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7 Drawbacks and limitations of classical methods

7.1 Introduction

It is worth noting that both the univariate and multivariate “classical” methods we have discussed so

far may be extended to more complicated situations. For example

• The group designations may in fact be the result of a factorial arrangement, e.g. in an

experiment to compare the change over time of body weight of rats, the groups may be defined by

the (2×3) factorial arrangement of genders and drugs. Interest may focus on how the rate of change

in body weight over time differs across genders averaged over drugs and doses averaged across

genders. Interest may also focus on whether the way this change differs across drugs is different

for the two genders (the drug by gender interaction). These are “between-unit” comparisons.

• The “time” factor may in fact be the result of a factorial arrangement, e.g. in an agricultural

study, plots may be randomized to different rates of fertilizer. Then, at each of 4 different time

points, core samples are taken from each plot at 3 different depths, and a measurement of nutrient

content is recorded for each. Here, then, each plot is seen under 4 × 3 = 12 different conditions.

We do not discuss these extensions; see, for example, Vonesh and Chinchilli (1997, section 3.3).

The fact that these fancy extensions are possible still does not alter the fact that the “classical” models

and methods have some serious limitations, some of which we have remarked upon in our development

so far. Now that we are familiar with these so-called “classical” methods and the statistical models

underlying them, we are in a position to be more specific about these limitations.

7.2 Assumptions and restrictions of classical methods

Here, we provide a “laundry list” of the assumptions made by classical methods and the restrictions

that they impose. The rest of the course will be devoted to statistical models and associated analysis

methods that seek to address some or all of these restrictions.
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1. BALANCE. A prominent feature both of the univariate and multivariate classical models and meth-

ods is the requirement that all units be observed at the same n “time” points. That is, not only must

each data vector Y i be of the same length, n, for all units, but each element Yij , j = 1, . . . , n must

have been observed at the same set of times t1, . . . , tn, say.

• In some situations, this may not be much of a restriction. For example, in agricultural or industrial

experimentation where it is possible to have a good deal of control over experimental conditions,

an experiment may be carefully planned and executed. It may thus be perfectly reasonable to

expect that observations expected to be taken at certain times would be available.

• However, even in the best of situations, it is often the case that things may go awry. For example,

suppose that the Yij are are responses on plots planted with different varieties of soybean over the

growing season. At a given time, 3 plants from a plot are sampled, their leaves are harvested, ag-

gregated, and ground up, and the resulting leaf sample is assayed for concentration of a particular

chemical substance. It is an unfortunate fact of life that samples may be misplaced or mistakenly

discarded or that error may be made in conducting the assay, leading to erroneous measurements.

In such circumstances, measurements may thus be unavailable at certain time points for certain

plots, thus destroying the balance necessary for classical models and methods to be applied.

• When the units are humans, this becomes even more of a problem, even if a study is carefully

designed. For example, suppose that a study is conducted to compare several cholesterol-lowering

drugs. Subjects are randomly assigned to take regular doses of one of the drugs and are required

to return at 3 month intervals for 2 years so that a measure of serum cholesterol may be taken from

blood samples drawn at each visit. Thus, if “time” for each subject is measured from the subject’s

entry into the study, the subject should have observations on serum cholesterol at n = 8 times 3,

6, 9, 12, . . . , 21, and 24 months. However, reality may cause this ideal set-up to be compromised.

– Subjects may move away during the course of the study, so that only measurements up to

their last visit before moving are available.

– A subject may be out of town and miss his 9 month visit but come to the clinic at 10.5

months instead.
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– Blood samples may be mislabelled or dropped in the lab, so that observations on serum

cholesterol for some times for some subjects may be impossible to obtain.

– Errors by technicians in performing the analytic laboratory techniques required to measure

the cholesterol level may render other measurements erroneous or unavailable.

The bottom line is that real life often conspires to make balance an unachievable ideal for many

longitudinal studies. Although some researchers have discussed ways to “adjust” the classical approaches

to handle some types of imbalance, just as with the “adjusted” F tests in univariate analysis, these

“fix-ups” skirt the real issue, which is that a model that requires balance may simply be too restrictive

to represent real life!

2. FORM OF COVARIANCE MATRIX. Both the “classical” univariate and multivariate procedures

we have discussed assume that the covariance matrix of each data vector Y i, i = 1, . . . , m is the same

for all i, regardless of group membership or anything else; we discuss this assumption below. Provided

we believe this assumption is reasonable, and take Σ to be this common (n× n) covariance matrix, we

are still faced with the issue of what we assume about the structure of Σ.

• The univariate methods make the assumption of compound symmetry, which implies a very

specific pattern of correlation among observations taken on the same unit at different times, one

that may be quite unrealistic for longitudinal data. This model says that the correlation among

all observations on a given unit is the same regardless of how near or far apart the observations

are taken in time. Thus, the univariate methods are based on an assumption about the covariance

structure that may be too restrictive if within-unit sources of correlation are not negligible.

• The multivariate methods make no assumption about the structure of Σ. Thus, these methods

do not attempt to take into account at all the way in which observations arise in the longitudinal

setting. There are two acknowledged sources of variation:

– Random (biological) variation among units

– Within-unit variation due to the way in which measurements are taken on a unit (error in

measuring device, correlation due to time separation, etc)
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The model underlying the multivariate methods does not explicitly recognize these two distinct sources.

Rather, the methods allow for the possibility that the covariance structure could be virtually anything,

thus including as possibilities structures that are unlikely to represent data subject to the two distinct

sources above. Thus, the multivariate methods are based on an assumption about the covariance

structure that is likely too vague.

3. COMMON COVARIANCE MATRIX. Both the univariate and multivariate approaches assume that

the covariance matrix of a data vector is the same for all units, regardless of group or anything else.

(This is akin to making the usual assumption in linear regression or scalar analysis of variance that

variance is the same for all scalar observations.) This is often adopted without much thought; however,

it is quite reasonable to expect that this assumption may be incorrect.

For example, suppose the units are human subjects and the groups are determined by assignment to

either a particular hypertension medication or placebo. A common observation with such data is that

subjects with “high” systolic blood pressure tend to exhibit much more variability in their within-

individual measured pressures than do subjects with “low” systolic blood pressure. That is, in terms

of the conceptual model in Chapter 4, the within-subject “flucutations” for subjects with high blood

pressure tend to be of greater magnitude than those for subjects with low blood pressure. More formally,

var(e1ij is smaller for subjects with low blood pressure than for those with high blood pressure. This

would lead to overall variance of Yij that is smaller for lower values of Yij .

Suppose the drug is quite effective in lowering systolic blood pressure. We would thus expect observa-

tions on subjects in the drug group, particularly toward the end of the study, to be “lower” than those

for the placebo group. In symbols, if Y i is a data vector for a subject in the drug group (1), we might

expect

Y i =




Yi1

...

Yin




, var(Yin) = σ2
n(1),

while for a subject in the placebo group (0), we might expect

Y i =




Yi1

...

Yin




, var(Yin) = σ2
n(0),

σ2
n(1) < σ2

n(0).
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Under these conditions, assuming that Y i from both groups have the same covariance matrix Σ would

be inappropriate, because we would doubt that the (n, n) element is the same for data vectors from both

groups. A better model would say that there are two different covariance matrices, i.e. var(Y i) = Σ0

is subject i is in the placebo group, and var(Y i) = Σ1 is subject i is in the drug group.

It is possible to modify the classical models and methods to handle this situation. One common approach

is to work on a transformed scale on which one believes variances may be similar; e.g. one may model

the logarithmically transformed data. A problem with this approach is that the results may be difficult

to interpret, as inferences about what happens on the original scale of measurement are of interest.

Alternatively, methods such as Hotelling’s T 2 may be modified to allow a different covariance matrix for

each group. However, this may make statistical power even lower – now, we must estimate a separate

covariance matrix for each group. Later in the course we will see methods that address the issue of lack

of common covariance matrix in more realistic ways.

4. INCORPORATION OF INFORMATION. A characteristic shared both by the univariate and mul-

tivariate classical methods we have discussed is that, because balance is assumed, time itself does not

appear explicitly in the model for the mean of a data vector. Rather, “time” enters the model only

through the specification of separate parameters γj and (τγ)`j . As will become clear when we study

more flexible models, this can pose an obstacle to answering some key questions of interest (see 5. be-

low, too). This problem may be partially addressed by inspecting, for example, orthogonal polynomial

contrasts in time, but a more direct representation of time in the model is much more useful.

In addition, we may wish to incorporate other covariate information. For example, in the cholesterol

study in 1. above, we may believe that a subject’s age at the start of the study may play a role in

how he/she responds to cholesterol-lowering medication. Or we may believe that this response over

time may be affected by a subject’s systolic blood pressure, which may also be changing over time.

Just as ordinary analysis of variance is modified to incorporate covariates by analysis of covariance, one

may wish to do something similar in the case of repeated measurements. Things are more complicated,

however.

• In the first example, the covariate, age at start of study, is something that is time-

independent, or fixed over the time points at which the unit is observed, being measured only

once (at the start of the study). Both univariate and multivariate analyses may be modified to

take account of time-independent covariates; these are discussed in sections 2.6 and 3.4 of Vonesh

and Chinchilli (1997).
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We do not discuss them here because, as discussed above, they still require balance; moreover, the

way in which the covariates may be included in the model is limited. Models we will discuss later

in the course allow more flexibility to address common questions about the effect of covariates.

• In the second example, the covariate, systolic blood pressure, may be measured at each of

the same time points as the response, and thus is time-dependent, or changing with time.

Incorporation of such covariate information poses difficult conceptual challenges. The models

we have discussed represent the mean response at each time point as a function of information

such as group membership; i.e. possibly different means for each group. If we consider models

that incorporate changing information, important questions arise. For example, does the mean

cholesterol at a particular time only depend on systolic blood pressure at that time? Or does it

depend on systolic blood pressure at several previous times as well?

We will return to this issue later; for now, note that although it is possible to introduce time-

dependent covariates into modeling of repeated measurements, a key issue is this conceptual

one. It is possible to modify the univariate analysis to incorporate time-dependent covariates;

however, modification of the MANOVA analyses is not possible.

Still another issue arises in the inclusion of group information. Recall the guinea pig diet example.

Here, dose groups were labelled “zero,” “low,” and “high.” In the model, the parameters τ` and (τγ)`j

incorporate different groups. Suppose, however, that the actual numerical dose values were available,

say 0, 100, and 500 µg/g. As we discuss in 5. below, it might be useful if the actual dose levels rather

than just classifications were incorporated in the model.

We will discuss other models and methods where inclusion of such covariate information is more direct

and interpretable.

5. QUESTIONS OF INTEREST AND INTERPRETATION. The analysis based on “classical” methods

focuses on hypothesis testing, i.e. general questions of interest are stated in terms of the model and

the quality of the evidence in the data to refute the null hypothesis is assessed. A pronouncement is

then made (we do or don’t reject the null hypothesis).

However, in many situations, this does not really address the objectives of the investigator. For example,

consider the cholesterol study described in 1. above. The investigators may wish to do more than just

claim that the way in which cholesterol changes on average over time on the different drugs is different.

They may actually wish to use the results of their study to make recommendations on how to treat

future patients. Thus, they may wish to make more specialized inferences.
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• How different is the rate of cholesterol lowering among the drugs? E.g. if they knew that Drug

1 lowered cholesterol at the rate of 5 mm Hg per month and Drug 2 lowered cholesterol at rate

15 mm Hg per month, this information might help them to decide which drug (mild Drug 1 or

aggressive Drug 2) might be more appropriate for a certain patient. Thus, the investigators might

be interested in actually estimating the rate of change in the mean response over time for each

group!

• What would the cholesterol trajectory look like for a new male patient 45 years of age after

8 months on one of the drugs? That is, before treatment, the investigators might wish to be

able to predict what the cholesterol profile might look like over 8 months for a patient with

specific characteristics and what his cholesterol level might be at the end of that time based on

his measurement at time zero. Note that 8 months is not even one of the time points (every 3

months) included in the original study.

Clearly, in order to address such questions, a more flexible model that incorporates time and rate of

change in a more explicit way is needed.

A further illustration is provided by the guinea pig diet example as discussed in 4. above. Suppose the

investigators would like to be able to understand how the rate of change in body weight of the pigs over

time is associated with the actual numerical dose. Does rate of change increase as we change the dose?

By how much per unit change of dose? If the actual dose amount could be incorporated explicitly in

the model, these questions could be addressed.

It should be clear from this brief discussion that the “classical” models and methods have serious

limitations with respect to these important issues. A serious drawback alone is that of the need for

balance. Another is failure of the models to represent explicitly important features like rate of change

with time. We begin our discussion in the next chapter with models and methods that seek to address

these problems..
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