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8 General linear models for longitudinal data

8.1 Introduction

We have seen that the classical methods of univariate and multivariate repeated measures analysis

of variance may be thought of as being based on a statistical model for a data vector from the ith

individual, i = 1, . . . , m. So far, we have written this model in different ways. Following convention, we

wrote the model as

Y ′

i = a′

iM + ε′i,

where M is the (q × n) matrix

M =




µ11 · · · µ1n

...
...

...

µq1 · · · µqn




,

and the individual means µ`j are for the `th group at the jth time.

We could equally well write this model as

Y i = µ` + εi

for unit i coming from the `th population, ` = 1, . . . , q. Regardless of how we write the model, we note

that it represents Y i as having two components:

• a systematic component, which describes the mean response over time (depending on group

membership). The individual elements of µ`, µ`j for the `th group at the jth time, are further

represented in terms of an overall mean and deviations as

µ`j = µ + τ` + γj + (τγ)`j

along with constraints
∑q

`=1 τ` = 0, etc in order to give a unique representation.

As noted in the last chapter, this representation

(i) Requires that the length of each data vector Y i be the same, n.

(ii) Does not explicitly incorporate the actual times of measurement or other information.
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• an overall random deviation εi which describes how observations within a data vector vary

about the mean and covary among each other. Both univariate and multivariate ANOVA models

assume that

var(εi) = Σ

is the same (n × n) matrix for all data vectors. Furthermore,

(i) Σ is assumed to have the compound symmetry structure in the univariate model. This

came from the assumption that each element of εi is actually the sum of two random terms,

i.e.

εij = bi + eij ,

where the random effect bi has to do with variation among units and eij has to do with

variation within units.

(ii) Σ is assumed to have no particular structure in the multivariate model.

We also noted in Chapter 5 that this model could be written in an alternative way. Specifically, we

defined β as the column vector containing all of µ, τ`, γj , (τγ)`j stacked and X i to be a matrix of 0’s

and 1’s with n rows that “picks” off the appropriate elements of β for each element of Y i. We wrote

the model in the alternative form

Y i = X iβ + εi, (8.1)

where again εi is the “overall deviation” vector with var(εi) = Σ. Note that both the univariate and

multivariate ANOVA models could be written in this way; what would distinguish them would again

be the assumption on Σ. This model, along with the usual constraints, has the flavor of a “regression”

model for the ith unit.

Regardless of how we write the model, it says that, for a unit in group `,

Yij = µ + τ` + γj + (τγ)`j + εij , (8.2)

so that E(Yij) is taken to have this specific form.

As we will now discuss, a representation like (8.1) offers a convenient framework for thinking about

more general model for longitudinal data. In this chapter, we will discuss such a model, writing it in the

form (8.1). We will see that we will be able to address several of the issues raised in the last chapter:

• Alternative definitions of X i and β will allow for unbalanced data and explicit incorporation of

time and other covariates
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• Refined consideration of the form of var(εi) will allow more realistic and general assumptions

about covariance, including the possibility of different covariance matrices for different groups.

8.2 Simplest case – one group, balanced data

To fix ideas, we first consider a very simple special case of the longitudinal data situation, focusing

mainly on the issue of allowing the model to contain explicitly information on the times of observation

on each individual. For this purpose, we will continue to assume that the data are balanced.

Formally, consider the following situation:

• Suppose Y i, i = 1, . . . , m are all (n × 1), where the jth element Yij is observed at time tj . Here,

the times t1, . . . , tn are the same for all units.

• Suppose that there is only one group, so that all units are thought to behave similarly. The mean

vector is thus simply (no group subscript necessary)

µ = (µ1, . . . , µn)′.

We observed in the dental study that the sample means for girls and for boys seem to follow an

approximate smooth, straight-line trajectory. Figure 1 illustrates; the figure shows the sample means

at each time (age) and an estimated straight line (to be discussed later) for the data for each group

(gender).

Figure 1: Dental data: Sample means at each time across children compared with straight line fits
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The sample means suggest that the true means µj at each time point may very well fall on a straight

line.

This observation suggests that we may be able to refine our view about the means. Rather than

thinking of the mean vector as simply as set of n unrelated means µj , we might think of these means

as satisfying

µj = β0 + β1tj ;

that is, the means fall on the line with intercept β0 and slope β1.

This suggests replacing (8.2) by

Yij = β0 + β1tj + εij . (8.3)

Model (8.3) says that, at the jth time tj , Yij values we might see have mean β0 + β1tj and vary about

it according to the overall deviations εij .

• In contrast to (8.2), this model represents the mean as explicitly depending on the time of

measurement tj . (With just one group, ` and hence τ` would be the same for all units in that

model, and the mean depends on time through γj and (τγ)`j .)

• Instead of requiring n=4 separate parameters µj , j = 1, . . . , n to describe the means at each

time, (8.3) requires only two (the intercept and slope). Thus,if we are willing to believe that the

true means do indeed fall on a straight line, (8.3) is a more parsimonious representation of the

systematic component.

• Under the new model (8.3), we are automatically including the belief that the trajectory of means

should be a straight line. Our best guess (estimate) for this trajectory would be, intuitively,

found by estimating the intercept and slope β0 and β1 (coming up).

• An additional possible advantage would be as follows. If we wanted to use these data to learn

about, for example, mean distance at age 11 years, the straight line provides us with a natural

estimate, while it is not clear what to do with the sample means to get such an estimate (connect

the dots?). How would we assess the quality of such an estimate (e.g. provide a standard error)?

To summarize, if we really believe that the mean trajectory follows a straight line, model (8.3) seems

more appropriate, because it exploits this assumption.
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MATRIX REPRESENTATION: The model (8.3) may be written in matrix form. With Y i as usual

the (n × 1) data vector, defining

X =




1 t1

1 t2
...

...

1 tn




, β =




β0

β1


 ,

we can write the model as

Y i = Xβ + εi. (8.4)

This has the form of model (8.1). Because all units are seen at the same n times, the matrix X is the

same for all units.

COVARIANCE MATRIX: The above development offers an alternative way to represent mean response.

To complete the model, we need to also make an assumption about the covariance matrix of the random

vector εi. For example, as in the classical models, we could assume that this matrix is the same for all

data vectors, i.e.

var(εi) = Σ,

for some matrix Σ. Momentarily, we will address the issue of specification of Σ more carefully; for now,

as we consider the situation of only a single population, it is natural to take this matrix to be the same

for all units.

MULTIVARIATE NORMALITY: Suppose we further assume that the responses Yij are normally dis-

tributed at each time point, so that the Y i are multivariate normal. Thus, we may summarize the

model as

Y i ∼ Nn(Xβ,Σ),

where X and β are as above.

8.3 General case – several groups, unbalanced data, covariates

The modeling strategy for the mean above may be generalized. We consider several possibilities:

• units from more than one group

• different numbers/times of observations for each unit

• other covariates
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MORE THAN ONE GROUP: For definiteness, suppose there are q = 2 groups, as in the dental study

example. From Figure 1, the data support a model that says, for each group, the means at each age

fall on a straight line, but perhaps the straight line is different depending on group (gender). This

suggests that if unit i is a girl, we might have

Yij = β0,G + β1,Gtj + εij , (8.5)

where β0,G and β1,G are the intercept and slope, respectively, describing the means at each time for

girls as a function of time. Similarly, if unit i is a boy, we might have

Yij = β0,B + β1,Btj + εij , (8.6)

where β0,B and β1,B are the intercept and slope, possibly different from β0,G and β1,G.

Defining for the ith unit

δi = 0 if unit i is a girl

= 1 if unit i is a boy,

note that we can write (8.5) and (8.6) together as

Yij = (1 − δi)β0,G + δiβ0,B + (1 − δi)tjβ1,G + δitjβ1,B + εij (8.7)

This may be summarized in matrix form as follows. The full set of intercept and slopes β0,G, β1,G β0,B,

and β1,B characterize the means under these models for both groups. Define the parameter vector

summarizing these:

β =




β0,G

β1,G

β0,B

β1,B




(8.8)

Then define

Xi =




(1 − δi) (1 − δi)t1 δi δit1
...

...
...

...

(1 − δi) (1 − δi)tn δi δitn




(8.9)

PAGE 213



CHAPTER 8 ST 732, M. DAVIDIAN

It is straightforward to see that this is a slick way of noting that if i is a girl or boy, respectively, we are

defining

Xi =




1 t1 0 0
...

...
...

...

1 tn 0 0




, Xi =




0 0 1 t1
...

...
...

...

0 0 1 tn




,

respectively.

With these definitions, it is a simple matrix exercise to verify that X iβ yields the (n× 1) vector whose

elements are β0,G + β1,Gtj or β0,B + β1,Btj , depending on whether i is a boy or girl. We may thus write

the model succinctly as

Y i = X iβ + εi,

where β and X i are defined in (8.8) and (8.9), respectively.

• Note that the matrix X i is different depending group membership.

• Note that X i is not of full rank (a boy does not have information about the mean for girls, and

vice versa).

• Note that β contains all parameters describing the mean trajectory for both groups.

MULTIVARIATE NORMALITY: With the additional assumption of normality, each Y i under this

model is n-variate normal with mean X iβ, where X i depends on group membership. With some

additional assumption about the covariance matrix, e.g. var(εi) = Σ for all i, we have

Y i ∼ Nn(Xiβ,Σ).

IMBALANCE: It is possible to be even more general. For definiteness, we consider two examples.

ULTRAFILTRATION DATA FOR LOW FLUX DIALYZERS: These data are given in Vonesh and

Chinchilli (1997, section 6.6). Low flux dialyzers are used to treat patients with end stage renal disease

to remove excess fluid and waste from their blood. In low flux hemodialysis, the ultrafiltration rate

(ml/hr) at which fluid is removed is thought to follow a straight line relationship with the transmembrane

pressure (mmHg) applied across the dialyzer membrane. A study was conducted to compare the average

ultrafiltration rate (the response) of such dialyzers across three dialysis centers where they are used on

patients. A total of m = 41 dialyzers (units) were involved. The experiment involved recording the

ultrafiltration rate at several transmembrane pressures for each dialyzer.
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Figure 2 shows individual dialyzer profiles for the dialyzers in each center. A notable feature of the

figure is that the 4 pressures (“time” here) at which each dialyzer was observed are not necessarily the

same. Thus, the ith dialyzer has its own set of times tij , j = 1, . . . , n = 4. Hence, we cannot calculate

sample means, because each dialyzer is seen at potentially different pressures. However, if we envision

taking means in each panel of the figure across all time points, it seems reasonable that the means would

very likely fall approximately on a straight line.

Figure 2: Dialyzer profiles (ultrafiltration rate vs. transmembrane pressure) for 41 dialyzers in 3 centers

tranmembrane pressure (mmHg)

ul
tr

af
ilt

ra
tio

n 
ra

te
 (

m
l/h

r)

100 200 300 400 500

50
0

10
00

15
00

20
00

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Center 1

tranmembrane pressure (mmHg)
ul

tr
af

ilt
ra

tio
n 

ra
te

 (
m

l/h
r)

100 200 300 400 500

50
0

10
00

15
00

20
00

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

Center 2

tranmembrane pressure (mmHg)

ul
tr

af
ilt

ra
tio

n 
ra

te
 (

m
l/h

r)

100 200 300 400 500

50
0

10
00

15
00

20
00

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•
•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

Center 3

PSfrag replacements

µ

σ2
1

σ2
2

ρ12 = 0.0

ρ12 = 0.8

y1

y2

With the modeling strategy we have adopted, this does not really pose any additional difficulty. From

the figure, a reasonable model for the ith dialyzer is

Yij = β1 + β2tij + εij , dialyzer i in center 1

Yij = β3 + β4tij + εij , dialyzer i in center 2

Yij = β5 + β6tij + εij , dialyzer i in center 3 (8.10)

Here, β1, β3, β5 are the intercepts and β2, β4, β6 are the slopes for the means (straight lines) for each

center.
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Defining

β = (β1, β2, . . . , β6)
′,

we can define a separate (n × 1) X i matrix for each unit, based on its group membership and unique

set of times tij ; for example, for unit i from the first center,

Xi =




1 ti1 0 0 0 0
...

...
...

...

1 tin 0 0 0 0




.

We may thus again write the model (8.10) as

Y i = X iβ + εi,

where X i is defined appropriately for each unit and β is defined as above.

HIP-REPLACEMENT STUDY: These data are adapted from Crowder and Hand (1990, section 5.2).

30 patients underwent hip-replacement surgery, 13 males and 17 females. Hæmatocrit, the ratio of

volume packed red blood cells relative to volume of whole blood recorded on a percentage basis, was

supposed to be measured for each patient at week 0, before the replacement, and then at weeks 1, 2,

and 3, after the replacement.

The primary interest was to determine whether there are possible differences in mean response following

replacement for men and women. Spaghetti plots of the profiles for each patient are shown in the left-

hand panels of Figure 3. (We will discuss the right-hand panels later.)
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Figure 3: Hæmatocrit trajectories for hip replacement patients. The left hand panels are individual

profiles by gender; the right hand panels show a fitted quadratic model for the mean superimposed.
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It may be seen from the figure that a number of both male and female patients are missing the mea-

surement at week 2; in fact, there is one female missing the pre-replacement measurement and week 2.

The reason for this is not given by Crowder and Hand; however, because it is so systematic, happening

only at this occasion and for about half of the male and half of the female patients, it suggests that

the reason has nothing to do with the patients’ health or recovery from the replacement. Perhaps the

centrifuge used to obtain hæmatocrit values went on the blink that week before all patients’ values

could be obtained! We will assume that the reason for these missing observations has nothing to do

with the thing of primary interest, gender; this seems reasonable in light of the pattern of missingness

for week 2.

Thus, we have a situation where the data vectors Y i are of possibly different lengths for different

units. In particular, we now have that Y i is (ni × 1), where ni is the number of observations on unit i.

Thus, the total number of observations from all units is

N =
m∑

i=1

ni.

PAGE 217



CHAPTER 8 ST 732, M. DAVIDIAN

To determine an appropriate parsimonious representation for the mean of a data vector for each group,

we could calculate the sample means at each time point for males and females. We must be a bit careful,

however; because of the missingness, the sample means at different times will be of different quality.

Nonetheless, it seems clear from the figure that a model that says the means fall on a straight line

for either gender would be inappropriate. For almost all patients, the pre-replacement reading is high;

then, following replacement, the hæmatocrit goes down and then slowly rebounds over the next 3 weeks.

This suggests that the relationship of the means with time might look more like a quadratic function

of time. These observations suggest the following model:

Yij = β1 + β2tij + β3t
2
ij + εij , males

Yij = β4 + β5tij + β6t
2
ij + εij , females. (8.11)

In (8.11), we have allowed for the possibility that the times for each i are not the same, writing tij . For

this data set, the times that are potentially available for each individual are the same; however, as we

saw in the dialyzer example above, this need not be the case.

To write the model in matrix form, define

β = (β1, . . . , β6)
′.

Clearly, the matrix X i for a given unit will depend on the times of observation for that unit and will

have number of rows ni, each row corresponding to one of the ni elements of Yij . For example, for a

male with ni observations, we have

Xi =




1 ti1 t2i1 0 0 0
...

...
...

...
...

...

1 tini
t2ini

0 0 0




.

We may thus summarize the model as

Y i = X iβ + εi, (ni × 1),

where X i is the (ni × 6) matrix defined appropriately for individual i.
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COVARIANCE MATRIX: We have to be a little more careful here. Because now we are dealing with

data vectors Y i of different lengths ni, note that the corresponding covariance matrices must be of

dimension (ni × ni). Thus, it is not possible to assume that the covariance matrix of all data vectors

is identical across i. For now, we will write

var(εi) = Σi

to recognize this issue – the i subscript indicates that, at the very least, the covariance matrix depends

on i through its dimension ni.

For example, suppose we believed that the assumption of compound symmetry was reasonable such

that all observations Yij have the same overall variance σ2, say, and all are equally correlated, no

matter where they are taken in time. Thus, this would be a valid choice even for a situation where the

times are different somehow on different units, either as in the dialyzer example or because of missing

observations. As in Chapter 4, to represent this, we would have a second parameter ρ. For a data vector

of length ni, then, no matter where its ni observations in time were taken, the matrix Σi would be the

(ni × ni) matrix

Σi = σ2




1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ · · · ρ 1




.

No matter what the dimension or the time points, under this assumption, the matrix Σi would depend

on the 2 parameters σ2 and ρ for all i, and depend only on i because of the dimension.

We will discuss covariance matrices more shortly.

MULTIVARIATE NORMALITY: With the assumption of normality, we can thus write the model

succinctly as

Y i ∼ Nni
(Xiβ,Σi).

ADDITIONAL COVARIATES: We in fact can write even more general models, which allow for the

possibility that we may wish to incorporate the effect of other covariates. In reality, this does not

represent a further extension of the type of models we have already considered, as group membership

is of course itself a covariate. Recall that we wrote in (8.9) the X i matrix in terms of a group membership

indicator δi; technically, this is just a covariate like any other. The point we emphasize here is that

there is nothing preventing us from incorporating several covariates into a model for the mean. These

covariates may be indicators of other things or continuous.
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HIP REPLACEMENT, CONTINUED: In the hip replacement study, the age of each participant was

also recorded, and in fact an objective of the investigators was not only to understand differences in

hæmatocrit response across genders but also to elucidate whether the age of the patient has an effect

on response. It turns out that the sample mean age for males was 65.52 years and that for females was

66.07 years. From Figure 3, the patterns look pretty similar for both genders; of course, there is no

easy way of discerning from the plot whether age affects the response.

To illustrate inclusion of the age covariate, consider the following modified model, where ai is the age

of the ith patient:

Yij = β1 + β2tij + β3t
2
ij + β7ai + εij , males

Yij = β4 + β5tij + β6t
2
ij + β7ai + εij , females. (8.12)

Model (8.12) says that, regardless of whether a person is male or female, the mean hæmatocrit response

at any time increases by β7 for every year increase in age (keep in mind that β7 could be negative).

One can envision fancier models where this also depends on gender. It is straightforward to write this

in matrix notation as before; with

β = (β1, . . . , β7)
′,

we can define appropriate X i matrices, i.e. for a male of age ai

Xi =




1 ti1 t2i1 0 0 0 ai

...
...

...
...

...
...

1 tini
t2ini

0 0 0 ai




.

PARAMETERIZATION: It is possible to represent models like those above in different ways. For

definiteness, consider the dialyzer example. We wrote the model in (8.10) as

Yij = β1 + β2tij + εij , dialyzer i in center 1

Yij = β3 + β4tij + εij , dialyzer i in center 2

Yij = β5 + β6tij + εij , dialyzer i in center 3

It is sometimes more convenient, although entirely equivalent, to write the model in an alternative

parameterization. As we have discussed, a question of interest is often to compare the rate of change

of the mean response over time (pressure here) among groups. In this situation, we would like to

compare the three slopes β2, β4, and β6.
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Define

δi1 = 1 unit i from center 1; = 0 o.w.

δi2 = 1 unit i from center 2; = 0 o.w.

Then write the model as

Yij = β1 + β2δi1 + β3δi2 + β4tij + β5δi1tij + β6δi2tij + εij (8.13)

There are still 6 parameters overall, but the ones in (8.13) have an entirely different interpretation

from those in the first model.

It is straightforward to observe by simply plugging in the values of δi1 and δi2 for each center that the

following is true:

Center Intercept Slope

1 β1 + β2 β4 + β5

2 β1 + β3 β4 + β6

3 β1 β4

Note that β2 and β3 have the interpretation of the difference in intercept between Centers 1 and 3

and Centers 2 and 3, respectively, and β1 is the intercept for Center 3. Similarly, β5 and β6 have the

interpretation of the difference in slope between Centers 1 and 3 and Centers 2 and 3, respectively, and

β1 is the slope for Center 3. This parameterization allows us to estimate, as we will talk about shortly,

the differences of interest directly. This same type of parameterization is used in ordinary linear

regression for similar reasons.

This type of parameterization is the default used by SAS PROC GLM and PROC MIXED, which we will use

to implement the analyses we will discuss shortly. The different parameterizations yield equivalent

models; the only thing that differs is the interpretation of the parameters.
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8.4 Models for covariance

In the last section, we noted in gory detail how one may model the mean of each element of a data vector

in very flexible and general ways. We did not say much about the assumption on covariance matrix,

except to note that, when the data are unbalanced with possibly different numbers of observations for

each i, it is not possible to think in terms of an assumption where the covariance matrix is strictly

identical for all i, at least in terms of its dimension.

We have noted previously that the classical methods make assumptions about the covariance matrix in

the balanced case that are either too restrictive or too vague. For the approach we are taking in

this chapter, in contrast to the “classical” models and methods, as we will soon see, there is nothing

really stopping us from making other assumptions about the covariance matrix in the sense that we

will be able to estimate parameters of interest, obtain (approximate) sampling distributions for the

estimators, and carry out tests of hypotheses regardless of the assumption we make.

In Chapter 4 we reviewed a number of covariance structures. Here, we consider using these as possible

models for var(εi) = Σi. We will be using SAS PROC MIXED to fit the models in this chapter using

the method of maximum likelihood to be discussed in section 8.5. Thus, it is useful to recall these

structures and note how they are accessed in PROC MIXED.

Note that by modeling var(εi) directly, we do not explicitly distinguish between among-unit and

within-unit sources of variation. In this strategy, we just consider models for the aggregate of

all sources. In the next two chapters, we will discuss a refined version of our regression model for

longitudinal data that explictly acknowledges these sources.

BALANCED CASE: It is easiest to discuss first the case of balanced data. Suppose we have a model

Y i = Xiβ + εi, (n × 1).

Under these conditions, we may certainly consider the same assumptions of covariance matrix as in the

classical case. That is, assume that the covariance matrix var(εi) is the same for all i and equal to Σ,

where Σ has the form of

• Compound symmetry. SAS PROC MIXED uses the designation type = cs to refer to this as-

sumption.

• Completely unstructured. SAS PROC MIXED uses the designation type = un to refer to this

assumption.
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ALTERNATIVE MODELS: We now recall the other models. Actually, there is nothing stopping us

from allowing var(εi) to be different for different groups; e.g., in the dental study, allow different

covariance matrices for each gender. We discuss this further below.

• One-dependent. Recall that it seems reasonable that observations taken more closely together

in time might tend to be “more alike” than those taken farther apart. If the observation times are

spaced so that the time between 2 nonconsecutive observations is fairly long, we might conjecture

that correlation is likely to be the largest among observations that are adjacent in time; that is,

occur at consecutive times. Relative to the magnitude of this correlation, the correlation between

observations separated by two time intervals might for all practical purposes be negligible.

An example of a one-dependent model embodying this assumption is

Σ = var(εi) =




σ2 ρσ2 0 · · · 0

ρσ2 σ2 ρσ2 · · · 0
...

...
...

...
...

0 0 · · · ρσ2 σ2




.

This model would make sense even if the times are not equally-spaced in time (as they are, for

example, in the dental study: 8, 10, 12, 14). It is possible to extend this to a two-dependent or

higher dependent model or to heterogeneous variances over time, as discussed in Chapter 4.

SAS PROC MIXED uses the designation type = toep(2) (for “Toeplitz” with 2 diagonal bands) to

refer to this assumption with the same variance at all times.

With groups, we could believe the one-dependent assumption holds for each group, but allow the

possibility that the variance σ2 and correlation ρ are different in each group. The same holds true

for the rest of the models we consider.

• Autoregressive of order 1 (equally-spaced in time). This model says that correlation drops

off as observations get farther apart from each other in time. The following model really only

makes sense if the times of observation are equally-spaced. The so-called AR(1) model with

homogeneous variance over time is

Σ = var(εi) = σ2




1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
...

...
...

...

ρn−1 ρn−2 · · · ρ 1




.

SAS PROC MIXED uses the designation type = ar(1) to refer to this assumption.
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• Markov (unequally spaced in time). The AR(1) model may be generalized to times that are

unequally-spaced. (e.g. 1, 3, 4, 5, 6, 7 as in the guinea pig diet data). The powers of ρ are

taken to be the distances in time between the observations. That is, if

djk = |tij − tik|, j, k = 1, . . . , n,

then the model is

Σ = var(εi) = σ2




1 ρd12 · · · ρd1n

...
...

...
...

ρdn1 ρdn2 · · · 1




.

SAS PROC MIXED allows this type of model to be implemented in more than one way, e.g with the

type = sp(pow)(.) designation.

We will consider examples of fitting these structures to several of our examples in section 8.8. The SAS

PROC MIXED documentation, as well as the books by Diggle, Heagerty, Liang, and Zeger (2002) and

Vonesh and Chinchilli (1997), discuss other assumptions.

DECIDING AMONG COVARIANCE STRUCTURES: In the balanced case, one may use the tech-

niques discussed in Chapter 4 to gain informal insight into the structure of var(εi). Inspection of sample

covariance matrices, scatterplot matrices, autocorrelation functions, and lag plots can aid the analyst

in identifying possible reasonable models.

These methods can be modified to take into account the fact that one believes that the mean vectors

follow smooth trajectories over time, such as a straight line. For instance, instead of using the sample

means for “centering” in these approaches, one might estimate β somehow; e.g. by least squares

treating all the individual responses from all units as if they were independent (even though we know

they are probably not). Least squares is clearly not the best way to estimate β (recall our discussion

in Chapter 3); however, this estimator may be “good enough” to provide reasonable estimates of the

means at each time tj that take advantage of our willingness to believe they follow a smooth trajectory,

so might be preferred to using sample means at each j on this account. In particular, if

µj = β0 + β1tj ,

say, for a single group, we would estimate µj by β̂0 + β̂1tj and use this in place of the sample mean.

A complete discussion of graphical and other techniques along these lines may be found in Diggle,

Heagerty, Liang, and Zeger (2002).
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It is also possible to use other methods to deduce which structure might give an appropriate model; we

will see this shortly. Later in the course, we will discuss a popular way of thinking about the problem of

modeling covariance and a popular way of taking into account the possibility that we might be wrong

when adopting a particular covariance model.

UNBALANCED CASE: Suppose first that we are in a situation like that of the hip-replacement data;

i.e., all times of observation are the same for all units; however, some observations are missing on some

units. For definiteness, suppose as in the hip data we have times (t1, t2, t3, t4) = (0, 1, 2, 3), and suppose

we have a unit i for which the observation at time t3 is not available. Thus, the vector Y i for this unit

is of length ni = 3. We could represent this situation notationally two different ways:

(i) For this unit, write Y i = (Yi1, Yi2, Yi3)
′ to denote the observations at times (ti1, ti2, ti3)

′ = (0, 1, 3)′.

Thus, in this notation, j indexes the number of observations within the unit, regardless of the

actual values of the times. There are 3 times for this unit, so j = 1, 2, 3. This is the standard way

of representing things generically.

(ii) To think more productively about covariance modeling, consider an alternative. Here, let j index

the intended times of observation. This unit is missing time j = 3; thus, represent things as

Y i = (Yi1, Yi2, Yi4)
′, at times (t1, t2, t4)

′ = (0, 1, 3). (8.14)

Now consider the models discussed above and the alternative notation. Assume we believe that

var(Yij) = σ2 for all j. We thus want a model for

Σi = var(Y i) =




σ2 cov(Yi1, Yi2) cov(Yi1, Yi4)

cov(Yi2, Yi1) σ2 cov(Yi2, Yi4)

cov(Yi4, Yi1) cov(Yi4, Yi2) σ2




.

• The compound symmetry assumption would be represented in the same way regardless of the

missing value; all it says is that observations any distance apart have the same correlation. Thus,

under this assumption, Σi would be the (3 × 3) version of this matrix.

• Under an unstructured assumption, this matrix becomes (convince yourself!)

Σi =




σ2
1 σ12 σ14

σ12 σ2
2 σ24

σ14 σ24 σ2
4




.
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• Under the one-dependent model, which says that only observations adjacent in time are corre-

lated, this matrix becomes (convince yourself!)

Σi =




σ2 ρσ2 0

ρσ2 σ2 0

0 0 σ2




.

• Under the AR(1) model, this matrix becomes (convince yourself!)

Σi = σ2




1 ρ ρ3

ρ 1 ρ2

ρ3 ρ2 1




.

These examples illustrate the main point – if all observations were intended to be taken at the same

times, but some are not available, the covariance matrix must be carefully constructed according to the

particular time pattern for each unit, using the convention of the assumed covariance model.

Now consider the situation of the ultrafiltration data. Here, the actual times of observation are different

for each unit. Consider again the above models.

• Here, the unstructured assumptions are difficult to justify. Because each unit was seen at a

different set of times, they cannot share the same covariance parameters, so the matrix Σi must

depend on entirely different quantities for each i.

• The compound symmetry assumption could still be used, as it does not pay attention to the

actual values of the times. Of course, it still suffers from the drawbacks for longitudinal data we

have already noted.

• We might still be willing to adopt something like the one-dependent assumption in the same

spirit as with compound symmetry, saying that observations that are adjacent in time, regardless

of how far apart they might be, are correlated, but those farther are not. However, it is possible

that the distance in time for adjacent observations for one unit might be longer than the distance

for nonconsecutive observations for another unit, making this seem pretty nonsensical!

• The AR(1) assumption is clearly inappropriate by the same type of reasoning.

• The so-called Markov assumption seems more promising in this situation – the correlation among

observations within a unit would depend on the time distances between observations within a

unit.
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Clearly, with different times for different units, modeling covariance is more challenging! In fact, it is

even hard to investigate the issue informally, because the information from each unit is different. In

the next two chapters of the course, we will talk about another approach to modeling longitudinal data

that obviates the need to think quite so hard about all of this!

INDEPENDENCE ASSUMPTION: An alternative to all of the above, in both cases of balanced and

unbalanced data, is the assumption that observations within a unit are uncorrelated, which, with the

assumption of multivariate normality implies that they are independent. That is, if we believe that

all observations have constant variance var(Yij) = σ2, take

Σi = var(εi) = σ2Ini
.

• This assumption seems incredibly unrealistic for longitudinal data. It says that observations on

the same unit are no more alike than those compared across units! In a practical sense, it implies

variation among units must be negligible; otherwise, we would expect observations on the same

individual to be correlated due to this source.

• It also says that there is no correlation induced by within-unit fluctuations over time. This

might be okay if the observations are all taken sufficiently far apart in time from one another,

however, may be unrealistic if they are close in time.

• Occasionally, this model might be sensible, e.g. suppose the units are genetically-engineered mice,

bred specifically to be as alike as possible. Under such conditions, we might expect that the

component of variation due to variation among mice might indeed be so small as to be regarded

as negligible. If furthermore the observations on a given mouse are all far apart in time, then we

would expect no correlation for this reason, either.

• In most situations, however, this assumption represents an obvious model misspecification, i.e.

the model almost certainly does not accurately represent the truth.

• However, sometimes, this assumption is adopted nonetheless, even though the data analyst is

fully aware it is likely to be incorrect. The rationale will be discussed later in the course.

SUMMARY: The important message is that, by thinking about the situation at hand, it is possible to

specify models for covariance that represent the main features in terms of a few parameters. Thus,

just as we model the systematic component in terms of a regression parameter β, we may model

the random component.
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With models like those above, this is accomplished through a few covariance parameters (sometimes

called variance or covariance components), which are the distinct elements of the covariance matrix

or matrices assumed in the model.

8.5 Inference by maximum likelihood

We have devoted considerable discussion to the idea of modeling longitudinal data directly. However,

we have not tackled the issue of how to address questions of scientific interest within the context of such

a model:

• With a more flexible representation of mean response, we have more latitude for stating such

questions, as we have already mentioned.

• For example, consider the dental study. A question of interest has to do with the rate of change

of distance over time – is it the same for boys and girls? In the context of the classical ANOVA

models discussed earlier, we phrased this question as one of whether or not the mean profiles are

parallel, and expressed this in terms of the (τγ)`j . Of course, in the context of the model given

in (8.5) and (8.6), the assumption of parallelism is still the focus, but it may be stated more

clearly directly in terms of slope parameters, i.e.

H0 : β1,G = β1,B.

• Furthermore, we can do more. Because we have an explicit representation of the notion of “rate of

change” in these slopes, we can also estimate the slopes for each gender and provide an estimate

of the difference! If the evidence in the data is not strong enough to conclude the need for 2

separate slopes, we could estimate a common slope.

• Even more than this is possible. Because we have a representation for the entire trajectory as a

function of time, we can estimate the mean distance at any age for a boy or girl.

To carry out these analyses formally, then, we need to develop a framework for estimation in our model

and a procedure to do hypothesis testing. The standard approach under the assumption of multivariate

normality is to use the method of maximum likelihood.

MAXIMUM LIKELIHOOD: This is a general method, although we state it here specifically for our

model. Maximum likelihood inference is the cornerstone of much of statistical methodology.
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The basic premise of maximum likelihood is as follows. We would like to estimate the parameters that

characterize our model based on the data we have. One approach would be to use as the estimator a

value that “best explains” the data we saw. To formalize this

• Find the parameter value that maximizes the probability, or “likelihood” that the observations

we might see for a situation like the one of interest would be end up being equal to the data we

saw.

• That is, find the value of the parameter that is best supported by the data we saw.

Recall that we have a general model of the form

Y i ∼ Nni
(Xiβ,Σi),

where Σi is a (ni × ni) covariance model depending on some parameters.

• The regression parameter β characterizes the mean. Suppose it has dimension p.

• Denote the parameters that characterize Σi as ω.

• For example, in the AR(1) model, ω = (σ2, ρ).

For us, the data are the collection of data vectors Y i, i = 1, . . . , m, one from each unit. It will prove

convenient to summarize all the data together in a single, long vector of length N (recall N is the total

number of observations
∑m

i=1 ni), which “stacks” them on one another:

Y =




Y 1

Y 2

...

Y m




.

INDEPENDENCE ACROSS UNITS: Recall that we have argued that a reasonable assumption is that

the way the data turn out for one unit should be unrelated to how they turn out for another. Formally,

this may be represented as the assumption that the Y i, i = 1, . . . , m are independent.

• This assumption is standard in the context of longitudinal data, and we will adopt it for the rest

of the course.

• Recall that this assumption also underlied the univariate and multivariate classical methods.

PAGE 229



CHAPTER 8 ST 732, M. DAVIDIAN

JOINT DENSITY OF Y : We may represent the probability of seeing data we saw as a function of the

values of the parameters β and ω by appealing to our multivariate normal assumption. Specifically,

recall that if we believe Y i ∼ Nni
(Xiβ,Σi), then the probability that this data vector takes on the

particular value yi is represented by the joint density function for the multivariate normal (recall

Chapter 3).

For our model, this is

fi(yi) = (2π)−ni/2|Σi|−1/2 exp{−(yi − X iβ)′Σ−1
i (yi − Xiβ)/2} (8.15)

Because the Y i are independent, the joint density function for Y is the product of the m individual

joint densities (8.15); i.e. letting f(y) be the joint density function for all the data Y (thus representing

probabilities of all the data vectors taking on the values in y together)

f(y) =
m∏

i=1

fi(yi) =
m∏

i=1

(2π)−ni/2|Σi|−1/2 exp{−(yi − X iβ)′Σ−1
i (yi − Xiβ)/2}. (8.16)

MAXIMUM LIKELIHOOD ESTIMATORS: The method of maximum likelihood for our problem thus

boils down to maximizing f(y) (evaluated at the data values we saw) in the unknown parameters

β and ω. The maximizing values will be functions of y. These functions applied to the random vector

Y yield the so-called maximum likelihood (ML) estimators.

• (8.16) is a complicated function of β and ω. Thus, finding the values that maximize it for a given

set of data is not something that can be done in closed form in general. Rather, fancy numerical

algorithms, the details of which are beyond the scope of this course, are used. These algorithms

form the “guts” of software for this purpose, such as SAS PROC MIXED and others.

SPECIAL CASE – ω KNOWN: We first consider an “ideal” situation unlikely to occur in practice.

Suppose we were lucky enough to know ω; e.g., if the covariance model were AR(1), this means we

know σ2 and ρ. In this case, all the elements of the matrix Σi for all i are known. In this case, it is

possible to show using matrix calculus that the maximizer of f(y) in β, evaluated at Y , is

β̂ =

(
m∑

i=1

X ′

iΣ
−1
i Xi

)
−1 m∑

i=1

X ′

iΣ
−1
i Y i. (8.17)

WEIGHTED LEAST SQUARES: Note that this has a similar flavor to the weighted least squares

estimator we discussed in Chapter 3. In fact, the estimator β̂ is usually called weighted least squares

estimator in this context as well!
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• In fact, it may be shown that maximizing the likelihood (8.16) evaluated at Y is equivalent to

minimizing the sum of quadratic forms
m∑

i=1

(Y i − X iβ)′Σ−1
i (Y i − Xiβ). (8.18)

ALTERNATIVE REPRESENTATION: The following alternative representation makes this even more

clear. Define

X =




X1

X2

...

Xm




, (N × p).

With this. definition, and defining ε as the N -vector of εi stacked as in Y , we may write the model

succinctly as (convince yourself)

Y = Xβ + ε.

Note that we thus have E(Y ) = Xβ.

• This way of representing the general model is standard and is used in most texts on longitudinal

data analysis. It is also used in SAS documentation.

Also define the (N × N) matrix

Σ̃ =




Σ1 0 · · · 0

0 Σ2 · · · 0
...

...
...

...

0 0 · · · Σm




,

the block diagonal matrix with the m (ni × ni) covariance matrices along the “diagonal.”

• It is a matrix exercise to realize that we may thus write the assumption on the covariance matrices

of all m Y i succinctly as (try it)

var(Y ) = Σ̃.

• It may then be shown that the weighted least squares estimator β̂ may be written (try it!)

β̂ = (X ′Σ̃
−1

X)−1X ′Σ̃
−1

Y .

Compare this to the form for usual regression in Chapter 3.

• It may be shown in this notation that β̂ minimizes the quadratic form (rewrite (8.18)

(Y − Xβ)′Σ̃
−1

(Y − Xβ).
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INTERPRETATION: In either form, the weighted least squares estimator β̂ has the same interpretation.

Consider (8.17). Note that the contribution of each data vector to β̂ is being weighted in accordance

with its covariance matrix. Data vectors with “more variation” as measured through the covariance

matrix get weighted less, and conversely. The same interpretation may be made from inspection of

the alternative representation. Here, we see how this weighting is occurring across the entire data set;

each part of Y is getting weighted by its covariance matrix, so that the data vector as a whole is being

weighted by the overall covariance matrix Σ̃.

SAMPLING DISTRIBUTION: By identical arguments as used in Chapter 3, it may thus be shown that

β̂ is unbiased and the sampling distribution of β̂ is multivariate normal, i.e.

E(β̂) = (X ′Σ̃
−1

X)−1X ′Σ̃
−1

Xβ = β.

var(β̂) = (X ′Σ̃
−1

X)−1X ′Σ̃
−1

Σ̃Σ̃
−1

X(X ′Σ̃
−1

X)−1 = (X ′Σ̃
−1

X)−1.

It thus follows that

β̂ ∼ Np{β, (X ′Σ̃
−1

X)−1}.

• This fact could be used to construct standard errors for the elements of β̂. For example, we could

attach a standard error to the estimate of the slope of the distance-age relationship for boys in

the dental study.

ω UNKNOWN: Of course, the chances that we would actually know ω are pretty remote. The more

relevant case is where both β and ω are unknown. In this situation, we would have to maximize(8.16)

in both to obtain the ML estimators. Unlike the case above, it is not possible to write down nice

expressions for the estimators; rather, their values must be found by numerical algorithms. However, it

is possible to show that the ML estimator for β̂ may be written, in the original notation

β̂ =

(
m∑

i=1

X ′

iΣ̂
−1
i Xi

)
−1 m∑

i=1

X ′

iΣ̂
−1
i Y i

where Σ̂i is the covariance matrix for Y i with the estimator for ω plugged in.

• It is not possible to write down an expression for the estimator for ω, ω̂; thus, the expression for

β̂ is really not a closed form expression, either, despite its tidy appearance.

• This estimator is often called the (estimated) generalized least squares estimator for β. The

designation “generalized” emphasizes that Σi is not known and its parameters estimated.
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LARGE SAMPLE THEORY: It is a standard problem in statistical methodology that estimators for

complicated models often cannot be written down in a nice compact, closed form. There is a further

implication.

• In our problem, note that when ω was known, it was possible to derive the sampling distribu-

tion of β̂ exactly and to show that it is an unbiased estimator for β.

• With ω unknown, the matrices Σi are replaced by Σ̂i in the form of β̂. The result is that it is no

longer possible to calculate the mean, covariance matrix, or anything else for β̂ exactly; e.g.

E(β̂) = E





(
m∑

i=1

X ′

iΣ̂
−1
i Xi

)
−1 m∑

i=1

X ′

iΣ̂
−1
i Y i



 .

Because Σ̂i depends on ω̂, which in turn depends on the data Y i, it is generally the case that it

is not possible to do this calculation in closed form. Similarly, it is no longer necessarily the case

that β̂ has exactly a p-variate normal sampling distribution.

In situations such as these, it is hopeless to try to derive these needed quantities. The best that can be

hoped for is to try to approximate them under some simplifying conditions. The usual simplifying

conditions involve letting the sample size (i.e. number of units m in our case) get large. That is, the

behavior of β̂ is evaluated under the mathematical condition that

m → ∞.

• It turns out that, mathematically, under this condition, it is possible to evaluate the sampling

distribution of β̂ and show that β̂ is “unbiased” in a certain sense.

• Such results are not exact. Rather, they are approximations in the following sense. We find

what happens in the “ideal” situation where the sample size grows infinitely large. We then hope

that this will be approximately true if the sample size m is finite. Often, if m is moderately

large, the approximation is very good; however, how “large” is “large” is difficult to determine.

Such arguments are far beyond our scope here, but be aware that all but the most basic statistical

methodology relies on them. We now state the large sample theory results applicable to our problem.

It may be shown that, approximately, for m “large,”

β̂
·∼ Np{β, (X ′Σ̃

−1
X)−1}. (8.19)
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That is, the sampling distribution of β̂ may be approximated by a multivariate normal distribution

with mean β and covariance matrix (X ′Σ̃
−1

X)−1, which may be written in the alternative form

(
m∑

i=1

X ′

iΣ
−1
i Xi

)
−1

.

• Note that the form of the covariance matrix depends on the true values of the Σi matrices,

which in turn depend on the unknown parameter ω.

• Thus, for practical use, a further approximation is made. The covariance matrix of the sampling

distribution of β̂ is approximated by

V̂ β =

(
m∑

i=1

X ′

iΣ̂
−1
i Xi

)
−1

, (8.20)

where as before Σ̂i denote the matrices Σi with the estimated value for ω plugged in. We will use

the symbol V̂ β in the sequel to refer to this estimator for the covariance matrix of the sampling

distribution of β̂.

• Standard errors for the components of β̂ are then found in practice by evaluating (8.20) at the

data and taking the square roots of the diagonal elements.

• It is important to recognize that these standard errors and other inferences based on this ap-

proximation are exactly that, approximate! Thus, one should not get too carried away – as we

now discuss, if a test statistic gives borderline evidence of a different for a particular level of

significance α (e.g. = 0.05), it is best to state that the evidence is inconclusive. This is in fact

true even for statistical methods where the sampling distributions are known exactly. In any case,

the data may not really satisfy all assumptions exactly, so it is always best to interpret borderline

evidence with care.

It is also possible to derive an approximate sampling distribution for ω̂; however, usually, interest

focuses on hypotheses about β and its elements, so this is not often done. Moreover, any inference

on parameters that describe covariance matrices, exact or approximate, is usually quite sensitive to

the assumption of multivariate normality being exactly correct. If it is not, the tests can be quite

misleading. For these reasons, we will focus on inference about β.

QUESTIONS OF INTEREST: Often, questions of interest may be phrased in terms of a linear func-

tion of the elements of β. For example, consider the dental study data.
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• Suppose we wish to investigate the difference between the slopes β1,G and β1,B for boys and girls

and have parameterized the model explicitly in terms of these values. Then we are interested in

the quantity

β1,G − β1,B .

With β defined as in (8.8),

β =




β0,G

β1,G

β0,B

β1,B




,

we may write this as Lβ, where L = (0, 1, 0,−1) (verify).

• Suppose we want to investigate whether the two lines coincide; that is, both intercepts and slopes

are the same for both genders. We are thus interested in the two contrasts

β0,G − β0,B, β1,G − β1,B

simultaneously. We may state this as Lβ, where L is the (2 × 4) matrix

L =




1 0 −1 0

0 1 0 −1


 .

• Suppose we are interested in the mean distance for a boy 11 years of age; that is, we are interested

in the quantity

β0,B + β1,Bt0, t0 = 11.

We can write this in the form Lβ by defining

L = (0, 0, 1, t0).

It should be clear that, given knowledge of how a model has been parameterized, one may specify

appropriate matrices L of dimension (r × p) to represent various questions of interest.

ESTIMATION: The natural estimate of a quantity or quantities represented as Lβ is to substitute the

estimator for β; i.e. Lβ̂.

• For example, in the final example above, we may wish to obtain an estimate of the mean distance

for a boy 11 years of age.

• To accompany the estimate, we would like an estimated standard error. This would also allow us

to construct confidence intervals for the quantity of interest.
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If we treat the approximate covariance matrix (8.20) and the multivariate normality of β̂ as exactly

correct, then we may apply standard results to obtain the following:

• The approximate covariance matrix of Lβ̂ is given by

var(Lβ̂) = Lvar(β̂)L′ = LV̂ βL′.

• Thus, we approximate the sampling distribution of the linear function Lβ̂ as

Lβ̂
·∼ Nr(Lβ, LV̂ βL′). (8.21)

The approximation (8.21) may be used as follows:

• If L is a single row vector (r = 1), as in the case of estimating the mean for 11 year old boys,

then LV̂ βL′ is a scalar, and is thus the estimated sampling variance of Lβ̂. The square root of

this quantity is thus an estimated standard error for Lβ̂. Based on the approximate normality, we

might form a confidence interval in the usual way; letting SE(Lβ̂) be the estimated standard

error, form the interval as

Lβ̂ ± zα/2SE(Lβ̂)

where zα/2 is the value with with α/2 area to the right under the standard normal probability

density curve. Some people use a t critical value in place of the normal critical value, with degrees

of freedom chosen in various ways. Because of the large sample approximation, it is not clear

which method gives the most accurate intervals for any given problem.

WALD TESTS OF STATISTICAL HYPOTHESES: For a given choice of L, we might be interested in

a test of the issue addressed by L; e.g. testing whether the girl and boy slopes are different.

In general, we may interested in a test of the hypotheses

H0 : Lβ = h vs. H1 : Lβ 6= h,

where h is a specified (r × 1) vector. Most often, h will be equal to 0.

• If r = 1 so that L is a row vector, then the obvious approach (approximate, of course) is to form

the test statistic

z =
Lβ̂ − h

SE(Lβ̂)

and compare z to the critical values of the standard normal distribution. (Some people compare

z to the t distribution with degrees of freedom picked in different ways.)
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• Recall that if Z is a standard normal random variable, then Z2 has a χ2 distribution with one

degree of freedom. Thus, we could conduct the identical test by comparing z2 to the appropriate

χ2
1 critical value. In fact, we can write z2 equivalently as

(Lβ̂ − h)′(LV̂ βL′)−1(Lβ̂ − h).

• This may be generalized to L of row dimension r, representing simultaneous testing of r separate

contrasts. If L is of full rank (so that none of the contrasts duplicates the others) then

TL = (Lβ̂ − h)′(LV̂ βL′)−1(Lβ̂ − h)

is still a scalar, of course. Because Lβ̂ is approximately normally distributed, it may be argued

that a generic statistic of form TL has approximately a χ2 distribution with r degrees of freedom.

Thus, a test of such hypotheses may be conducted by comparing TL to the appropriate χ2
r critical

value: Reject H0 in favor of H1 at level α if TL > χ2
r,1−α, where χ2

r,1−α is the value such that the

area under the χ2 distribution to the right is equal to α.

The above methods exploit the multivariate normal approximation (8.19) to the sampling distribution

of β̂ (and hence Lβ̂). These approaches treat this approximation as exact and then construct familiar

test statistics that would have a χ2 distribution if it were. This is usually referred to in this context as

Wald inference. Unfortunately, Wald inferential methods may have a drawback.

• When the sample size m is not too large, the resulting inferences may not be too reliable. This

is because they rely on a normal approximation to the sampling distribution that may be a lousy

approximation unless m is relatively large.

• Sometimes, the χ2 distribution is replaced with an F distribution to make the test more reliable

in small samples (PROC MIXED implements this).

LIKELIHOOD RATIO TEST: An alternative to Wald approximate methods is that of the likelihood

ratio test. This is also an approximate method, also based on large sample theory (i.e large m);

however, it has been observed that this approach tends to be more reliable when m is not too large

than the Wald approach.

The likelihood ratio test is applicable in the situation in which we wish to test what are often called

“reduced” versus “full” model hypotheses. For example, consider the dental data. Suppose we are

interested in testing whether the slopes for boys and girls are the same, i.e.

H0 : β1,G − β1,B = 0 versus H1 : β1,G − β1,B 6= 0.
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These hypotheses allow the intercepts to be anything, focusing only on the slopes. If we think of the

alternative hypothesis H1 as specifying the “full” model, i.e. with no restrictions on any of the values

of intercepts or slopes, then the null hypothesis H0 represents a “reduced” model in the sense that it

requires two of the parameters (the slopes) to be the same.

• The “reduced” model is just a special instance of the “full” model. Thus, the “reduced” model

and the null hypothesis are said to be nested within the “full” model and alternative hypothesis.

When hypotheses are nested in this way, so that we may think naturally of a “full” (H1) and “reduced”

(H0) model, a fundamental result of statistical theory is that one may construct an approximate test

of H0 vs. H1 based on the likelihoods for the two nested models under consideration. Suppose the

model for the mean of a data vector Y i under the “full” model is X iβ. Recall that the likelihood is

Lfull(β, ω) =
m∏

i=1

(2π)−ni/2|Σi|−1/2 exp{−(yi − Xiβ)′Σ−1
i (yi − Xiβ)/2}.

Under the “reduced” model, the likelihood is the same except that the mean of a data vector is

restricted to have the form specified under H0. For our dental example, the restriction is that the two

slope parameters are the same; thus, the regression parameter β for the reduced model contains

one less element than does the full model, and the matrices X i must be adjusted accordingly; e.g. if

β1 equals the common slope value, then

Yij = β0,G + β1tj + eij for girls,

Yij = β0,B + β1tj + eij for boys.

Let β0 denote the new definition of regression parameter if the restriction of H0 is imposed. Then let

Lred(β0, ω)

denote the likelihood for this reduced model.

Suppose now that we fit each model by the method of maximum likelihood by maximizing the likelihoods

Lfull(β, ω) and Lred(β0, ω),

respectively. For the reduced model, this means estimating β0 and ω corresponding to the reduced

model. Let L̂full and L̂red denote the values of the likelihoods with the estimates plugged in:

L̂full = Lfull(β̂, ω̂) and L̂red = Lred(β̂0, ω̂).
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Then the likelihood ratio statistic is given by

TLRT = −2{log L̂red − log L̂full} = −2 log L̂red + 2 log L̂full (8.22)

Technical arguments may be used to show that, for m → ∞, TLRT has approximately a χ2 distribution

with degrees of freedom equal to the difference in number of parameters in two models (# in full model

− # in reduced model). Thus, if this difference is equal to r, say, then we reject H0 in favor of H1 at

level of significance α if

TLRT > χ2
r,1−α.

• The likelihood ratio test is an approximate test, as it is based on using the large sample approx-

imation. Thus, it is unwise to get too excited about “borderline” evidence on the basis of this

test.

• The test is often thought to be more reliable than Wald-type tests when m is not too large.

• It is in fact the case that Wilks’ lambda is the likelihood ratio test statistic for the MANOVA

model.

ALTERNATIVE METHODS FOR MODEL COMPARISON: One drawback of the likelihood ratio test

is that it requires the model under the null hypothesis to be nested within that of the alternative. Other

approaches to comparing models have been proposed that do not require this restriction. These are

based on the notion of comparing penalized versions of the logarithm of the likelihoods obtained under

H0 and H1, where that “penalty” adjusts each log-likelihood according to the number of parameters

that must be fitted. It is a fact that, the more parameters we add to a model, the larger the (log)

likelihood becomes. Thus, if we wish to compare two models with different numbers of parameters

fairly, it seems we must take this fact into account. Then, one compares the “penalized” versions of the

log-likelihoods. Depending on how these “penalized” versions are defined, one prefers the model that

gives either the smaller or larger value.

Let log L̂ denote a log-likelihood for a fitted model. Two such “penalized” versions of the log-likelihood

are

• Akaike’s information criterion (AIC). The penalty is to subtract the number of parameters

fitted for each model. That is, if s is the number of parameters in the model,

AIC = log L̂ − s;

one would prefer the model with the larger AIC value.
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• Schwarz’s Bayesian information criterion (BIC). The penalty is to subtract the number

of parameters fitted further adjusted for the number of observations. If as before N is the total

number of observations,

BIC = log L̂ − s log N/2.

One would prefer the model with the larger BIC value.

In the current version of SAS PROC MIXED, a negative version of these is used, so that one prefers the

model with the smaller value instead; see Section 8.8.

A full discussion of this approach and the theory underlying these methods is beyond our scope. Com-

parison of AIC and BIC values is often used as follows: one might fit the same mean model with

several different covariance models, and choose the covariance model the seems to “do best” in terms

of giving the “largest” AIC, BIC, and (log) likelihood values overall. Here, s would be the number

of covariance parameters. It is customary to consider the logarithm of the likelihood rather than the

likelihood itself, partly because of the form of the likelihood ratio test. Because log is a monotone

transformation (meaning it preserves order), operating on the log scale instead doesn’t change anything.

8.6 Restricted maximum likelihood

A widely acknowledged problem with maximum likelihood estimation has to do with the estimation of

the parameters ω that characterize the covariance structure. Although the ML estimates of β for a

particular model are (approximately) unbiased, the estimators for ω have been observed to be biased

when m is not too large; for parameters that represent variances, it is usually the case that the

estimated values are too small, thus giving an optimistic picture of how variable things really are.

LINEAR REGRESSION: The problem may be appreciated by recalling the simpler problem of linear

regression; here, we use the notation in the way it was used in Chapter 3. Recall in this model that we

the data y (n × 1) are assumed to have covariance matrix σ2I, so that the elements of y are assumed

independent, each with variance σ2. If β̂ is the least squares estimator for the (p × 1) regression

parameter, then the usual estimator for σ2 is

σ̂2 = (n − p)−1(Y − Xβ̂)′(Y − Xβ̂).
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• Thus, σ̂2 has the form of the average of a sum of n squared deviations, with the exception that

we divide by (n− p) rather than n to form the average. We showed in Chapter 3 that this is done

so that the estimator is unbiased; recall we showed

E(Y − Xβ̂)′(Y − Xβ̂) = (n − p)σ2.

• If we divided by n instead, note that we would be dividing by something that is too big, leading

to an estimator that is too small

• Informally, the reason for this bias has to do with the fact that we have replaced β with the

estimator β̂ in the quadratic form above. It is straightforward to see that if we knew β and

replaced β̂ by β in the quadratic form, we have

E(Y − Xβ)′(Y − Xβ) = nσ2

(convince yourself). Thus, the fact that we don’t know β requires us to divide the quadratic form

by (n − p) rather than n.

It is not surprising that it is desirable to do something similar when estimating covariance parameters

ω in our more complicated regression models for longitudinal data. A detailed treatment of the more

technical aspects may be found in Diggle, Heagerty, Liang, and Zeger (2002). Here, we just give a

heuristic rationale for an “adjusted” form of maximum likelihood that acts in the same spirit as “using

(n − p) rather then n” in the ordinary regression model.

• It turns out that the ML estimator for ω in our longitudinal data regression model has the form

we would use if we knew β. Thus, it does not acknowledge the fact that β must be estimated

along with ω. The result is the biased estimation mentioned above.

• The “adjustment” involves replacing the usual likelihood

m∏

i=1

(2π)−ni/2|Σi|−1/2 exp{−(yi − Xiβ)′Σ−1
i (yi − X iβ)/2}

by
m∏

i=1

(2π)−ni/2|Σi|−1/2|X ′

iΣ
−1
i Xi|−1/2 exp{−(yi − Xiβ)′Σ−1

i (yi − X iβ)/2}. (8.23)

The “extra” determinant term in (8.23) serves to “automatically” introduce the necessary correc-

tion in a manner similar to changing the divisor as in linear regression above.
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• It may be shown by matrix calculus that the form estimator for β found by maximizing (8.23) is

identical to that before; i.e.

β̂ =

(
m∑

i=1

X ′

iΣ̂
−1
i Xi

)
−1 m∑

i=1

X ′

iΣ̂
−1
i Y i

where now Σ̂i is the covariance matrix for Y i with the estimator for ω found by maximizing (8.23)

jointly plugged in.

• The difference is that the estimator for ω found by maximizing (8.23) jointly with β instead of

the usual likelihood is used.

• The resulting estimator for ω has been observed to be less biased for for finite values of m than

the ML estimator.

The objective function (8.23) and the resulting estimation method are known as restricted maxi-

mum likelihood, or REML.

• Estimates of ω obtained by this approach are often preferred in practice. In fact, PROC MIXED in

SAS uses this method as the default method for finding estimates if the user does not specify

otherwise (see section 8.8.

• Formulæ for standard errors for β̂ obtained this way are identical to those for the ML estimator,

except that the REML estimator is used to form Σi instead. Wald tests may be constructed in

the same way and are valid tests (except for the concern about the quality of the large sample

approximation just as for tests based on ML).

• Some people use the REML function in place of the usual likelihood to form likelihood ratio tests

and the AIC and BIC criteria. If the test concerns different mean models, this is generally not

recommended, as it is not clear that the “restricted likelihood ratio” statistic ought to have a

χ2 distribution when m is large. Thus, it has been advocated to carry out tests involving the

components of β using ML to fit the model. However, if one’s main interest is in estimates of the

covariance parameters ω (e.g estimating σ2 and ρ in the AR(1) model), then REML estimators

should be employed because of they are likely to be less biased.

• Use of the AIC and BIC criteria based on the REML objective function to choose among covariance

models for the same mean model is often used. In this case, the number of parameters s is equal

to the number of covariance parameters only.

• There is really no “right” or “wrong” approach; most of what is done in practice is based on ad

hoc procedures and some subjectivity. We will exhibit this in section 8.8.
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8.7 Discussion

We have given a brief overview of the main features of taking a more direct regression modeling approach

to longitudinal data. In this approach, we are able to incorporate information in a straightforward

fashion. A key aspect is the flexibility allowed in choosing models for the covariance structure. Inference

within this model framework may be conducted using the standard techniques of maximum likelihood,

which gives approximate tests and standard errors.

Here, we comment on additional features, advantages, and disadvantages of this approach;

BALANCED DATA: When the data are balanced, so that each unit is seen at the same time points,

it turns out that, under certain conditions for certain models, the weighted and generalized least

squares estimators for β are identical to the estimator obtained by simply taking Σi = Σ = σ2I for

all i.

• This estimator may be thought of as the ordinary least squares estimator treating the combined

data vector y of all the data (N ×1) as if they came from one huge individual. That is, all the N

observations within and across all the Y i are being treated independent under the normality

assumption! In the sequel, we will call this estimator β̂OLS .

• Formally,

β̂OLS = (X ′X)−1X ′Y =

(
m∑

i=1

X ′

iXi

)
−1 m∑

i=1

X ′

iY i.

Thus, the weighted and generalized least squares estimators reduce to being the same as an

estimator that does no weighting by covariance matrices at all!

• This feature is exhibited in the dental study example analysis in section 8.8.

• It may seem curious that this is the case; we will say more about this curiosity in the next two

chapters. It turns out that when the covariance model has a certain form, this correspondence is

to be expected.
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• This feature might make one question the need to bother with worrying about covariance modeling

at all under these conditions! Why not just pretend the issue doesn’t exist, as the estimates of

β are the same? However, although the estimates of β have the same value, the standard

errors we calculate for them will not! I.e., the estimated covariance matrix calculated as if the

data were all independent would be

σ2(X ′X)−1 = σ2

(
m∑

i=1

X ′

iXi

)
−1

while that calculated using an assumed covariance structure acknowledging correlation would be

V̂ β =

(
m∑

i=1

X ′

iΣ̂
−1
i Xi

)
−1

.

Wald tests conducted using the first matrix to compute standard errors will be incorrect if the

data really are correlated as we expect.

• The same comment is true for likelihood and restricted likelihood inferences such as the likelihood

ratio test. If the data really are correlated within units as we expect, basing inferences on a

model that explicitly acknowledges this is preferred.

CHOOSING AN APPROPRIATE COVARIANCE MODEL: Because we are dealing with longitudinal

data, we fully expect that the covariance matrix of a data vector to be something that incorporates

correlations among observations within a vector that are thought to arise because of

• Variation among units – observations on the same unit are “more alike” than those compared

across units simply because they are from the same unit.

• Variation due to the way the observations within a unit were collected. A main feature is, of

course, that they are collected over time.

In the approach we have discussed here, a covariance model is to be chosen that hopefully characterizes

well the aggregate variation from both of these sources. We have discussed several covariance models;

many of these, such as the AR(1) model, seemed to focus primarily on the longitudinal aspect (how data

within a unit are collected). Obviously, identifying an appropriate model will be difficult, particularly

when it is supposed to represent all of the variation.

• Thus, choosing among models is to some extent an “art form.” Formal techniques, such as

inspection of the AIC and BIC criteria may be used to aid in this, but a good dose of subjectivity

is also involved.
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• Informal graphical and other techniques may be used based on a preliminary fit using ordinary

least squares, as described earlier. In the next chapter we will discuss a special class of models

that make the job of specifying covariance a bit easier.

• It may be that none of the models we have discussed is truly appropriate to capture all the sources

of variation. The models of the next chapters offer another approach.

We now summarize the main features of the general regression approach and its advantages over the

classical techniques. We also point out some of the possible pitfalls.

ADVANTAGES:

• The regression approach gives the analyst much flexibility in representing the form of the mean

response. The fact that the mean may be modeled as smoothly changing functions of time and

other covariates means that it is straightforward to obtain meaningful estimates of quantities of

interest, such as slopes representing rates of change and estimates of precision (standard errors)

for them. Tests of hypotheses are also straightforward. Moreover, this type of modeling readily

allows estimation of the mean response at any time point and covariate setting, not just those in

the experiment (as long as we think the model is reasonable).

• The approach does not require balance. Data vectors may be of different lengths, and observations

may have been made a different times for each unit. It is, however, important to note that if

imbalance is caused by data intended to be collected but missing at some time points, then

there may still be problems. If the missingness is completely unrelated to the issues under study

(e.g. a sample for a certain subject at a certain time is mistakenly destroyed or misplaced in the

lab), then the fact that the data are imbalanced does not raise any concerns – analysis using the

methods we have discussed will be valid. However, if missingness is suspected to be related to

the issues under study (e.g. in a study to compare 2 treatments for AIDS a subject does not show

up for scheduled visits because he is too sick to come to the clinic), then the fact that the data

are imbalanced itself has information in it about the issues! In this case, fancier methods that

acknowledge this may be needed. Such methods are an area of active statistical research and are

beyond our scope here. We discuss the issue of missing data again later in the course.
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• The regression approach offers the analyst much latitude in modeling the covariance matrix of

a data vector. The analyst may select from a variety of possible models based on knowledge of

the situation and the evidence in the data. In contrast, the classical methods “force” certain

structures to be assumed.

DISADVANTAGES:

• Although there is flexibility in modeling covariance, the approach forces the analyst to model the

aggregate variation from all sources together. The analyst is forced to think about this in the

context of specifying a single covariance matrix form for each unit. The standard models, such

as AR(1), seem to focus mainly on the part of correlation we might expect because of the way

the data were collected (over time). It is not clear how correlation induced because of among-

unit variation is captured in these models. The problem is that statistical model itself does not

acknowledge explicitly the two main sources of variation separately: within and among units.

The univariate ANOVA model does acknowledge these, but the form of the model assumed results

in a very restrictive form for the covariance matrices Σi (compound symmetry). In future chapters

we study models that do account for these sources in the model separately, but are more flexible

than the ANOVA model.

• The regression approach involves direct modeling of the mean response vector. That is, the

analyst focuses attention on the the means at each time point, and then how these means change

over time, and does not consider individual unit trajectories. However, an alternative perspective

arises from thinking about the conceptual model in Chapter 4. In particular, one might start

from the view that each unit has its own “inherent trajetory” over time and develop a model on

this basis. In the dental study, these might be thought of as straight lines, which may vary in

placement and steepness across children. Thinking about individual trajectories rather natural,

and leads to another class of models, covered in the next few chapters. The univariate ANOVA

model actually represents a crude way of trying to do this; the models we will discuss are more

sophisticated.
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• In fact, In some situations, scientific interest may not focus only on characterizing the mean

vector describing the “typical” response vector or covariance parameters describing the nature

of variation in the response. Investigators may be interested in characterizing trajectories for

individual units; we will discuss examples in the next chapters. The models we have discussed

up to now do not offer any framework for doing this. Those we consider next do.

• The inferences carried out on the basis of the model rely on large sample approximations.

It is in fact true that most inferential methods for complex statistical models are based on large

sample approximations, so this is not at all unusual. However, one is always concerned that the

approximation is not too good for the finite sample sizes of real life; thus, one has to be cautious

and pragmatic when interpreting results. The classical methods often produce exact tests; e.g. F

statistics have exactly F distributions for any sample size. However, these results are only true

if the assumptions, such as that of multivariate normality, hold exactly; otherwise, the results

may be unreliable. In contrast, the large sample results are a good approximation even if the

assumption of normality does not hold! The bottom line is that the complexity of modeling and

need for assumptions may make all methods subject to the disadvantage of possibly erroneous

conclusions!

8.8 Implementation with SAS

We illustrate how to carry out analyses based on general regression models for the three examples

discussed in this section:

1. The dental study data

2. The ultrafiltration data

3. The hip replacement study data

For each data set, we state some particular questions of interest, statistical models (e.g. “full” and

“reduced” models), give examples of how to carry out inferences on the regression parameter β and the

covariance parameter ω.
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In all cases, we use SAS PROC MIXED with the REPEATED statement to fit several regression models

for these data with different assumptions about the covariance structure. The capabilities of PROC

MIXED are much broader than illustrated here – the options available are much more extensive, and the

procedure is capable of fitting a much larger class of statistical models, including those we consider in

the next two chapters. Thus, the examples here only begin to show the possibilities.

IMPORTANT: Version 8.2 of SAS, used here, defines AIC and BIC as −2 times the definitions given

in Sections 8.5 and 8.6. Thus, one would prefer the smaller value. Older versions of SAS are different;

the user can deduce the differences by examining the output.

EXAMPLE 1 – DENTAL STUDY DATA: In the following program, we consider the following issues:

• Recall that these data are balanced. We remarked in the last section that for balanced data under

certain conditions for certain models, the generalized least squares estimator for β will be identical

to the ordinary least squares estimator. We thus obtain both to illustrate this phenomenon and

give a hint about the “certain conditions” that apply.

• Based on our previous observations, we consider a model that says the mean response vector is

a straight line over time. We first consider the “full” model that says this line is different for

different genders. This model may be written using different parameterizations as either

Yij = β0,B + β1,Btij + eij , boys

= β0,G + β1,Gtij + eij , girls

or

Yij = β0,B + β1,Btij + eij , boys

= (β0,B + β0,G−B) + (β1,B + β1,G−B)tij + eij , girls (8.24)

• We fit the “full” model for several different candidate covariance structures and use AIC and BIC

criteria to aid in selection.

• We then consider Wald, likelihood ratio tests, and the information criteria using the preferred

covariance structure. We compare the “full” model to a “reduced” model that says the slopes are

the same for both genders (we do this in the context of parameterization (8.24)). We use ML for

all fits, but show the REML fit of one of the models for comparison. We also consider estimation

of the mean response for a boy of 11 years of age under the preferred model.
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PROGRAM: The following program carries out many of these analyses and prints out information

enabling others to be carried out separately by hand. See the documentation for PROC MIXED for fancy

ways to do more of this in SAS.

/*******************************************************************

CHAPTER 8, EXAMPLE 1

Analysis of the dental study data by fitting a general linear
regression model in time and gender structures using PROC MIXED.

- the repeated measurement factor is age (time)

- there is one "treatment" factor, gender

For each gender, the "full" mean model is a straight line in time.

We use the REPEATED statement of PROC MIXED with the
TYPE= options to fit the model assuming several different
covariance structures.

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

Read in the data set (See Example 1 of Chapter 4)

*******************************************************************/

data dent1; infile ’dental.dat’;
input obsno child age distance gender;
ag = age*gender;

run;

/*******************************************************************

Sort the data so we can do gender-by-gender fits.

*******************************************************************/

proc sort data=dent1; by gender; run;

/*******************************************************************

First the straight line model separately for each gender and
simultaneously for both genders assuming that the covariance
structure of a data vector is diagonal with constant variance; that
is, use ordinary least squares for each gender separately and
then together.

*******************************************************************/

title "ORDINARY LEAST SQUARES FITS BY GENDER";
proc reg data=dent1; by gender;
model distance = age;

run;

title "ORDINARY LEAST SQUARES FIT WITH BOTH GENDERS";
proc reg data=dent1;
model distance = gender age ag;

run;

/*******************************************************************

Now use PROC MIXED to fit the more general regression model with
assumptions about the covariance matrix of a data vector. For all
of the fits, we use usual normal maximum likelihood (ML) rather
than restricted maximum likelihood (REML), which is the default.

We do this for each gender separately first using the unstructured
assumption. The main goal is to get insight into whether it might
be the case that the covariance matrix is different for each gender
(e.g. variation is different for each).

The SOLUTION option in the MODEL statement requests that the
estimates of the regression parameters be printed.

The R option in the REPEATED statement as used here requests that
the covariance matrix estimate be printed in matrix form. The
RCORR option requests that the corresponding correlation matrix
be printed.

*******************************************************************/
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* unstructured covariance matrix;

title "FIT WITH UNSTRUCTURED COVARIANCE FOR EACH GENDER";
proc mixed method=ml data=dent1; by gender;
class child;
model distance = age / solution;
repeated / type = un subject=child r rcorr;

run;

/*******************************************************************

Now do the same analyses with both genders simultaneously.
Consider several models, allowing the covariance matrix to
be either the same or different for each gender using the
GROUP = option, which allows for different covariance
parameters for each GROUP (genders here).

For the fit using TYPE = CS (Compound symmetry) assumed the
same for each group, we illustrate how to fit the two
different parameterizations of the full model. For all other
fits, we just use the second parameterization.

The CHISQ option in the MODEL statement requests that the Wald chi-square
test statistics be printed for certain contrasts of the regression
parameters (see the discussion of the OUTPUT). We only use this for
the second parameterization -- the TESTS OF FIXED EFFECTS are tests
of interest (different intercepts, slopes) in this case.

*******************************************************************/

* compound symmetry with separate intercept and slope for;
* each gender;

title "COMMON COMPOUND SYMMETRY STRUCTURE";
proc mixed method=ml data=dent1;
class gender child;
model distance = gender gender*age / noint solution ;
repeated / type = cs subject = child r rcorr;

run;

* compound symmetry with the "difference" parameterization;
* same for each gender;

title "COMMON COMPOUND SYMMETRY STRUCTURE";
proc mixed method=ml data=dent1;
class gender child;
model distance = gender age gender*age / solution chisq;
repeated / type = cs subject = child r rcorr;

run;

* ar(1) same for each gender;

title "COMMON AR(1) STRUCTURE";
proc mixed method=ml data=dent1;
class gender child ;
model distance = gender age age*gender / solution chisq;
repeated / type = ar(1) subject=child r rcorr;

run;

* one-dependent same for each gender;

title "COMMON ONE-DEPENDENT STRUCTURE";
proc mixed method=ml data=dent1;
class gender child ;
model distance = gender age age*gender / solution chisq;
repeated / type = toep(2) subject=child r rcorr;

run;

* compound symmetry, different for each gender;

title "SEPARATE COMPOUND SYMMETRY FOR EACH GENDER";
proc mixed method=ml data=dent1;
class gender child ;
model distance = gender age age*gender / solution chisq;
repeated / type = cs subject=child r rcorr group=gender;

run;

* ar(1), different for each gender;

title "SEPARATE AR(1) FOR EACH GENDER";
proc mixed method=ml data=dent1;
class gender child ;
model distance = gender age age*gender / solution chisq;
repeated / type = ar(1) subject=child r rcorr group=gender;

run;

PAGE 250



CHAPTER 8 ST 732, M. DAVIDIAN

* one-dependent, different for each gender;

title "SEPARATE ONE-DEPENDENT FOR EACH GENDER";
proc mixed method=ml data=dent1;
class gender child;
model distance = gender age age*gender / solution chisq;
repeated / type = toep(2) subject=child r rcorr group=gender;

run;

/*******************************************************************

Examination of the AIC, BIC, and loglikelihood ratios from the
above fits indicates that

- a model that allows a separate covariance matrix of the same
type for each gender is preferred

- the compound symmetry structure for each gender is preferred

Thus, for this model, we fit

- the full model again, now asking for the covariance matrix
of beta-hat to be printed using the COVB option;

- the reduced model (equal slopes)

- the full model using REML

This will allow a "full" vs. "reduced" likelihood ratio test of
equal slopes to be performed (by hand from the output).

We fit the first parameterization this time, so that the estimates
are interpreted as the gender-specific intercepts and slopes.
Thus, the TESTS OF FIXED EFFECTS in the output should be disregarded.

*******************************************************************/

* full model again with covariance matrix of betahat printed;

title "FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER";
proc mixed method=ml data=dent1;
class gender child;
model distance = gender gender*age / noint solution covb;
repeated / type=cs subject=child r rcorr group=gender;

run;

* reduced model;

title "REDUCED MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER";
proc mixed method=ml data=dent1;
class gender child;
model distance = gender age / noint solution covb;
repeated / type=cs subject=child r rcorr group=gender;

run;

* full model using REML (the default, so no METHOD= is specified);
* use ESTIMATE statement to estimate the mean for a boy of age 11;

title "FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER, REML";
proc mixed data=dent1;
class gender child;
model distance = gender gender*age / noint solution covb;
repeated / type=cs subject=child r rcorr group=gender;
estimate ’boy at 11’ gender 0 1 gender*age 0 11;

run;

* also fit full model in first parameterization to get chi-square tests;

title "FULL MODEL, DIFFERENCE PARAMETERIZATION";
proc mixed method=ml data=dent1;
class gender child;
model distance = gender age gender*age / solution chisq covb;
repeated / type=cs subject=child r rcorr group=gender;

run;
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OUTPUT: First we display the output; following this, we interpret the output.

ORDINARY LEAST SQUARES FITS BY GENDER 1

---------------------------------- gender=0 -----------------------------------

The REG Procedure
Model: MODEL1

Dependent Variable: distance

Number of Observations Read 44
Number of Observations Used 44

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 50.59205 50.59205 10.80 0.0021
Error 42 196.69773 4.68328
Corrected Total 43 247.28977

Root MSE 2.16409 R-Square 0.2046
Dependent Mean 22.64773 Adj R-Sq 0.1856
Coeff Var 9.55543

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 17.37273 1.63776 10.61 <.0001
age 1 0.47955 0.14590 3.29 0.0021

ORDINARY LEAST SQUARES FITS BY GENDER 2

----------------------------------- gender=1 -----------------------------------

The REG Procedure
Model: MODEL1

Dependent Variable: distance

Number of Observations Read 64
Number of Observations Used 64

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 196.87813 196.87813 36.65 <.0001
Error 62 333.05938 5.37193
Corrected Total 63 529.93750

Root MSE 2.31774 R-Square 0.3715
Dependent Mean 24.96875 Adj R-Sq 0.3614
Coeff Var 9.28257

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 16.34063 1.45437 11.24 <.0001
age 1 0.78438 0.12957 6.05 <.0001

ORDINARY LEAST SQUARES FIT WITH BOTH GENDERS 3

The REG Procedure
Model: MODEL1

Dependent Variable: distance

Number of Observations Read 108
Number of Observations Used 108

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 387.93503 129.31168 25.39 <.0001
Error 104 529.75710 5.09382
Corrected Total 107 917.69213

Root MSE 2.25695 R-Square 0.4227
Dependent Mean 24.02315 Adj R-Sq 0.4061
Coeff Var 9.39489

Parameter Estimates

PAGE 252



CHAPTER 8 ST 732, M. DAVIDIAN

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 17.37273 1.70803 10.17 <.0001
gender 1 -1.03210 2.21880 -0.47 0.6428
age 1 0.47955 0.15216 3.15 0.0021
ag 1 0.30483 0.19767 1.54 0.1261

FIT WITH UNSTRUCTURED COVARIANCE FOR EACH GENDER 4

----------------------------------- gender=0 -----------------------------------

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Unstructured
Subject Effect child
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

child 11 1 2 3 4 5 6 7 8 9 10 11

Dimensions

Covariance Parameters 10
Columns in X 2
Columns in Z 0
Subjects 11
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 44
Number of Observations Used 44
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 190.75564656
1 2 130.64154698 0.00000000

Convergence criteria met.

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.1129 3.0512 3.9496 3.9689
2 3.0512 3.2894 3.6632 3.7080
3 3.9496 3.6632 5.0966 4.9788

FIT WITH UNSTRUCTURED COVARIANCE FOR EACH GENDER 5

----------------------------------- gender=0 -----------------------------------

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

4 3.9689 3.7080 4.9788 5.4076

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8295 0.8627 0.8416
2 0.8295 1.0000 0.8946 0.8792
3 0.8627 0.8946 1.0000 0.9484
4 0.8416 0.8792 0.9484 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) child 4.1129
UN(2,1) child 3.0512
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UN(2,2) child 3.2894
UN(3,1) child 3.9496
UN(3,2) child 3.6632
UN(3,3) child 5.0966
UN(4,1) child 3.9689
UN(4,2) child 3.7080
UN(4,3) child 4.9788
UN(4,4) child 5.4076

Fit Statistics

-2 Log Likelihood 130.6
AIC (smaller is better) 154.6
AICC (smaller is better) 164.7
BIC (smaller is better) 159.4

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

9 60.11 <.0001

FIT WITH UNSTRUCTURED COVARIANCE FOR EACH GENDER 6

----------------------------------- gender=0 -----------------------------------

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 17.4220 0.6930 10 25.14 <.0001
age 0.4823 0.06144 10 7.85 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

age 1 10 61.62 <.0001

FIT WITH UNSTRUCTURED COVARIANCE FOR EACH GENDER 7

----------------------------------- gender=1 -----------------------------------

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Unstructured
Subject Effect child
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

child 16 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27

Dimensions

Covariance Parameters 10
Columns in X 2
Columns in Z 0
Subjects 16
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 64
Number of Observations Used 64
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 287.18814467
1 2 264.37833982 0.00000565
2 1 264.37792193 0.00000000
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Convergence criteria met.

FIT WITH UNSTRUCTURED COVARIANCE FOR EACH GENDER 8

----------------------------------- gender=1 -----------------------------------

The Mixed Procedure

Estimated R Matrix for child 12

Row Col1 Col2 Col3 Col4

1 5.7813 2.0152 3.3585 1.4987
2 2.0152 4.4035 2.0982 2.6472
3 3.3585 2.0982 6.6064 3.0421
4 1.4987 2.6472 3.0421 4.0783

Estimated R Correlation Matrix for child 12

Row Col1 Col2 Col3 Col4

1 1.0000 0.3994 0.5434 0.3086
2 0.3994 1.0000 0.3890 0.6247
3 0.5434 0.3890 1.0000 0.5861
4 0.3086 0.6247 0.5861 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) child 5.7813
UN(2,1) child 2.0152
UN(2,2) child 4.4035
UN(3,1) child 3.3585
UN(3,2) child 2.0982
UN(3,3) child 6.6064
UN(4,1) child 1.4987
UN(4,2) child 2.6472
UN(4,3) child 3.0421
UN(4,4) child 4.0783

Fit Statistics

-2 Log Likelihood 264.4
AIC (smaller is better) 288.4
AICC (smaller is better) 294.5
BIC (smaller is better) 297.6

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

9 22.81 0.0066
FIT WITH UNSTRUCTURED COVARIANCE FOR EACH GENDER 9

----------------------------------- gender=1 -----------------------------------

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 15.8282 1.1179 15 14.16 <.0001
age 0.8340 0.09274 15 8.99 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

age 1 15 80.86 <.0001

COMMON COMPOUND SYMMETRY STRUCTURE 10

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Compound Symmetry
Subject Effect child
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within
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Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 2
Columns in X 4
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 428.63905802 0.00000000

Convergence criteria met.

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.9052 3.0306 3.0306 3.0306
2 3.0306 4.9052 3.0306 3.0306

COMMON COMPOUND SYMMETRY STRUCTURE 11

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

3 3.0306 3.0306 4.9052 3.0306
4 3.0306 3.0306 3.0306 4.9052

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.6178 0.6178 0.6178
2 0.6178 1.0000 0.6178 0.6178
3 0.6178 0.6178 1.0000 0.6178
4 0.6178 0.6178 0.6178 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

CS child 3.0306
Residual 1.8746

Fit Statistics

-2 Log Likelihood 428.6
AIC (smaller is better) 440.6
AICC (smaller is better) 441.5
BIC (smaller is better) 448.4

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 49.60 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.3727 1.1615 25 14.96 <.0001
gender 1 16.3406 0.9631 25 16.97 <.0001
age*gender 0 0.4795 0.09231 79 5.20 <.0001
age*gender 1 0.7844 0.07654 79 10.25 <.0001

COMMON COMPOUND SYMMETRY STRUCTURE 12
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The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 25 255.79 <.0001
age*gender 2 79 66.01 <.0001

COMMON COMPOUND SYMMETRY STRUCTURE 13

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Compound Symmetry
Subject Effect child
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 2
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 428.63905802 0.00000000

Convergence criteria met.

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.9052 3.0306 3.0306 3.0306
2 3.0306 4.9052 3.0306 3.0306

COMMON COMPOUND SYMMETRY STRUCTURE 14

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

3 3.0306 3.0306 4.9052 3.0306
4 3.0306 3.0306 3.0306 4.9052

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.6178 0.6178 0.6178
2 0.6178 1.0000 0.6178 0.6178
3 0.6178 0.6178 1.0000 0.6178
4 0.6178 0.6178 0.6178 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

CS child 3.0306
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Residual 1.8746

Fit Statistics

-2 Log Likelihood 428.6
AIC (smaller is better) 440.6
AICC (smaller is better) 441.5
BIC (smaller is better) 448.4

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 49.60 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

Intercept 16.3406 0.9631 25 16.97 <.0001
gender 0 1.0321 1.5089 25 0.68 0.5003
gender 1 0 . . . .
age 0.7844 0.07654 79 10.25 <.0001
age*gender 0 -0.3048 0.1199 79 -2.54 0.0130
age*gender 1 0 . . . .

COMMON COMPOUND SYMMETRY STRUCTURE 15

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 1 25 0.47 0.47 0.4940 0.5003
age 1 79 111.10 111.10 <.0001 <.0001
age*gender 1 79 6.46 6.46 0.0110 0.0130

COMMON AR(1) STRUCTURE 16

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Autoregressive
Subject Effect child
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 2
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 440.68100623 0.00000000

Convergence criteria met.

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4
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1 4.8910 2.9696 1.8030 1.0947
2 2.9696 4.8910 2.9696 1.8030

COMMON AR(1) STRUCTURE 17

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

3 1.8030 2.9696 4.8910 2.9696
4 1.0947 1.8030 2.9696 4.8910

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.6071 0.3686 0.2238
2 0.6071 1.0000 0.6071 0.3686
3 0.3686 0.6071 1.0000 0.6071
4 0.2238 0.3686 0.6071 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

AR(1) child 0.6071
Residual 4.8910

Fit Statistics

-2 Log Likelihood 440.7
AIC (smaller is better) 452.7
AICC (smaller is better) 453.5
BIC (smaller is better) 460.5

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 37.56 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

Intercept 16.5920 1.3299 25 12.48 <.0001
gender 0 0.7297 2.0836 25 0.35 0.7291
gender 1 0 . . . .
age 0.7696 0.1147 79 6.71 <.0001
age*gender 0 -0.2858 0.1797 79 -1.59 0.1157
age*gender 1 0 . . . .

COMMON AR(1) STRUCTURE 18

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 1 25 0.12 0.12 0.7262 0.7291
age 1 79 48.63 48.63 <.0001 <.0001
age*gender 1 79 2.53 2.53 0.1117 0.1157

COMMON ONE-DEPENDENT STRUCTURE 19

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Toeplitz
Subject Effect child
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13
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14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 2
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 589.03603775 0.16283093
2 1 545.67380444 0.15138564
3 1 510.19059372 0.12467398
4 1 484.30189351 0.08645876
5 1 468.14463315 0.04649605
6 1 460.20520640 0.01592441
7 1 457.72394860 0.00214984
8 1 457.42200558 0.00004120
9 1 457.41660393 0.00000002
10 1 457.41660197 0.00000000

COMMON ONE-DEPENDENT STRUCTURE 20

The Mixed Procedure

Convergence criteria met.

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.5294 1.6120
2 1.6120 4.5294 1.6120
3 1.6120 4.5294 1.6120
4 1.6120 4.5294

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.3559
2 0.3559 1.0000 0.3559
3 0.3559 1.0000 0.3559
4 0.3559 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

TOEP(2) child 1.6120
Residual 4.5294

Fit Statistics

-2 Log Likelihood 457.4
AIC (smaller is better) 469.4
AICC (smaller is better) 470.2
BIC (smaller is better) 477.2

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 20.83 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

Intercept 16.6208 1.4167 25 11.73 <.0001
gender 0 0.6827 2.2195 25 0.31 0.7609
gender 1 0 . . . .
age 0.7629 0.1253 79 6.09 <.0001

COMMON ONE-DEPENDENT STRUCTURE 21

The Mixed Procedure
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Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

age*gender 0 -0.2773 0.1964 79 -1.41 0.1619
age*gender 1 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 1 25 0.09 0.09 0.7584 0.7609
age 1 79 40.42 40.42 <.0001 <.0001
age*gender 1 79 1.99 1.99 0.1580 0.1619

SEPARATE COMPOUND SYMMETRY FOR EACH GENDER 22

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Compound Symmetry
Subject Effect child
Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 4
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 408.81297228 0.00000000

Convergence criteria met.

SEPARATE COMPOUND SYMMETRY FOR EACH GENDER 23

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.4704 3.8804 3.8804 3.8804
2 3.8804 4.4704 3.8804 3.8804
3 3.8804 3.8804 4.4704 3.8804
4 3.8804 3.8804 3.8804 4.4704

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8680 0.8680 0.8680
2 0.8680 1.0000 0.8680 0.8680
3 0.8680 0.8680 1.0000 0.8680
4 0.8680 0.8680 0.8680 1.0000

Estimated R Matrix for child 12
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Row Col1 Col2 Col3 Col4

1 5.2041 2.4463 2.4463 2.4463
2 2.4463 5.2041 2.4463 2.4463
3 2.4463 2.4463 5.2041 2.4463
4 2.4463 2.4463 2.4463 5.2041

Estimated R Correlation Matrix for child 12

Row Col1 Col2 Col3 Col4

1 1.0000 0.4701 0.4701 0.4701
2 0.4701 1.0000 0.4701 0.4701
3 0.4701 0.4701 1.0000 0.4701
4 0.4701 0.4701 0.4701 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance child gender 0 0.5900
CS child gender 0 3.8804
Variance child gender 1 2.7577
CS child gender 1 2.4463

Fit Statistics

-2 Log Likelihood 408.8
AIC (smaller is better) 424.8
AICC (smaller is better) 426.3

SEPARATE COMPOUND SYMMETRY FOR EACH GENDER 24

The Mixed Procedure

Fit Statistics

BIC (smaller is better) 435.2

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 69.43 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

Intercept 16.3406 1.1130 25 14.68 <.0001
gender 0 1.0321 1.3890 25 0.74 0.4644
gender 1 0 . . . .
age 0.7844 0.09283 79 8.45 <.0001
age*gender 0 -0.3048 0.1063 79 -2.87 0.0053
age*gender 1 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 1 25 0.55 0.55 0.4575 0.4644
age 1 79 141.37 141.37 <.0001 <.0001
age*gender 1 79 8.22 8.22 0.0041 0.0053

SEPARATE AR(1) FOR EACH GENDER 25

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Autoregressive
Subject Effect child
Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
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24 25 26 27

Dimensions

Covariance Parameters 4
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 475.71968065 0.20025573
2 1 440.38814030 0.08967756
3 1 426.69925492 0.04134123
4 1 420.38697948 0.02792114
5 1 416.67736557 0.00923733
6 1 415.50565786 0.00083428
7 1 415.41014131 0.00000671
8 1 415.40940946 0.00000000

SEPARATE AR(1) FOR EACH GENDER 26

The Mixed Procedure

Convergence criteria met.

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.6591 4.1730 3.7377 3.3477
2 4.1730 4.6591 4.1730 3.7377
3 3.7377 4.1730 4.6591 4.1730
4 3.3477 3.7377 4.1730 4.6591

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8957 0.8022 0.7185
2 0.8957 1.0000 0.8957 0.8022
3 0.8022 0.8957 1.0000 0.8957
4 0.7185 0.8022 0.8957 1.0000

Estimated R Matrix for child 12

Row Col1 Col2 Col3 Col4

1 5.1724 2.2912 1.0149 0.4496
2 2.2912 5.1724 2.2912 1.0149
3 1.0149 2.2912 5.1724 2.2912
4 0.4496 1.0149 2.2912 5.1724

Estimated R Correlation Matrix for child 12

Row Col1 Col2 Col3 Col4

1 1.0000 0.4430 0.1962 0.08692
2 0.4430 1.0000 0.4430 0.1962
3 0.1962 0.4430 1.0000 0.4430
4 0.08692 0.1962 0.4430 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance child gender 0 4.6591
AR(1) child gender 0 0.8957
Variance child gender 1 5.1724
AR(1) child gender 1 0.4430

SEPARATE AR(1) FOR EACH GENDER 27

The Mixed Procedure

Fit Statistics

-2 Log Likelihood 415.4
AIC (smaller is better) 431.4
AICC (smaller is better) 432.9
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BIC (smaller is better) 441.8

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 62.83 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

Intercept 16.5245 1.4558 25 11.35 <.0001
gender 0 0.7817 1.8123 25 0.43 0.6699
gender 1 0 . . . .
age 0.7729 0.1276 79 6.06 <.0001
age*gender 0 -0.2882 0.1513 79 -1.90 0.0605
age*gender 1 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 1 25 0.19 0.19 0.6662 0.6699
age 1 79 69.07 69.07 <.0001 <.0001
age*gender 1 79 3.63 3.63 0.0569 0.0605

SEPARATE ONE-DEPENDENT FOR EACH GENDER 28

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Toeplitz
Subject Effect child
Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 4
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 465.00494081 280.11418099
2 1 458.88438919 49.85385575
3 1 453.61695810 7.33335163
4 1 445.15025755 0.00347991
5 1 444.66243888 0.00028171
6 1 444.62522997 0.00000436
7 1 444.62468768 0.00000000

SEPARATE ONE-DEPENDENT FOR EACH GENDER 29

The Mixed Procedure

Convergence criteria met.

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4
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1 3.7093 2.0415
2 2.0415 3.7093 2.0415
3 2.0415 3.7093 2.0415
4 2.0415 3.7093

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.5504
2 0.5504 1.0000 0.5504
3 0.5504 1.0000 0.5504
4 0.5504 1.0000

Estimated R Matrix for child 12

Row Col1 Col2 Col3 Col4

1 4.9891 1.3289
2 1.3289 4.9891 1.3289
3 1.3289 4.9891 1.3289
4 1.3289 4.9891

Estimated R Correlation Matrix for child 12

Row Col1 Col2 Col3 Col4

1 1.0000 0.2664
2 0.2664 1.0000 0.2664
3 0.2664 1.0000 0.2664
4 0.2664 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance child gender 0 3.7093
TOEP(2) child gender 0 2.0415
Variance child gender 1 4.9891
TOEP(2) child gender 1 1.3289

SEPARATE ONE-DEPENDENT FOR EACH GENDER 30

The Mixed Procedure

Fit Statistics

-2 Log Likelihood 444.6
AIC (smaller is better) 460.6
AICC (smaller is better) 462.1
BIC (smaller is better) 471.0

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 33.62 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

Intercept 16.5091 1.4797 25 11.16 <.0001
gender 0 0.5832 2.0126 25 0.29 0.7744
gender 1 0 . . . .
age 0.7719 0.1312 79 5.88 <.0001
age*gender 0 -0.2673 0.1772 79 -1.51 0.1354
age*gender 1 0 . . . .

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 1 25 0.08 0.08 0.7720 0.7744
age 1 79 51.92 51.92 <.0001 <.0001
age*gender 1 79 2.28 2.28 0.1314 0.1354

FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER 31

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Compound Symmetry
Subject Effect child
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Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 4
Columns in X 4
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 408.81297228 0.00000000

Convergence criteria met.

FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER 32

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.4704 3.8804 3.8804 3.8804
2 3.8804 4.4704 3.8804 3.8804
3 3.8804 3.8804 4.4704 3.8804
4 3.8804 3.8804 3.8804 4.4704

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8680 0.8680 0.8680
2 0.8680 1.0000 0.8680 0.8680
3 0.8680 0.8680 1.0000 0.8680
4 0.8680 0.8680 0.8680 1.0000

Estimated R Matrix for child 12

Row Col1 Col2 Col3 Col4

1 5.2041 2.4463 2.4463 2.4463
2 2.4463 5.2041 2.4463 2.4463
3 2.4463 2.4463 5.2041 2.4463
4 2.4463 2.4463 2.4463 5.2041

Estimated R Correlation Matrix for child 12

Row Col1 Col2 Col3 Col4

1 1.0000 0.4701 0.4701 0.4701
2 0.4701 1.0000 0.4701 0.4701
3 0.4701 0.4701 1.0000 0.4701
4 0.4701 0.4701 0.4701 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance child gender 0 0.5900
CS child gender 0 3.8804
Variance child gender 1 2.7577
CS child gender 1 2.4463

Fit Statistics

-2 Log Likelihood 408.8
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AIC (smaller is better) 424.8
AICC (smaller is better) 426.3

FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER 33

The Mixed Procedure

Fit Statistics

BIC (smaller is better) 435.2

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 69.43 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.3727 0.8311 25 20.90 <.0001
gender 1 16.3406 1.1130 25 14.68 <.0001
age*gender 0 0.4795 0.05179 79 9.26 <.0001
age*gender 1 0.7844 0.09283 79 8.45 <.0001

Covariance Matrix for Fixed Effects

Row Effect gender Col1 Col2 Col3 Col4

1 gender 0 0.6907 -0.02950
2 gender 1 1.2388 -0.09480
3 age*gender 0 -0.02950 0.002682
4 age*gender 1 -0.09480 0.008618

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 25 326.26 <.0001
age*gender 2 79 78.57 <.0001

REDUCED MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER 34

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Compound Symmetry
Subject Effect child
Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 4
Columns in X 3
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 480.68362161
1 4 416.64891361 0.00045640
2 1 416.59716984 0.00000276
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3 1 416.59686755 0.00000000

Convergence criteria met.

REDUCED MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER 35

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.4937 3.8726 3.8726 3.8726
2 3.8726 4.4937 3.8726 3.8726
3 3.8726 3.8726 4.4937 3.8726
4 3.8726 3.8726 3.8726 4.4937

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8618 0.8618 0.8618
2 0.8618 1.0000 0.8618 0.8618
3 0.8618 0.8618 1.0000 0.8618
4 0.8618 0.8618 0.8618 1.0000

Estimated R Matrix for child 12

Row Col1 Col2 Col3 Col4

1 5.4838 2.3530 2.3530 2.3530
2 2.3530 5.4838 2.3530 2.3530
3 2.3530 2.3530 5.4838 2.3530
4 2.3530 2.3530 2.3530 5.4838

Estimated R Correlation Matrix for child 12

Row Col1 Col2 Col3 Col4

1 1.0000 0.4291 0.4291 0.4291
2 0.4291 1.0000 0.4291 0.4291
3 0.4291 0.4291 1.0000 0.4291
4 0.4291 0.4291 0.4291 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance child gender 0 0.6211
CS child gender 0 3.8726
Variance child gender 1 3.1308
CS child gender 1 2.3530

Fit Statistics

-2 Log Likelihood 416.6
AIC (smaller is better) 430.6
AICC (smaller is better) 431.7

REDUCED MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER 36

The Mixed Procedure

Fit Statistics

BIC (smaller is better) 439.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 64.09 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 16.6218 0.7945 25 20.92 <.0001
gender 1 18.9429 0.6790 25 27.90 <.0001
age 0.5478 0.04681 80 11.70 <.0001

Covariance Matrix for Fixed Effects

Row Effect gender Col1 Col2 Col3

1 gender 0 0.6313 0.2651 -0.02410
2 gender 1 0.2651 0.4611 -0.02410
3 age -0.02410 -0.02410 0.002191

PAGE 268



CHAPTER 8 ST 732, M. DAVIDIAN

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 25 423.41 <.0001
age 1 80 136.97 <.0001

FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER, REML 37

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Compound Symmetry
Subject Effect child
Group Effect gender
Estimation Method REML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 4
Columns in X 4
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 483.55911746
1 1 414.66636550 0.00000000

Convergence criteria met.

FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER, REML 38

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.8870 4.2786 4.2786 4.2786
2 4.2786 4.8870 4.2786 4.2786
3 4.2786 4.2786 4.8870 4.2786
4 4.2786 4.2786 4.2786 4.8870

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8755 0.8755 0.8755
2 0.8755 1.0000 0.8755 0.8755
3 0.8755 0.8755 1.0000 0.8755
4 0.8755 0.8755 0.8755 1.0000

Estimated R Matrix for child 12

Row Col1 Col2 Col3 Col4

1 5.4571 2.6407 2.6407 2.6407
2 2.6407 5.4571 2.6407 2.6407
3 2.6407 2.6407 5.4571 2.6407
4 2.6407 2.6407 2.6407 5.4571

Estimated R Correlation Matrix for child 12

Row Col1 Col2 Col3 Col4
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1 1.0000 0.4839 0.4839 0.4839
2 0.4839 1.0000 0.4839 0.4839
3 0.4839 0.4839 1.0000 0.4839
4 0.4839 0.4839 0.4839 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance child gender 0 0.6085
CS child gender 0 4.2786
Variance child gender 1 2.8164
CS child gender 1 2.6407

Fit Statistics

-2 Res Log Likelihood 414.7
AIC (smaller is better) 422.7
AICC (smaller is better) 423.1

FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER, REML 39

The Mixed Procedure

Fit Statistics

BIC (smaller is better) 427.8

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 68.89 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.3727 0.8587 25 20.23 <.0001
gender 1 16.3406 1.1287 25 14.48 <.0001
age*gender 0 0.4795 0.05259 79 9.12 <.0001
age*gender 1 0.7844 0.09382 79 8.36 <.0001

Covariance Matrix for Fixed Effects

Row Effect gender Col1 Col2 Col3 Col4

1 gender 0 0.7374 -0.03042
2 gender 1 1.2740 -0.09681
3 age*gender 0 -0.03042 0.002766
4 age*gender 1 -0.09681 0.008801

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 25 309.43 <.0001
age*gender 2 79 76.53 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

boy at 11 24.9688 0.4572 79 54.61 <.0001

FULL MODEL WITH COMPOUND SYMMETRY FOR EACH GENDER, REML 40

The Mixed Procedure

Contrasts

Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

both diff 2 79 16.84 8.42 0.0002 0.0005

FULL MODEL, DIFFERENCE PARAMETERIZATION 41

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Compound Symmetry
Subject Effect child
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Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 4
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 408.81297228 0.00000000

Convergence criteria met.

FULL MODEL, DIFFERENCE PARAMETERIZATION 42

The Mixed Procedure

Estimated R Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.4704 3.8804 3.8804 3.8804
2 3.8804 4.4704 3.8804 3.8804
3 3.8804 3.8804 4.4704 3.8804
4 3.8804 3.8804 3.8804 4.4704

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8680 0.8680 0.8680
2 0.8680 1.0000 0.8680 0.8680
3 0.8680 0.8680 1.0000 0.8680
4 0.8680 0.8680 0.8680 1.0000

Estimated R Matrix for child 12

Row Col1 Col2 Col3 Col4

1 5.2041 2.4463 2.4463 2.4463
2 2.4463 5.2041 2.4463 2.4463
3 2.4463 2.4463 5.2041 2.4463
4 2.4463 2.4463 2.4463 5.2041

Estimated R Correlation Matrix for child 12

Row Col1 Col2 Col3 Col4

1 1.0000 0.4701 0.4701 0.4701
2 0.4701 1.0000 0.4701 0.4701
3 0.4701 0.4701 1.0000 0.4701
4 0.4701 0.4701 0.4701 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance child gender 0 0.5900
CS child gender 0 3.8804
Variance child gender 1 2.7577
CS child gender 1 2.4463

Fit Statistics

-2 Log Likelihood 408.8
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AIC (smaller is better) 424.8
AICC (smaller is better) 426.3

FULL MODEL, DIFFERENCE PARAMETERIZATION 43

The Mixed Procedure

Fit Statistics

BIC (smaller is better) 435.2

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 69.43 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

Intercept 16.3406 1.1130 25 14.68 <.0001
gender 0 1.0321 1.3890 25 0.74 0.4644
gender 1 0 . . . .
age 0.7844 0.09283 79 8.45 <.0001
age*gender 0 -0.3048 0.1063 79 -2.87 0.0053
age*gender 1 0 . . . .

Covariance Matrix for Fixed Effects

Row Effect gender Col1 Col2 Col3 Col4 Col5

1 Intercept 1.2388 -1.2388 -0.09480 0.09480
2 gender 0 -1.2388 1.9294 0.09480 -0.1243
3 gender 1
4 age -0.09480 0.09480 0.008618 -0.00862
5 age*gender 0 0.09480 -0.1243 -0.00862 0.01130
6 age*gender 1

Covariance
Matrix for
Fixed Effects

Row Col6

1
2
3
4
5
6

FULL MODEL, DIFFERENCE PARAMETERIZATION 44

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 1 25 0.55 0.55 0.4575 0.4644
age 1 79 141.37 141.37 <.0001 <.0001
age*gender 1 79 8.22 8.22 0.0041 0.0053
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INTERPRETATION:

• Comparison with ordinary least squares (independence assumption). Pages 1–3 of the

output show the results of fitting the straight line model separately for each gender and then for

both genders together using ordinary least squares. Thus, these fits do not take correlation into

account, but rather assume that all observations across all children are independent. Because the

information on the straight line for each gender comes only from the data from that gender, the

estimates of intercept and slope for each are the same regardless of whether the model is fitted

separately or simultaneously. The ordinary least squares estimates are

β̂0,G,OLS = 17.3273, β̂1,G,OLS = 0.4795, β̂0,B,OLS = 16.3406, β̂1,B,OLS = 0.7844.

Pages 10–11 show the results of fitting the model with both genders simultaneously but assuming

the same compound symmetry structure for both genders. Note that the estimates of β are

identical to the ordinary least squares estimates. Pages 22-24 show the results of fitting the

same model, but in the second “difference” parameterization and assuming a separate compound

symmetry structure for each gender. Again, the estimates for β are identical to the ordinary

least squares estimates. Both of these fits were carried out using maximum likelihood estimation

(method=ml).

Inspection of fits with other covariance structures shows that these lead to estimates for β that

are different from ordinary least squares. This reflects a result we will see later, that when the

covariance structure is of a certain form (of which compound symmetry is a special case), estimates

of β are the same as ordinary least squares. However, the standard errors computed under

the independence assumption will differ from those computed under the compound symmetry, so

that tests about β could lead to different conclusions. See the output to verify that the standard

error estimates are indeed different.

• Choice of covariance structure. Pages 4–9 show the results of fitting the straight line model

separately for each gender assuming that the covariance matrix is unstructured. This allows the

analyst to examine the “raw” evidence for whether it seems reasonable to assume that the structure

is the same for each gender or different. Page 4 shows the estimate for girls, page 8 for boys (R

Matrix for CHILD 1 or 12). PROC MIXED prints out the estimate for the first child in each group;

these are balanced data, so the matrix is the same for all other children. The corresponding

correlation matrices R Correlation Matrix) are also printed. Comparison of these shows that

the estimated pattern of correlation appears quite different for the two genders; observations on

girls seem to be more highly correlated.
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Pages 11–30 show the results of fits of several different covariance structures using maximum

likelihood. In the following table, we summarize the results (see the output for each fit):

Model −2 loglike AIC BIC

Compound symmetry, same 428.6 440.6 448.4

AR(1), same 440.7 452.7 460.5

One-dependent, same 457.4 469.4 477.2

Compound symmetry, different 408.8 424.8 435.2

AR(1), different 415.4 431.4 441.8

One-dependent, different 444.6 460.6 471.0

Inspection of the AIC and BIC values reveals that those for models where the covariance structure

is allowed to differ across genders are mostly smaller than those for models where the structure

is assumed to be the same. Both criteria are smallest in a fairly convincing way for the choice

of separate compound symmetry structures for each gender. As both criteria agree, a sensible

approach would be to choose this model to represent the covariance structure.

• Hypothesis of common slopes. Having decided upon the covariance model, we now turn to

hypotheses of interest. Tests of these hypotheses will be based on the fit of this model. On pages

31–33, the fit of the full model using the first parameterization is shown. The covb option results

in printing of the estimates covariance matrix V̂ β for this fit (Covariance Matrix for Fixed

Effects on page 33). The matrix is

V̂ β =




0.6907 0.0000 −0.0295 0.0000

0.0000 1.2388 0.0000 −0.0948

−0.0295 0.0000 0.0027 0.0000

0.0000 −0.0948 0.0000 0.0086




.

It is straightforward to verify that the estimated standard errors printed in the table Solution

for Fixed Effects are the square roots of the diagonal elements of this matrix. Also from the

output, we find that −2 times the log-likelihood is equal to 408.8.

On pages 34–36, we fit the “reduced” model which assumes the slope is the same and equal to

β1 for both genders:

Yij = β0,B + β1tij + eij for boys

= β0,G + β1tij + eij for girls

The estimate of β1 is 0.5478. The log-likelihood multiplied by −2 is 416.6.
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The likelihood ratio test statistic for testing the null hypothesis that the slopes are the same is

416.6 − 408.8 = 7.8. The difference in number of parameters between the “full” and “reduced”

models is r = 1. Thus, we compare the test statistic value to χ2
1,0.95 = 3.84. As the statistic is

much larger than the critical value, we have strong evidence to suggest that the slopes are indeed

different; we reject the null hypothesis at level α = 0.05.

We may also conduct this test using Wald methods. Define

L = (0, 0, 1,−1).

Then it may be verified (try it!) that, using V̂ β above from the full model fit on p.33 ,

TL = 8.22.

This test statistic also has a sampling distribution that is χ2
1; thus, we compare 8.22 to 3.84

and reject the null hypothesis on the basis of this procedure as well. For this parameterization,

the table Tests of Fixed Effects on page 39 in fact computes this test statistic (from the

chisq option); for a model with several straight lines and the “difference” parameterization, the

“interaction” test (AGE*GENDER here) is a test for equal slopes (the test for equal intercepts is the

“main effect” test for GENDER here). PROC MIXED by default produces an “adjusted” version of the

χ2 Wald statistic that is to be compared to an F distribution. This statistic is identical to the

Wald statistic when there are only 2 groups, as here. This table of Tests of Fixed Effects is

meaningless for this model in the first parameterization.

Alternatively, we see that PROC MIXED will computes this test for us in another place, too. On

pages 41–44, the results of fitting the full model using the second “difference” parameterization

are shown. In the table Solution for Fixed Effects, the estimate of β1,G−B = −0.3048 with

estimated standard error 0.1063. Note that when we parameterize the model this way, SAS displays

the results as if the model were overparameterized. One can reconstruct the estimates of intercept

and slope for girls from this table. The null hypothesis of common slope is H0 : β1,G−B = 0 in this

parameterization. We may construct a Wald test statistic as −0.3048/0.1063 = −2.87; actually,

SAS does this for us in the table.
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• Estimation of mean for boys at age 11. In the analysis using REML on pages 37–40, we

use an estimate statement to ask PROC MIXED to compute an estimate of the mean distance for

a boy of 11 years of age. The estimate and its standard error are 24.9688 (0.4572). This may be

verified manually; from the output,

V̂ β =




0.7374 0.0000 −0.0304 0.0000

0.0000 1.2740 0.0000 −0.09681

−0.0304 0.0000 0.00276 0.0000

0.0000 −0.0968 0.0000 0.0088




.

With

L = (0, 1, 0, 11),

Lβ = β0,B + β1,B(11), the desired quantity. It may be verified that the matrix multiplication

Lβ̂ leads to the estimate above. Furthermore, the estimated standard error for Lβ̂ is given by

(LV̂ βL′)1/2, which may be verified to give the value above.
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EXAMPLE 2 – DIALYZER DATA: In the following program, we consider the model that assumes that

the mean response is a straight line as a function of time for each center.

• As with the dental data, we may parameterize this model with either (1) a separate intercept

and slope for each center as in equation (8.10) or (2) with the “difference” parameterization with

each center’s intercept and slope represented with a parameter that is the difference between the

intercept or slope for that center measured against that for center 3.

• This mean model is fitted using ordinary least squares (so assuming the independence covariance

structure) and then by restricted maximum likelihood (the default method used by PROC MIXED)

assuming the compound symmetry and Markov covariance structures. Recall that these data are

unbalanced in the sense that the “times” (transmembrane pressures in this case) are different for

each dialyzer; thus, it is not possible to consider a completely unstructured covariance structure

nor some of the models for covariance that only make sense if the data are balanced.

• The preferred covariance structure according to inspection of the AIC and BIC values is fitted

using both parameterizations (1) and (2); from the output for the latter fit, the Wald test statistics

may be examined to investigate whether rate of change of ultrafiltration rate with pressure differs

across centers.

• The variable tmp representing transmembrane pressure is rescaled by dividing its value by 100.

This is carried out to allow sensible and stable fitting of the Markov covariance structure. Recall

that for this structure, the correlation parameter ρ is raised to a power equal to the difference

between adjacent “times” within each unit. Because the pressures here are on the order of 100s,

these differences may be quite large (=100 or more). Computationally, raising a small number to a

power this large is not feasible, and will cause numerical algorithms used to carry out maximization

of likelihoods or restricted likelihoods to fail. By rescaling the pressures, and hence the differences,

we alleviate this difficulty. This does not alter the problem or our ability to draw valid conclusions;

all it does is put slope parameters on a scale of 100 mmHg/unit pressure rather than mmHg/unit

pressure.
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PROGRAM:

/*******************************************************************

CHAPTER 8, EXAMPLE 2

Analysis of the ultrafiltration data by fitting a general linear
regression model in transmembrane pressure (mmHg)

- the repeated measurement factor is transmembrane pressure (tmp)

- there is one "treatment" factor, center

- the response is ultrafiltration rate (ufr, ml/hr)

For each center, the mean model is a straight line in time.

We use the REPEATED statement of PROC MIXED with the
TYPE= options to fit the model assuming various covariance structures.

These data are unbalanced both in the sense that the pressures
under which each dialyzer is observed are different.

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

Read in the data set

*******************************************************************/

data ultra; infile ’ultra.dat’;
input subject tmp ufr center;

* rescale the pressures;

tmp=tmp/100;

run;

/*******************************************************************

Fit the straight line model assuming that the covariance
structure of a data vector is diagonal with constant variance;
i.e. using ordinary least squares.

We use PROC GLM with the SOLUTION and NOINT options to fit
the three separate intercepts/slopes parameterization.

*******************************************************************/

title "FIT USING ORDINARY LEAST SQUARES";
proc glm data=ultra;
class center;
model ufr = center center*tmp / noint solution;

run;

/*******************************************************************

Now use PROC MIXED to fit the more general regression model with
assumptions about the covariance matrix of a data vector. We show
two, assuming the covariance is similar across centers.

The SOLUTION option in the MODEL statement requests that the
estimates of the regression parameters be printed.

The R option in the REPEATED statement as used here requests that
the covariance matrix estimate be printed in matrix form. We also
print the correlation matrix using the RCORR option.

*******************************************************************/

* compound symmetry;

title "FIT WITH COMPOUND SYMMETRY";
proc mixed data=ultra method=ml;
class subject center ;
model ufr = center center*tmp / noint solution covb;
repeated / type = cs subject=subject r rcorr;

run;

* Markov;

title "FIT WITH MARKOV STRUCTURE";
proc mixed data=ultra method=ml;
class subject center ;
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model ufr = center center*tmp / noint solution covb;
repeated / type = sp(pow)(tmp) subject=subject r rcorr;

run;

* using the alternative parameterization to get the chi-square tests;

title "FIT WITH MARKOV STRUCTURE AND DIFFERENCE PARAMETERIZATION";
proc mixed data=ultra method=ml;
class subject center ;
model ufr = center tmp center*tmp / solution covb chisq;
repeated / type = sp(pow)(tmp) subject=subject r rcorr;

run;

OUTPUT: First we display the output; following this is a brief interpretation.

FIT USING ORDINARY LEAST SQUARES 1

The GLM Procedure

Class Level Information

Class Levels Values

center 3 1 2 3

Number of Observations Read 164
Number of Observations Used 164

FIT USING ORDINARY LEAST SQUARES 2

The GLM Procedure

Dependent Variable: ufr
Sum of

Source DF Squares Mean Square F Value Pr > F

Model 6 243256296.5 40542716.1 14328.2 <.0001

Error 158 447071.5 2829.6

Uncorrected Total 164 243703368.0

R-Square Coeff Var Root MSE ufr Mean

0.987565 4.726174 53.19367 1125.512

Source DF Type I SS Mean Square F Value Pr > F

center 3 208388808.8 69462936.3 24549.0 <.0001
tmp*center 3 34867487.8 11622495.9 4107.52 <.0001

Source DF Type III SS Mean Square F Value Pr > F

center 3 514475.40 171491.80 60.61 <.0001
tmp*center 3 34867487.76 11622495.92 4107.52 <.0001

Standard
Parameter Estimate Error t Value Pr > |t|

center 1 -175.1259559 18.97989383 -9.23 <.0001
center 2 -168.7697782 21.19872031 -7.96 <.0001
center 3 -148.0350885 25.65223883 -5.77 <.0001
tmp*center 1 441.1821984 5.73604724 76.91 <.0001
tmp*center 2 411.5087473 6.66672020 61.73 <.0001
tmp*center 3 405.5340253 7.95819811 50.96 <.0001

FIT WITH COMPOUND SYMMETRY 3

The Mixed Procedure

Model Information

Data Set WORK.ULTRA
Dependent Variable ufr
Covariance Structure Compound Symmetry
Subject Effect subject
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values
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subject 41 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41

center 3 1 2 3

Dimensions

Covariance Parameters 2
Columns in X 6
Columns in Z 0
Subjects 41
Max Obs Per Subject 5

Number of Observations

Number of Observations Read 164
Number of Observations Used 164
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 1762.75143525
1 2 1697.47817418 0.00000000

Convergence criteria met.

FIT WITH COMPOUND SYMMETRY 4

The Mixed Procedure

Estimated R Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 2723.81 1576.70 1576.70 1576.70
2 1576.70 2723.81 1576.70 1576.70
3 1576.70 1576.70 2723.81 1576.70
4 1576.70 1576.70 1576.70 2723.81

Estimated R Correlation Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.5789 0.5789 0.5789
2 0.5789 1.0000 0.5789 0.5789
3 0.5789 0.5789 1.0000 0.5789
4 0.5789 0.5789 0.5789 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

CS subject 1576.70
Residual 1147.12

Fit Statistics

-2 Log Likelihood 1697.5
AIC (smaller is better) 1713.5
AICC (smaller is better) 1714.4
BIC (smaller is better) 1727.2

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 65.27 <.0001

Solution for Fixed Effects

Standard
Effect center Estimate Error DF t Value Pr > |t|

center 1 -174.32 15.4542 38 -11.28 <.0001
center 2 -171.51 17.4378 38 -9.84 <.0001
center 3 -150.40 20.2761 38 -7.42 <.0001
tmp*center 1 440.92 3.6528 120 120.71 <.0001
tmp*center 2 412.24 4.2494 120 97.01 <.0001
tmp*center 3 406.31 5.0777 120 80.02 <.0001

FIT WITH COMPOUND SYMMETRY 5

The Mixed Procedure

Covariance Matrix for Fixed Effects

Row Effect center Col1 Col2 Col3 Col4 Col5
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1 center 1 238.83 -41.5232
2 center 2 304.08 -53.8425
3 center 3 411.12
4 tmp*center 1 -41.5232 13.3433
5 tmp*center 2 -53.8425 18.0574
6 tmp*center 3 -78.9443

Covariance
Matrix for
Fixed Effects

Row Col6

1
2
3 -78.9443
4
5
6 25.7835

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

center 3 38 93.00 <.0001
tmp*center 3 120 10128.0 <.0001

FIT WITH MARKOV STRUCTURE 6

The Mixed Procedure

Model Information

Data Set WORK.ULTRA
Dependent Variable ufr
Covariance Structure Spatial Power
Subject Effect subject
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

subject 41 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41

center 3 1 2 3

Dimensions

Covariance Parameters 2
Columns in X 6
Columns in Z 0
Subjects 41
Max Obs Per Subject 5

Number of Observations

Number of Observations Read 164
Number of Observations Used 164
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 1762.75143525
1 2 1689.99200625 0.00000320
2 1 1689.98977683 0.00000000

Convergence criteria met.

FIT WITH MARKOV STRUCTURE 7

The Mixed Procedure

Estimated R Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 2913.20 1954.28 1336.16 952.56
2 1954.28 2913.20 1991.78 1419.97
3 1336.16 1991.78 2913.20 2076.86
4 952.56 1419.97 2076.86 2913.20
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Estimated R Correlation Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.6708 0.4587 0.3270
2 0.6708 1.0000 0.6837 0.4874
3 0.4587 0.6837 1.0000 0.7129
4 0.3270 0.4874 0.7129 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

SP(POW) subject 0.6837
Residual 2913.20

Fit Statistics

-2 Log Likelihood 1690.0
AIC (smaller is better) 1706.0
AICC (smaller is better) 1706.9
BIC (smaller is better) 1719.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 72.76 <.0001

Solution for Fixed Effects

Standard
Effect center Estimate Error DF t Value Pr > |t|

center 1 -171.68 18.9175 38 -9.08 <.0001
center 2 -166.60 21.5922 38 -7.72 <.0001
center 3 -144.92 25.5328 38 -5.68 <.0001
tmp*center 1 441.34 5.0608 120 87.21 <.0001
tmp*center 2 410.91 5.9007 120 69.64 <.0001
tmp*center 3 403.23 6.9137 120 58.32 <.0001

FIT WITH MARKOV STRUCTURE 8

The Mixed Procedure

Covariance Matrix for Fixed Effects

Row Effect center Col1 Col2 Col3 Col4 Col5

1 center 1 357.87 -79.7841
2 center 2 466.22 -105.84
3 center 3 651.93
4 tmp*center 1 -79.7841 25.6113
5 tmp*center 2 -105.84 34.8182
6 tmp*center 3 -150.66

Covariance
Matrix for
Fixed Effects

Row Col6

1
2
3 -150.66
4
5
6 47.7993

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

center 3 38 58.04 <.0001
tmp*center 3 120 5285.40 <.0001

FIT WITH MARKOV STRUCTURE AND DIFFERENCE PARAMETERIZATION 9

The Mixed Procedure

Model Information

Data Set WORK.ULTRA
Dependent Variable ufr
Covariance Structure Spatial Power
Subject Effect subject
Estimation Method ML
Residual Variance Method Profile
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Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

subject 41 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41

center 3 1 2 3

Dimensions

Covariance Parameters 2
Columns in X 8
Columns in Z 0
Subjects 41
Max Obs Per Subject 5

Number of Observations

Number of Observations Read 164
Number of Observations Used 164
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 1762.75143525
1 2 1689.99200625 0.00000320
2 1 1689.98977683 0.00000000

Convergence criteria met.

FIT WITH MARKOV STRUCTURE AND DIFFERENCE PARAMETERIZATION 10

The Mixed Procedure

Estimated R Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 2913.20 1954.28 1336.16 952.56
2 1954.28 2913.20 1991.78 1419.97
3 1336.16 1991.78 2913.20 2076.86
4 952.56 1419.97 2076.86 2913.20

Estimated R Correlation Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.6708 0.4587 0.3270
2 0.6708 1.0000 0.6837 0.4874
3 0.4587 0.6837 1.0000 0.7129
4 0.3270 0.4874 0.7129 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

SP(POW) subject 0.6837
Residual 2913.20

Fit Statistics

-2 Log Likelihood 1690.0
AIC (smaller is better) 1706.0
AICC (smaller is better) 1706.9
BIC (smaller is better) 1719.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 72.76 <.0001

Solution for Fixed Effects

Standard
Effect center Estimate Error DF t Value Pr > |t|

Intercept -144.92 25.5328 38 -5.68 <.0001
center 1 -26.7663 31.7773 38 -0.84 0.4049
center 2 -21.6836 33.4387 38 -0.65 0.5206
center 3 0 . . . .
tmp 403.23 6.9137 120 58.32 <.0001
tmp*center 1 38.1138 8.5680 120 4.45 <.0001
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tmp*center 2 7.6822 9.0894 120 0.85 0.3997

FIT WITH MARKOV STRUCTURE AND DIFFERENCE PARAMETERIZATION 11

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect center Estimate Error DF t Value Pr > |t|

tmp*center 3 0 . . . .

Covariance Matrix for Fixed Effects

Row Effect center Col1 Col2 Col3 Col4 Col5

1 Intercept 651.93 -651.93 -651.93 -150.66
2 center 1 -651.93 1009.80 651.93 150.66
3 center 2 -651.93 651.93 1118.15 150.66
4 center 3
5 tmp -150.66 150.66 150.66 47.7993
6 tmp*center 1 150.66 -230.44 -150.66 -47.7993
7 tmp*center 2 150.66 -150.66 -256.49 -47.7993
8 tmp*center 3

Covariance Matrix for Fixed Effects

Row Col6 Col7 Col8

1 150.66 150.66
2 -230.44 -150.66
3 -150.66 -256.49
4
5 -47.7993 -47.7993
6 73.4106 47.7993
7 47.7993 82.6175
8

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

center 2 38 0.74 0.37 0.6917 0.6941
tmp 1 120 14563.8 14563.8 <.0001 <.0001
tmp*center 2 120 25.49 12.74 <.0001 <.0001
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INTERPRETATION:

• Comparison with ordinary least squares: Note that, because these data are not balanced,

none of the estimates of the mean parameters β are exactly the same across methods. However,

note from pages 2, 4, and 7 of the output that the estimates are similar across methods, and the

ordering of the size of slopes and intercepts is in the same direction for each. Because these are

longitudinal data, however, the estimates that are based on a model that take into account the

likely correlation among observations within the same unit is more credible, and the tests and

standard errors derived from such a model are more reliable.

• Choice of covariance structure: Inspection of the AIC and BIC values for each of the

compound symmetry and Markov fits shows that both criteria are smaller when the Markov

structure is assumed. This gives a rationale for preferring this covariance model, given the choice

between the two. Note that in this case we have fitted the models using ML; the same mean

model is used in each case.

• Hypothesis tests. The final call to PROC MIXED fits the “difference” parameterization with the

Markov structure. As discussed in the interpretation of the dental study analysis, the result is that

the Tests of Fixed Effects given on page 11 of the output provide a test of the null hypothesis

that the slopes are the same for all centers (TMP*CENTER). Here, we have used the chisq option to

ask PROC MIXED to calculate the Wald statistic TL and the p-value obtained by comparing this to

the appropriate χ2 distribution. Here, the degrees of freedom is r = 2; under the null hypothesis,

there is only 1 common slope versus 3 separate slopes for the “full” model that has been fitted.

From the output TL = 25.49, with an associated p-value of 0.0001. Thus, there is strong evidence

to suggest that at least one of the slopes differs from the others. The test associated with CENTER

considers the same question with respect to intercepts; as seen from the output, TL for this test is

0.74, with a p-value of 0.69, suggesting that there is not enough evidence in these data to conclude

that the intercepts are different across centers.

From page 10, the Solution for Fixed Effects table shows that the estimate of difference in

slope between centers 3 and 1 is 38.114, with a estimated standard error of 8.57. The corresponding

Wald test statistic is 4.45, which compared to a standard normal (or t as in the output) distribution

yields a p-value of 0.0001. The comparison between slopes for centers 3 and 2 has an estimated

difference of 7.68 (9.09); the corresponding Wald test statistic is 0.85, with a large p-value.
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These results seem to suggest that the rate of change in ultrafiltration rate with transmembrane

pressure is similar for centers 2 and 3, but is faster for center 1. One could also construct a test

of whether slope differs between centers 1 and 2 from the fit of parameterization (1) on page 7,

using the L matrix

L = (0, 0, 0, 1,−1, 0)

and the estimated covariance matrix for β̂ given on page 8; this could be done manually from the

output or by using the estimate statement

estimate ’slope 1 vs. 2’ center 0 0 0 center*tmp 1 -1 0;

(see the analysis of the dental data for an example).

EXAMPLE 3 – HIP REPLACEMENT DATA: In the following program, we consider the model in

(8.12),

Yij = β1 + β2tij + β3t
2
ij + β7ai + εij , males

Yij = β4 + β5tij + β6t
2
ij + β7ai + εij , females.

• The model is parameterized exactly as it is shown above. Each gender has its own intercept and

its own linear and quadratic coefficients, and there is a common effect of age regardless of gender.

We fit this model for illustrative purposes; one could entertain several other models and do “full”

versus “reduced” tests to zero in on an appropriate model.

• With this mean model, several covariance structures are considered: unstructured, compound

symmetry, AR(1), and one-dependence. Recall that these data are imbalanced in the sense that,

although all individuals were supposed to be seen at the same times (at 1, 2, 3, and 4 weeks), some

were missing at the least the week 3 measurement. To communicate this to PROC MIXED, the time

factor is incorporated as week in the mean model in the model statement and as a classification

factor time in the repeated statement (see the program below). Adding the class variable time

to the repeated statement has the effect of providing SAS with the information it needs about

the intended times of data collection so that it can set up each individual’s covariance matrix

appropriately. To see that this is indeed the case, the r and rcorr options of the repeated

statement are used to print out the covariance matrices for individuals 1, 10, and 15 (who have

different numbers of observations).
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• We show use of the contrast and estimate statements in the one-dependent fit; here, we ask

PROC MIXED to estimate the difference in mean response between females and males at week 3 and

test whether it is different from 0; in the notation above, this is

β4 + β5(3) + β6(9) − β1 − β2(3) − β3(9).

The appropriate L matrix would be

L = (−1,−3,−9, 1, 3, 9, 0).

In the program, females and males are coded 0 and 1, respectively; one may examine the output

from the fits to determine how SAS has represented the model and thus how this contrast should

be represented in the contrast and estimate statements.

• For all fits, we use the default REML method. We compare the AIC and BIC values for this

same mean model using this method to determine a suitable covariance model.

PROGRAM:

/*******************************************************************

CHAPTER 8, EXAMPLE 3

Analysis of the hip replacement data using a general
regression model in time and age

- the repeated measurement factor is time (weeks)

- there is one "treatment" factor, gender (0=female, 1 = male)

- an additional covariate, age, is also available

- the response is haematocrit

We use the REPEATED statement of PROC MIXED with the
TYPE= options to fit the model assuming different covariate
structures.

These data are unbalanced both in the sense that some patients
were not observed at all times.

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

Read in the data set

*******************************************************************/

data hips; infile ’hips.dat’;
input patient gender age week h;
week2=week*week;
time=week;

/*******************************************************************

Use PROC MIXED to fit the general quadratic regression model with
assumptions about the covariance matrix of a data vector.

The SOLUTION option in the MODEL statement requests that the
estimates of the regression parameters be printed.

The R option in the REPEATED statement as used here requests that
the covariance matrix estimate be printed in matrix form. Here,
because the data have unequal numbers of observations, we ask
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to see the matrices for 2 individuals with different numbers.
Similarly for the RCORR option, which prints the corresponding
correlation matrix.

With the ar(1) and one-dependent structures, we have to be
careful to communicate to PROC MIXED the fact that the data
are imbalanced in the sense that the times are all the same
for all patients, but some patients are not observed at some
of the times. In our mean model, we want WEEK, the time factor,
to be continuous; however, PROC MIXED needs also for the time
factor to be a classification factor so that it can properly figure out
the missingness pattern. We give it this information by defining
TIME = WEEK and letting TIME be a classification factor in the
REPEATED statement.

*******************************************************************/

* unstructured;

title "FIT WITH UNSTRUCTURED COMMON COVARIANCE";
proc mixed data=hips;
class patient time gender;
model h = gender gender*week gender*week2 age / noint solution chisq;
repeated time / type = un subject=patient r= 1,10,15 rcorr=1,10,15;

run;

* compound symmetry;

title "FIT WITH COMMON COMPOUND SYMMETRY";
proc mixed data=hips;
class patient time gender;
model h = gender gender*week gender*week2 age / noint solution chisq;
repeated time / type = cs subject=patient rcorr=1,10,15;

run;

* ar(1);

title "FIT WITH COMMON AR(1) STRUCTURE";
proc mixed data=hips;
class patient time gender;
model h = gender gender*week gender*week2 age / noint solution chisq;
repeated time / type = ar(1) subject=patient rcorr=1,10,15;

run;

* one-dependent;
* and show use of CONTRAST statement;

title "FIT WITH COMMON ONE-DEPENDENT STRUCTURE";
proc mixed data=hips;
class patient time gender;
model h = gender gender*week gender*week2 age / noint solution chisq covb;
repeated time / type = toep(2) subject=patient rcorr=1,10,15;
contrast ’f vs m, wk 3’ gender 1 -1

gender*week 3 -3 gender*week2 9 -9 /chisq;
estimate ’f vs m, wk 3’ gender 1 -1

gender*week 3 -3 gender*week2 9 -9;
run;
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OUTPUT:

FIT WITH UNSTRUCTURED COMMON COVARIANCE 1

The Mixed Procedure

Model Information

Data Set WORK.HIPS
Dependent Variable h
Covariance Structure Unstructured
Subject Effect patient
Estimation Method REML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

patient 30 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30

time 4 0 1 2 3
gender 2 0 1

Dimensions

Covariance Parameters 10
Columns in X 7
Columns in Z 0
Subjects 30
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 99
Number of Observations Used 99
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 561.12155003
1 2 551.06018998 0.00059380
2 1 549.70264000 0.01093915
3 1 546.99589520 0.00622014
4 1 545.54535711 0.00291074
5 1 544.84740510 0.00113789
6 1 544.58650911 0.00027063
7 1 544.52750285 0.00002504
8 1 544.52249433 0.00000029
9 1 544.52243938 0.00000000

FIT WITH UNSTRUCTURED COMMON COVARIANCE 2

The Mixed Procedure

Convergence criteria met.

Estimated R Matrix for patient 1

Row Col1 Col2 Col3

1 18.0680 4.6364 5.0947
2 4.6364 16.5021 0.4870
3 5.0947 0.4870 19.2076

Estimated R Correlation
Matrix for patient 1

Row Col1 Col2 Col3

1 1.0000 0.2685 0.2735
2 0.2685 1.0000 0.02735
3 0.2735 0.02735 1.0000

Estimated R Matrix for patient 10

Row Col1 Col2 Col3 Col4

1 18.0680 4.6364 -13.9213 5.0947
2 4.6364 16.5021 2.8483 0.4870
3 -13.9213 2.8483 67.8805 25.1818
4 5.0947 0.4870 25.1818 19.2076

Estimated R Correlation Matrix for patient 10
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Row Col1 Col2 Col3 Col4

1 1.0000 0.2685 -0.3975 0.2735
2 0.2685 1.0000 0.08510 0.02735
3 -0.3975 0.08510 1.0000 0.6974
4 0.2735 0.02735 0.6974 1.0000

Estimated R Matrix
for patient 15

Row Col1 Col2

1 16.5021 0.4870
2 0.4870 19.2076

FIT WITH UNSTRUCTURED COMMON COVARIANCE 3

The Mixed Procedure

Estimated R Correlation
Matrix for patient 15

Row Col1 Col2

1 1.0000 0.02735
2 0.02735 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) patient 18.0680
UN(2,1) patient 4.6364
UN(2,2) patient 16.5021
UN(3,1) patient -13.9213
UN(3,2) patient 2.8483
UN(3,3) patient 67.8805
UN(4,1) patient 5.0947
UN(4,2) patient 0.4870
UN(4,3) patient 25.1818
UN(4,4) patient 19.2076

Fit Statistics

-2 Res Log Likelihood 544.5
AIC (smaller is better) 564.5
AICC (smaller is better) 567.2
BIC (smaller is better) 578.5

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

9 16.60 0.0554

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 42.2823 3.1835 28 13.28 <.0001
gender 1 45.5650 3.1116 28 14.64 <.0001
week*gender 0 -11.4526 1.8018 28 -6.36 <.0001
week*gender 1 -15.8799 2.0222 28 -7.85 <.0001
week2*gender 0 2.9269 0.5640 28 5.19 <.0001
week2*gender 1 4.2369 0.6368 28 6.65 <.0001
age -0.04330 0.04465 28 -0.97 0.3405

FIT WITH UNSTRUCTURED COMMON COVARIANCE 4

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 2 28 214.58 107.29 <.0001 <.0001
week*gender 2 28 102.07 51.03 <.0001 <.0001
week2*gender 2 28 71.20 35.60 <.0001 <.0001
age 1 28 0.94 0.94 0.3322 0.3405

FIT WITH COMMON COMPOUND SYMMETRY 5

The Mixed Procedure
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Model Information

Data Set WORK.HIPS
Dependent Variable h
Covariance Structure Compound Symmetry
Subject Effect patient
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

patient 30 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30

time 4 0 1 2 3
gender 2 0 1

Dimensions

Covariance Parameters 2
Columns in X 7
Columns in Z 0
Subjects 30
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 99
Number of Observations Used 99
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 561.12155003
1 2 556.70472691 0.00000275
2 1 556.70418983 0.00000000

Convergence criteria met.

FIT WITH COMMON COMPOUND SYMMETRY 6

The Mixed Procedure

Estimated R Correlation
Matrix for patient 1

Row Col1 Col2 Col3

1 1.0000 0.2079 0.2079
2 0.2079 1.0000 0.2079
3 0.2079 0.2079 1.0000

Estimated R Correlation Matrix for patient 10

Row Col1 Col2 Col3 Col4

1 1.0000 0.2079 0.2079 0.2079
2 0.2079 1.0000 0.2079 0.2079
3 0.2079 0.2079 1.0000 0.2079
4 0.2079 0.2079 0.2079 1.0000

Estimated R Correlation
Matrix for patient 15

Row Col1 Col2

1 1.0000 0.2079
2 0.2079 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

CS patient 3.8016
Residual 14.4824

Fit Statistics

-2 Res Log Likelihood 556.7
AIC (smaller is better) 560.7
AICC (smaller is better) 560.8
BIC (smaller is better) 563.5

Null Model Likelihood Ratio Test
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DF Chi-Square Pr > ChiSq

1 4.42 0.0356

FIT WITH COMMON COMPOUND SYMMETRY 7

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 35.7027 3.8826 28 9.20 <.0001
gender 1 39.6756 3.8088 28 10.42 <.0001
week*gender 0 -9.5954 1.6604 64 -5.78 <.0001
week*gender 1 -14.2653 1.9229 64 -7.42 <.0001
week2*gender 0 2.5899 0.5180 64 5.00 <.0001
week2*gender 1 3.8392 0.6046 64 6.35 <.0001
age 0.03853 0.05562 64 0.69 0.4910

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 2 28 109.24 54.62 <.0001 <.0001
week*gender 2 64 88.53 44.26 <.0001 <.0001
week2*gender 2 64 65.36 32.68 <.0001 <.0001
age 1 64 0.48 0.48 0.4884 0.4910

FIT WITH COMMON AR(1) STRUCTURE 8

The Mixed Procedure

Model Information

Data Set WORK.HIPS
Dependent Variable h
Covariance Structure Autoregressive
Subject Effect patient
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

patient 30 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30

time 4 0 1 2 3
gender 2 0 1

Dimensions

Covariance Parameters 2
Columns in X 7
Columns in Z 0
Subjects 30
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 99
Number of Observations Used 99
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 561.12155003
1 2 556.48035628 0.00000015
2 1 556.48032672 0.00000000

Convergence criteria met.

FIT WITH COMMON AR(1) STRUCTURE 9

The Mixed Procedure

Estimated R Correlation
Matrix for patient 1

Row Col1 Col2 Col3
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1 1.0000 0.2910 0.02465
2 0.2910 1.0000 0.08469
3 0.02465 0.08469 1.0000

Estimated R Correlation Matrix for patient 10

Row Col1 Col2 Col3 Col4

1 1.0000 0.2910 0.08469 0.02465
2 0.2910 1.0000 0.2910 0.08469
3 0.08469 0.2910 1.0000 0.2910
4 0.02465 0.08469 0.2910 1.0000

Estimated R Correlation
Matrix for patient 15

Row Col1 Col2

1 1.0000 0.08469
2 0.08469 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

AR(1) patient 0.2910
Residual 18.3070

Fit Statistics

-2 Res Log Likelihood 556.5
AIC (smaller is better) 560.5
AICC (smaller is better) 560.6
BIC (smaller is better) 563.3

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 4.64 0.0312

FIT WITH COMMON AR(1) STRUCTURE 10

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 35.8838 3.7661 28 9.53 <.0001
gender 1 39.8949 3.6947 28 10.80 <.0001
week*gender 0 -9.8043 1.6356 64 -5.99 <.0001
week*gender 1 -14.6020 1.8736 64 -7.79 <.0001
week2*gender 0 2.6313 0.5094 64 5.17 <.0001
week2*gender 1 3.9150 0.5904 64 6.63 <.0001
age 0.03749 0.05369 64 0.70 0.4875

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 2 28 117.06 58.53 <.0001 <.0001
week*gender 2 64 96.75 48.37 <.0001 <.0001
week2*gender 2 64 70.68 35.34 <.0001 <.0001
age 1 64 0.49 0.49 0.4850 0.4875

FIT WITH COMMON ONE-DEPENDENT STRUCTURE 11

The Mixed Procedure

Model Information

Data Set WORK.HIPS
Dependent Variable h
Covariance Structure Banded Toeplitz
Subject Effect patient
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Class Level Information

Class Levels Values

patient 30 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30
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time 4 0 1 2 3
gender 2 0 1

Dimensions

Covariance Parameters 2
Columns in X 7
Columns in Z 0
Subjects 30
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 99
Number of Observations Used 99
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 561.12155003
1 2 556.12352167 0.00000002
2 1 556.12351849 0.00000000

Convergence criteria met.

FIT WITH COMMON ONE-DEPENDENT STRUCTURE 12

The Mixed Procedure

Estimated R Correlation
Matrix for patient 1

Row Col1 Col2 Col3

1 1.0000 0.3247
2 0.3247 1.0000
3 1.0000

Estimated R Correlation Matrix for patient 10

Row Col1 Col2 Col3 Col4

1 1.0000 0.3247
2 0.3247 1.0000 0.3247
3 0.3247 1.0000 0.3247
4 0.3247 1.0000

Estimated R Correlation
Matrix for patient 15

Row Col1 Col2

1 1.0000
2 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

TOEP(2) patient 6.0104
Residual 18.5118

Fit Statistics

-2 Res Log Likelihood 556.1
AIC (smaller is better) 560.1
AICC (smaller is better) 560.3
BIC (smaller is better) 562.9

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 5.00 0.0254

FIT WITH COMMON ONE-DEPENDENT STRUCTURE 13

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 36.2941 3.7164 28 9.77 <.0001
gender 1 40.2860 3.6474 28 11.05 <.0001
week*gender 0 -9.9910 1.6592 64 -6.02 <.0001
week*gender 1 -14.8308 1.8879 64 -7.86 <.0001
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week2*gender 0 2.6610 0.5222 64 5.10 <.0001
week2*gender 1 3.9601 0.6025 64 6.57 <.0001
age 0.03354 0.05284 64 0.63 0.5279

Covariance Matrix for Fixed Effects

Row Effect gender Col1 Col2 Col3 Col4 Col5

1 gender 0 13.8117 12.2645 -1.4234 0.05482 0.3004
2 gender 1 12.2645 13.3033 -0.4160 -1.1484 0.09378
3 week*gender 0 -1.4234 -0.4160 2.7531 -0.00186 -0.8263
4 week*gender 1 0.05482 -1.1484 -0.00186 3.5640 0.000419
5 week2*gender 0 0.3004 0.09378 -0.8263 0.000419 0.2727
6 week2*gender 1 -0.01425 0.2285 0.000483 -1.0835 -0.00011
7 age -0.1880 -0.1821 0.006377 -0.00081 -0.00144

Covariance Matrix
for Fixed Effects

Row Col6 Col7

1 -0.01425 -0.1880
2 0.2285 -0.1821
3 0.000483 0.006377
4 -1.0835 -0.00081
5 -0.00011 -0.00144
6 0.3630 0.000212
7 0.000212 0.002792

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

gender 2 28 122.28 61.14 <.0001 <.0001
week*gender 2 64 98.03 49.01 <.0001 <.0001
week2*gender 2 64 69.19 34.60 <.0001 <.0001
age 1 64 0.40 0.40 0.5257 0.5279

FIT WITH COMMON ONE-DEPENDENT STRUCTURE 14

The Mixed Procedure

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

f vs m, wk 3 -1.1649 1.6223 64 -0.72 0.4753

Contrasts

Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

f vs m, wk 3 1 64 0.52 0.52 0.4727 0.4753
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INTERPRETATION:

• Choice of covariance structure: From the output, we have the following results on pages 3,

6, 9, and 12:

Model −2 res loglike AIC BIC

Unstructured 544.5 564.5 578.5

Compound symmetry 556.7 560.7 563.5

AR(1) 556.5 560.5 563.3

One-dependent 556.1 560.1 562.9

From the AIC and BIC values, it appears that assuming some kind of structure is better than

none (unstructured); however, the evidence is inconclusive about which structure, compound

symmetry, AR(1), or one-dependent provides a better characterization of covariance. Differences

in the criteria are small; because each fit requires a numerical method of finding the solution, the

values might end up slightly differently if a slightly different algorithm or machine had been used.

Thus, it is not sensible to make too much of these differences. We thus conclude that any of these

structures is probably capturing reasonably well the most important features of the covariance

structure; there is some correlation among observations, but the evidence is inconclusive about how

it “falls off” as they become farther apart in time. From the Solution for Fixed Effects for

each fit on pages 7, 10, and 13, the estimates of β differ very little across the different assumptions.

• Estimation of difference in mean response between males and females at week 3.

We illustrate use of the contrast and estimate statements for the one-dependent fit. On page

14, we have that the estimated mean difference is −1.165 with an estimated standard error of

1.622, so that the standard error exceeds the actual estimated difference in magnitude. The Wald

statistic of the form estimate divided by standard error is given in the result of the estimate

statement and is equal to -0.72. PROC MIXED compares this to a t distribution; alternatively, a

normal distribution could be used. The contrast statement with the chisq option produces the

identical test, but printing the statistic TL = 0.52 = (−0.72)2 instead. This is compared to a χ2

distribution with 1 degree of freedom (standard normal squared), as our contrast has one degree

of freedom. An alternative F test is also given by default, which involves an adjustment for finite

samples as discussed earlier.
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From the results, there is not enough evidence to suggest that there is a difference in mean response

between the genders at the third week. Given the small estimate, which is very small compared

to a typical response value in the 30’s to almost 50, it appears that we would be safe to conclude

that there is no practical difference in mean response.

FURTHER INFORMATION ON PROC MIXED: See the SAS documentation and the book SAS System

for Mixed Models by Littell, Milliken, Stroup, and Wolfinger (1996) for much more on the capabilities

of PROC MIXED for fitting general regression models for longitudinal data. We will see that PROC MIXED

can do much more in the next few chapters.

8.9 Parameterizing models in SAS: Use of the noint option in SAS model state-

ments in PROC GLM and PROC MIXED

An important skill using “canned” software such as proc glm or proc mixed in SAS is understanding

how the software allows the user to specify models for mean response in the model statement. Here, we

give more detail on the principles behind specifying model statements in order to obtain desired mean

models in different parameterizations.

To fix ideas, consider the dental data and the analyses in EXAMPLE 1. In particular, consider the two

models for mean response on page 248.

Model in the “explicit” parameterization:

Yij = β0,B + β1,Btij + eij , boys

= β0,G + β1,Gtij + eij , girls (8.25)

Model in the “difference” parameterization:

Yij = β0,B + β1,Btij + eij , boys

= (β0,B + β0,G−B) + (β1,B + β1,G−B)tij + eij , girls (8.26)

In all of the following, we use expressions like β0, β1, etc. as just “placeholders” to denote generic terms

in models.
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Consider the program. Recall that the variable gender takes on the numerical values 0 or 1 as a child

is a girl (0) or a boy (1). The variable age is a numerical value representing the time condition, and

the response is distance. The variable child is the unit indicator, and is ordinarily declared to be a

class variable (as SAS classifies observations as belonging to particular units on this basis).

It is demonstrated in the program and its output that the following statements lead to parameterization

of the model using the “difference” parameterization (8.26).

class gender child;

model distance = gender age gender*age / solution;

Here, notice that gender is also declared to be a class variable. Thus, SAS will treat gender as two

(in this case) categories corresponding to girls (gender 0) and boys (gender 1).

Representative output from such a call (in the Solution for Fixed Effects table) looks like:

Solution for Fixed Effects

Standard

Effect gender Estimate Error DF t Value Pr > |t|

Intercept 16.3406 0.9631 25 16.97 <.0001

gender 0 1.0321 1.5089 25 0.68 0.5003

gender 1 0 . . . .

age 0.7844 0.07654 79 10.25 <.0001

age*gender 0 -0.3048 0.1199 79 -2.54 0.0130

age*gender 1 0 . . . .

Let us consider more carefully what the model statement above is instructing SAS to do. In general, in

any model statement in proc glm or proc mixed, the presence of any effect (e.g. gender) causes SAS

to create a term or terms in the mean model. In this specific case, here is how this works.

As the noint option is not present, SAS automatically constructs an intercept term, call it β0 for now.
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The presence of the gender effect causes SAS to create some terms as follows: because gender is

declared to be a class variable, SAS will create a term for each classification (or category)

determined by gender. Here, there are two, girls (gender 0) and boys (gender 1). So including

gender in the model statement with gender has the effect of creating terms in the model as follows:

β1 I(gender=0) + β2 I(gender=1),

where, here, the notation “I(gender=x)” means “this term is present if gender=x” for x=0,1.

Now age is not a class variable, but just a variable that takes on numerical values (8,10,12,14 in this

case). As it is not a class variable, SAS simply creates a term of the form β3t, where we are using t

to represent the numerical values of age. Note that with numerical variables, SAS creates only a single

such term; it does not create a separate term for each value that t takes on.

Because gender is a class variable, the gender*age effect causes SAS to do something similar to the

above. In particular, SAS will again created a term for each classification (or category) determined

by gender (times age now). That is, including gender*age has the effect of creating terms in the model

as follows:

β4t I(gender=0) + β5t I(gender=1) (age).

Putting this all together, we have that the mean model created looks like

β0 + β1 I(gender=0) + β2 I(gender=1) + β3t + β4t I(gender=0) + β5t I(gender=1).

Note then that for a girl, the model is

(β0 + β1) + (β3 + β4)t,

and for a boy, the model is

(β0 + β2) + (β3 + β5)t.

In the table of Solution for Fixed Effects, we have the following correspondences:

Intercept β0

gender 0 β1

gender 1 β2

age β3

age*gender 0 β4

age*gender 1 β5
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Note that this is over-parameterized – there are only two intercepts and two slopes (four parameters)

that need to be described, but there are six parameters in the model! That is, it is not possible to

estimate all of β0, β1, . . . , β5 from data that only tell us about two intercepts and two slopes. We really

don’t need all of β0, β1, β2 to determine two intercepts, and likewise we don’t need all of β3, β4, β5 to

determine two slopes.

SAS recognizes this automatically and imposes some constraints to get the number of parameters

down to a number that can be estimated. Practically speaking, by default, the way it chooses to do this

is to disregard one of β0, β1, β2 for the intercepts and β3, β4, β5 for the slopes. From the Solution for

Fixed Effects table, the “0” followed by dots corresponding to gender 1 and age*gender 1 indicate

that it chooses to disregard what we have called β2 and β5, essentially setting these equal to 0.

The result is that the implied model is, for a girl,

(β0 + β1) + (β3 + β4)t,

and for a boy,

β0 + β3t.

That is, SAS defaults to the “difference” parameterization, which may be seen by identifying β0 with

β0,B, β1 with β0,G−B , β3 with β1,B, β4 with β1,G−B in (8.26).

Now consider the case of the “explicit” parameterization. It is demonstrated in the program and

its output that the following statements lead to parameterization of the model using the “explicit”

parameterization (8.25).

class gender child;

model distance = gender gender*age / noint solution;

Again, gender is declared to be a class variable, so SAS will treat gender as two (in this case) categories

corresponding to girls (gender 0) and boys (gender 1). Note the use now of the noint option. Note

also that we do not include an age effect here; we will see why momentarily.
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Representative output from such a call (in the Solution for Fixed Effects table) looks like:

Solution for Fixed Effects

Standard

Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.3727 1.1615 25 14.96 <.0001

gender 1 16.3406 0.9631 25 16.97 <.0001

age*gender 0 0.4795 0.09231 79 5.20 <.0001

age*gender 1 0.7844 0.07654 79 10.25 <.0001

Let us consider more carefully what the model statement here is instructing SAS to do. As above,

in any model statement in proc glm or proc mixed, the presence of any effect (e.g. gender) causes

SAS to create a term in the mean model. As the noint option is present, SAS will not automatically

construct and intercept term. The presence of the gender effect causes SAS to create the same type

of terms as before; that is, because gender is declared to be a class variable, SAS will create a

term for each classification (or category) determined by gender, leading to terms of the form

β1 I(gender=0) + β2 I(gender=1).

As before, age is not a class variable, but just a variable that takes on numerical values (8,10,12,14 in

this case). As it is not a class variable, SAS simply creates a term of the form β3t.

Also as before, because gender is a class variable, the gender*age effect causes SAS to create a term

for each classification (or category) determined by gender (times age now); that is

β3t I(gender=0) + β4t I(gender=1).

Putting this all together, we have that the mean model created looks like

β1 I(gender=0) + β2 I(gender=1) + β3t I(gender=0) + β4t I(gender=1).

Note then that for a girl, the model is

β1 + β3t,

and for a boy, the model is

β2 + β4t.
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That is, the model as specified contains four parameters, two intercepts and two slopes, exactly what

is needed! It is not overparameterized.

In the table of Solution for Fixed Effects, we have the following correspondences:

gender 0 β1

gender 1 β2

age*gender 0 β3

age*gender 1 β4

There are no “zeroed out” elements, because each corresponding term is something that can be esti-

mated.

Thus, with an understanding of how SAS creates terms from effects specified in a model statement, we

see that this results in the parameterization of the model in (8.25), identifying β1 with β0,G, β2 with

β0,B, β3 with β1,G, β4 with β1,B .

Note that including the effect age in the model statement would have resulted in an overparameterization

– we do not need a single term of the form βt, as we already have all the parameters we need to

characterize the model. Knowing the way SAS constructs effects, the user can anticipate this and leave

the age term out. (Fun exercise: try putting it in and see what happens!)

Thus, note that, in either model statement, the way in which SAS creates terms is identical – including

a term in a model statement always has the same effect – it is the choice of terms to include that

dictates the resulting model and parameterization.

In general, then, the following principles apply:

• If a variable is declared to be a class variable and the variable appears in effects in a model

statement, SAS creates a term for that effect corresponding to each level (value taken on by) the

variable. In this example, gender has two such levels (girl and boy), so there are two terms.

• If a variable is not declared to be a class variable and the variable appears in a model statement,

it is treated as numeric. In this case, SAS creates a single term as in the example with age.

The above principles extend to more than two groups. For example, the dialyzer (ultrafiltration) data

discussed in EXAMPLE 2 have three groups (centers 1,2,3).
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Here, center is equal to 1, 2, or 3 depending on center, and tmp is the (numerical) “time” variable.

The two competing model statements are

class subject center;

model ufr = center tmp center*tmp / solution;

to obtain the “difference” parameterization and

class subject center;

model ufr = center center*tmp / noint solution;

to obtain the “explicit” parameterization. In either case, center will cause SAS to construct terms like

β1 I(center=1) + β2 I(center=2) + β3 I(center=3)

and, similarly, center*age will imply

β4t I(center=1) + β5t I(center=2) + β6t I(center=3)

You can go through the same reasoning as for the dental data to identify the parameterization each

model statement implies.

All of the above has to do with the declaration of the group variable as a class variable. In the case of

two groups, it is possible to obtain the same parameterizations fairly easily without such a declaration

as long as one makes sure the group variable is such that it takes on the values 0 and 1 (as for the

dental data).

To see this, consider the following model statement:

class child;

model distance = gender age gender*age / solution;
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Note we have not used the noint option. Here, gender is not declared to be a class variable; thus,

SAS interprets it as taking on numerical values (0 and 1 in this case). By the general principles, SAS

will create a term corresponding to each of the effects gender, age, and gender*age. But, because

gender is not a class variable, it will simply treat it the same way as age and create a single term

rather than terms for each category as it would if it were a class variable. That is, letting g be the

numerical value of gender, this model statement will result in

β0 + β1g + β2t + β3gt,

where the β0 is the “automatic” intercept. Thus, we see that the implied model here is

β0 + β1 + (β2 + β3)t

for g = 0 (girl) and

β0 + β2t

for g = 1 (boy). This is, of course, exactly in the form of the “difference” parameterization in (8.26).

We can in fact also get the “explicit” parameterization without treating gender as a class variable by

being clever as follows. Create a new variable revgender = 1-gender. Thus, revgender takes on the

value 1 for girls and 0 for boys (the “reverse” of gender). Consider the following model statement (note

we use the noint option here.

class child;

model distance = gender revgender gender*age revgender*age / noint solution;

By the above principles, as gender and revgender are just treated as variables taking numerical values,

SAS creates the following terms:

β1g + β2(1 − g) + β3tg + β4t(1 − g).
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Thus, we see that the implied model here is

β2 + β4t

for g = 0 (girl) and

β1 + β3t

for g = 1 (boy). This is, of course, in exactly the form of the “explicit” parameterization (8.25), making

the appropriate correspondences.

In the case of more than two groups, one may do the same thing, but it gets messier. One needs to

create “dummy” variables taking on values 0 or 1 for each group; thus, for the dialyzer data, we might

create variables as follows:

c1 = 1 if center=1

0 otherwise

c2 = 1 if center=2

0 otherwise

c3 = 1 if center=3

0 otherwise

To convince yourself of the following, just write out the implied models for each model statement:

You may verify that the “difference” parameterization may be obtained by the following code:

model ufr = c1 c2 tmp c1*tmp c2*tmp / solution;

Note that, here, we chose not to include c3 in the model statement. The effect of this is to make center

3 the “reference” center. We could have equally well have chosen another center as the “reference.”

We left out one of the center dummy variables (c3 here) because we knew in advance that to include

them all would lead to an overparameterization. You might want to try running the following code

to see what happens:

model ufr = c1 c2 c3 tmp c1*tmp c2*tmp c3*tmp / solution;

You should be able to see that, using the same considerations as above, this leads to an overparameter-

ized model.
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The “explicit” parameterization may be obtained by

model ufr = c1 c2 c3 c1*tmp c2*tmp c3*tmp / noint solution;

Note that, here, the model is not overparameterized.

It should be obvious that, as the number of groups grows, it becomes less and less convenient to define

all these variables. The class statement in SAS essentially does this for us.

8.10 Using SAS model, contrast, and estimate statements

This section gives more information how to use these statements with PROC MIXED in the context of

EXAMPLES 1–3. You may wish to add these statements to the example programs to see what output

they produce. We demonstrate the use of contrast and estimate statements more in the next chapter.

EXAMPLE 1 – DENTAL DATA. Consider the call to proc mixed for the fit of the “full model” with

the “explicit parameterization” using a separate compound symmetric covariance structure for each

gender on page 251.

From the Solution for Fixed Effects table in the output of this statement , β is defined as

β =




β0,G

β0,B

β1,G

β1,B




.

The null hypothesis of equal slopes may be written as H0 : Lβ = 0, where

L = (0, 0, 1,−1).

To obtain the Wald test (and default F approximation), use the following contrast statement, placed

after the repeated statement:

contrast ’slp diff’ gender 0 0 gender*age 1 -1 / chisq;
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The null hypothesis of coincident lines (same intercepts and slopes in both groups) may be written as

H0 : Lβ = 0, where

L =




1 −1 0 0

0 0 1 −1


 .

To obtain the Wald test (and default F approximation), use the following contrast statement, placed

after the repeated statement:

contrast ’both diff’ gender 1 -1 gender*age 0 0,

gender 0 0 gender*age 1 -1 / chisq;

The results of such contrast statements appears in the output in a section labeled “Contrasts.”

EXAMPLE 2 – DIALYZER DATA. The call to proc mixed for the fit using the “explicit parameteri-

zation” with the Markov covariance model is at the bottom of page 278.

From the Solution for Fixed Effects table in the output, β is defined as, in obvious notation,

β =




β0,1

β0,2

β0,3

β1,1

β1,2

β1,3




.

The null hypothesis of equal slopes across all three centers may be written as H0 : Lβ = 0, where

L =




0 0 0 1 −1 0

0 0 0 1 0 −1


 .

To obtain the Wald test (and default F approximation), use the following contrast statement, placed

after the repeated statement:

contrast ’slp diff’ center 0 0 0 center*tmp 1 -1 0,

center 0 0 0 center*tmp 1 0 -1 / chisq;
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EXAMPLE 3 – HIP REPLACEMENT DATA. The model statement syntax for fitting the model on

page 286 is given in the calls to proc mixed on page 288 – here, the “explicit parameterization” is used.

What if we wanted to fit a more complicated model? For example, consider the model

Yij = (β1 + β7ai) + (β2 + β8ai)tij + (β3 + β9ai)t
2
ij + eij for males

= (β4 + β10ai) + (β5 + β11ai)tij + (β6 + β12ai)t
2
ij + eij for females

This model says that the week-zero mean, the linear component, and the quadratic effect is different for

males and females, and, further, the way in which each of these depends on age is linear and different

for males and females. This is a rather complicated model.

The appropriate syntax may be found by multiplying out each expression; e.g., for males, the mean

expression is

β1 + β7ai + β2tij + β8aitij + β3t
2
ij + β9ait

2
ij ,

and there is a corresponding expression for females, where each term has a different coefficient; i.e.

β4 + β10ai + β5tij + β11aitij + β6t
2
ij + β12ait

2
ij ,

Multiplying things out makes the model syntax clear. We use the noint option, so that we can construct

the “intercept terms” β1 and β4 for males and females ourselves. The syntax is

model h = gender gender*age gender*week gender*age*week

gender*week2 gender*age*week2 /noint solution;

That is, there is a term corresponding to each term in the multiplied-out expression. The gender part

of each term ensures that the model includes different such terms for males and females.
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