6 Multivariate repeated measures analysis of variance

6.1 Introduction

The statistical model underlying the univariate repeated measures analysis of variance procedures discussed in the last chapter involves a very restrictive assumption about the form of the covariance matrix of a data vector. Specifically, if \boldsymbol{y}_i is the data vector of observations at the *n* time points from the *i*th unit, then the model may be written as

$$\mathbf{Y}'_{i} = \mathbf{a}'_{i}\mathbf{M} + \boldsymbol{\epsilon}'_{i}, \quad i = 1, \dots, m, \tag{6.1}$$

where a_i and M are defined in Chapter 5 as, respectively, the $(1 \times q)$ indicator vector of group membership and the $(q \times n)$ matrix whose rows are the transposes of the mean vectors for each group. The error vector e_i associated with the *i*th unit has, by virtue of the way the model is constructed, covariance matrix

$$\boldsymbol{\Sigma} = \sigma_b^2 \boldsymbol{J}_n + \sigma_e^2 \boldsymbol{I}_n;$$

that is, the model implies the assumption of **compound symmetry**. With the normality assumptions, the model also implies that each data vector has a multivariate normal distribution:

$$oldsymbol{Y}_i \sim \mathcal{N}_n(oldsymbol{\mu}_i, oldsymbol{\Sigma}), \hspace{0.2cm} oldsymbol{\mu}_i' = oldsymbol{a}_i' oldsymbol{M}.$$

The elements of μ_i under the model have a very specific form; if unit *i* is from the ℓ th group, the *j*th element of this vector, j = 1, ..., n, has the form

$$\mu + \tau_{\ell} + \gamma_j + (\tau\gamma)_{\ell j}.$$

We saw that, as long as the assumption of compound symmetry is correct, valid tests of statistical hypotheses of interest based on familiar analysis of variance techniques are available. The test of great interest is that of whether there exists a Group by Time interaction, addressing the issue of whether the change in mean response over time differs among groups ("parallelism"). As long as the assumptions of compound symmetry and normality hold, the usual test statistic based on the ratio of two mean squares has an F sampling distribution, so that the value of the statistic may be compared with F critical values to conduct the test. However, if the assumption of compound symmetry does not hold, this is no longer true, and application of the testing procedure may lead to erroneous conclusions.

One approach discussed in Chapter 5 to address this problem was to "adjust" the tests. However, this is a somewhat unsatisfying approach, as it skirts the real problem, which is that the compound symmetry assumption is not appropriate. The simple fact is that this assumption is too restrictive to characterize the kind of correlation patterns that might be seen with longitudinal data. Thus, a more appealing alternative to "adjustment" of tests that are not correct is to return to the statistical model, make a less restrictive assumption, and develop new procedures appropriate for the model under this assumption.

MORE GENERAL MODEL: The most general alternative to the compound symmetry is to go entirely in the opposite direction and assume **very little** about the nature of the covariance structure of a data vector. Recall that in Chapter 5, the deviation ϵ_i in (6.1) had a very specific form,

$$\boldsymbol{\epsilon}_i' = \mathbf{1}' b_i + \boldsymbol{e}_i',$$

which implied the compound symmetry structure. An alternative view is to consider the model (6.1) as the starting point and make an assumption **directly** about the covariance structure associated with ϵ_i . We may still believe that the covariance matrix of the data vectors \mathbf{Y}_i is the same for all *i*, regardless of group membership; however, we may not believe that this matrix exhibits the compound symmetry structure. We may state this formally by considering the model

$$\mathbf{Y}'_{i} = \mathbf{a}'_{i}\mathbf{M} + \boldsymbol{\epsilon}'_{i}, \quad i = 1, \dots, m, \quad \boldsymbol{\epsilon}_{i} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}), \tag{6.2}$$

where Σ is now an **arbitrary** covariance matrix assumed to possess **no particular** structure. That is, the most we are willing to say about Σ is that it is a symmetric matrix with the **unstructured** form (see Chapter 4)

$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_n^2 \end{pmatrix}$$

and is the same for all i.

- This modeling perspective does not explicitly acknowledge how **among-unit** and **within-unit** sources of variation contribute to the overall variation of observations in a data vector. Rather, it is assumed that the aggregate of both sources produces a covariance structure of arbitrary, **unstructured** form; nothing specific about how the two sources combine is characterized.
- The resulting unstructured matrix depends on n(n + 1)/2 parameters (rather than the two parameters σ_b^2 and σ_e^2 under the compound symmetry assumption. Thus, a great many more parameters are required to describe how observations within a data vector vary and covary.

MULTIVARIATE PROCEDURES: With model (6.2) as the starting point, it is possible to develop valid testing procedures for hypotheses of interest. However, the model is much more complicated because there is no longer a nice, simple assumption about covariance. The result is that it is no longer possible as it was under compound symmetry to think on an **individual observation** basis and be able to obtain nice results about ratios of simple mean squares. Thus, familiar procedures based on simple F ratios no longer apply. It is necessary instead to consider the data in the form of **vectors**. Hence, the procedures we now discuss are known as **multivariate** repeated measures analysis of variance methods. This is because they arise as a particular case of a way of thinking about general **multivariate** problems, known as **multivariate analysis of variance** methods (MANOVA). These may be viewed as extensions of usual analysis of variance methods, where now, an "observation" is an entire vector from an unit rather than just a single, scalar response.

PERSPECTIVE: Although a lengthy exposition on multivariate analysis of variance methods and models is possible, we will consider these methods only briefly. A full, general treatment would be found in a full course on multivariate analysis; a typical reference would be Johnson and Wichern (2002).

- This is because, just as the univariate methods of the previous chapter make **too restrictive** an assumption about covariance for many longitudinal data problems, multivariate methods make **too general** an assumption. Indeed, the overall covariance matrix in many longitudinal data settings has some sort of **systematic pattern**.
- The consequence is that they may not be very **powerful** in the statistical sense for detecting departures from null hypotheses of interest, because they must allow for the possibility that the covariance matrix of a data vector may be virtually **anything**! There are now n(n + 1)/2 parameters defining the covariance structure rather than just 2.
- Thus, the perspective of this instructor is that these methods may be of limited practical utility for longitudinal data problems.

As we will see in subsequent chapters, although we may not be willing to be as narrow as assuming compound symmetry, we may have some basis for assuming **something** about the covariance structure of a data vector, for example, how among- and within-sources of variation affect the response. By taking advantage of what we **are** willing to assume, we may be able to construct more powerful statistical procedures. Moreover, although the model (6.2) gets away from compound symmetry, it still uses a restrictive assumption about the form of the **mean** vector, not incorporating time **explicitly**. Other models we will see later will address all of these issues and lead to more interpretable methods.

6.2 General multivariate problem

GENERAL SET-UP: In order to appreciate the perspective behind the multivariate approach, we consider a general case of a multivariate problem, that usually addressed in a full course on multivariate analysis. Consider the following situation; we use the notation with two subscripts for convenience later.

- Units are randomized into q groups.
- Data vector $\boldsymbol{Y}_{h\ell}$ is observed for the *h*th unit in the *l*th group.
- $\boldsymbol{Y}_{h\ell}$ is assumed to satisfy

$$\boldsymbol{Y}_{h\ell} \sim \mathcal{N}(\boldsymbol{\mu}_{\ell}, \boldsymbol{\Sigma}),$$

where μ_{ℓ} is the mean response vector for group ℓ and Σ is an arbitrary covariance matrix assumed to be the **same** for each group.

- There are r_{ℓ} units in each group, so for group ℓ , $h = 1, \ldots, r_{\ell}$.
- The components of Y_{hl} may not necessarily all be measurements of the same response. Instead, each component of Y_{hl} may represent the measurement of a different response. For example, suppose the units are birds of two species. Measurements on n different features of the birds may be taken and collected into a vector Y_{hl}; e.g. y_{hl} may be tail length, y_{hl} may be wing span, y_{hl} may be body weight, and so on. That is, the elements Y_{hlj}, j = 1,...,n, may consist of measurements of different characteristics.
- Of course, the longitudinal data situation is a special case of this set-up where the $Y_{h\ell j}$ happen to be measurements on the **same** response (over time).

COMPARISON OF INTEREST: Clearly, the main interest is focused on **comparing** the groups on the basis of the responses that make up a data vector somehow.

• Recall in our discussion of univariate methods, we noted that when the responses are all the **same** within a data vector, a natural approach is to think of **averaging** the responses over time and comparing the averages. This was the interpretation of the hypotheses developed for testing the main effect of groups. (Of course, this may be dubious if the profiles are not **parallel**, as discussed in Chapter 5).

- Here, however, it is clear that **averaging** over all responses and comparing the averages across groups would be nonsensical. In the example above, we would be averaging tail length, wing span, body weight, etc, variables that measure entirely different characteristics on different scales!
- Thus, the best we can hope for is to compare all the different responses "simultaneously" somehow. In doing this, it would naturally be important to take into account that observations on the **same unit** are **correlated**.

FORMALLY: In our statistical model, μ_{ℓ} is the **mean** for data vectors (composed of the *n* different responses) observed on units in the ℓ th group. Thus, we may formally state our desire to compare the *n* responses "simultaneously" as the desire to compare the *q* mean vectors μ_{ℓ} , $\ell = 1, \ldots, q$, on the basis of all their components. That is, we are interested in testing the null hypothesis

$$H_0: \boldsymbol{\mu}_1 = \dots = \boldsymbol{\mu}_q \tag{6.3}$$

versus the alternative that H_0 is not true. As long as the *n* responses that make up a data vector are **different** and hence not comparable (e.g. cannot be "averaged"), this is the best we can do to address our general question.

6.3 Hotelling's T^2

The standard methods to test the null hypothesis (6.3) are simply generalizations of standard methods in the case where the data on each unit are just **scalar** observations $y_{h\ell}$, say. That is, $\mathbf{Y}_{h\ell}$ is a vector of length n = 1. In this section, we give brief statements of these generalizations without much justification. A more in-depth treatment of the general multivariate problem may be found in Johnson and Wichern (1992).

First, consider the case of just q = 2 groups.

SCALAR CASE: If the observations were just scalars rather than vectors, then we would be interested in the comparison of two scalar means μ_{ℓ} , $\ell = 1, 2$, and H_0 would reduce to

$$H_0: \mu_1 = \mu_2 \text{ or } \mu_1 - \mu_2 = 0.$$

Furthermore, the unknown covariance matrix Σ would reduce to a single scalar variance value, σ^2 , say. Under our normality assumption, the standard test of H_0 would be the two-sample t test.

• Because σ^2 is **unknown**, it must be estimated. This is accomplished by estimating σ^2 based on the observations for each group and then "pooling" the result. That is, letting $\overline{Y}_{.\ell}$ denote the sample mean of the r_{ℓ} observations $y_{h\ell}$ for group ℓ , find the **sample variance**

$$S_{\ell}^{2} = (r_{\ell} - 1)^{-1} \sum_{h=1}^{r_{\ell}} (Y_{h\ell} - \overline{Y}_{.\ell})^{2}$$

and construct the estimate of σ^2 from data in both groups as the "weighted average"

$$S^{2} = (r_{1} + r_{2} - 2)^{-1} \{ (r_{1} - 1)S_{1}^{2} + (r_{2} - 1)S_{2}^{2} \}.$$

• Now, form the test statistic

$$t = \frac{\overline{Y}_{.1} - \overline{Y}_{.2}}{\sqrt{(r_1^{-1} + r_2^{-1})s^2}}.$$

The statistic t may be shown to have a Student's t distribution with $r_1 + r_2 - 2$ degrees of freedom.

MULTIVARIATE CASE: The hypothesis is now

$$H_0: \mu_1 = \mu_2 \text{ or } \mu_1 - \mu_2 = \mathbf{0}.$$
 (6.4)

A natural approach is to seek a multivariate analogue to the t test.

- The analogue of the assumed common variance σ² is now the assumed common covariance matrix Σ, which is of course unknown. We would like to estimate this matrix for each group and then "pool" the results as in Chapter 4.

$$\overline{\boldsymbol{Y}}_{\cdot\ell} = \begin{pmatrix} \overline{y}_{\cdot\ell1} \\ \vdots \\ \overline{y}_{\cdot\elln} \end{pmatrix},$$

then the sample covariance matrix for group ℓ is the $(n \times n)$ matrix

$$\hat{\boldsymbol{\Sigma}}_{\ell} = (r_{\ell} - 1)^{-1} \sum_{h=1}^{r_{\ell}} (\boldsymbol{Y}_{h\ell} - \overline{\boldsymbol{Y}}_{\cdot\ell}) (\boldsymbol{Y}_{h\ell} - \overline{\boldsymbol{Y}}_{\cdot\ell})'.$$
(6.5)

Recall that the sum in 6.5) is called a sum of squares and cross-products (SS&CP) matrix.

• The overall pooled sample covariance, an estiamtor for Σ , is then the "weighted average"

$$\hat{\boldsymbol{\Sigma}} = (r_1 + r_2 - 2)^{-1} \{ (r_1 - 1) \hat{\boldsymbol{\Sigma}}_1 + (r_2 - 1) \hat{\boldsymbol{\Sigma}}_2 \}.$$

• The test statistic analogous to the (square of) the t statistic is known as **Hotelling's** T^2 statistic and is given by

$$T^{2} = (r_{1}^{-1} + r_{2}^{-1})^{-1} (\overline{\boldsymbol{Y}}_{\cdot 1} - \overline{\boldsymbol{Y}}_{\cdot 2})' \hat{\boldsymbol{\Sigma}}^{-1} (\overline{\boldsymbol{Y}}_{\cdot 1} - \overline{\boldsymbol{Y}}_{\cdot 2}).$$

It may be shown that

$$\frac{r_1 + r_2 - n - 1}{(r_1 + r_2 - 2)n} T^2 \sim \mathcal{F}_{n, r_1 + r_2 - n - 1}.$$

Thus, the test of H_0 may be carried out at level α by comparing this version of T^2 to the appropriate α critical value.

Note that if n = 1, the multiplicative factor is equal to 1 and the statistic has an F distribution with 1 and $r_1 + r_2 - 2$ degrees of freedom, which is just the square of the $t_{r_1+r_2-2}$ distribution. That is, the multivariate test reduces to the scalar t test if the dimension of a data vector n = 1.

EXAMPLE: For illustration, consider the dental data. Here, the q = 2 groups are genders, $r_1 = 11$ (girls), $r_2 = 16$ (boys), and n = 4 ages (8, 10, 12, 14). Recall that we found

$$\overline{Y}_{\cdot 1} = (21.182, 22.227, 23.091, 24.091)',$$

 $\overline{Y}_{\cdot 2} = (22.875, 23.813, 25.719, 27.469)'.$

The estimates of Σ for each group are, from Chapter 4,

$$\hat{\boldsymbol{\Sigma}}_{1} = \begin{pmatrix} 4.514 & 3.355 & 4.332 & 4.357 \\ 3.355 & 3.618 & 4.027 & 4.077 \\ 4.332 & 4.027 & 5.591 & 5.466 \\ 4.357 & 4.077 & 5.466 & 5.9401 \end{pmatrix}$$
$$\hat{\boldsymbol{\Sigma}}_{2} = \begin{pmatrix} 6.017 & 2.292 & 3.629 & 1.613 \\ 2.292 & 4.563 & 2.194 & 2.810 \\ 3.629 & 2.194 & 7.032 & 3.241 \\ 1.613 & 2.810 & 3.241 & 4.349 \end{pmatrix}$$

,

The pooled estimate is then easily calculated (Chapter 4) as

$$\hat{\boldsymbol{\Sigma}} = \begin{pmatrix} 5.415 & 2.717 & 3.910 & 2.710 \\ 2.717 & 4.185 & 2.927 & 3.317 \\ 3.910 & 2.927 & 6.456 & 4.131 \\ 2.710 & 3.317 & 4.131 & 4.986 \end{pmatrix}$$

From these quantities, it is straightforward to calculate

$$\frac{r_1 + r_2 - n - 1}{(r_1 + r_2 - 2)n}T^2 = 3.63,$$

which under our assumptions has an F distribution with 4 and 22 degrees of freedom. $\mathcal{F}_{4,22,0.05} = 2.816$; thus, we would reject H_0 at level $\alpha = 0.05$.

In section 6.6 we will see these calculations done using SAS PROC GLM.

HYPOTHESIS IN MATRIX FORM: It is worth noting that the hypothesis in (6.4) may be expressed in the form we have used previously. Specifically, if we define M as before as the $(2 \times n)$ matrix whose rows are the transposed mean vectors μ'_1 and μ'_2 , i.e.

$$oldsymbol{M}=\left(egin{array}{ccc} \mu_{11}&\cdots&\mu_{1n}\ \mu_{21}&\cdots&\mu_{2n} \end{array}
ight),$$

it should be clear that, defining C = (1, -1), we have (verify)

$$CM = \left(\mu_{11} - \mu_{21}, \dots, \mu_{1n} - \mu_{2n} \right) = (\mu_1 - \mu_2)'.$$

Thus, we may express the hypothesis in the form

$$H_0: \boldsymbol{CMU} = \boldsymbol{0}, \quad \boldsymbol{U} = \boldsymbol{I}_n.$$

6.4 One-way MANOVA

Just as the case of comparing 2 group means for scalar response may be generalized to q > 2 groups using analysis of variance techniques, the multivariate analysis above also may be generalized. SCALAR CASE: Again, if the observations were just scalars, we would be interested in the comparison of q scalar means μ_{ℓ} , $\ell = 1, \ldots, q$, and H_0 would reduce to

$$H_0: \mu_1 = \cdots = \mu_q,$$

and again the unknown covariance matrix Σ would reduce to a **single** scalar **variance** value σ^2 . Under the normality assumption, the standard test of H_0 via one-way analysis of variance is based on the **ratio** of two estimators for σ^2 . The following is the usual one-way analysis of variance; recall that $m = \sum_{\ell=1}^{q} r_{\ell}$ is the total number of units:

ANOVA Table

Source	SS	DF	MS	F
Among Groups	$-\iota = 1$			MS_G/MS_E
Among-unit Error Total	$SS_E = \sum_{\ell=1}^q \sum_{h=1}^{r_\ell} (Y_{h\ell} - \overline{Y}_{.\ell})^2$ $\sum_{\ell=1}^q \sum_{h=1}^{r_\ell} (Y_{h\ell} - \overline{Y}_{})^2$		MS_E	
10041		m - 1		

Note that the "error" sum of squares SS_E may be written as (try it)

$$SS_E = (r_1 - 1)S_1^2 + \dots + (r_q - 1)S_q^2, \quad S_\ell^2 = (r_\ell - 1)^{-1}\sum_{h=1}^{r_\ell} (Y_{h\ell} - \overline{Y}_{\ell})^2,$$

where S_{ℓ}^2 is the sample variance for the ℓ th group, so that MS_E has the interpretation as the pooled sample variance estimator for σ^2 across all q groups. MS_G is an estimator for σ^2 based on deviations of the group means from the overall mean, and will overestimate σ^2 if the means are different. It may be shown that the ratio F has sampling distribution that is F with (q-1) and (m-q) degrees of freedom, so that the test is conducted at level α by comparing the calculated value of F to $\mathcal{F}_{q-1,m-q,\alpha}$.

MULTIVARIATE CASE: The hypothesis is now $H_0: \mu_1 = \cdots = \mu_q$.

As in the case of q = 2 groups above, the multivariate generalization involves the fact that there is now an entire covariance matrix Σ to estimate rather than just a single variance. Consider the following analogue to the scalar one-way analysis of variance above. Let $\overline{Y}_{...j}$ be the sample mean of all observations across all units and groups for the *j*th element and define the **overall** mean vector

$$\overline{\boldsymbol{Y}}_{\cdot\cdot} = \left(\begin{array}{c} \overline{Y}_{\cdot\cdot1} \\ \vdots \\ \overline{Y}_{\cdot\cdot n} \end{array}\right)$$

MANOVA Table

Source	SS&CP	DF
Among Groups	$oldsymbol{Q}_{H} = \sum_{\ell=1}^{q} r_{\ell} (\overline{oldsymbol{Y}}_{.\ell} - \overline{oldsymbol{Y}}_{}) (\overline{oldsymbol{Y}}_{.\ell} - \overline{oldsymbol{Y}}_{})'$	q-1
Among-unit Error	$oldsymbol{Q}_E = \sum_{\ell=1}^q \sum_{h=1}^{r_\ell} (oldsymbol{Y}_{h\ell} - \overline{oldsymbol{Y}}_{\cdot\ell}) (oldsymbol{Y}_{h\ell} - \overline{oldsymbol{Y}}_{\cdot\ell})'$	m-q
Total	$oldsymbol{Q}_{H}+oldsymbol{Q}_{E}=\sum_{\ell=1}^{q}\sum_{h=1}^{r_{\ell}}(oldsymbol{Y}_{h\ell}-\overline{oldsymbol{Y}}_{})(oldsymbol{Y}_{h\ell}-\overline{oldsymbol{Y}}_{})'$	m-1

Comparing the entries in this table to those in the scalar ANOVA table, we see that they appear to be multivariate generalizations. In particular, the entries are now **matrices**. Each may be viewed as an attempt to estimate Σ .

It is straightforward to verify (try it) that the Among-unit Error sum of squares and cross products matrix Q_E may be written

$$\boldsymbol{Q}_E = (r_1 - 1)\hat{\boldsymbol{\Sigma}}_1 + \dots + (r_q - 1)\hat{\boldsymbol{\Sigma}}_q,$$

where $\hat{\Sigma}_{\ell}$ is the estimate (6.5) of Σ based on the data vectors from group ℓ . Thus, just as in the scalar case, this quantity divided by its degrees of freedom has the interpretation as a "pooled" estimate of Σ across groups.

MULTIVARIATE TESTS: Unfortunately, because these entries are matrices, it is no longer straightforward to construct a unique generalization of the F ratio that may be used to test H_0 . Clearly, one would like to compare the "magnitude" of the SS&CP matrices Q_H and Q_E somehow, but there is no one way to do this. There are a number of statistics that have been proposed based on these quantities that have this interpretation. • The most commonly discussed statistic is known as **Wilks' lambda** and may be motivated informally as follows. In the scalar case, the F ratio is

$$\frac{SS_G/(q-1)}{SS_E/(m-q)};$$

thus, in the scalar case, H_0 is rejected when the ratio SS_G/SS_E is large. This is equivalent to rejecting for large values of $1 + SS_G/SS_E$ or small values of

$$\frac{1}{1 + SS_G/SS_E} = \frac{SS_E}{SS_G + SS_E}.$$

For the multivariate problem, the Wilks' lambda statistic is the analogue of this quantity,

$$T_W = \frac{|\boldsymbol{Q}_E|}{|\boldsymbol{Q}_H + \boldsymbol{Q}_E|};$$

here, the **determinant** of each SS&CP matrix is taken, reducing the matrix to a single number. This number is often referred to as the **generalized sample variance**; see Johnson and Wichern (2002) for a deeper discussion. One rejects H_0 for small values of T_W (how small will be discussed in a moment).

• Another statistic is referred to as the Lawley-Hotelling trace; reject H_0 for large values of

$$T_{LH} = \operatorname{tr}(\boldsymbol{Q}_H \boldsymbol{Q}_E^{-1}).$$

- Other statistics are **Pillai's trace** and **Roy's greatest root**.
- None of these approaches been shown to be superior to the others in general. In addition, all are equivalent to using the Hotelling T^2 statistic in the case q = 2.

A full discussion of the theoretical underpinnings of these methods is beyond the scope of our discussion. Here, we note briefly the salient points:

- It is possible in certain special cases to work out the exact sampling distribution of these statistics. As mentioned above, when q = 2 and we are testing whether the two means are the same, all of these statistics may be shown to be the same and equivalent to conducting the test based on Hotelling's T^2 statistics.
- When n = 1, 2 and $q \ge 2$ or when $n \ge 1$ and q = 2, 3, it is possible to show that certain functions of T_W have an F sampling distribution, and this may be used to conduct the test **exactly**. These are listed in Johnson and Wichern (2002).

- In other situations, it is possible to show that the sampling distributions may be **approximated** by *F* or other distributions.
- SAS PROC GLM calculates all of these statistics and provides either exact or approximate p-values, depending on the situation.

We will consider the application of these methods to the dental study data and the guinea pig diet data in section 6.6.

HYPOTHESIS IN MATRIX FORM: It is again worth noting that the hypothesis of interest (6.3) may be expressed in the form H_0 : CMU = 0 for suitable choice of C and with $U = I_n$. For example, consider the case q = 3, with

$$\boldsymbol{M} = \begin{pmatrix} \mu_{11} & \cdots & \mu_{1n} \\ \mu_{21} & \cdots & \mu_{2n} \\ \mu_{31} & \cdots & \mu_{3n} \end{pmatrix}, \quad \boldsymbol{C} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix},$$

$$\boldsymbol{C} = \begin{pmatrix} \mu_{11} - \mu_{21} & \cdots & \mu_{1n} - \mu_{2n} \\ \mu_{11} - \mu_{31} & \cdots & \mu_{1n} - \mu_{3n} \end{pmatrix} = \begin{pmatrix} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)' \\ (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_3)' \end{pmatrix}.$$
(6.6)

Setting this equal to 0 may thus be seen to be equivalent to saying that all of the mean vectors μ_{ℓ} are the same.

SUMMARY: We have seen that, in situations where a data vector consists of n observations on possibly **different** characteristics on **different scales**, it is possible to test whether the entire **mean vectors** for each group are the same using what are usually called one-way MANOVA methods.

- If the null hypothesis (6.3) is rejected, then this means we have evidence to suggest that at least one of the q mean vectors differs from the others in at least one of the n components. This is not particularly informative, particularly if q and/or n are somewhat large.
- In addition, it seems intuitively that it would be difficult to detect such a difference with q vectors and n components, there are a lot of comparisons that must be taken into account when looking for a difference.
- Furthermore, the methods are requiring estimation of all n(n+1)/2 elements of the (assumed common across groups) covariance matrix Σ .
- Thus, the basis for our earlier remark that multivariate procedures may lack power for detecting differences should now be clear.

• Furthermore, when the *n* elements of a data vector are all observations on the **same** characteristic as in the case of longitudinal data, these methods do not seem to really get at the heart of matters. Focusing on H_0 in (6.3) ignores the questions of interest, such as that of **parallelism**.

6.5 Profile Analysis

It turns out that one can conduct more focused multivariate tests that make no particular assumption about the form of Σ . Recall that the MANOVA test of (6.3), $H_0: \mu_1 = \cdots = \mu_q$ could be regarded as testing a particular hypothesis of the form

$$H_0: CMU = 0$$

for suitable choice of C and with $U = I_n$. It should thus come as no surprise that it is possible to develop such multivariate procedures for more general choices of C and U.

HYPOTHESIS OF PARALLELISM: Of particular interest in the case of longitudinal data is the test of **parallelism** or **group by time interaction**. In the last chapter, we saw that the null hypothesis corresponding to parallelism could be expressed in terms of the elements of the mean vectors μ_{ℓ} or equivalently in terms of the $taugam_{\ell j}$:

$$H_0$$
: all $(\tau \gamma)_{\ell i} = 0$.

In particular, in the case of q = 2 and n = 3, we saw that this test could be represented with

$$\boldsymbol{C} = \begin{pmatrix} 1 & -1 \end{pmatrix}, \quad \boldsymbol{U} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{pmatrix}, \quad \boldsymbol{M} = \begin{pmatrix} \mu_{11} & \mu_{12} & \mu_{13} \\ \mu_{21} & \mu_{22} & \mu_{23} \end{pmatrix}.$$

For general q and n, we may write this in a streamlined fashion. If we let j_p denote a column vector of 1's of length p, then (try it!) choosing

$$\boldsymbol{C} = \begin{pmatrix} \boldsymbol{j}_{q-1} & -\boldsymbol{I}_{q-1} \end{pmatrix} (q-1 \times q), \quad \boldsymbol{U} = \begin{pmatrix} \boldsymbol{j}_{n-1}' \\ -\boldsymbol{I}_{n-1} \end{pmatrix} (n \times n-1)$$
(6.7)

gives the null hypothesis of parallelism.

MULTIVARIATE TEST FOR PARALLELISM: Recall that the **univariate** test of this null hypothesis discussed in Chapter 5 was predicated on the assumption of **compound symmetry**. Here, we seek a test in the same spirit of those in the last section that make no assumption about the form of Σ .

To understand this, we first consider the multivariate test of (6.3). Recall in the MANOVA table of the last section that this test boiled down to making a comparison between 2 SS&CP matrices, Q_H and Q_E that focused on the particular issue of the hypothesis.

- Q_E effectively measured the distance of individual data vectors from the means for their group.
- Q_H measured the distance of group mean vectors from the overall mean vector.
- We would expect Q_H to be "large" relative to Q_E if there really were a difference among the q means μ_ℓ, ℓ = 1...,q.

We would clearly like to do something **similar** for the null hypothesis of parallelism.

HEURISTIC DESCRIPTION: It turns out that for the test of (6.3), $H_0: \mu_1 = \ldots = \mu_q$, which may be expressed in the form $H_0: CMU = 0$ with C as in (6.6) and $U = I_n$, we may express Q_H and Q_E in an alternative form as functions of C, M, and U (= I_n here). Specifically, recall that we may express the underlying statistical model as in (6.1), i.e.

$$\mathbf{Y}'_i = \mathbf{a}'_i \mathbf{M} + \boldsymbol{\epsilon}'_i, \quad i = 1, \dots, m.$$

We saw in Chapter 5 that this may be written more succinctly as (5.14), i.e.

$$\mathcal{Y} = AM + \epsilon$$

where $\boldsymbol{\mathcal{Y}}$ is the $(m \times n)$ matrix with rows \boldsymbol{Y}'_i and similarly for $\boldsymbol{\epsilon}$, and \boldsymbol{A} $(m \times q)$ has rows \boldsymbol{a}'_i . It is an exercise in matrix algebra to show that we may write \boldsymbol{Q}_H and \boldsymbol{Q}_E in terms of this model as

$$\boldsymbol{Q}_{H} = (\boldsymbol{C}\widehat{\boldsymbol{M}}\boldsymbol{U})'\{\boldsymbol{C}(\boldsymbol{A}'\boldsymbol{A})^{-1}\boldsymbol{C}'\}^{-1}(\boldsymbol{C}\widehat{\boldsymbol{M}}\boldsymbol{U})$$
(6.8)

$$\boldsymbol{Q}_E = \boldsymbol{U}' \boldsymbol{\mathcal{Y}}' \{ \boldsymbol{I}_n - \boldsymbol{A} (\boldsymbol{A}' \boldsymbol{A})^{-1} \boldsymbol{A}' \} \boldsymbol{\mathcal{Y}} \boldsymbol{U}$$
(6.9)

with

$$\widehat{M} = (A'A)^{-1}A'\mathcal{Y}, \ U = I_n.$$

A technical justification of (6.8) and (6.9) may be found in, for example, Vonesh and Chinchilli (1997, p. 50); they show that this representation and the form of the Wilks' lambda statistic T_W may be derived using the principles of **maximum likelihood**, which we will discuss later in the course in a different context.

The above results are in fact valid for **any** suitable choice of C and U, such as those corresponding to the null hypothesis of parallelism.

- That is, for a null hypothesis of the form $H_0 : CMU = 0$, one may construct corresponding SS&CP matrices Q_H and Q_E . These are often called the hypothesis and error SS&CP matrices, respectively.
- One may then construct any of the test statistics such as Wilks' lambda T_W discussed in the last section. It may be shown that these will provide either approximate or exact tests, depending on the circumstances, for the null hypothesis corresponding to the choice of C and U.
- These test are **multivariate** in the sense that **no assumption** of a particular structure for Σ is made.

PROFILE ANALYSIS: In the particular context of repeated measurement data, where the n observations in a data vector are all on the same characteristic, conducting appropriate **multivariate** tests for parallelism and other issues of interest is known as **profile analysis**. This is usually carried out in practice as follows.

- The test of primary interest is that of **parallelism** or Group by Time interaction. This may be represented in the form $H_0: CMU = 0$ with C and U as in(6.7), so that suitable Q_H and Q_E may be calculated. Thus, test statistics such as Wilks' lambda, Pillai's trace, and so on may be used to conduct the test. Depending on the dimensions q and n, these tests may be exact or approximate and may or may not coincide.
- The next test is usually only conducted if the hypothesis of parallelism is not rejected.

The test of $H_0: \mu_1 = \cdots = \mu_q$ may be written in the form $H_0: CMU = 0$ with C as in (6.7) $U = I_n$. This is just the usual MANOVA test discussed in the last section; when repeated measurements are involved, this test is often called the test for **coincidence**. Clearly, if the profiles are **not parallel**, then testing coincidence seems ill-advised, as it is not clear what it means.

As we discussed in Chapter 5, if the profiles **are parallel**, then it turns out that we may refine this test. Specifically, it may be shown that testing this H_0 with the **additional** assumption that the profiles are **parallel** is equivalent to testing the hypothesis $H_0 : CMU = 0$ with C as in (6.7) but with $U = j_n/n$. Note that this is exactly the same hypothesis we discussed in Chapter 5 – if the profiles are parallel, then testing whether they in fact coincide is the same as testing whether the **averages** of the means over time is the same for each group; that is, the test we called **main effect of group**.

It turns out that, for testing this hypothesis, the **multivariate** tests are all equivalent. Furthermore, they reduce to the **univariate** F test for the **main effect of groups** we discussed in Chapter 5! Intuitively, this makes sense – we are basing the test on **averaging** observations over time, thus effectively "distilling" the data for each unit down to a single average. The "distilling" operation averages across **time**, so how observations within a data vector are **correlated** is being "averaged away." As long as Σ is the same for all data vectors, these "distilled" data are all have the same variance, so we would expect an ordinary F ratio to apply.

• This test is also usually conducted only if the hypothesis of parallelism is not rejected.

It is also of interest to know whether the profiles are in fact **constant** over time. It may be shown (try it!) that this may be represented in the form $H_0: CMU = 0$ with U as in (6.7) and $C = I_q$. As with the test for coincidence, if the profiles are **not parallel**, then testing whether they are **constant** over time seems inappropriate.

If there is strong evidence of **parallelism**, then we may refine this test also. It may be shown that testing H_0 for **constancy** with the **additional** assumption that the profiles are **parallel** is equivalent to testing H_0 : CMU = 0 with the choices U as in (6.7) and $C = j'_q/q$, a $(1 \times q)$ vector of 1/q's. Note (try it) that this is the exactly the same hypothesis discussed for the **main effect of time** discussed in Chapter 5 – if we know the profiles are parallel, then asking whether the means are constant over time is the same as asking whether the mean response **averaged across groups** is the same at each time.

It turns out that, for testing this hypothesis, the **multivariate** tests are again all equivalent. **However**, the multivariate test is **different** from the **univariate** tests. Intuitively, this also makes sense – we are basing the test on **averaging** observations across **groups**. Thus, although we are again "distilling" the data, we are now doing it over groups, so that **time**, and how observations are **correlated** over time, is not being "averaged away." As a result, what is being assumed about the form of Σ still plays a role. The (common) multivariate test statistic boils down to a statistic that is a generalization of the form of the Hotelling's T^2 statistic, and it may be shown that this statistic multiplied by a suitable factor thus has exactly an F distribution. It is important to recognize that, although both the **univariate** and **multivariate** test statistics both have F sampling distributions, they are **different** tests, being based on different assumptions on the form of Σ . Which one is more appropriate depends on the true form of Σ .

6.6 Implementation with SAS

We consider again the two examples of Chapter 5:

- 1. The dental study data. Here, q = 2 and n = 4, with the "time" factor being the age of the children and equally-spaced "time" points at 8, 10, 12, and 14 years of age.
- 2. the guinea pig diet data. Here, q = 3 and n = 6, with the "time" factor being weeks and unequally-spaced "time" points at 1, 3, 4, 5, 6, and 7 weeks.

In each case, we use SAS PROC GLM and its various options to carry out both the one-way MANOVA analysis comparing the group mean vectors and the refined hypotheses of **profile analysis**. These examples thus serve to illustrate how this SAS procedure may be used to conduct multivariate repeated measures analysis of variance.

EXAMPLE 1 – DENTAL STUDY DATA: The data are read in from the file dental.dat. PROGRAM:

data dent1; set dent1; if age=8 then age=1; if age=10 then age=2; if age=12 then age=3; if age=14 then age=4; dron obsno: drop obsno; run: proc sort data=dent1; by gender child; data dent2(keep=age1-age4 gender); array aa{4} age1-age4; do age=1 to 4; set dent1; by gender child; aa{age}=distance; if last.child then return; end: run: The sample mean vectors for each gender were found in Example 1 of Chapter 4. Here, we use PROC CORR to calculate the estimates of Sigma, the assumed common covariance matrix, separately for each group. The COV option asks for the covariance matrix each group. to be printed. proc sort data=dent2; by gender; run; proc corr data=dent2 cov; by gender; var age1 age2 age3 age4; run; Use PROC GLM to carry out the multivariate analysis. First, call PROC GLM and use the MANOVA statement to get the MANOVA test of equality of gender means. Here, this is equivalent to Hotelling's T 2 test because there are 2 groups. The PRINTH and PRINTE options print the SS&CP matrices Q_H and Q_E corresponding to the null hypothesis of equal means. The option NOUNI suppresses individual analyses of variance for the data at each age value from being printed. Without the NOUNI option in the MODEL statement, note that PROC GLM does a separate univariate ANOVA on the data at each age separately. proc glm data=dent2; class gender; model age1 age2 age3 age4 = gender; manova h=gender / printh printe; Now use the REPEATED option to do profile analysis. The "between subjects" (units) test is that for coincidence assuming profiles are parallel, based on averaging across times. Thus, as discussed in section 5.5, it is the same as the univariate test. The tests for age and age*gender resulting from this analysis are the multivariate tests for profile constancy and parallelism, respectively. The test for constancy (age effect here) is the multivariate test for constancy assuming that the profiles are parallel, as discussed in section 5.5 Both of these tests are different from the corresponding univariate tests we saw in section 4.8 that are based on the assumption of compound symmetry. The NOU option in the REPEATED statement suppresses printing of the univariate tests of these factors. The within-unit analyses using different contrast matrices will be the same as in the univariate case (see the discussion in section 4.6. Thus, we do not do this analysis here. proc glm data=dent2; class gender; model age1 age2 age3 age4 = gender / nouni; repeated age / nou;

CHAPTER 6

age3

0.55793

0.38729

OUTPUT:

								1
The CORR Procedure								
	4	Variables:	ageı	age2	ageo	age4		
		Cova	ariance Mat	trix,	DF = 10			
		age1	age			age3		age4
age1 age2 age3 age4	4.5130 3.354 4.3313 4.3568	636364 545455 818182 818182	3.35454545 3.61818183 4.02727272 4.07727272	55 18 27 27	4.331818 4.027272 5.590909 5.465909	3182 2727 9091 9091	4.07 5.46	6818182 7272727 5909091 0909091
			Simple Sta	atist	ics			
Variable	1	N Mear	n Std I	Dev	Sum	Minim	m	Maximum
age1 age2 age3 age4	1 1 1 1	1 21.18182 1 22.22727 1 23.09091 1 24.09091	2 2.124 7 1.902 1 2.364 1 2.43	453 215 451 740	233.00000 244.50000 254.00000 265.00000	16.5000 19.0000 19.0000 19.5000	00 00 00 00	24.50000 25.00000 28.00000 28.00000
		Pearson Corr Prob	relation Co > r uno			11		
		age1	age	e2	age3		age4	
	age1	1.00000	0.8300		0.86231 0.0006		84136 .0012	
	age2	0.83009 0.0016	1.0000	00	0.89542 0.0002		37942 .0004	
	age3	0.86231 0.0006	0.8954 0.000		1.00000		94841 .0001	
	age4	0.84136 0.0012	0.8794 0.000	42 04	0.94841 <.0001	1.0	00000	
								2
			The CORR I					
	4	Variables:				age4		
			-	-	-	Ū		
		age1	ariance Mat age	-		age3		age4
age1 age2 age3 age4	2.291 3.629	666667 666667 166667 500000	2.29166666 4.56250000 2.19375000 2.81041666	67 00 00	3.629166 2.193750 7.032291 3.240625	5667 0000 1667	$2.81 \\ 3.24$	2500000 0416667 0625000 8958333
			Simple Sta	atist:	ics			
Variable	1	N Mear	n Std I	Dev	Sum	Minim	m	Maximum
age1 age2 age3 age4	10 10 10	6 23.81250 6 25.71875	2.130 2.65	600 185	366.00000 381.00000 411.50000 439.50000	17.0000 20.5000 22.5000 25.0000	00 00	27.50000 28.00000 31.00000 31.50000
		Pearson Corr Prob	relation Co > r uno			16		
		age1	age	e2	age3		age4	
	age1	1.00000	0.4373 0.090		0.55793 0.0247		31523 .2343	
	age2	0.43739 0.0902	1.0000	00	0.38729 0.1383		53092 .0088	

1.00000

0.58599

		0.0247	0.138	33			0.0171		
	age4	0.31523 0.2343	0.6309		0.58599 0.017		1.00000		
		0.2010			0.011	-		3	
			The GLM Pr	cocedure	е				
		Cl	ass Level]	Informat	tion				
		Class	Le	evels	Values				
		gende	r	2	0 1				
		Numb	er of obser	vation	s 27				
								4	
			The GLM Pr	cocedure	9				
Dependent	Variable:	age1		_					
Source		DF		um of lares	Mean S	quare	F Value	Pr > F	
Model		1	18.687	7104	18.68	77104	3.45	0.0750	
Error		25	135.386	3636	5.41	54545			
Corrected	d Total	26	154.074	10741					
	R-Squ	are Co	eff Var	Root	MSE	age1	Mean		
	0.121	290 1	0.48949	2.32	7113	22.1	8519		
Source		DF	Туре	I SS	Mean S	quare	F Value	Pr > F	
gender		1	18.6877	1044	18.687	71044	3.45	0.0750	
Source		DF	Type I	II SS	Mean S	quare	F Value	Pr > F	
gender		1			18.687	_	3.45	0.0750	
								5	
			The GLM Pr	cocedure	е				
Dependent	Variable:	age2							
Source		DF	ี	um of lares	Mean S	quare	F Value	Pr > F	
Model		1	16.380	6818	16.38	06818	3.91	0.0590	
Error		25	104.619	3182	4.18	47727			
Corrected	d Total	26	121.000	00000					
	R-Squ	are Co	eff Var	Root	MSE	age2	Mean		
	0.135	378 8	.830238	2.04	5672	23.1	6667		
Source		DF	Type	I SS	Mean S	niare	F Value	Pr > F	
gender		1	51		16.380	-	3.91	0.0590	
-									
Source		DF	51		Mean S	-	F Value	Pr > F	
gender		1	16.3806	58182	16.380	68182	3.91	0.0590	
			The GLM Pr	rocodure	2			6	
Dependent	Variable:	age3	THE GER PI	JCedur	5				
Fourdoup			Sı	um of					
Source		DF	່ Sqເ	lares	Mean S	-	F Value	Pr > F	
Model		1			45.01		6.97	0.0141	
Error		25	161.393	34659	6.45	57386			

Corrected 2	Total	26	206.4074	074				
	R-Square	Coeff	Var	Root	MSE	age3 1	Mean	
	0.218083		0834	2.54		24.6		
Source		DF	Type I	SS	Mean	Square	F Value	Pr > F
gender		1	45.01394			.394150	6.97	
Source		DF	Turne III	CC	Moon	Square	F Value	Dr \ F
gender		Dr 1	Type III 45.01394			Square .394150	r Value 6.97	
8		_						7
		Th	e GLM Pro	cedur	e			
Dependent Va	ariable: age4							
Source		DF	Sum Squa	of res	Mean	Square	F Value	Pr > F
Model		1	74.3750	526	74.3	750526	14.92	0.0007
Error		25	124.6434	659	4.9	857386		
Corrected 2	Total	26	199.0185	185				
	R-Square	Coeff	Var	Root	MSE	age4 1	Mean	
	0.373709	8.55	7512	2.23	2877	26.0	9259	
Source		DF	Type I	SS	Mean	Square	F Value	Pr > F
gender		1	74.37505			505261	14.92	0.0007
Source		DF	Type III	99	Mean	Square	F Value	Pr > F
gender		1	74.37505			594441 e	14.92	
0								8
	M11] t		e GLM Pro te Analys					
	Indit		Error SSC					
	age1		age2			age3		age4
age1	135.38636364		920454545			681818		55681818
age2 age3 age4	67.920454545 97.755681818 67.755681818	73.	.61931818 178977273 928977273		161.39	977273 346591 846591	103.	28977273 26846591 64346591
-								
Partial DF = 2	Correlation Coe			_				
br age1	25 age 1.00000		age 0.57069			age3 1320	a 0.521	ge4 583
			0.002	3	0.	0002	0.0	063
age2	0.57069 0.002		1.00000	0		3167 0027	0.726 <.0	
age3	0.66132		0.56316 0.002		1.00	0000	0.728 <.0	
age4	0.52158	33	0.72621	6		8098	1.000	
-	0.006	53	<.000	1	<.	0001		0
		ТЪ	e GLM Pro.	cedur	e			9
	Mult		te Analys			ce		
		[ype II	I SSCP Ma		for gen	_		
1	age1	17	age2		00 000	age3	27 0	age4

age3	29.003577441	27.154356061	45.013941498	57.861163721
age4	37.281355219	34.904356061	57.861163721	74.375052609

Characteristic Root	Percent	Characteristic age1	: Vector V'EV= age2	=1 age3	age4
0.66030051 0.00000000 0.0000000000000000000000	$100.00 \\ 0.00 \\ 0.00 \\ 0.00$	0.01032388 -0.07039943 -0.08397385 0.05246789	-0.04593889 0.13377597 -0.01167207 0.05239507	-0.01003125 0.00249339 0.12114416 0.05062221	0.11841126 -0.02943257 -0.04667529 -0.09027154

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall gender Effect H = Type III SSCP Matrix for gender E = Error SSCP Matrix

	S=1 M=:	1 N=10			
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda Pillai's Trace Hotelling-Lawley Trace Roy's Greatest Root	0.60230061 0.39769939 0.66030051 0.66030051	3.63 3.63 3.63 3.63	4 4 4 4	22 22 22 22	0.0203 0.0203 0.0203 0.0203

10

The GLM Procedure

Class Level Information

Class Levels Values

gender 2 0 1

Number of observations 27

11

The GLM Procedure Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable	age1	age2	age3	age4
Level of age	1	2	3	4

Manova Test Criteria and Exact F Statistics for the Hypothesis of no age Effect H = Type III SSCP Matrix for age E = Error SSCP Matrix

	S=1 M=0	0.5 N=10.5			
Statistic	Value	e F Value	Num DF	Den DF	Pr > F
Wilks' Lambda Pillai's Trace Hotelling-Lawley Trace Roy's Greatest Root	0.19479424 0.80520576 4.13362212 4.13362212	31.69 31.69	3 3 3 3	23 23 23 23	<.0001 <.0001 <.0001 <.0001

Manova Test Criteria and Exact F Statistics for the Hypothesis of no age*gender Effect H = Type III SSCP Matrix for age*gender E = Error SSCP Matrix

	S=1 M=0.5	5 N=10.5			
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda Pillai's Trace Hotelling-Lawley Trace Roy's Greatest Root	0.73988739 0.26011261 0.35155702 0.35155702	2.70 2.70 2.70 2.70	3 3 3 3	23 23 23 23	0.0696 0.0696 0.0696 0.0696

12

The GLM Procedure Repeated Measures Analysis of Variance Tests of Hypotheses for Between Subjects Effects

Source	DF	Type III SS	Mean Square	F Value	Pr > F
gender Error	1 25	140.4648569 377.9147727	$140.4648569 \\ 15.1165909$	9.29	0.0054

EXAMPLE 2 - GUINEA PIG DIET DATA: The data are read in from the file diet.dat. PROGRAM:

CHAPTER 6, EXAMPLE 2 Analysis of the vitamin E data by multivariate repeated measures analysis of variance using $\ensuremath{\mathsf{PROC}}$ GLM the repeated measurement factor is week (time) there is one "treatment" factor, dose options ls=80 ps=59 nodate; run; The data set is shown in Example 2 of Chapter 5. It is already in the form required for PROC GLM to perform the multivariate analysis; that is, each line in the data set contains all the data for a given unit. Thus, we need only input the data as is and do not need to create a new data set a new data set. data pigs1; infile 'diet.dat'; input pig week1 week3 week4 week5 week6 week7 dose; We use PROC CORR to calculate the estimates of Sigma, the assumed common covariance matrix, separately for each dose group. The COV option asks for the covariance matrix to be printed. proc sort data=pigs1; by dose; run; proc corr data=pigs1 cov; by dose; var week1 week3 week4 week5 week6 week7; run; Use PROC GLM to carry out the multivariate analysis and profile analysis, respectively. The description is exactly the same as for Example 1 (the dental study). In the first call, we also show use of the MEANS statement to calculate the means for each dose group at each time. proc glm data=pigs1; class dose; model week1 week3 week4 week5 week6 week7 = dose / nouni; means dose: manova h=dose / printh printe; run: proc glm data=pigs1; class dose; model week1 week3 week4 week5 week6 week7 = dose / nouni; repeated week / printe nou; run:

OUTPUT:

		Th	e CORR Proce	edure		
6	Variables:	week1 w	eek3 week	4 week5	week6	week7
		Covari	ance Matrix,	DF = 4		
		week1		week3	weel	k4
	week1 week3 week4 week5 week6 week7	279.80000 158.550000 167.100000 -34.800000 476.950000 252.500000	1651. 1606. 1625. 1972.	550000 800000 100000 200000 950000 250000	167.10000 1606.10000 1567.20000 1592.90000 2010.90000 2077.50000	00 00 00 00
		Covari	ance Matrix,	DF = 4		
		week5		week6	weel	k7
	week1 week3 week4 week5 week6 week7	-34.800000 1625.200000 1592.900000 1835.300000 2081.550000 2251.750000	1972. 2010. 2081. 4472.	950000 950000 900000 550000 800000 000000	252.5000 2076.25000 2077.50000 2251.75000 3989.00000 3821.50000	00 00 00 00
		Si	mple Statist	cics		
ariabl	e N	Mean	Std Dev	Sum	Minimum	Maximur
veek1 veek3 veek4 veek5 veek6 veek7	5 5 5	$\begin{array}{c} 466.40000\\ 519.40000\\ 568.80000\\ 561.60000\\ 546.60000\\ 572.00000\end{array}$	16.72722 40.64234 39.58788 42.84040 66.87900 61.81828	2597 2844 2808 2733	$\begin{array}{c} 445.00000\\ 460.00000\\ 510.00000\\ 504.00000\\ 436.00000\\ 466.00000\end{array}$	565.0000 610.0000 597.0000 611.0000
	P	earson Correl Prob >	ation Coeffi r under HC	cients, N =): Rho=0	5	
	week1	week3	week4	week5	week6	week7
reek1	1.00000	0.23322 0.7058	0.25234 0.6822	-0.04856 0.9382	$0.42634 \\ 0.4741$	0.24419 0.6922
eek3	0.23322 0.7058	1.00000	0.99823 <.0001	0.93341 0.0204	0.72585 0.1650	0.82639 0.0845
eek4	0.25234 0.6822	0.99823 <.0001	1.00000	0.93923 0.0178	0.75952 0.1363	0.84891 0.0689
						2
	P	earson Correl	e CORR Proce ation Coeffi r under HO	cients, N =	5	
	week1	week3	week4	week5	week6	week7
eek5	-0.04856 0.9382	0.93341 0.0204	0.93923 0.0178	1.00000	0.72651 0.1645	0.85026 0.0680
eek6	0.42634 0.4741	0.72585 0.1650	0.75952 0.1363	0.72651 0.1645	1.00000	0.96484 0.0079
eek7	0.24419 0.6922	0.82639 0.0845	0.84891 0.0689	0.85026 0.0680	0.96484 0.0079	1.00000
			dose=2 -			3
			e CORR Proce			
		week1 w			1.0	week7

	Covariance	Matrix, $DF = 4$	
	week1	week3	week4
week1 week3 week4 week5 week6 week7	$\begin{array}{c} 1018.300000\\ 1270.750000\\ 738.900000\\ 1450.500000\\ 769.750000\\ 1232.500000\end{array}$	$\begin{array}{c} 1270.750000\\ 1755.000000\\ 998.500000\\ 2182.500000\\ 1105.000000\\ 1978.750000\end{array}$	738.900000 998.500000 783.700000 1654.250000 1298.000000 1430.750000
	Covariance	Matrix, DF = 4	
	week5	week6	week7
week1 week3 week4 week5 week6 week7	$\begin{array}{c} 1450.500000\\ 2182.500000\\ 1654.250000\\ 3851.500000\\ 2800.750000\\ 3519.500000\end{array}$	$\begin{array}{c} 769.750000\\ 1105.000000\\ 1298.000000\\ 2800.750000\\ 2841.500000\\ 2394.000000\end{array}$	$\begin{array}{c} 1232.500000\\ 1978.750000\\ 1430.750000\\ 3519.500000\\ 2394.000000\\ 3312.000000\end{array}$

Simple Statistics

Variable	Ν	Mean	Std Dev	Sum	Minimum	Maximum
week1	5	494.40000	31.91081	2472	440.00000	520.00000
week3	5	551.00000	41.89272	2755	480.00000	590.00000
week4	5	574.20000	27.99464	2871	536.00000	610.00000
week5	5	567.00000	62.06045	2835	484.00000	637.00000
week6	5	603.00000	53.30572	3015	552.00000	671.00000
week7	5	644.00000	57.54998	3220	569.00000	702.00000

Pearson Correlation Coefficients, N = 5 Prob > |r| under H0: Rho=0

	week1	week3	week4	week5	week6	week7
week1	1.00000	0.95057 0.0131	0.82713 0.0840	0.73243 0.1593	$0.45252 \\ 0.4442$	0.67113 0.2149
week3	0.95057 0.0131	1.00000	0.85140 0.0672	0.83946 0.0753	0.49482 0.3967	0.82074 0.0886
week4	0.82713 0.0840	0.85140 0.0672	1.00000	0.95216 0.0125	0.86981 0.0553	0.88806 0.0442
						4

----- dose=2 -----

The CORR Procedure

	week1	week3	week4	week5	week6	week7
week5	0.73243 0.1593	0.83946 0.0753	0.95216 0.0125	1.00000	0.84661 0.0704	0.98542 0.0021
week6	0.45252 0.4442	0.49482 0.3967	0.86981 0.0553	0.84661 0.0704	1.00000	0.78038 0.1194
week7	0.67113 0.2149	0.82074 0.0886	0.88806 0.0442	0.98542 0.0021	0.78038 0.1194	1.00000

5

The CORR Procedure

------ dose=3 ------

6	Variables:	week1	week3	week4	week5	week6	week7
		Cova	riance Ma	atrix, DF	= 4		
		wee	k1	wee	k3	wee	k4
	week1 week3 week4 week5 week6 week7	822.2000 705.4000 298.9500 712.7000 930.8000 632.0500	00 00 00 00	705.4000 885.8000 718.6500 1061.4000 1180.6000 953.8500	00 00 00 00	298.9500 718.6500 897.2000 1022.2000 1013.0500 916.0500	00 00 00 00

Covariance Matrix, DF = 4

	week5	week6	week7
week1	712.700000	930.800000	$\begin{array}{c} 632.050000\\ 953.850000\\ 916.050000\\ 1385.050000\\ 1493.450000\\ 1251.200000\end{array}$
week3	1061.400000	1180.600000	
week4	1022.200000	1013.050000	
week5	1539.700000	1674.300000	
week6	1674.300000	1910.200000	
week7	1385.050000	1493.450000	

Simple Statistics

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
week1 week3 week4 week5 week6 week7	555555	$\begin{array}{r} 497.80000\\ 534.60000\\ 579.80000\\ 571.80000\\ 588.20000\\ 623.20000\end{array}$	28.67403 29.76239 29.95330 39.23901 43.70583 35.37231	2489 2673 2899 2859 2941 3116	$\begin{array}{c} 472.00000\\ 498.00000\\ 540.00000\\ 524.00000\\ 532.00000\\ 583.00000\end{array}$	$\begin{array}{c} 545.00000\\ 565.00000\\ 622.00000\\ 622.00000\\ 633.00000\\ 670.00000\end{array}$

Pearson Correlation Coefficients, N = 5 Prob > |r| under H0: Rho=0

	week1	week3	week4	week5	week6	week7
week1	1.00000	0.82657 0.0844	0.34807 0.5659	0.63343 0.2513	0.74273 0.1505	0.62316 0.2614
week3	0.82657 0.0844	1.00000	0.80613 0.0994	0.90885 0.0326	0.90760 0.0332	0.90604 0.0341
week4	0.34807 0.5659	0.80613 0.0994	1.00000	0.86971 0.0553	0.77383 0.1246	0.86459 0.0586
						6

----- dose=3 -----

The CORR Procedure

Pearson Correlation Coefficients, N = 5 Prob > |r| under H0: Rho=0

	week1	week3	week4	week5	week6	week7
week5	0.63343 0.2513	0.90885 0.0326	0.86971 0.0553	1.00000	0.97628 0.0044	0.99789 0.0001
week6	0.74273 0.1505	0.90760 0.0332	0.77383 0.1246	0.97628 0.0044	1.00000	0.96602 0.0075
week7	0.62316 0.2614	0.90604 0.0341	0.86459 0.0586	0.99789 0.0001	0.96602 0.0075	1.00000

7

The GLM Procedure

Class Level Information

Class	Levels	Values
dose	3	123

Number of observations 15

8

The GLM Procedure

Level of		weel	k1	week	3
dose	Ν	Mean	Std Dev	Mean	Std Dev
1	5	$\begin{array}{c} 466.400000\\ 494.400000\\ 497.800000\end{array}$	16.7272233	519.400000	40.6423425
2	5		31.9108132	551.000000	41.8927201
3	5		28.6740301	534.600000	29.7623924
Level of	N	wee	k4	week	5
dose		Mean	Std Dev	Mean	Std Dev
1	5	568.800000	39.5878769	561.600000	42.8404015
2	5	574.200000	27.9946423	567.000000	62.0604544
3	5	579.800000	29.9532970	571.800000	39.2390112
Level of	N	wee	k6	week	7
dose		Mean	Std Dev	Mean	Std Dev

1 5	546.600000	66.8789952	572.000000	61.8182821
2 5	603.000000	53.3057220	644.000000	57.5499783
3 5	588.200000	43.7058349	623.200000	35.3723056

The GLM Procedure Multivariate Analysis of Variance

E = Error SSCP Matrix week1 week3 week4 8538.8 17170.4 13293 19476.4 17034.2 20035.4 week1 8481.2 4819.8 13293 12992.4 17077.4 17287.8 17697.2 8538.8 week3 4819.8 8513.6 8710 week4 week5 week6 8468.2 week7 E = Error SSCP Matrix week5 week6 week7 8710 17034.2 17287.8 26226.4 8513.6 19476.4 17077.4 week1 week3 8468.2 20035.4 17697.2 28625.2 31505.8 33538.8 week4 28906 26226.4 28625.2 week5 36898 31505.8 week6 week7

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

DF = 12	week1	week3	week4	week5	week6	week7
week1	1.000000	0.707584 0.0068	0.459151 0.1145	0.543739 0.0548	0.492366 0.0874	0.502098 0.0804
week3	0.707584 0.0068	1.000000	0.889996 <.0001	0.874228 <.0001	0.676753 0.0111	0.834899 0.0004
week4	0.459151 0.1145	0.889996 <.0001	1.000000	0.881217 <.0001	0.789575 0.0013	0.847786 0.0003
week5	0.543739 0.0548	0.874228 <.0001	0.881217 <.0001	1.000000	0.803051 0.0009	0.919350 <.0001
week6	0.492366 0.0874	0.676753 0.0111	0.789575 0.0013	0.803051 0.0009	1.000000	0.895603 <.0001
week7	0.502098 0.0804	0.834899 0.0004	0.847786 0.0003	0.919350 <.0001	0.895603 <.0001	1.000000

10

The GLM Procedure Multivariate Analysis of Variance

H = Type III SSCP Matrix for dose week1 week3

	week1	week3	week4			
week1 week3 week4 week5 week6 week7	2969.2 2177.2 859.4 813 4725.2 5921.6	2177.2 2497.6 410 411.6 4428.8 5657.6	$\begin{array}{r} 859.4 \\ 410 \\ 302.53333333 \\ 280.4 \\ 1132.133333 \\ 1392.5333333 \end{array}$			
	H = Type III SS	SCP Matrix for	dose			
	week5	week6	week7			
week1 week3 week4 week5 week6 week7	813 411.6 280.4 260.4 1096.4 1352	$\begin{array}{r} 4725.2\\ 4428.8\\ 1132.133333\\ 1096.4\\ 8550.933333\\ 10830.933333\end{array}$	$5921.6 \\ 5657.6 \\ 1392.533333 \\ 1352 \\ 10830.933333 \\ 13730.133333 \\ 10830.933333 \\ 13730.133333 \\ 13730.133333 \\ 13730.133333 \\ 13730.133333 \\ 13730.133333 \\ 13730.133333 \\ 13730.133333 \\ 13730.133333 \\ 13730.1333 \\ 13730.1333 \\ 13730.1333 \\ 13730.1333 \\ 13730.1333 \\ 13730.1333 \\ 13730.1333 \\ 13730.1333 \\ 13730.1333 \\ 13730.1333 \\ 13730.1333 \\ 13730.133 \\ 13730.1333 \\ 13730.1333 \\ 13730.133 \\ 13730.1333 \\ 13730.133 \\ 13730$			
Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SSCP Matrix for dose E = Error SSCP Matrix						

Characteristic		Characteristic	Vector V'EV=1		
Root	Percent	week1	week3	week4	week5
		week6	week7		

2.76663572	57.81	0.01008494	-0.00856690 0.01895546	0.00598260	-0.01350074
2.01931265	42.19	0.02377927 -0.01481413	-0.04047800 0.01295337	0.03355915	0.00129118
0.0000000	0.00	-0.00022690	-0.00372379 0.00199588	-0.01380715	0.01173179
0.0000000	0.00	-0.00425334 -0.00381939	0.00094691	0.00882637	-0.00027390
0.0000000	0.00	-0.00592948 -0.00450358	-0.00835257	0.00451460	-0.00286298
0.0000000	0.00	-0.00257775 0.01035699	-0.00142122 -0.00651966	0.00128210	-0.00084350

The GLM Procedure Multivariate Analysis of Variance

MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall dose Effect H = Type III SSCP Matrix for dose E = Error SSCP Matrix

S=2 M=1.5 N=2.5

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.08793025	2.77	12	14	0.0363
Pillai's Trace	1.40330988	3.14	12	16	0.0176
Hotelling-Lawley Trace	4.78594837	2.63	12	8.2712	0.0852
Roy's Greatest Root	2.76663572	3.69	6	8	0.0464

NOTE: F Statistic for Roy's Greatest Root is an upper bound. NOTE: F Statistic for Wilks' Lambda is exact.

12

The GLM Procedure

Class Level Information

Class	Levels	Values
dose	3	123

Number of observations 15

13

The GLM Procedure Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable	week1	week3	week4	week5	week6	week7
Level of week	1	2	3	4	5	6

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

DF = 12	week1	week3	week4	week5	week6	week7
week1	1.000000	0.707584 0.0068	$0.459151 \\ 0.1145$	0.543739 0.0548	0.492366 0.0874	0.502098 0.0804
week3	0.707584 0.0068	1.000000	0.889996 <.0001	0.874228 <.0001	0.676753 0.0111	0.834899 0.0004
week4	$0.459151 \\ 0.1145$	0.889996 <.0001	1.000000	0.881217 <.0001	0.789575 0.0013	0.847786 0.0003
week5	0.543739 0.0548	0.874228 <.0001	0.881217 <.0001	1.000000	0.803051 0.0009	0.919350 <.0001
week6	0.492366 0.0874	0.676753 0.0111	0.789575 0.0013	0.803051 0.0009	1.000000	0.895603 <.0001
week7	0.502098 0.0804	0.834899 0.0004	0.847786 0.0003	0.919350 <.0001	0.895603 <.0001	1.000000

E = Error SSCP Matrix

week_N represents the contrast between the nth level of week and the last

week_	1 week_2	week_3	week_4	week_5

week_1	25083.6	13574.0	12193.2	4959.0	2274.8
week_2 week 3	$13574.0 \\ 12193.2$	$10638.4 \\ 9099.2$	9099.2 11136.8	$4354.6 \\ 4293.8$	-968.2 1623.6
week_4 week_5	4959.0 2274.8	4354.6 -968.2	4293.8 1623.6	5194.4 -365.8	-365.8 7425.2

The GLM Procedure Repeated Measures Analysis of Variance

Partial Correlation Coefficients from the Error SSCP Matrix of the Variables Defined by the Specified Transformation / Prob > $|{\bf r}|$

DF = 12	week_1	week_2	week_3	week_4	week_5
week_1	1.000000	0.830950 0.0004	0.729529 0.0047	0.434442 0.1380	0.166684 0.5863
week_2	0.830950 0.0004	1.000000	0.835959 0.0004	0.585791 0.0354	-0.108936 0.7231
week_3	0.729529 0.0047	0.835959 0.0004	1.000000	$0.564539 \\ 0.0444$	0.178544 0.5595
week_4	0.434442 0.1380	0.585791 0.0354	$0.564539 \\ 0.0444$	1.000000	-0.058901 0.8484
week_5	0.166684 0.5863	-0.108936 0.7231	0.178544 0.5595	-0.058901 0.8484	1.000000

Sphericity Tests

Variables	DF	Mauchly's Criterion	Chi-Square	Pr > ChiSq
Transformed Variates	14	0.0160527	41.731963	0.0001
Orthogonal Components	14	0.0544835	29.389556	0.0093

Manova Test Criteria and Exact F Statistics for the Hypothesis of no week Effect H = Type III SSCP Matrix for week E = Error SSCP Matrix

S=1 M=1.5 N=3

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda Pillai's Trace Hotelling-Lawley Trace Roy's Greatest Root	0.03881848 0.96118152 24.76092347 24.76092347	39.62 39.62 39.62 39.62 39.62	5 5 5 5	8 8 8 8	<.0001 <.0001 <.0001 <.0001

15

The GLM Procedure Repeated Measures Analysis of Variance

Manova Test Criteria and F Approximations for the Hypothesis of no week*dose Effect H = Type III SSCP Matrix for week*dose E = Error SSCP Matrix

S=2 M=1 N=3Statistic Value F Value Num DF Den DF Pr > FWilks' Lambda Pillai's Trace 0.17905151 2.18 10 16 0.0793 1.070585173.190767862.668245882.10 2.07 2.42 4.80 0.0856 10 18 Hotelling-Lawley Trace 10 9.6 Roy's Greatest Root 5 9 0.0205

NOTE: F Statistic for Roy's Greatest Root is an upper bound. NOTE: F Statistic for Wilks' Lambda is exact.

16

The GLM Procedure Repeated Measures Analysis of Variance Tests of Hypotheses for Between Subjects Effects

Source	DF	Type III SS	Mean Square	F Value	Pr > F
dose Error	2 12	18548.0667 105434.2000	9274.0333 8786.1833	1.06	0.3782