=8 then age=1;
if age=10 then age=2;
if age=12 then age=3;
if age=14 then age=4;
drop obsno;

run;

proc sort data=dent1;
by gender child;

run;
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data dent2(keep=age1-age4 gender child);
array aa{4} age1-age4;
do age=1 to 4;
set dent1;
by gender child;
aa{age}=distance;
if last.child then return;

end;
run;

title "TRANSFORMED DATA -- 1 RECORD/INDIVIDUAL";
proc print data=dent2(obs=5); run;

/*******************************************************************

Here, we use PROC CORR to obtain the sample means at each
age (the means of the variables AGE1,...,AGE4 in DENT2 and to
calculate the sample covariance matrix and corresponding sample
correlation matrix separately for each group (girls and boys).
The COV option in the PROC CORR statement asks for the sample
covariance to be printed; without it, only the sample correlation
matrix would appear in the output.

*******************************************************************/

proc sort data=dent2; by gender; run;

title "SAMPLE COVARIANCE AND CORRELATION MATRICES BY GENDER";
proc corr data=dent2 cov;
by gender; var age1 age2 age3 age4;
run;

/*******************************************************************

We now obtain the "centered" and "scaled" values
that may be used for plotting scatterplot matrices such as that
in Figure 3. Here, we call PROC MEANS to calculate the sample
mean (MAGE1,...,MAGE4) and standard deviation (SDAGE1,...,SDAGE4)
for each of the variables AGE1,...,AGE4 for each gender. These
are output to the data set DENTSTATS, which has two records, one
for each gender (see the output). We then MERGE this data set
with DENT2 BY GENDER, which has the effect of matching up the
appropriate gender mean and SD to each child. We print out the
first three records of the resulting data set to illustrate.
We use the NOPRINT option with PROC MEANS to suppress printing of
its output.

The variables CSAGE1,...,CSAGE4 contain the centered/scaled values.
These may be plotted against each other to obtain plots like Figure 3.
We have not done this here to save space.

*******************************************************************/

proc sort data=dent2; by gender child; run;

proc means data=dent2 mean std noprint; by gender;
var age1 age2 age3 age4;
output out=dentstats mean=mage1 mage2 mage3 mage4

std=sdage1 sdage2 sdage3 sdage4;
run;

title "SAMPLE MEANS AND SDS BY GENDER FROM PROC MEANS";
proc print data=dentstats; run;

data dentstats; merge dentstats dent2; by gender;
csage1=(age1-mage1)/sdage1;
csage2=(age2-mage2)/sdage2;
csage3=(age3-mage3)/sdage3;
csage4=(age4-mage4)/sdage4;

run;

title "INDIVIDUAL DATA MERGED WITH MEANS AND SDS BY GENDER";
proc print data=dentstats(obs=3); run;

/*******************************************************************

One straightforward way to have SAS calculate the pooled sample
covariance matrix and the corresponding estimated correlation matrix
is using PROC DISCRIM. This procedure is focused on so-called
discriminant analysis, which is discussed in a standard text on
general multivariate analysis. The data are considered as
in the form of vectors; here, the elements of a data vector are
denoted as AGE1,...,AGE4.

Here, we only use PROC DISCRIM for its facility to print out the
sample covariance matrix and correlation matrix "automatically,"
and disregard other portions of the output.
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*******************************************************************/

proc discrim pcov pcorr data=dent2;
class gender;
var age1 age2 age3 age4;

run;

/*******************************************************************

Although it is a bit cumbersome, we may use some DATA step
manipulations and PROC CORR to obtain the values of the autocorrelation
function for each gender. We first drop variables
no longer needed from the data set DENTSTATS.

We create then three data sets, LAG1, LAG2, and LAG3, and describe
LAG1 here; the other two are similar. We create two new variables,
PAIR1 and PAIR2. For LAG1, PAIR1 and PAIR2 are the two values in (5.43)
for u=1. As there are 4 ages, each child has 3 such pairs. The output
of PROC PRINT for LAG1 shows this for the first 2 children.
We then sort the data by gender and call PROC CORR to find the
sample correlation between the two variables for each gender.

The same principle is used to obtain the correlation by gender for
lags 2 and 3 [u=2,3].

There are other, more sophisticated ways to obtain the values
of the autocorrelation function; however, for longitudinal data sets
where the number of time points is small, the "manual" approach
we have demonstrated here is easy to implement and understand.

PAIR1 versus PAIR2 may be plotted for each lag to obtain visual
presentation of the results as in Figure 6.

*******************************************************************/

data dentstats; set dentstats;
drop age1-age4 mage1-mage4 sdage1-sdage4;

run;

data lag1; set dentstats;
by child;
pair1=csage1; pair2=csage2; output;
pair1=csage2; pair2=csage3; output;
pair1=csage3; pair2=csage4; output;
if last.child then return;
drop csage1-csage4;

run;

title "AUTOCORRELATION FUNCTION AT LAG 1";
proc print data=lag1(obs=6); run;
proc sort data=lag1; by gender;

proc corr data=lag1; by gender;
var pair1 pair2;

run;

data lag2; set dentstats;
by child;
pair1=csage1; pair2=csage3; output;
pair1=csage2; pair2=csage4; output;
if last.child then return;
drop csage1-csage4;

run;

title "AUTOCORRELATION FUNCTION AT LAG 2";
proc print data=lag2(obs=6); run;
proc sort data=lag2; by gender;

proc corr data=lag2; by gender;
var pair1 pair2;

run;

data lag3; set dentstats;
by child;
pair1=csage1; pair2=csage4; output;
if last.child then return;
drop csage1-csage4;

run;

title "AUTOCORRELATION FUNCTION AT LAG 3";
proc print data=lag3(obs=6); run;
proc sort data=lag3; by gender;

proc corr data=lag3; by gender;
var pair1 pair2;

run;
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OUTPUT: We have deleted some of the output of PROC DISCRIM that is irrelevant to our purposes here

to shorten the presentation. The full output from the call to this procedure is on the course web page.

TRANSFORMED DATA -- 1 RECORD/INDIVIDUAL 1

Obs age1 age2 age3 age4 child gender

1 21.0 20.0 21.5 23.0 1 0
2 21.0 21.5 24.0 25.5 2 0
3 20.5 24.0 24.5 26.0 3 0
4 23.5 24.5 25.0 26.5 4 0
5 21.5 23.0 22.5 23.5 5 0

SAMPLE COVARIANCE AND CORRELATION MATRICES BY GENDER 2

----------------------------------- gender=0 ---------------------------------

The CORR Procedure

4 Variables: age1 age2 age3 age4

Covariance Matrix, DF = 10

age1 age2 age3 age4

age1 4.513636364 3.354545455 4.331818182 4.356818182
age2 3.354545455 3.618181818 4.027272727 4.077272727
age3 4.331818182 4.027272727 5.590909091 5.465909091
age4 4.356818182 4.077272727 5.465909091 5.940909091

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

age1 11 21.18182 2.12453 233.00000 16.50000 24.50000
age2 11 22.22727 1.90215 244.50000 19.00000 25.00000
age3 11 23.09091 2.36451 254.00000 19.00000 28.00000
age4 11 24.09091 2.43740 265.00000 19.50000 28.00000

Pearson Correlation Coefficients, N = 11
Prob > |r| under H0: Rho=0

age1 age2 age3 age4

age1 1.00000 0.83009 0.86231 0.84136
0.0016 0.0006 0.0012

age2 0.83009 1.00000 0.89542 0.87942
0.0016 0.0002 0.0004

age3 0.86231 0.89542 1.00000 0.94841
0.0006 0.0002 <.0001

age4 0.84136 0.87942 0.94841 1.00000
0.0012 0.0004 <.0001

SAMPLE COVARIANCE AND CORRELATION MATRICES BY GENDER 3

----------------------------------- gender=1 ----------------------------------

The CORR Procedure

4 Variables: age1 age2 age3 age4

Covariance Matrix, DF = 15

age1 age2 age3 age4

age1 6.016666667 2.291666667 3.629166667 1.612500000
age2 2.291666667 4.562500000 2.193750000 2.810416667
age3 3.629166667 2.193750000 7.032291667 3.240625000
age4 1.612500000 2.810416667 3.240625000 4.348958333

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

age1 16 22.87500 2.45289 366.00000 17.00000 27.50000
age2 16 23.81250 2.13600 381.00000 20.50000 28.00000
age3 16 25.71875 2.65185 411.50000 22.50000 31.00000
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age4 16 27.46875 2.08542 439.50000 25.00000 31.50000

Pearson Correlation Coefficients, N = 16
Prob > |r| under H0: Rho=0

age1 age2 age3 age4

age1 1.00000 0.43739 0.55793 0.31523
0.0902 0.0247 0.2343

age2 0.43739 1.00000 0.38729 0.63092
0.0902 0.1383 0.0088

age3 0.55793 0.38729 1.00000 0.58599
0.0247 0.1383 0.0171

age4 0.31523 0.63092 0.58599 1.00000
0.2343 0.0088 0.0171

SAMPLE MEANS AND SDS BY GENDER FROM PROC MEANS 4

g _ _ s s s s
e T F m m m m d d d d
n Y R a a a a a a a a

O d P E g g g g g g g g
b e E Q e e e e e e e e
s r _ _ 1 2 3 4 1 2 3 4

1 0 0 11 21.1818 22.2273 23.0909 24.0909 2.12453 1.90215 2.36451 2.43740
2 1 0 16 22.8750 23.8125 25.7188 27.4688 2.45289 2.13600 2.65185 2.08542

INDIVIDUAL DATA MERGED WITH MEANS AND SDS BY GENDER 5

Obs gender _TYPE_ _FREQ_ mage1 mage2 mage3 mage4 sdage1 sdage2 sdage3

1 0 0 11 21.1818 22.2273 23.0909 24.0909 2.12453 1.90215 2.36451
2 0 0 11 21.1818 22.2273 23.0909 24.0909 2.12453 1.90215 2.36451
3 0 0 11 21.1818 22.2273 23.0909 24.0909 2.12453 1.90215 2.36451

Obs sdage4 age1 age2 age3 age4 child csage1 csage2 csage3 csage4

1 2.43740 21.0 20.0 21.5 23.0 1 -0.08558 -1.17092 -0.67283 -0.44757
2 2.43740 21.0 21.5 24.0 25.5 2 -0.08558 -0.38234 0.38447 0.57811
3 2.43740 20.5 24.0 24.5 26.0 3 -0.32093 0.93196 0.59593 0.78325

INDIVIDUAL DATA MERGED WITH MEANS AND SDS BY GENDER 6

The DISCRIM Procedure

Observations 27 DF Total 26
Variables 4 DF Within Classes 25
Classes 2 DF Between Classes 1

Class Level Information

Variable Prior
gender Name Frequency Weight Proportion Probability

0 _0 11 11.0000 0.407407 0.500000
1 _1 16 16.0000 0.592593 0.500000

INDIVIDUAL DATA MERGED WITH MEANS AND SDS BY GENDER 7

The DISCRIM Procedure

Pooled Within-Class Covariance Matrix, DF = 25

Variable age1 age2 age3 age4

age1 5.415454545 2.716818182 3.910227273 2.710227273
age2 2.716818182 4.184772727 2.927159091 3.317159091
age3 3.910227273 2.927159091 6.455738636 4.130738636
age4 2.710227273 3.317159091 4.130738636 4.985738636

INDIVIDUAL DATA MERGED WITH MEANS AND SDS BY GENDER 8

The DISCRIM Procedure

Pooled Within-Class Correlation Coefficients / Pr > |r|

Variable age1 age2 age3 age4

age1 1.00000 0.57070 0.66132 0.52158
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0.0023 0.0002 0.0063

age2 0.57070 1.00000 0.56317 0.72622
0.0023 0.0027 <.0001

age3 0.66132 0.56317 1.00000 0.72810
0.0002 0.0027 <.0001

age4 0.52158 0.72622 0.72810 1.00000
0.0063 <.0001 <.0001

AUTOCORRELATION FUNCTION AT LAG 1 11

Obs gender _TYPE_ _FREQ_ child pair1 pair2

1 0 0 11 1 -0.08558 -1.17092
2 0 0 11 1 -1.17092 -0.67283
3 0 0 11 1 -0.67283 -0.44757
4 0 0 11 2 -0.08558 -0.38234
5 0 0 11 2 -0.38234 0.38447
6 0 0 11 2 0.38447 0.57811

AUTOCORRELATION FUNCTION AT LAG 1 12

----------------------------------- gender=0 ---------------------------------

The CORR Procedure

2 Variables: pair1 pair2

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

pair1 33 0 0.96825 0 -2.20369 2.07616
pair2 33 0 0.96825 0 -1.88353 2.07616

Pearson Correlation Coefficients, N = 33
Prob > |r| under H0: Rho=0

pair1 pair2

pair1 1.00000 0.89130
<.0001

pair2 0.89130 1.00000
<.0001

AUTOCORRELATION FUNCTION AT LAG 1 13

----------------------------------- gender=1 ---------------------------------

The CORR Procedure

2 Variables: pair1 pair2

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

pair1 48 0 0.97849 0 -2.39513 1.99154
pair2 48 0 0.97849 0 -1.55080 1.99154

Pearson Correlation Coefficients, N = 48
Prob > |r| under H0: Rho=0

pair1 pair2

pair1 1.00000 0.47022
0.0007

pair2 0.47022 1.00000
0.0007

AUTOCORRELATION FUNCTION AT LAG 2 14

Obs gender _TYPE_ _FREQ_ child pair1 pair2

1 0 0 11 1 -0.08558 -0.67283
2 0 0 11 1 -1.17092 -0.44757
3 0 0 11 2 -0.08558 0.38447
4 0 0 11 2 -0.38234 0.57811
5 0 0 11 3 -0.32093 0.59593
6 0 0 11 3 0.93196 0.78325
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AUTOCORRELATION FUNCTION AT LAG 2 15

----------------------------------- gender=0 ---------------------------------

The CORR Procedure

2 Variables: pair1 pair2

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

pair1 22 0 0.97590 0 -2.20369 1.56184
pair2 22 0 0.97590 0 -1.88353 2.07616

Pearson Correlation Coefficients, N = 22
Prob > |r| under H0: Rho=0

pair1 pair2

pair1 1.00000 0.87087
<.0001

pair2 0.87087 1.00000
<.0001

AUTOCORRELATION FUNCTION AT LAG 2 16

----------------------------------- gender=1 ---------------------------------

The CORR Procedure

2 Variables: pair1 pair2

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

pair1 32 0 0.98374 0 -2.39513 1.96044
pair2 32 0 0.98374 0 -1.21378 1.99154

Pearson Correlation Coefficients, N = 32
Prob > |r| under H0: Rho=0

pair1 pair2

pair1 1.00000 0.59443
0.0003

pair2 0.59443 1.00000
0.0003

AUTOCORRELATION FUNCTION AT LAG 3 17

Obs gender _TYPE_ _FREQ_ child pair1 pair2

1 0 0 11 1 -0.08558 -0.44757
2 0 0 11 2 -0.08558 0.57811
3 0 0 11 3 -0.32093 0.78325
4 0 0 11 4 1.09115 0.98839
5 0 0 11 5 0.14977 -0.24243
6 0 0 11 6 -0.55627 -0.65271

AUTOCORRELATION FUNCTION AT LAG 3 18

----------------------------------- gender=0 ---------------------------------

The CORR Procedure

2 Variables: pair1 pair2

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

pair1 11 0 1.00000 0 -2.20369 1.56184
pair2 11 0 1.00000 0 -1.88353 1.60380

Pearson Correlation Coefficients, N = 11
Prob > |r| under H0: Rho=0

pair1 pair2
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pair1 1.00000 0.84136
0.0012

pair2 0.84136 1.00000
0.0012

AUTOCORRELATION FUNCTION AT LAG 3 19

----------------------------------- gender=1 ---------------------------------

The CORR Procedure

2 Variables: pair1 pair2

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

pair1 16 0 1.00000 0 -2.39513 1.88553
pair2 16 0 1.00000 0 -1.18382 1.93307

Pearson Correlation Coefficients, N = 16
Prob > |r| under H0: Rho=0

pair1 pair2

pair1 1.00000 0.31523
0.2343

pair2 0.31523 1.00000
0.2343
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