
CHAPTER 6 ST 732, M. DAVIDIAN

6 Multivariate repeated measures analysis of variance

6.1 Introduction

The statistical model underlying the univariate repeated measures analysis of variance procedures dis-

cussed in the last chapter involves a very restrictive assumption about the form of the covariance matrix

of a data vector. Specifically, if yi is the data vector of observations at the n time points from the ith

unit, then the model may be written as

Y ′

i = a′

iM + ε′i, i = 1, . . . , m, (6.1)

where ai and M are defined in Chapter 5 as, respectively, the (1×q) indicator vector of group member-

ship and the (q×n) matrix whose rows are the transposes of the mean vectors for each group. The error

vector ei associated with the ith unit has, by virtue of the way the model is constructed, covariance

matrix

Σ = σ2
bJn + σ2

eIn;

that is, the model implies the assumption of compound symmetry. With the normality assumptions,

the model also implies that each data vector has a multivariate normal distribution:

Y i ∼ Nn(µi,Σ), µ′

i = a′

iM .

The elements of µi under the model have a very specific form; if unit i is from the `th group, the jth

element of this vector, j = 1, . . . , n, has the form

µ + τ` + γj + (τγ)`j .

We saw that, as long as the assumption of compound symmetry is correct, valid tests of statistical

hypotheses of interest based on familiar analysis of variance techniques are available. The test of great

interest is that of whether there exists a Group by Time interaction, addressing the issue of whether the

change in mean response over time differs among groups (“parallelism”). As long as the assumptions

of compound symmetry and normality hold, the usual test statistic based on the ratio of two mean

squares has an F sampling distribution, so that the value of the statistic may be compared with F

critical values to conduct the test. However, if the assumption of compound symmetry does not hold,

this is no longer true, and application of the testing procedure may lead to erroneous conclusions.
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One approach discussed in Chapter 5 to address this problem was to “adjust” the tests. However, this is

a somewhat unsatisfying approach, as it skirts the real problem, which is that the compound symmetry

assumption is not appropriate. The simple fact is that this assumption is too restrictive to characterize

the kind of correlation patterns that might be seen with longitudinal data. Thus, a more appealing

alternative to “adjustment” of tests that are not correct is to return to the statistical model, make a less

restrictive assumption, and develop new procedures appropriate for the model under this assumption.

MORE GENERAL MODEL: The most general alternative to the compound symmetry is to go entirely

in the opposite direction and assume very little about the nature of the covariance structure of a data

vector. Recall that in Chapter 5, the deviation εi in (6.1) had a very specific form,

ε′i = 1′bi + e′

i,

which implied the compound symmetry structure. An alternative view is to consider the model (6.1) as

the starting point and make an assumption directly about the covariance structure associated with εi.

We may still believe that the covariance matrix of the data vectors Y i is the same for all i, regardless

of group membership; however, we may not believe that this matrix exhibits the compound symmetry

structure. We may state this formally by considering the model

Y ′

i = a′

iM + ε′i, i = 1, . . . , m, εi ∼ N (0,Σ), (6.2)

where Σ is now an arbitrary covariance matrix assumed to possess no particular structure. That is,

the most we are willing to say about Σ is that it is a symmetric matrix with the unstructured form

(see Chapter 4)

Σ =




σ2
1 σ12 · · · σ1n

...
...

...
...

σn1 σn2 · · · σ2
n




and is the same for all i.

• This modeling perspective does not explicitly acknowledge how among-unit and within-unit

sources of variation contribute to the overall variation of observations in a data vector. Rather,

it is assumed that the aggregate of both sources produces a covariance structure of arbitrary,

unstructured form; nothing specific about how the two sources combine is characterized.

• The resulting unstructured matrix depends on n(n + 1)/2 parameters (rather than the two

parameters σ2
b and σ2

e under the compound symmetry assumption. Thus, a great many more

parameters are required to describe how observations within a data vector vary and covary.
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MULTIVARIATE PROCEDURES: With model (6.2) as the starting point, it is possible to develop

valid testing procedures for hypotheses of interest. However, the model is much more complicated

because there is no longer a nice, simple assumption about covariance. The result is that it is no

longer possible as it was under compound symmetry to think on an individual observation basis

and be able to obtain nice results about ratios of simple mean squares. Thus, familiar procedures

based on simple F ratios no longer apply. It is necessary instead to consider the data in the form of

vectors. Hence, the procedures we now discuss are known as multivariate repeated measures analysis

of variance methods. This is because they arise as a particular case of a way of thinking about general

multivariate problems, known as multivariate analysis of variance methods (MANOVA). These

may be viewed as extensions of usual analysis of variance methods, where now, an “observation” is an

entire vector from an unit rather than just a single, scalar response.

PERSPECTIVE: Although a lengthy exposition on multivariate analysis of variance methods and mod-

els is possible, we will consider these methods only briefly. A full, general treatment would be found in

a full course on multivariate analysis; a typical reference would be Johnson and Wichern (2002).

• This is because, just as the univariate methods of the previous chapter make too restrictive an

assumption about covariance for many longitudinal data problems, multivariate methods make

too general an assumption. Indeed, the overall covariance matrix in many longitudinal data

settings has some sort of systematic pattern.

• The consequence is that they may not be very powerful in the statistical sense for detecting

departures from null hypotheses of interest, because they must allow for the possibility that

the covariance matrix of a data vector may be virtually anything! There are now n(n + 1)/2

parameters defining the covariance structure rather than just 2.

• Thus, the perspective of this instructor is that these methods may be of limited practical utility

for longitudinal data problems.

As we will see in subsequent chapters, although we may not be willing to be as narrow as assuming

compound symmetry, we may have some basis for assuming something about the covariance structure

of a data vector, for example, how among- and within-sources of variation affect the response. By taking

advantage of what we are willing to assume, we may be able to construct more powerful statistical

procedures. Moreover, although the model (6.2) gets away from compound symmetry, it still uses a

restrictive assumption about the form of the mean vector, not incorporating time explicitly. Other

models we will see later will address all of these issues and lead to more interpretable methods.
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6.2 General multivariate problem

GENERAL SET-UP: In order to appreciate the perspective behind the multivariate approach, we

consider a general case of a multivariate problem, that usually addressed in a full course on multivariate

analysis. Consider the following situation; we use the notation with two subscripts for convenience later.

• Units are randomized into q groups.

• Data vector Y h` is observed for the hth unit in the `th group.

• Y h` is assumed to satisfy

Y h` ∼ N (µ`,Σ),

where µ` is the mean response vector for group ` and Σ is an arbitrary covariance matrix assumed

to be the same for each group.

• There are r` units in each group, so for group `, h = 1, . . . , r`.

• The components of Y h` may not necessarily all be measurements of the same response.

Instead, each component of Y h` may represent the measurement of a different response. For

example, suppose the units are birds of two species. Measurements on n different features of the

birds may be taken and collected into a vector Y h`; e.g. yh`1 may be tail length, yh`2 may be wing

span, yh`3 may be body weight, and so on. That is, the elements Yh`j , j = 1, . . . , n, may consist

of measurements of different characteristics.

• Of course, the longitudinal data situation is a special case of this set-up where the Yh`j happen to

be measurements on the same response (over time).

COMPARISON OF INTEREST: Clearly, the main interest is focused on comparing the groups on

the basis of the responses that make up a data vector somehow.

• Recall in our discussion of univariate methods, we noted that when the responses are all the same

within a data vector, a natural approach is to think of averaging the responses over time and

comparing the averages. This was the interpretation of the hypotheses developed for testing the

main effect of groups. (Of course, this may be dubious if the profiles are not parallel, as discussed

in Chapter 5).
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• Here, however, it is clear that averaging over all responses and comparing the averages across

groups would be nonsensical. In the example above, we would be averaging tail length, wing span,

body weight, etc, variables that measure entirely different characteristics on different scales!

• Thus, the best we can hope for is to compare all the different responses “simultaneously” somehow.

In doing this, it would naturally be important to take into account that observations on the same

unit are correlated.

FORMALLY: In our statistical model, µ` is the mean for data vectors (composed of the n different

responses) observed on units in the `th group. Thus, we may formally state our desire to compare the

n responses “simultaneously” as the desire to compare the q mean vectors µ`, ` = 1, . . . , q, on the basis

of all their components. That is, we are interested in testing the null hypothesis

H0 : µ1 = · · · = µq (6.3)

versus the alternative that H0 is not true. As long as the n responses that make up a data vector are

different and hence not comparable (e.g. cannot be “averaged”), this is the best we can do to address

our general question.

6.3 Hotelling’s T
2

The standard methods to test the null hypothesis (6.3) are simply generalizations of standard methods

in the case where the data on each unit are just scalar observations yh`, say. That is, Y h` is a vector of

length n = 1. In this section, we give brief statements of these generalizations without much justification.

A more in-depth treatment of the general multivariate problem may be found in Johnson and Wichern

(1992).

First, consider the case of just q = 2 groups.

SCALAR CASE: If the observations were just scalars rather than vectors, then we would be interested

in the comparison of two scalar means µ`, ` = 1, 2, and H0 would reduce to

H0 : µ1 = µ2 or µ1 − µ2 = 0.

Furthermore, the unknown covariance matrix Σ would reduce to a single scalar variance value, σ2,

say. Under our normality assumption, the standard test of H0 would be the two-sample t test.
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• Because σ2 is unknown, it must be estimated. This is accomplished by estimating σ2 based on

the observations for each group and then “pooling” the result. That is, letting Y ·` denote the

sample mean of the r` observations yh` for group `, find the sample variance

S2
` = (r` − 1)−1

r∑̀

h=1

(Yh` − Y ·`)
2

and construct the estimate of σ2 from data in both groups as the “weighted average”

S2 = (r1 + r2 − 2)−1{(r1 − 1)S2
1 + (r2 − 1)S2

2}.

• Now, form the test statistic

t =
Y ·1 − Y ·2√

(r−1
1 + r−1

2 )s2
.

The statistic t may be shown to have a Student’s t distribution with r1 +r2−2 degrees of freedom.

MULTIVARIATE CASE: The hypothesis is now

H0 : µ1 = µ2 or µ1 − µ2 = 0. (6.4)

A natural approach is to seek a multivariate analogue to the t test.

• The analogue of the assumed common variance σ2 is now the assumed common covariance

matrix Σ, which is of course unknown. We would like to estimate this matrix for each group

and then “pool” the results as in Chapter 4.

• In particular, we may calculate the pooled sample covariance matrix. If we collect the sample

means Y ·`j , j = 1, . . . , n into a vector

Y ·` =




y
·`1

...

y
·`n




,

then the sample covariance matrix for group ` is the (n × n) matrix

Σ̂` = (r` − 1)−1
r∑̀

h=1

(Y h` − Y ·`)(Y h` − Y ·`)
′. (6.5)

Recall that the sum in 6.5) is called a sum of squares and cross-products (SS&CP) matrix.

• The overall pooled sample covariance, an estiamtor for Σ, is then the “weighted average”

Σ̂ = (r1 + r2 − 2)−1{(r1 − 1)Σ̂1 + (r2 − 1)Σ̂2}.
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• The test statistic analogous to the (square of) the t statistic is known as Hotelling’s T 2 statistic

and is given by

T 2 = (r−1
1 + r−1

2 )−1(Y ·1 − Y ·2)
′Σ̂

−1
(Y ·1 − Y ·2).

It may be shown that
r1 + r2 − n − 1

(r1 + r2 − 2)n
T 2 ∼ Fn,r1+r2−n−1.

Thus, the test of H0 may be carried out at level α by comparing this version of T 2 to the

appropriate α critical value.

Note that if n = 1, the multiplicative factor is equal to 1 and the statistic has an F distribution

with 1 and r1 + r2 − 2 degrees of freedom, which is just the square of the tr1+r2−2 distribution.

That is, the multivariate test reduces to the scalar t test if the dimension of a data vector n = 1.

EXAMPLE: For illustration, consider the dental data. Here, the q = 2 groups are genders, r1 = 11

(girls), r2 = 16 (boys), and n = 4 ages (8, 10, 12, 14). Recall that we found

Y ·1 = (21.182, 22.227, 23.091, 24.091)′,

Y ·2 = (22.875, 23.813, 25.719, 27.469)′.

The estimates of Σ for each group are, from Chapter 4,

Σ̂1 =




4.514 3.355 4.332 4.357

3.355 3.618 4.027 4.077

4.332 4.027 5.591 5.466

4.357 4.077 5.466 5.9401




,

Σ̂2 =




6.017 2.292 3.629 1.613

2.292 4.563 2.194 2.810

3.629 2.194 7.032 3.241

1.613 2.810 3.241 4.349




.
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The pooled estimate is then easily calculated (Chapter 4) as

Σ̂ =




5.415 2.717 3.910 2.710

2.717 4.185 2.927 3.317

3.910 2.927 6.456 4.131

2.710 3.317 4.131 4.986




.

From these quantities, it is straightforward to calculate

r1 + r2 − n − 1

(r1 + r2 − 2)n
T 2 = 3.63,

which under our assumptions has an F distribution with 4 and 22 degrees of freedom. F4,22,0.05 = 2.816;

thus, we would reject H0 at level α = 0.05.

In section 6.6 we will see these calculations done using SAS PROC GLM.

HYPOTHESIS IN MATRIX FORM: It is worth noting that the hypothesis in (6.4) may be expressed

in the form we have used previously. Specifically, if we define M as before as the (2× n) matrix whose

rows are the transposed mean vectors µ′

1 and µ′

2, i.e.

M =




µ11 · · · µ1n

µ21 · · · µ2n


 ,

it should be clear that, defining C = (1,−1), we have (verify)

CM =

(
µ11 − µ21, · · · , µ1n − µ2n

)
= (µ1 − µ2)

′.

Thus, we may express the hypothesis in the form

H0 : CMU = 0, U = In.

6.4 One-way MANOVA

Just as the case of comparing 2 group means for scalar response may be generalized to q > 2 groups

using analysis of variance techniques, the multivariate analysis above also may be generalized.
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SCALAR CASE: Again, if the observations were just scalars, we would be interested in the comparison

of q scalar means µ`, ` = 1, . . . , q, and H0 would reduce to

H0 : µ1 = · · · = µq,

and again the unknown covariance matrix Σ would reduce to a single scalar variance value σ2. Under

the normality assumption, the standard test of H0 via one-way analysis of variance is based on the

ratio of two estimators for σ2. The following is the usual one-way analysis of variance; recall that

m =
∑q

`=1 r` is the total number of units:

ANOVA Table

Source SS DF MS F

Among Groups SSG =
∑q

`=1 r`(Y ·` − Y ··)
2 q − 1 MSG MSG/MSE

Among-unit Error SSE =
∑q

`=1

∑r`

h=1(Yh` − Y ·`)
2 m − q MSE

Total
∑q

`=1

∑r`

h=1(Yh` − Y ··)
2 m − 1

Note that the “error” sum of squares SSE may be written as (try it)

SSE = (r1 − 1)S2
1 + · · · + (rq − 1)S2

q , S2
` = (r` − 1)−1

r∑̀

h=1

(Yh` − Y ·`)
2,

where S2
` is the sample variance for the `th group, so that MSE has the interpretation as the pooled

sample variance estimator for σ2 across all q groups. MSG is an estimator for σ2 based on deviations of

the group means from the overall mean, and will overestimate σ2 if the means are different. It may be

shown that the ratio F has sampling distribution that is F with (q−1) and (m− q) degrees of freedom,

so that the test is conducted at level α by comparing the calculated value of F to Fq−1,m−q,α.

PAGE 180



CHAPTER 6 ST 732, M. DAVIDIAN

MULTIVARIATE CASE: The hypothesis is now H0 : µ1 = · · · = µq.

As in the case of q = 2 groups above, the multivariate generalization involves the fact that there

is now an entire covariance matrix Σ to estimate rather than just a single variance. Consider the

following analogue to the scalar one-way analysis of variance above. Let Y ··j be the sample mean of all

observations across all units and groups for the jth element and define the overall mean vector

Y ·· =




Y ··1

...

Y ··n




.

MANOVA Table

Source SS&CP DF

Among Groups QH =
∑q

`=1 r`(Y ·` − Y ··)(Y ·` − Y ··)
′ q − 1

Among-unit Error QE =
∑q

`=1

∑r`

h=1(Y h` − Y ·`)(Y h` − Y ·`)
′ m − q

Total QH + QE =
∑q

`=1

∑r`

h=1(Y h` − Y ··)(Y h` − Y ··)
′ m − 1

Comparing the entries in this table to those in the scalar ANOVA table, we see that they appear to be

multivariate generalizations. In particular, the entries are now matrices. Each may be viewed as an

attempt to estimate Σ.

It is straightforward to verify (try it) that the Among-unit Error sum of squares and cross products

matrix QE may be written

QE = (r1 − 1)Σ̂1 + · · · + (rq − 1)Σ̂q,

where Σ̂` is the estimate (6.5) of Σ based on the data vectors from group `. Thus, just as in the scalar

case, this quantity divided by its degrees of freedom has the interpretation as a “pooled” estimate of Σ

across groups.

MULTIVARIATE TESTS: Unfortunately, because these entries are matrices, it is no longer straight-

forward to construct a unique generalization of the F ratio that may be used to test H0. Clearly, one

would like to compare the “magnitude” of the SS&CP matrices QH and QE somehow, but there is no

one way to do this. There are a number of statistics that have been proposed based on these quantities

that have this interpretation.
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• The most commonly discussed statistic is known as Wilks’ lambda and may be motivated

informally as follows. In the scalar case, the F ratio is

SSG/(q − 1)

SSE/(m − q)
;

thus, in the scalar case, H0 is rejected when the ratio SSG/SSE is large. This is equivalent to

rejecting for large values of 1 + SSG/SSE or small values of

1

1 + SSG/SSE
=

SSE

SSG + SSE
.

For the multivariate problem, the Wilks’ lambda statistic is the analogue of this quantity,

TW =
|QE |

|QH + QE |
;

here, the determinant of each SS&CP matrix is taken, reducing the matrix to a single number.

This number is often referred to as the generalized sample variance; see Johnson and Wichern

(2002) for a deeper discussion. One rejects H0 for small values of TW (how small will be discussed

in a moment).

• Another statistic is referred to as the Lawley-Hotelling trace; reject H0 for large values of

TLH = tr(QHQ−1
E ).

• Other statistics are Pillai’s trace and Roy’s greatest root.

• None of these approaches been shown to be superior to the others in general. In addition, all are

equivalent to using the Hotelling T 2 statistic in the case q = 2.

A full discussion of the theoretical underpinnings of these methods is beyond the scope of our discussion.

Here, we note briefly the salient points:

• It is possible in certain special cases to work out the exact sampling distribution of these statistics.

As mentioned above, when q = 2 and we are testing whether the two means are the same, all

of these statistics may be shown to be the same and equivalent to conducting the test based on

Hotelling’s T 2 statistics.

• When n = 1, 2 and q ≥ 2 or when n ≥ 1 and q = 2, 3, it is possible to show that certain functions

of TW have an F sampling distribution, and this may be used to conduct the test exactly. These

are listed in Johnson and Wichern (2002).
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• In other situations, it is possible to show that the sampling distributions may be approximated

by F or other distributions.

• SAS PROC GLM calculates all of these statistics and provides either exact or approximate p-values,

depending on the situation.

We will consider the application of these methods to the dental study data and the guinea pig diet data

in section 6.6.

HYPOTHESIS IN MATRIX FORM: It is again worth noting that the hypothesis of interest (6.3) may

be expressed in the form H0 : CMU = 0 for suitable choice of C and with U = In. For example,

consider the case q = 3, with

M =




µ11 · · · µ1n

µ21 · · · µ2n

µ31 · · · µ3n




, C =




1 −1 0

1 0 −1


 , (6.6)

CM =




µ11 − µ21 · · · µ1n − µ2n

µ11 − µ31 · · · µ1n − µ3n


 =




(µ1 − µ2)
′

(µ1 − µ3)
′


 .

Setting this equal to 0 may thus be seen to be equivalent to saying that all of the mean vectors µ` are

the same.

SUMMARY: We have seen that, in situations where a data vector consists of n observations on possibly

different characteristics on different scales, it is possible to test whether the entire mean vectors

for each group are the same using what are usually called one-way MANOVA methods.

• If the null hypothesis (6.3) is rejected, then this means we have evidence to suggest that at least

one of the q mean vectors differs from the others in at least one of the n components. This is not

particularly informative, particularly if q and/or n are somewhat large.

• In addition, it seems intuitively that it would be difficult to detect such a difference – with q

vectors and n components, there are a lot of comparisons that must be taken into account when

looking for a difference.

• Furthermore, the methods are requiring estimation of all n(n + 1)/2 elements of the (assumed

common across groups) covariance matrix Σ.

• Thus, the basis for our earlier remark that multivariate procedures may lack power for detecting

differences should now be clear.
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• Furthermore, when the n elements of a data vector are all observations on the same characteristic

as in the case of longitudinal data, these methods do not seem to really get at the heart of matters.

Focusing on H0 in (6.3) ignores the questions of interest, such as that of parallelism.

6.5 Profile Analysis

It turns out that one can conduct more focused multivariate tests that make no particular assumption

about the form of Σ. Recall that the MANOVA test of (6.3), H0 : µ1 = · · · = µq could be regarded as

testing a particular hypothesis of the form

H0 : CMU = 0

for suitable choice of C and with U = In. It should thus come as no surprise that it is possible to

develop such multivariate procedures for more general choices of C and U .

HYPOTHESIS OF PARALLELISM: Of particular interest in the case of longitudinal data is the test

of parallelism or group by time interaction. In the last chapter, we saw that the null hypothesis

corresponding to parallelism could be expressed in terms of the elements of the mean vectors µ` or

equivalently in terms of the taugam`j :

H0 : all (τγ)`j = 0.

In particular, in the case of q = 2 and n = 3, we saw that this test could be represented with

C =

(
1 −1

)
, U =




1 0

−1 1

0 −1




, M =




µ11 µ12 µ13

µ21 µ22 µ23


 .

For general q and n, we may write this in a streamlined fashion. If we let jp denote a column vector of

1’s of length p, then (try it!) choosing

C =

(
jq−1 −Iq−1

)
(q − 1 × q), U =




j′n−1

−In−1


 (n × n − 1) (6.7)

gives the null hypothesis of parallelism.

MULTIVARIATE TEST FOR PARALLELISM: Recall that the univariate test of this null hypothesis

discussed in Chapter 5 was predicated on the assumption of compound symmetry. Here, we seek a

test in the same spirit of those in the last section that make no assumption about the form of Σ.

PAGE 184



CHAPTER 6 ST 732, M. DAVIDIAN

To understand this, we first consider the multivariate test of (6.3). Recall in the MANOVA table of the

last section that this test boiled down to making a comparison between 2 SS&CP matrices, QH and

QE that focused on the particular issue of the hypothesis.

• QE effectively measured the distance of individual data vectors from the means for their group.

• QH measured the distance of group mean vectors from the overall mean vector.

• We would expect QH to be “large” relative to QE if there really were a difference among the q

means µ`, ` = 1 . . . , q.

We would clearly like to do something similar for the null hypothesis of parallelism.

HEURISTIC DESCRIPTION: It turns out that for the test of (6.3), H0 : µ1 = . . . = µq, which may be

expressed in the form H0 : CMU = 0 with C as in (6.6) and U = In, we may express QH and QE in

an alternative form as functions of C, M , and U (= In here). Specifically, recall that we may express

the underlying statistical model as in (6.1), i.e.

Y ′

i = a′

iM + ε′i, i = 1, . . . , m.

We saw in Chapter 5 that this may be written more succinctly as (5.14), i.e.

Y = AM + ε,

where Y is the (m × n) matrix with rows Y ′

i and similarly for ε, and A (m × q) has rows a′

i. It is an

exercise in matrix algebra to show that we may write QH and QE in terms of this model as

QH = (CM̂U)′{C(A′A)−1C ′}−1(CM̂U) (6.8)

QE = U ′Y ′{In − A(A′A)−1A′}YU (6.9)

with

M̂ = (A′A)−1A′Y , U = In.

A technical justification of (6.8) and (6.9) may be found in, for example, Vonesh and Chinchilli (1997, p.

50); they show that this representation and the form of the Wilks’ lambda statistic TW may be derived

using the principles of maximum likelihood, which we will discuss later in the course in a different

context.

PAGE 185



CHAPTER 6 ST 732, M. DAVIDIAN

The above results are in fact valid for any suitable choice of C and U , such as those corresponding to

the null hypothesis of parallelism.

• That is, for a null hypothesis of the form H0 : CMU = 0, one may construct corresponding

SS&CP matrices QH and QE . These are often called the hypothesis and error SS&CP matrices,

respectively.

• One may then construct any of the test statistics such as Wilks’ lambda TW discussed in the last

section. It may be shown that these will provide either approximate or exact tests, depending on

the circumstances, for the null hypothesis corresponding to the choice of C and U .

• These test are multivariate in the sense that no assumption of a particular structure for Σ is

made.

PROFILE ANALYSIS: In the particular context of repeated measurement data, where the n observa-

tions in a data vector are all on the same characteristic, conducting appropriate multivariate tests

for parallelism and other issues of interest is known as profile analysis. This is usually carried out in

practice as follows.

• The test of primary interest is that of parallelism or Group by Time interaction. This may be

represented in the form H0 : CMU = 0 with C and U as in(6.7), so that suitable QH and QE

may be calculated. Thus, test statistics such as Wilks’ lambda, Pillai’s trace, and so on may be

used to conduct the test. Depending on the dimensions q and n, these tests may be exact or

approximate and may or may not coincide.

• The next test is usually only conducted if the hypothesis of parallelism is not rejected.

The test of H0 : µ1 = · · · = µq may be written in the form H0 : CMU = 0 with C as in

(6.7) U = In. This is just the usual MANOVA test discussed in the last section; when repeated

measurements are involved, this test is often called the test for coincidence. Clearly, if the

profiles are not parallel, then testing coincidence seems ill-advised, as it is not clear what it

means.
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As we discussed in Chapter 5, if the profiles are parallel, then it turns out that we may refine

this test. Specifically, it may be shown that testing this H0 with the additional assumption that

the profiles are parallel is equivalent to testing the hypothesis H0 : CMU = 0 with C as in (6.7)

but with U = jn/n. Note that this is exactly the same hypothesis we discussed in Chapter 5 – if

the profiles are parallel, then testing whether they in fact coincide is the same as testing whether

the averages of the means over time is the same for each group; that is, the test we called main

effect of group.

It turns out that, for testing this hypothesis, the multivariate tests are all equivalent. Fur-

thermore, they reduce to the univariate F test for the main effect of groups we discussed in

Chapter 5! Intuitively, this makes sense – we are basing the test on averaging observations over

time, thus effectively “distilling” the data for each unit down to a single average. The “distilling”

operation averages across time, so how observations within a data vector are correlated is being

“averaged away.” As long as Σ is the same for all data vectors, these “distilled” data are all have

the same variance, so we would expect an ordinary F ratio to apply.

• This test is also usually conducted only if the hypothesis of parallelism is not rejected.

It is also of interest to know whether the profiles are in fact constant over time. It may be shown

(try it!) that this may be represented in the form H0 : CMU = 0 with U as in (6.7) and C = Iq.

As with the test for coincidence, if the profiles are not parallel, then testing whether they are

constant over time seems inappropriate.

If there is strong evidence of parallelism, then we may refine this test also. It may be shown

that testing H0 for constancy with the additional assumption that the profiles are parallel is

equivalent to testing H0 : CMU = 0 with the choices U as in (6.7) and C = j ′

q/q, a (1 × q)

vector of 1/q’s. Note (try it) that this is the exactly the same hypothesis discussed for the main

effect of time discussed in Chapter 5 – if we know the profiles are parallel, then asking whether

the means are constant over time is the same as asking whether the mean response averaged

across groups is the same at each time.

It turns out that, for testing this hypothesis, the multivariate tests are again all equivalent.

However, the multivariate test is different from the univariate tests. Intuitively, this also

makes sense – we are basing the test on averaging observations across groups. Thus, although

we are again “distilling” the data, we are now doing it over groups, so that time, and how

observations are correlated over time, is not being “averaged away.” As a result, what is being

assumed about the form of Σ still plays a role.
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The (common) multivariate test statistic boils down to a statistic that is a generalization of

the form of the Hotelling’s T 2 statistic, and it may be shown that this statistic multiplied by a

suitable factor thus has exactly an F distribution. It is important to recognize that, although

both the univariate and multivariate test statistics both have F sampling distributions, they

are different tests, being based on different assumptions on the form of Σ. Which one is more

appropriate depends on the true form of Σ.

6.6 Implementation with SAS

We consider again the two examples of Chapter 5:

1. The dental study data. Here, q = 2 and n = 4, with the “time” factor being the age of the children

and equally-spaced “time” points at 8, 10, 12, and 14 years of age.

2. the guinea pig diet data. Here, q = 3 and n = 6, with the “time” factor being weeks and

unequally-spaced “time” points at 1, 3, 4, 5, 6, and 7 weeks.

In each case, we use SAS PROC GLM and its various options to carry out both the one-way MANOVA

analysis comparing the group mean vectors and the refined hypotheses of profile analysis. These

examples thus serve to illustrate how this SAS procedure may be used to conduct multivariate repeated

measures analysis of variance.

EXAMPLE 1 – DENTAL STUDY DATA: The data are read in from the file dental.dat.

PROGRAM:

/*******************************************************************

CHAPTER 6, EXAMPLE 1

Analysis of the dental study data by multivariate repeated
measures analysis of variance using PROC GLM

- the repeated measurement factor is age (time)

- there is one "treatment" factor, gender

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

See Example 1 in Chapter 4 for the form of the input data set.
It is not in the correct from for the analysis; thus we create
a new data set such that each record in the data set represents
the observations from a different unit.

*******************************************************************/

data dent1; infile ’dental.dat’;
input obsno child age distance gender;

run;
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data dent1; set dent1;
if age=8 then age=1;
if age=10 then age=2;
if age=12 then age=3;
if age=14 then age=4;
drop obsno;

run;

proc sort data=dent1;
by gender child;

data dent2(keep=age1-age4 gender);
array aa{4} age1-age4;
do age=1 to 4;
set dent1;
by gender child;
aa{age}=distance;
if last.child then return;

end;
run;

/*******************************************************************

The sample mean vectors for each gender were found in Example 1
of Chapter 4. Here, we use PROC CORR to calculate the estimates
of Sigma, the assumed common covariance matrix, separately for
each group. The COV option asks for the covariance matrix
to be printed.

*******************************************************************/

proc sort data=dent2; by gender; run;
proc corr data=dent2 cov; by gender; var age1 age2 age3 age4; run;

/*******************************************************************

Use PROC GLM to carry out the multivariate analysis.

First, call PROC GLM and use the MANOVA statement to get the
MANOVA test of equality of gender means. Here, this is
equivalent to Hotelling’s T^2 test because there are 2 groups.

The PRINTH and PRINTE options print the SS&CP matrices
Q_H and Q_E corresponding to the null hypothesis of equal means.

The option NOUNI suppresses individual analyses of variance
for the data at each age value from being printed. Without
the NOUNI option in the MODEL statement, note that PROC GLM does
a separate univariate ANOVA on the data at each age separately.

*******************************************************************/

proc glm data=dent2;
class gender;
model age1 age2 age3 age4 = gender;
manova h=gender / printh printe;

/*******************************************************************

Now use the REPEATED option to do profile analysis. The
"between subjects" (units) test is that for coincidence assuming
profiles are parallel, based on averaging across times.
Thus, as discussed in section 5.5, it is the same as the
univariate test.

The tests for age and age*gender resulting from this analysis
are the multivariate tests for profile constancy and parallelism,
respectively. The test for constancy (age effect here) is the
multivariate test for constancy assuming that the profiles are
parallel, as discussed in section 5.5 Both of these tests are
different from the corresponding univariate tests we saw in
section 4.8 that are based on the assumption of compound symmetry.

The NOU option in the REPEATED statement suppresses printing of the
univariate tests of these factors.

The within-unit analyses using different contrast matrices will
be the same as in the univariate case (see the discussion in
section 4.6. Thus, we do not do this analysis here.

*******************************************************************/

proc glm data=dent2;
class gender;
model age1 age2 age3 age4 = gender / nouni;
repeated age / nou;
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OUTPUT:

1

----------------------------------- gender=0 -----------------------------------

The CORR Procedure

4 Variables: age1 age2 age3 age4

Covariance Matrix, DF = 10

age1 age2 age3 age4

age1 4.513636364 3.354545455 4.331818182 4.356818182
age2 3.354545455 3.618181818 4.027272727 4.077272727
age3 4.331818182 4.027272727 5.590909091 5.465909091
age4 4.356818182 4.077272727 5.465909091 5.940909091

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

age1 11 21.18182 2.12453 233.00000 16.50000 24.50000
age2 11 22.22727 1.90215 244.50000 19.00000 25.00000
age3 11 23.09091 2.36451 254.00000 19.00000 28.00000
age4 11 24.09091 2.43740 265.00000 19.50000 28.00000

Pearson Correlation Coefficients, N = 11
Prob > |r| under H0: Rho=0

age1 age2 age3 age4

age1 1.00000 0.83009 0.86231 0.84136
0.0016 0.0006 0.0012

age2 0.83009 1.00000 0.89542 0.87942
0.0016 0.0002 0.0004

age3 0.86231 0.89542 1.00000 0.94841
0.0006 0.0002 <.0001

age4 0.84136 0.87942 0.94841 1.00000
0.0012 0.0004 <.0001

2

----------------------------------- gender=1 -----------------------------------

The CORR Procedure

4 Variables: age1 age2 age3 age4

Covariance Matrix, DF = 15

age1 age2 age3 age4

age1 6.016666667 2.291666667 3.629166667 1.612500000
age2 2.291666667 4.562500000 2.193750000 2.810416667
age3 3.629166667 2.193750000 7.032291667 3.240625000
age4 1.612500000 2.810416667 3.240625000 4.348958333

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

age1 16 22.87500 2.45289 366.00000 17.00000 27.50000
age2 16 23.81250 2.13600 381.00000 20.50000 28.00000
age3 16 25.71875 2.65185 411.50000 22.50000 31.00000
age4 16 27.46875 2.08542 439.50000 25.00000 31.50000

Pearson Correlation Coefficients, N = 16
Prob > |r| under H0: Rho=0

age1 age2 age3 age4

age1 1.00000 0.43739 0.55793 0.31523
0.0902 0.0247 0.2343

age2 0.43739 1.00000 0.38729 0.63092
0.0902 0.1383 0.0088

age3 0.55793 0.38729 1.00000 0.58599
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0.0247 0.1383 0.0171

age4 0.31523 0.63092 0.58599 1.00000
0.2343 0.0088 0.0171

3

The GLM Procedure

Class Level Information

Class Levels Values

gender 2 0 1

Number of observations 27

4

The GLM Procedure

Dependent Variable: age1

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1 18.6877104 18.6877104 3.45 0.0750

Error 25 135.3863636 5.4154545

Corrected Total 26 154.0740741

R-Square Coeff Var Root MSE age1 Mean

0.121290 10.48949 2.327113 22.18519

Source DF Type I SS Mean Square F Value Pr > F

gender 1 18.68771044 18.68771044 3.45 0.0750

Source DF Type III SS Mean Square F Value Pr > F

gender 1 18.68771044 18.68771044 3.45 0.0750

5

The GLM Procedure

Dependent Variable: age2

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1 16.3806818 16.3806818 3.91 0.0590

Error 25 104.6193182 4.1847727

Corrected Total 26 121.0000000

R-Square Coeff Var Root MSE age2 Mean

0.135378 8.830238 2.045672 23.16667

Source DF Type I SS Mean Square F Value Pr > F

gender 1 16.38068182 16.38068182 3.91 0.0590

Source DF Type III SS Mean Square F Value Pr > F

gender 1 16.38068182 16.38068182 3.91 0.0590

6

The GLM Procedure

Dependent Variable: age3

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1 45.0139415 45.0139415 6.97 0.0141

Error 25 161.3934659 6.4557386
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Corrected Total 26 206.4074074

R-Square Coeff Var Root MSE age3 Mean

0.218083 10.30834 2.540815 24.64815

Source DF Type I SS Mean Square F Value Pr > F

gender 1 45.01394150 45.01394150 6.97 0.0141

Source DF Type III SS Mean Square F Value Pr > F

gender 1 45.01394150 45.01394150 6.97 0.0141

7

The GLM Procedure

Dependent Variable: age4

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1 74.3750526 74.3750526 14.92 0.0007

Error 25 124.6434659 4.9857386

Corrected Total 26 199.0185185

R-Square Coeff Var Root MSE age4 Mean

0.373709 8.557512 2.232877 26.09259

Source DF Type I SS Mean Square F Value Pr > F

gender 1 74.37505261 74.37505261 14.92 0.0007

Source DF Type III SS Mean Square F Value Pr > F

gender 1 74.37505261 74.37505261 14.92 0.0007

8

The GLM Procedure
Multivariate Analysis of Variance

E = Error SSCP Matrix

age1 age2 age3 age4

age1 135.38636364 67.920454545 97.755681818 67.755681818
age2 67.920454545 104.61931818 73.178977273 82.928977273
age3 97.755681818 73.178977273 161.39346591 103.26846591
age4 67.755681818 82.928977273 103.26846591 124.64346591

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

DF = 25 age1 age2 age3 age4

age1 1.000000 0.570699 0.661320 0.521583
0.0023 0.0002 0.0063

age2 0.570699 1.000000 0.563167 0.726216
0.0023 0.0027 <.0001

age3 0.661320 0.563167 1.000000 0.728098
0.0002 0.0027 <.0001

age4 0.521583 0.726216 0.728098 1.000000
0.0063 <.0001 <.0001

9

The GLM Procedure
Multivariate Analysis of Variance

H = Type III SSCP Matrix for gender

age1 age2 age3 age4

age1 18.687710438 17.496212121 29.003577441 37.281355219
age2 17.496212121 16.380681818 27.154356061 34.904356061
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age3 29.003577441 27.154356061 45.013941498 57.861163721
age4 37.281355219 34.904356061 57.861163721 74.375052609

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for gender

E = Error SSCP Matrix

Characteristic Characteristic Vector V’EV=1
Root Percent age1 age2 age3 age4

0.66030051 100.00 0.01032388 -0.04593889 -0.01003125 0.11841126
0.00000000 0.00 -0.07039943 0.13377597 0.00249339 -0.02943257
0.00000000 0.00 -0.08397385 -0.01167207 0.12114416 -0.04667529
0.00000000 0.00 0.05246789 0.05239507 0.05062221 -0.09027154

MANOVA Test Criteria and Exact F Statistics for
the Hypothesis of No Overall gender Effect

H = Type III SSCP Matrix for gender
E = Error SSCP Matrix

S=1 M=1 N=10

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.60230061 3.63 4 22 0.0203
Pillai’s Trace 0.39769939 3.63 4 22 0.0203
Hotelling-Lawley Trace 0.66030051 3.63 4 22 0.0203
Roy’s Greatest Root 0.66030051 3.63 4 22 0.0203

10

The GLM Procedure

Class Level Information

Class Levels Values

gender 2 0 1

Number of observations 27

11

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable age1 age2 age3 age4

Level of age 1 2 3 4

Manova Test Criteria and Exact F Statistics for the Hypothesis of no age Effect
H = Type III SSCP Matrix for age

E = Error SSCP Matrix

S=1 M=0.5 N=10.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.19479424 31.69 3 23 <.0001
Pillai’s Trace 0.80520576 31.69 3 23 <.0001
Hotelling-Lawley Trace 4.13362211 31.69 3 23 <.0001
Roy’s Greatest Root 4.13362211 31.69 3 23 <.0001

Manova Test Criteria and Exact F Statistics
for the Hypothesis of no age*gender Effect
H = Type III SSCP Matrix for age*gender

E = Error SSCP Matrix

S=1 M=0.5 N=10.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.73988739 2.70 3 23 0.0696
Pillai’s Trace 0.26011261 2.70 3 23 0.0696
Hotelling-Lawley Trace 0.35155702 2.70 3 23 0.0696
Roy’s Greatest Root 0.35155702 2.70 3 23 0.0696

12

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects
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Source DF Type III SS Mean Square F Value Pr > F

gender 1 140.4648569 140.4648569 9.29 0.0054
Error 25 377.9147727 15.1165909

EXAMPLE 2 – GUINEA PIG DIET DATA: The data are read in from the file diet.dat.

PROGRAM:

/*******************************************************************

CHAPTER 6, EXAMPLE 2

Analysis of the vitamin E data by multivariate repeated
measures analysis of variance using PROC GLM

- the repeated measurement factor is week (time)

- there is one "treatment" factor, dose

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

The data set is shown in Example 2 of Chapter 5. It is
already in the form required for PROC GLM to perform the
multivariate analysis; that is, each line in the data set
contains all the data for a given unit. Thus,
we need only input the data as is and do not need to create
a new data set.

*******************************************************************/

data pigs1; infile ’diet.dat’;
input pig week1 week3 week4 week5 week6 week7 dose;

/*******************************************************************

We use PROC CORR to calculate the estimates of Sigma, the assumed
common covariance matrix, separately for each dose group. The COV
option asks for the covariance matrix to be printed.

*******************************************************************/

proc sort data=pigs1; by dose; run;
proc corr data=pigs1 cov; by dose;
var week1 week3 week4 week5 week6 week7; run;

/*******************************************************************

Use PROC GLM to carry out the multivariate analysis and profile
analysis, respectively. The description is exactly the same as
for Example 1 (the dental study). In the first call, we also show
use of the MEANS statement to calculate the means for each dose
group at each time.

*******************************************************************/

proc glm data=pigs1;
class dose;
model week1 week3 week4 week5 week6 week7 = dose / nouni;
means dose;
manova h=dose / printh printe;

run;

proc glm data=pigs1;
class dose;
model week1 week3 week4 week5 week6 week7 = dose / nouni;
repeated week / printe nou;

run;
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OUTPUT:

1

------------------------------------ dose=1 ------------------------------------

The CORR Procedure

6 Variables: week1 week3 week4 week5 week6 week7

Covariance Matrix, DF = 4

week1 week3 week4

week1 279.800000 158.550000 167.100000
week3 158.550000 1651.800000 1606.100000
week4 167.100000 1606.100000 1567.200000
week5 -34.800000 1625.200000 1592.900000
week6 476.950000 1972.950000 2010.900000
week7 252.500000 2076.250000 2077.500000

Covariance Matrix, DF = 4

week5 week6 week7

week1 -34.800000 476.950000 252.500000
week3 1625.200000 1972.950000 2076.250000
week4 1592.900000 2010.900000 2077.500000
week5 1835.300000 2081.550000 2251.750000
week6 2081.550000 4472.800000 3989.000000
week7 2251.750000 3989.000000 3821.500000

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

week1 5 466.40000 16.72722 2332 445.00000 485.00000
week3 5 519.40000 40.64234 2597 460.00000 565.00000
week4 5 568.80000 39.58788 2844 510.00000 610.00000
week5 5 561.60000 42.84040 2808 504.00000 597.00000
week6 5 546.60000 66.87900 2733 436.00000 611.00000
week7 5 572.00000 61.81828 2860 466.00000 619.00000

Pearson Correlation Coefficients, N = 5
Prob > |r| under H0: Rho=0

week1 week3 week4 week5 week6 week7

week1 1.00000 0.23322 0.25234 -0.04856 0.42634 0.24419
0.7058 0.6822 0.9382 0.4741 0.6922

week3 0.23322 1.00000 0.99823 0.93341 0.72585 0.82639
0.7058 <.0001 0.0204 0.1650 0.0845

week4 0.25234 0.99823 1.00000 0.93923 0.75952 0.84891
0.6822 <.0001 0.0178 0.1363 0.0689

2

------------------------------------ dose=1 ------------------------------------

The CORR Procedure

Pearson Correlation Coefficients, N = 5
Prob > |r| under H0: Rho=0

week1 week3 week4 week5 week6 week7

week5 -0.04856 0.93341 0.93923 1.00000 0.72651 0.85026
0.9382 0.0204 0.0178 0.1645 0.0680

week6 0.42634 0.72585 0.75952 0.72651 1.00000 0.96484
0.4741 0.1650 0.1363 0.1645 0.0079

week7 0.24419 0.82639 0.84891 0.85026 0.96484 1.00000
0.6922 0.0845 0.0689 0.0680 0.0079

3

------------------------------------ dose=2 ------------------------------------

The CORR Procedure

6 Variables: week1 week3 week4 week5 week6 week7
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Covariance Matrix, DF = 4

week1 week3 week4

week1 1018.300000 1270.750000 738.900000
week3 1270.750000 1755.000000 998.500000
week4 738.900000 998.500000 783.700000
week5 1450.500000 2182.500000 1654.250000
week6 769.750000 1105.000000 1298.000000
week7 1232.500000 1978.750000 1430.750000

Covariance Matrix, DF = 4

week5 week6 week7

week1 1450.500000 769.750000 1232.500000
week3 2182.500000 1105.000000 1978.750000
week4 1654.250000 1298.000000 1430.750000
week5 3851.500000 2800.750000 3519.500000
week6 2800.750000 2841.500000 2394.000000
week7 3519.500000 2394.000000 3312.000000

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

week1 5 494.40000 31.91081 2472 440.00000 520.00000
week3 5 551.00000 41.89272 2755 480.00000 590.00000
week4 5 574.20000 27.99464 2871 536.00000 610.00000
week5 5 567.00000 62.06045 2835 484.00000 637.00000
week6 5 603.00000 53.30572 3015 552.00000 671.00000
week7 5 644.00000 57.54998 3220 569.00000 702.00000

Pearson Correlation Coefficients, N = 5
Prob > |r| under H0: Rho=0

week1 week3 week4 week5 week6 week7

week1 1.00000 0.95057 0.82713 0.73243 0.45252 0.67113
0.0131 0.0840 0.1593 0.4442 0.2149

week3 0.95057 1.00000 0.85140 0.83946 0.49482 0.82074
0.0131 0.0672 0.0753 0.3967 0.0886

week4 0.82713 0.85140 1.00000 0.95216 0.86981 0.88806
0.0840 0.0672 0.0125 0.0553 0.0442

4

------------------------------------ dose=2 ------------------------------------

The CORR Procedure

Pearson Correlation Coefficients, N = 5
Prob > |r| under H0: Rho=0

week1 week3 week4 week5 week6 week7

week5 0.73243 0.83946 0.95216 1.00000 0.84661 0.98542
0.1593 0.0753 0.0125 0.0704 0.0021

week6 0.45252 0.49482 0.86981 0.84661 1.00000 0.78038
0.4442 0.3967 0.0553 0.0704 0.1194

week7 0.67113 0.82074 0.88806 0.98542 0.78038 1.00000
0.2149 0.0886 0.0442 0.0021 0.1194

5

------------------------------------ dose=3 ------------------------------------

The CORR Procedure

6 Variables: week1 week3 week4 week5 week6 week7

Covariance Matrix, DF = 4

week1 week3 week4

week1 822.200000 705.400000 298.950000
week3 705.400000 885.800000 718.650000
week4 298.950000 718.650000 897.200000
week5 712.700000 1061.400000 1022.200000
week6 930.800000 1180.600000 1013.050000
week7 632.050000 953.850000 916.050000

Covariance Matrix, DF = 4
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week5 week6 week7

week1 712.700000 930.800000 632.050000
week3 1061.400000 1180.600000 953.850000
week4 1022.200000 1013.050000 916.050000
week5 1539.700000 1674.300000 1385.050000
week6 1674.300000 1910.200000 1493.450000
week7 1385.050000 1493.450000 1251.200000

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

week1 5 497.80000 28.67403 2489 472.00000 545.00000
week3 5 534.60000 29.76239 2673 498.00000 565.00000
week4 5 579.80000 29.95330 2899 540.00000 622.00000
week5 5 571.80000 39.23901 2859 524.00000 622.00000
week6 5 588.20000 43.70583 2941 532.00000 633.00000
week7 5 623.20000 35.37231 3116 583.00000 670.00000

Pearson Correlation Coefficients, N = 5
Prob > |r| under H0: Rho=0

week1 week3 week4 week5 week6 week7

week1 1.00000 0.82657 0.34807 0.63343 0.74273 0.62316
0.0844 0.5659 0.2513 0.1505 0.2614

week3 0.82657 1.00000 0.80613 0.90885 0.90760 0.90604
0.0844 0.0994 0.0326 0.0332 0.0341

week4 0.34807 0.80613 1.00000 0.86971 0.77383 0.86459
0.5659 0.0994 0.0553 0.1246 0.0586

6

------------------------------------ dose=3 ------------------------------------

The CORR Procedure

Pearson Correlation Coefficients, N = 5
Prob > |r| under H0: Rho=0

week1 week3 week4 week5 week6 week7

week5 0.63343 0.90885 0.86971 1.00000 0.97628 0.99789
0.2513 0.0326 0.0553 0.0044 0.0001

week6 0.74273 0.90760 0.77383 0.97628 1.00000 0.96602
0.1505 0.0332 0.1246 0.0044 0.0075

week7 0.62316 0.90604 0.86459 0.99789 0.96602 1.00000
0.2614 0.0341 0.0586 0.0001 0.0075

7

The GLM Procedure

Class Level Information

Class Levels Values

dose 3 1 2 3

Number of observations 15

8

The GLM Procedure

Level of ------------week1----------- ------------week3-----------
dose N Mean Std Dev Mean Std Dev

1 5 466.400000 16.7272233 519.400000 40.6423425
2 5 494.400000 31.9108132 551.000000 41.8927201
3 5 497.800000 28.6740301 534.600000 29.7623924

Level of ------------week4----------- ------------week5-----------
dose N Mean Std Dev Mean Std Dev

1 5 568.800000 39.5878769 561.600000 42.8404015
2 5 574.200000 27.9946423 567.000000 62.0604544
3 5 579.800000 29.9532970 571.800000 39.2390112

Level of ------------week6----------- ------------week7-----------
dose N Mean Std Dev Mean Std Dev
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1 5 546.600000 66.8789952 572.000000 61.8182821
2 5 603.000000 53.3057220 644.000000 57.5499783
3 5 588.200000 43.7058349 623.200000 35.3723056

9

The GLM Procedure
Multivariate Analysis of Variance

E = Error SSCP Matrix

week1 week3 week4

week1 8481.2 8538.8 4819.8
week3 8538.8 17170.4 13293
week4 4819.8 13293 12992.4
week5 8513.6 19476.4 17077.4
week6 8710 17034.2 17287.8
week7 8468.2 20035.4 17697.2

E = Error SSCP Matrix

week5 week6 week7

week1 8513.6 8710 8468.2
week3 19476.4 17034.2 20035.4
week4 17077.4 17287.8 17697.2
week5 28906 26226.4 28625.2
week6 26226.4 36898 31505.8
week7 28625.2 31505.8 33538.8

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

DF = 12 week1 week3 week4 week5 week6 week7

week1 1.000000 0.707584 0.459151 0.543739 0.492366 0.502098
0.0068 0.1145 0.0548 0.0874 0.0804

week3 0.707584 1.000000 0.889996 0.874228 0.676753 0.834899
0.0068 <.0001 <.0001 0.0111 0.0004

week4 0.459151 0.889996 1.000000 0.881217 0.789575 0.847786
0.1145 <.0001 <.0001 0.0013 0.0003

week5 0.543739 0.874228 0.881217 1.000000 0.803051 0.919350
0.0548 <.0001 <.0001 0.0009 <.0001

week6 0.492366 0.676753 0.789575 0.803051 1.000000 0.895603
0.0874 0.0111 0.0013 0.0009 <.0001

week7 0.502098 0.834899 0.847786 0.919350 0.895603 1.000000
0.0804 0.0004 0.0003 <.0001 <.0001

10

The GLM Procedure
Multivariate Analysis of Variance

H = Type III SSCP Matrix for dose

week1 week3 week4

week1 2969.2 2177.2 859.4
week3 2177.2 2497.6 410
week4 859.4 410 302.53333333
week5 813 411.6 280.4
week6 4725.2 4428.8 1132.1333333
week7 5921.6 5657.6 1392.5333333

H = Type III SSCP Matrix for dose

week5 week6 week7

week1 813 4725.2 5921.6
week3 411.6 4428.8 5657.6
week4 280.4 1132.1333333 1392.5333333
week5 260.4 1096.4 1352
week6 1096.4 8550.9333333 10830.933333
week7 1352 10830.933333 13730.133333

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for dose

E = Error SSCP Matrix

Characteristic Characteristic Vector V’EV=1
Root Percent week1 week3 week4 week5

week6 week7
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2.76663572 57.81 0.01008494 -0.00856690 0.00598260 -0.01350074
-0.00631967 0.01895546

2.01931265 42.19 0.02377927 -0.04047800 0.03355915 0.00129118
-0.01481413 0.01295337

0.00000000 0.00 -0.00022690 -0.00372379 -0.01380715 0.01173179
-0.00015021 0.00199588

0.00000000 0.00 -0.00425334 0.00094691 0.00882637 -0.00027390
-0.00381939 0.00358891

0.00000000 0.00 -0.00592948 -0.00835257 0.00451460 -0.00286298
-0.00450358 0.00937569

0.00000000 0.00 -0.00257775 -0.00142122 0.00128210 -0.00084350
0.01035699 -0.00651966

11

The GLM Procedure
Multivariate Analysis of Variance

MANOVA Test Criteria and F Approximations for
the Hypothesis of No Overall dose Effect

H = Type III SSCP Matrix for dose
E = Error SSCP Matrix

S=2 M=1.5 N=2.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.08793025 2.77 12 14 0.0363
Pillai’s Trace 1.40330988 3.14 12 16 0.0176
Hotelling-Lawley Trace 4.78594837 2.63 12 8.2712 0.0852
Roy’s Greatest Root 2.76663572 3.69 6 8 0.0464

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

12

The GLM Procedure

Class Level Information

Class Levels Values

dose 3 1 2 3

Number of observations 15

13

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable week1 week3 week4 week5 week6 week7

Level of week 1 2 3 4 5 6

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

DF = 12 week1 week3 week4 week5 week6 week7

week1 1.000000 0.707584 0.459151 0.543739 0.492366 0.502098
0.0068 0.1145 0.0548 0.0874 0.0804

week3 0.707584 1.000000 0.889996 0.874228 0.676753 0.834899
0.0068 <.0001 <.0001 0.0111 0.0004

week4 0.459151 0.889996 1.000000 0.881217 0.789575 0.847786
0.1145 <.0001 <.0001 0.0013 0.0003

week5 0.543739 0.874228 0.881217 1.000000 0.803051 0.919350
0.0548 <.0001 <.0001 0.0009 <.0001

week6 0.492366 0.676753 0.789575 0.803051 1.000000 0.895603
0.0874 0.0111 0.0013 0.0009 <.0001

week7 0.502098 0.834899 0.847786 0.919350 0.895603 1.000000
0.0804 0.0004 0.0003 <.0001 <.0001

E = Error SSCP Matrix

week_N represents the contrast between the nth level of week and the last

week_1 week_2 week_3 week_4 week_5
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week_1 25083.6 13574.0 12193.2 4959.0 2274.8
week_2 13574.0 10638.4 9099.2 4354.6 -968.2
week_3 12193.2 9099.2 11136.8 4293.8 1623.6
week_4 4959.0 4354.6 4293.8 5194.4 -365.8
week_5 2274.8 -968.2 1623.6 -365.8 7425.2

14

The GLM Procedure
Repeated Measures Analysis of Variance

Partial Correlation Coefficients from the Error SSCP Matrix of the
Variables Defined by the Specified Transformation / Prob > |r|

DF = 12 week_1 week_2 week_3 week_4 week_5

week_1 1.000000 0.830950 0.729529 0.434442 0.166684
0.0004 0.0047 0.1380 0.5863

week_2 0.830950 1.000000 0.835959 0.585791 -0.108936
0.0004 0.0004 0.0354 0.7231

week_3 0.729529 0.835959 1.000000 0.564539 0.178544
0.0047 0.0004 0.0444 0.5595

week_4 0.434442 0.585791 0.564539 1.000000 -0.058901
0.1380 0.0354 0.0444 0.8484

week_5 0.166684 -0.108936 0.178544 -0.058901 1.000000
0.5863 0.7231 0.5595 0.8484

Sphericity Tests

Mauchly’s
Variables DF Criterion Chi-Square Pr > ChiSq

Transformed Variates 14 0.0160527 41.731963 0.0001
Orthogonal Components 14 0.0544835 29.389556 0.0093

Manova Test Criteria and Exact F Statistics for the Hypothesis of no week Effect
H = Type III SSCP Matrix for week

E = Error SSCP Matrix

S=1 M=1.5 N=3

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.03881848 39.62 5 8 <.0001
Pillai’s Trace 0.96118152 39.62 5 8 <.0001
Hotelling-Lawley Trace 24.76092347 39.62 5 8 <.0001
Roy’s Greatest Root 24.76092347 39.62 5 8 <.0001

15

The GLM Procedure
Repeated Measures Analysis of Variance

Manova Test Criteria and F Approximations
for the Hypothesis of no week*dose Effect
H = Type III SSCP Matrix for week*dose

E = Error SSCP Matrix

S=2 M=1 N=3

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.17905151 2.18 10 16 0.0793
Pillai’s Trace 1.07058517 2.07 10 18 0.0856
Hotelling-Lawley Trace 3.19076786 2.42 10 9.6 0.0937
Roy’s Greatest Root 2.66824588 4.80 5 9 0.0205

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

16

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

dose 2 18548.0667 9274.0333 1.06 0.3782
Error 12 105434.2000 8786.1833
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