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9 Random coefficient models for multivariate normal data

9.1 Introduction

In the last chapter, we noted that an alternative perspective on explicit modeling of longitudinal response

is to think directly of the fact that each unit appears to have its own trajectory or inherent trend

with its own peculiar features. For example, in the dental study, if we focus on a particular child, the

trajectory looks to be approximately like a straight line (with some variation about it, of course). The

data are reproduced below for convenience in Figure 1. A similar statement could be made about the

dialyzer data in the last chapter.

Figure 1: Dental data revisited.
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The general regression modeling approach takes the standard perspective in much of statistical modeling

of focusing directly on the mean responses and how they change over time. In this chapter, we consider

an alternative approach to building a model based on thinking first about individual trajectories.

• For trajectories that may be represented by linear functions of a design matrix and parameters,

this approach will lead us to the same type of mean models as the general regression approach.
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• However, the modeling approach acknowledges explicitly the two separate sources of variation

we have discussed. As a result, it “automatically” leads to covariance models that also acknowledge

these sources.

• The resulting statistical model, called a random coefficient model for reasons that will be clear

shortly, will be seen to imply a a model like the general linear regression models of the last chapter

with a particular covariance structure for each data vector. Thus, the inferential methods of that

chapter, namely maximum and restricted maximum likelihood, will apply immediately.

• In addition, this modeling strategy will allow us to address questions of scientific interest about

trajectories for individual units, either ones in the study or future units. For example, in a

study of AIDS patients, it may be of interest to physicians attending the patients to have an

estimate of a patient’s individual apparent trajectory, so that they may make clinical decisions

about his or her future care. There is no apparent way of doing this in the general modeling

approach we have just considered.

9.2 Random coefficient model

SUBJECT-SPECIFIC TRAJECTORY: Recall the conceptual model discussed in Chapter 4. For def-

initeness, again consider the dental study data. We take the view that each child has his/her own

underlying straight line inherent trend. Focusing on the ith child, this says that s/he has his/her

own intercept and slope, β0i and β1i, say, respectively, that determine this trend. This intercept and

slope are unique to child i.

WITHIN-INDIVIDUAL VARIATION: Continuing with conceptual perspective, the actual responses

observed for a given child do not fall exactly on a straight line (the inherent trajectory) due to

• The fact that the response cannot be measured perfectly, but is instead subject to measurement

error due to the measuring device.

• Individual “fluctuations;” although the overall trend for a given child is a straight line, the actual

responses, if we could observe them continuously over time, tend to fluctuate about the trend.

AMONG-INDIVIDUAL VARIATION: The inherent trajectories are “high” or “low” with different

steepness across children, suggesting that the child-specific intercepts β0i and slopes β1i vary across

children.

PAGE 310



CHAPTER 9 ST 732, M. DAVIDIAN

To formalize this thinking, a model is developed in two stages.

“INDIVIDUAL (FIRST STAGE)” MODEL: The first stage involves describing what we believe at the

level the ith child; specifically, we write a model for the random variables Yi1, . . . , Yini
for the ith child

taken at time points ti1, . . . , tini
. Although the particular dental study example is balanced, we write

things more generally to allow the possibility of imbalance. The model for child i is, i = 1, . . . , m is

Yij = β0i + β1itij + eij , j = 1, . . . , ni. (9.1)

In model (9.1), the observations on the ith child follow a straight line with child-specific intercept and

slope β0i and β1i. That actual observations vary about this inherent line due to within-unit sources is

represented explicitly by the deviation eij with mean 0. We say more about these deviations shortly.

• Thus, model (9.1) has the form of a straight line regression model unique to the ith child. Each

child has such a model.

• Each child has a regression parameter vector βi =




β0i

β1i


 .

• We may write the model (9.1) concisely. Define Y i and ei as usual, and let

Zi =




1 ti1

1 ti2
...

1 tini




.

We may then write the model as

Y i = Ziβi + ei, i = 1, . . . , m. (9.2)

“POPULATION (SECOND STAGE)” MODEL: Model (9.1) only tells part of the story; it describes

what happens at the level of an individual child, and includes explicit mention (through eij) of within-

child variation. However, it does not by itself acknowledge among-child variation. We have recognized

that the inherent trends differ across children; for example, some children have a steeper slope for their

apparent trajectory than do others. For now, we downplay the fact that children are of two genders;

we will tackle this issue momentarily.

We may think of the children observed as arising from a population of all such children. Each child

has its own intercept and slope; thus, we may think abstractly of this population in terms of random

vectors βi, one for each child, as it is the unique intercept and slope for each child that distinguishes

his/her trajectory.
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• It is natural to think of this population as being “centered” about a “typical” value of intercept

and slope, with variation about this center value – some children have shallower or steeper slopes,

for example.

• More formally, we may think of the mean value of intercept and slope of the population of all

such βi vectors. Individual intercept/slope vectors vary about this mean. Thus, we may think

of a joint probability distribution of all possible values that a random vector of regression

parameters βi could take on. More on this momentarily.

This way of thinking suggests a model for this population as follows. Let β0 and β1 represent the

mean values of intercept and slope, and define

β =




β0

β1


 . (9.3)

Thus β is the mean vector of the population of all βi. Then write

βi = β + bi, bi =




b0i

b1i


 , (9.4)

which is a shorthand way of saying

β0i = β0 + b0i, β1i = β1 + b1i.

• Here, bi is a vector of random effects describing how the intercept and slope for the ith child

deviates from the mean value.

• Thus, (9.4) has the flavor of a regression-type model for the child-specific regression parameters,

with a systematic component, the mean, and a random component summarizing how things

vary about it.

• More formally, the vectors bi are assumed to have mean 0 and some covariance matrix that

describes the nature of this variation – how intercepts and slopes vary among children and how

they covary (e.g. do large intercepts and slopes tend to occur together?) In fact, as we discuss

shortly, the bi are assumed to have a multivariate probability distribution with this mean

and covariance matrix.
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• Thus, whereas the individual child model summarizes how things happen within a child, this

model characterizes variation among children, representing the population through intercepts

and slopes. Putting the models (9.1) and (9.4) together thus gives a complete description of

what we believe about each child and the population of children, acknowledging the two sources

of variation explicitly.

• Note that we may substitute the expressions for β0i and β1i in (9.1) to obtain

Yij = (β0 + b0i) + (β1 + b1i)tij + eij .

This shows clearly what we are assuming: each child has intercept and slope that varies about

the “typical,” or mean intercept and slope β0 and β1.

ACKNOWLEDGING GENDER: We can refine our model to allow for the fact that children are of

different genders as follows. We may think of children as coming from two populations, males and

females, each population with its own mean values of intercept and slope and possibly different pattern

of variation in these intercepts and slopes. Each child would still have his/her own individual regression

model as in (9.1), so this would not change. What would change to incorporate this refinement is the

population model. For example, if child i is a boy, then we might believe

β0i = β0,B + b0i. β1i = β1,B + b1i,

while if i is a girl,

β0i = β0,G + b0i. β1i = β1,G + b1i.

• Here, the fixed parameters β0,B , β1,B represent the mean intercept and slope for boys; similarly,

β0,G, β1,G represent the same for girls.

• bi = (b0i, b1i)
′ represents the random effect for child i with mean 0 We may believe that the

populations of βi for boys and girls have different means but have similar variation. In this case,

we might say that the bi all have the same covariance matrix regardless of whether i is a boy

or girl. On the other hand, if we believe that the populations have different variation, we might

think of the bi of being of two types, with a different covariance matrix depending on the gender.

We will be more formal shortly.

• Let

β =




β0,G

β1,G

β0,B

β1,B




.
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Define for each child a matrix Ai such that

Ai =




1 0 0 0

0 1 0 0


 if child i is a girl

Ai =




0 0 1 0

0 0 0 1


 if child i is a boy

Then it is straightforward to verify that we may write the model concisely for each child as

βi = Aiβ + bi. (9.5)

• Note that the simpler (“one-population”) model (9.4) could also be written in this way with β

defined as in (9.3) and Ai = I2 for all i (try it!)

Let us now be more specific about the nature of the two sources of variation being acknowledged

explicitly in this modeling approach.

WITHIN-UNIT VARIATION: In the “individual” model (9.2), the within-unit random vector ei has

mean zero and represents the deviations introduced solely by sources within an individual. This in-

cludes measurement error, biological “fluctuations,” or both. Thus, following the conceptual framework

in Chapter 4, we may think of ei as being decomposed as

ei = e1i + e2i,

where e1i represents the deviations due to within-subject fluctuations and e2i those due to measurement

error.

To characterize within-subject variation and correlation due to within-subject sources (fluctuations),

the approach is to specify a covariance structure model for var(ei). In general, write

Ri = var(ei),

where Ri is a (ni × ni) covariance matrix. We now discuss through review of some typical scenarios

considerations involved in identifying an appropriate Ri.

• Suppose we believe that, although there may be biological fluctuations over time, the observation

times are sufficiently far apart that correlation due to within-subject sources among the Yij may

be regarded as negligible.
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In this case, it is reasonable to assume that var(e1i) is a diagonal matrix. If we furthermore

believe that the magnitude of fluctuations is similar across time and units, we may represent this

by the assumption that var(e1ij) = σ2
1, say, for all i and j, so that

var(e1i) = σ2
1Ini

.

The assumption that this is similar across units may be viewed as reflecting the belief that the

e1ij are independent of βi and hence bi, which dictate how “large” the unit-specific trend is, so

that the magnitude of fluctuations is unrelated to any unit-specific response characteristics.

• As we have discussed previously, it may be reasonable to assume that errors in measurement are

uncorrelated over time; thus, taking var(e2i) to be a diagonal matrix would be appropriate.

Suppose we also believe that errors committed by the measuring device are of similar magnitude

regardless of the true size of the thing being measured, and are similar for all units (because the

same device is used). This suggests that var(e2ij) = σ2
2, say, for all j, so that

var(e2i) = σ2
2Ini

.

Now the true size of the thing being measured at time tij is

β0i + β1itij + e1ij ;

i.e. the actual response uncontaminated by measurement error. Under this belief, it is reasonable

to assume that the e2ij are independent of βi and thus bi.

• Putting this together, we would take

Ri = var(ei) = var(e1i) + var(e2i) = σ2
1Ini

+ σ2
2Ini

= σ2Ini
,

where σ2 is the aggregate variance reflecting variation due to both within-unit sources.

• The assumption that e1i and e2i are independent is standard, as is the assumption that e1i

and e2i (and hence ei) are independent of bi. We say more about these assumptions shortly.

• We may think of other situations. For example, suppose that the response is something like

height, which in all likelihood we can measure with very little if any error. Under this condition,

we may effectively eliminate e2i from the model and assume that ei = e1i; i.e. all within-unit

variation is due to things like “fluctuations.” In the model above, σ2 = σ2
1 would then represent

the variance due to this sole source.

PAGE 315



CHAPTER 9 ST 732, M. DAVIDIAN

• Similarly, we may have a rather “noisy” measuring device such that, relative to errors in mea-

surement, deviations due to within-unit subjects are virtually negligible. Under this condition, as

long as we believe the times are far enough apart to render within-unit correlation negligible as

well, we may as well take ei = e2i, in which case σ2 = σ2
2 in the above model represents solely

measurement error variance.

• Now suppose that the times of observation are sufficiently close that correlation due to within-unit

sources cannot be viewed as negligible. In this event, it would be unreasonable to take var(e1i)

to be diagonal. It would instead be more realistic to adopt a model for var(e1i) that represents

correlation that decays as observations become farther apart. For example, with equally-spaced

observations and variance assumed constant as above, the AR(1) structure may be a suitable

model; i.e.

var(e1i) = σ2
1




1 ρ ρ2 · · · ρn−1

...
...

...
...

...

ρn−1 ρn−2 · · · ρ 1




.

In general, maintaining the common variance assumption, we might entertain models var(e1i) =

σ2
1Γi, where Γi is a suitable (ni × ni) correlation matrix.

• In this case, with the same assumptions on measurement error and independence as above, we

would instead have

Ri = var(ei) = σ2
1Γi + σ2

2Ini
. (9.6)

If measurement error were deemed negligible, this would be reduced to the assumption that

Ri = σ2Γi,

where σ2 = σ2
2 represents variance due solely to within-unit fluctuations.

• We could also modify the above models to incorporate the possibility that, for example, one

or both variances changes over time. In this situation, one could postulate a heterogeneous

covariance model, as described in Chapter 4. I.e., if we believed fluctuation variances are still

similar across subjects but change in magnitude over time, replace the assumption σ2
1Γi above by

the heterogeneous version of the correlation matrix.
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If we believe that there is a different variance at every time, this would make the most sense when

all units are seen potentially at the same time points, as in the hip replacement study of the last

chapter, so that there would be a finite number of variances to estimate. In this case, supposing

there are n potential times at which units are seen, let var(e1ij) = σ2
1j for the jth such time,

j = 1, . . . , n. Then for a unit seen at all n times, define

T
1/2
i = diag(σ11, σ12, . . . , σ1n), (n × n),

where “diag” means a diagonal matrix with these values on the diagonal. We can then express

the covariance matrix of the fluctuation deviation as

var(e1i) = T
1/2
i ΓiT

1/2
i

using the notation defined on page 45 in Chapter 3. For a unit with some time points missing, the

considerations in the last chapter for specifying covariance matrices with unbalanced data would

be used to write down the model for var(e1i) for each subject.

• Alternatively, it is conceivable that if there are several populations, Ri could be different for each.

As an example, we could have

Ri = σ2
GIni

if i is a girl

and = Ri = σ2
BIni

if i is a boy, perhaps reflecting the belief that the magnitude of fluctuations is

different for each gender.

• It should be clear that, in specifying the matrix Ri, the analyst must consider carefully the features

of the situation at hand in regard to within-unit sources of variation and correlation. Ideally, s/he

would want to adopt a model that accurately characterizes the anticipated features.

• However, it turns out that, although not impossible, it may be difficult to fit a postulated model,

particularly if it is rather complicated.

For example, it is often problematic to fit models like (9.6) where both measurement error and

“fluctuation” are assumed nonnegligible. This is often because there is not sufficient information

to identify all the components of the model. A simplifying assumption that is thus often made

is that one of the two sources tends to dominate the other. Under this assumption, modeling of

Ri and fitting are simplified. The hope is that this may be a sufficiently good approximation to

provide reliable inferences.
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This sort of assumption is often made unknowingly; the analyst will choose a model for Ri

that embodies certain assumptions and emphasizes one source or another by default without

having thought about considerations like those above. In fact, the most common assumption is

Ri = σ2Ini
, where σ2 is the same for all units and groups, is usually made in this way (and is the

default in SAS PROC MIXED).

We discuss the consequences of a “wrong” model specification for Ri shortly.

• In general, Ri is a (ni × ni) matrix depending on a few variance and correlation parameters;

e.g. σ2 and ρ in the example above, chosen to at least approximate the anticipated features of

within-unit sources of variation and correlation.

• If we just focus on the response for individual i at any time point tij , if we believe a normal

distribution is a reasonable way to represent the population of responses we might see on this

individual at tij , then it would make sense to assume that each eij were normally distributed.

This of course implies that we assume

ei ∼ Nni
(0, Ri).

AMONG-UNIT VARIATION: In the “population” model (9.5), the random effects bi have mean 0

and represent variation resulting from the fact that individual units differ; i.e. exhibit biological or

other variation. The model says that this variation among individuals manifests itself by causing

the individual unit trajectories to be different (have different intercepts and slopes). Thus, var(bi)

characterizes this variation.

• Intercepts and slopes may tend to be large or small together, so that children with steeper slopes

tend to “start out” larger at age 0. Alternatively, large intercepts may tend to happen with

small slopes and vice versa; perhaps children who “start out” smaller experience a steeper growth

pattern to “catch up.” In either case, this suggests that it would not necessarily be prudent to

think of var(bi) as a diagonal matrix. Rather, we expect there to be some correlation between

intercepts and slopes, the nature of this correlation depending on what is being studied.

• As noted above, we may believe that the populations of intercept/slopes for boys and girls have

possibly different means, but that the variation in each population about the mean is similar.

Formally, we can represent this by assuming that

var(bi) = D

for some covariance matrix D regardless of whether i is a boy or girl.
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• Here, D is (2 × 2), and an unstructured model is really the only one that makes sense. In

particular, writing

D =




D11 D12

D12 D22


 ,

we have

var(β0i) = var(b0i) = D11, var(β1i) = var(b1i) = D22, cov(β0i, β1i) = cov(b0i, b1i) = D12.

It should be clear that we would not expect D12 = 0 in general; e.g., steep slopes may be associated

with “high” intercepts.

It should also be clear that D11 = D22 would be unrealistic. The intercept is on the same

scale of measurement as the response, while the slope is on the scale “response scale per unit

time.” Thus, these parameters are representing variances that would be expected to be different

because they correspond to phenomena that are on different scales.

• If we believed that these populations exhibit possibly different variation, we can represent this by

assuming that

var(bi) = DB if i is a boy, var(bi) = DG if i is a girl,

where DB and DG are two (unstructured) covariance matrices.

• In either case, the assumption on var(bi) reflects solely the nature of variation at the level of the

population(s) of units; that is, that caused solely by variation among units due to biology or

other features. This is formally represented through the bi.

• It is often reasonable to assume that populations of intercepts and slopes are approximately

normally distributed; e.g. this says that slopes vary symmetrically about the mean, some

steeper, some shallower. Thus, a standard assumption is that the bi have a multivariate normal

distribution; e.g. in the case where the covariance matrix is assumed the same and equal to D

regardless of gender, the assumption would be

bi ∼ Nk(0, D),

where k is the dimension of bi (k = 2 here).
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REMARKS:

• As noted previously, it is usually assumed that ei and bi are independent. This says that the

magnitude of variation within a unit does not depend on the magnitude of βi for that unit.

As we have also discussed, if the device used to measure individual responses causes errors of similar

magnitude all the time, and fluctuations are of similar magnitude regardless of the characteristics

of the units, then this seems reasonable.

However, if measurement errors tend to get larger as the response being measured gets larger,

which is a characteristic of some measuring systems, then this may not be reasonable. In this

case, we would expect the deviations in e2i to be related to Ziβi which dictates how large the

responses on a particular unit are; we would also expect them to be related to the deviations in

e1i.

Similarly, if the magnitude of fluctuations is related to inherent unit characteristics (e.g., “high”

units tend to have larger fluctuations), the assumption would also be violated.

• We will assume for now that this assumption is reasonable, and take bi and ei to be independent,

as is customary. Later, we will discuss situations where this is definitely unreasonable in more

detail.

• We have also noted that specification of the within-units covariance matrix Ri to reflect reality is

desirable. However, computational issues and a tendency to not consider the issue carefully can

lead to choice of an unrealistic model.

• As we will see in a moment, the specifications on var(bi) and var(ei) combine to produce an

overall model for var(εi) that describes the aggregate effects of both sources of variation. The

hope is that this model is rich and flexible enough that it can still represent the true pattern of

overall variation even if one or both components are incorrectly modeled.

If interest focuses only on β, this may be adequate. However, if there is interest in how units

vary in the population, represented by var(bi), it seems clear that getting this model correct

is essential. We will say more later.
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SUMMARY: We now summarize the model suggested by these considerations. The model may be

thought of as a two-stage hierarchy: For i = 1, . . . , m,

Stage 1 – individual

Y i = Ziβi + ei (ni × 1), ei ∼ Nni
(0, Ri) (9.7)

This is like a “regression model” for the ith unit, with “design matrix” Z i and (k × 1) “regression

parameter” βi.

Stage 2 – population

βi = Aiβ + bi (k × 1), bi ∼ Nk(0, D). (9.8)

Here, we have taken var(bi) = D to be the same for all i, and we will continue to do so for definiteness

in our subsequent development. However, this could be relaxed as described above, and the features of

the model we point out shortly would still be valid. The matrix Ai summarizes information like group

membership, allowing the mean of βi to be different for different groups.

Variation in the model is explicitly acknowledged to come from two sources:

• Due to features within units, represented through the covariance matrix Ri.

• Due to biological variation among units, represented to the covariance matrix D.

• This is in marked contrast to the models of the previous chapter. These models required the

analyst to think of a single covariance matrix for a data vector, representing the aggregate effect

of both sources. The models that are typically used tend to focus on the time-ordered aspect.

IMPLICATION: We now see the contrast with the models of the last chapter more directly. Suppose

that we combine two parts of the model into a single representation by substituting the expression for

βi in (9.8) into (9.7); i.e.

Y i = Zi(Aiβ + bi) + ei = (ZiAi)β + Zibi + ei.

• Suppose first that there is only one group, so that Ai = Ik. Then we see that the model implied

is

Y i = Ziβ + Zibi + ei.

Note that we can write this in a more familiar form by letting X i = Zi and εi = Zibi + ei. With

these identifications, we have

Y i = X iβ + εi, i = 1, . . . , m.
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This has exactly the form of the regression models of the previous chapter!

• The difference is that, here, the way we arrived at this model requires that the error vector εi

have the particular form above. Note that this implies that, using the independence of bi and

ei (and taking var(bi) = D for definiteness),

var(εi) = ZiDZ ′

i + Ri = Σi. (9.9)

Thus, the model implied by thinking in two stages implies that the covariance matrix of a data

vector is the sum of two pieces representing the separate effects of among-and within-unit vari-

ation.

• If there is more than one group, the same interpretation holds. Suppose β is (p× 1); p = 4 in the

dental example. With βi (k × 1), then Ai a (k × p) matrix; k = 2 in the dental example. Then

we see that the model implied is

Y i = X iβ + Zibi + ei = Xiβ + εi,

where X i = ZiAi. As above, var(εi) is as in (9.9). In the dental example, note that for boys

Xi = ZiAi =




1 ti1

1 ti2
...

1 tini







0 0 1 0

0 0 0 1


 =




0 0 1 ti1
...

...
...

...

0 0 1 tini




and similarly for girls,

Xi = ZiAi =




1 ti1 0 0
...

...
...

...

1 tini
0 0




.

Compare these with (8.9); they are the same.

RESULT: By thinking about individual trajectories, we see that we ultimately arrive at a regression

model that is of the same form as those in the last chapter.

• The similarity is that the mean of a data vector is of the same linear form; i.e.

E(Y i) = X iβ,

where the form of the matrices X i is dictated by the thinking above (X i = ZiAi).
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The critical difference is that the covariance matrix of a data vector has the very specific form (9.9)

that explicitly acknowledges both sources of variation and allows them to be thought about separately.

Further features of note:

• The model does not allow the covariance matrix of a data vector to be the same for all units

in general. The only way that this matrix may be of the same form for all units is var(bi) and

var(ei) are the same for all units and the data are balanced (more on this shortly).

• The covariance matrix depends on the times of observation through the matrix Z i. Thus, if

different units are seen at different times, this information is automatically incorporated into

the model.

• Recall that we have noted that we expect observations on the same unit to be correlated even if

the repeated observations are taken very far apart in time; this is due to the simple fact that they

are from the same unit. Note that the implied form of the covariance matrix (9.9) accommodates

this naturally. Even if Ri = σ2I, say, which implies that we believe there is no correlation due

to within-unit sources, the entire matrix Σi is still not diagonal. Rather, it will be nondiagonal

because D is not diagonal in general. Thus, the model offers a natural way to represent correlation

among observations on the same unit that arises simply because they are on the same unit and

thus “more alike” than those compared across units.

• In this model, Σi depends on a finite set of parameters. For example, if Ri = σ2Ini
, then Σi

depends on σ2 and the distinct elements of the matrix D. We say distinct because, as D is a

covariance matrix, it is symmetric, so contains the same off-diagonal elements more than once;

e.g. if

D =




D11 D12

D21 D22


 ,

then D depends on the three distinct values D11, D12, and D22, since D12 = D21 by symmetry.

We may in fact say even more. If we believe that both bi and ei are both well-represented by multivariate

normal distributions and are independent, then, using results in Chapter 4, we may conclude that

Y i ∼ Nni
(Xiβ,Σi), i = 1, . . . , m (9.10)

Xi = ZiAi, Σi = ZiDZ ′

i + Ri.

• As with the models of the previous chapter, if the units are completely unrelated, then it is

reasonable to assume that the Y i are independent random vectors, each multivariate normal

with the particular mean and covariance structure given above.
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TERMINOLOGY: These models are known as random coefficient models because they rely on think-

ing of individual-specific regression parameters, or coefficients of time, as being random, each

representing a draw from a population.

• The above reasoning is extended easily to the case where units come from more than two groups; for

example, for the dialyzer data, where the relationship between transmembrane pressure (“time”)

and ultrafiltration rate (response) was observed on dialyzers from 3 centers. We would thus think

of each dialyzer having its own straight line relationship, with its own intercept and slope (k = 2).

The vector β would represent the mean intercept and slope for each center stacked together, so

would have p = 6 elements.

• The reasoning is extended easily to the case where the “regression model” for an individual unit is

something other than a straight line; e.g. suppose a quadratic function is a better model (recall

the hip replacement data)

Yij = β0i + β1itij + β2it
2
ij + eij .

In this case, βi has k = 3 elements.

• All of these models are a particular case of the more general class of linear mixed effects models

we will describe in the next chapter.

9.3 Inference on regression and covariance parameters

Because this way of thinking leads ultimately to the model given in (9.10), the methods of maximum

likelihood and restricted maximum likelihood may be used to estimate the parameters that char-

acterize “mean” and “variation,” namely β, the distinct elements of D, and the parameters that make

up Ri. That is, the methods described in sections 8.5 and 8.6 may be used exactly as described. The

same considerations apply:

• The generalized least squares estimator for β and its large sample approximate sampling

distribution will have the same form, with X i and Σi defined as in (9.10).

• Questions of interest may be written in the identical fashion, and estimation of approximate

standard errors, Wald tests, likelihood ratio tests for nested models, and so on may be carried out

in the same way. We will discuss the formulation and interpretation of questions of interest

under this model momentarily.
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• Information criteria may be used to compare non-nested models.

See these sections for descriptions, which go through unchanged for the model (9.10).

QUESTIONS OF INTEREST: Because of the way we motivated the random coefficient model, questions

of interest may be thought of in different ways. For definiteness, again consider the situation of the

dental study data. A vague statement of the main question of interest is: “Is the rate of change of

distance as children age different for boys and girls?”

Both here and in the previous chapter, we end up with a model that says that the mean of all possible

Yij values we might see at a particular age tij for girls is

E(Yij) = β0,G + β1,Gtij ,

and similarly for boys. How we arrive at the model involved different thinking, however.

• In the previous chapters, we always thought in terms of how the means at each time were related,

averaged across all units at each time point. In this way of thinking, we write down the model

above immediately, and β1,G and β1,B have the interpretation as the parameters that describe the

relationship of the mean responses over time; that is, the slope of the (assumed straight line)

relationship among means at different times tij .

• From the motivation for the random coefficient model, we think in terms of individual trajectories

and their “typical” features. In this way of thinking, β1,G and β1,B have the interpretation as the

means of the populations of child-specific slopes for all possible girls and boys, respectively.

Since the model we end up with is the same, either interpretation is valid. The result is that we may

think of the vague question of interest more formally in two ways, and both are correct. If we consider

testing

H0 : β1,G − β1,B = 0 vs. H1 : β1,G − β1,B 6= 0,

we may interpret this as saying either of the following:

1. Does the rate of change in mean response over time differ between girls and boys?

2. Is the “typical” value of the slope of the individual straight lines for girls different from the

“typical” value of the slope of the individual straight lines for boys?
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THE “TYPICAL” PROFILE VS THE “TYPICAL” RATE OF CHANGE: This fuss over how to state

the vague question of interest and interpret this statement may seem to be overblown. However, it has

some important practical consequences.

• Depending on the subject matter, one interpretation may make more sense than another. The

process occurring over time may be something that is naturally thought of as happening within

a unit, such as growth. Under these circumstances, an investigator may find it easier to think

in terms of the random coefficient model, which says that each child has his/her own individual

trajectory with his/her own rate of change (slope). Then the question is naturally one about the

comparison of “typical” (mean) slopes.

• In other contexts, investigators may find it easier to think in terms of the “typical” response

profile; i.e. how the means across all units over time change. This might be true if the ultimate

goal is to make public policy recommendations. If the response is score on an achievement test

administered to each of m children each year for 5 years in two different curricula, the investigator

is interested in how the means over children in each group change over time; he would like to

claim that the average score for one curriculum got better faster than the other. His thinking will

tend to focus on how change happens over time to children as a group (means) rather than on

“typical” change over time for children.

The distinction in interpretation is quite a subtle one, and most people find it difficult to grasp at first.

As we have seen, either interpretation makes sense for our model.

• As we will see later, this is because the model both for mean response as a function of time and

the individual trajectories is linear in the parameters β and βi.

• When this model is not linear, we will see that the interpretation gets more difficult.

ALTERNATIVE FITTING METHOD: A natural inclination when thinking about random coefficient

models is to exploit the fact that the model says that each unit has its own trajectory and hence own

“regression model” with unit-specific “regression parameter” βi, where the βi come from a population

with mean (“typical value”) β. (We discuss one population here, but the following reasoning applies to

more than one.) This suggests that if we want to learn about β, a one way to do it would be to estimate

each βi from each unit separately, and then combine the results to estimate β; e.g. estimate β as

the sample mean of the individual unit estimates of βi.
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• Such an approach represents an alternative to fitting the full model by ML or REML as discussed

above, and is often called a two-stage estimation method. This is because fitting happens in two

stages.

• (1) Estimate each βi separately from the data on unit i only; e.g. if we believe Ri = σ2Ini
for

each i, then we might estimate βi by usual least squares applied to the data from unit i. Call

these estimates β̂i.

• (2) This distills the data Y i on each individual down to new “data” β̂i. This suggests using the

new “data” as the basis for inference. For example, a natural approach would be to average the

β̂i across all i to estimate β; e.g. if there is only one group, estimate β as

m−1
m∑

i=1

β̂i.

If there are several groups, do this on a group by group basis, e.g. average the estimates from

boys and girls separately.

• To compare groups, compare these sample averages of estimates across groups by using standard

statistical methods, e.g. apply an analysis of variance to the slope estimates to compare the mean

slope.

This sounds appealing, but it isn’t quite right.

• The new “data,” the individual estimates β̂i, are not exactly the “data” we’d like. The ideal for

learning about β would be to average the true βi across units. Of course, we don’t know these

and the best we can do is estimate them by β̂i. But this introduces additional uncertainty that

the above procedure does not take into account.

• For example, if the ni are very different across units, with some units having lots of measurements

and others only a few, then for some i, β̂i will be a better estimate of the true βi than for others.

Treating them all on equal footing as “data” is thus obviously not appropriate.

• Thus, simply averaging the β̂i as if they were the true βi can be misleading.

It turns out that if one wants to use individual estimates as “data,” one must instead take a weighted

average of the β̂i in an appropriate way to take these issues into account. This kind of approach is

discussed in Davidian and Giltinan (1995).
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Historically, the use of two-stage methods was suggested quite a long time ago, in part because it made

intuitive sense. A fundamental paper advocating two-stage methods is Rowell and Walters (1976).

Other references to two-stage methods include Gumpertz and Pantula (1989) and Davidian and Gilti-

nan (1995). Because the methods of ML and REML are straightforward to implement with available

software, we do not consider two-stage methods further here.

SPECIAL CASE – BALANCED DATA: Recall in the last chapter we noted an interesting curiosity for

the dental data, which are balanced. When we assumed that the covariance matrix of a data vector, Σi

(which is actually the same for all i with balanced data) had the compound symmetry structure, we

saw that the generalized least squares estimator for β reduced to the ordinary least squares estimator

β̂OLS treating all data as if they were independent. That is, the GLS estimator

β̂ =

(
m∑

i=1

X ′

iΣ̂
−1

Xi

)
−1 m∑

i=1

X ′

iΣ̂
−1

Y i (9.11)

with Σ having the compound symmetry structure had the same value as the OLS estimator

β̂OLS =

(
m∑

i=1

X ′

iXi

)
−1 m∑

i=1

X ′

iY i.

It turns out that this is a special instance of a more general result. The general result says:

• For the random coefficient model, if (i) the data are balanced, with all units seen at the

same n times, so that the design matrix Z i of time points is the same for all units i, and (ii)

Ri = σ2In, then then the generalized least squares estimator is numerically equivalent to the OLS

estimator!

• To show this is a nasty but not impossible exercise in matrix algebra. Under conditions (i) and

(ii), Σi reduces to the same matrix for each i:

Σi = ZDZ ′ + σ2In.

Substitute this expression for Σ̂ in (9.11) for each i (even if D and σ2 are replaced by estimates,

the form is the same). Fancy footwork with matrix inversion formulæ like those in Chapter 2 may

then be used to show the equivalence. Those with strong stomachs might want to try it!
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The compound symmetry assumption for Σ directly in these circumstances is just a special case

of the particular covariance structure Σi = ZDZ ′ + σ2In for balanced data. To see this, consider a

simple model with one group, so that

Yij = (β0 + b0i) + (β1 + b1i)tj + eij ,

var(bi) = D =




D11 D12

D12 D22


 , var(ei) = σ2In.

• It is straightforward to verify that (try it!)

var(Yij) = D11 + D22t
2
j + 2D12tj + σ2, cov(Yij , Yik) = D11 + D22tjtk + D12(tj + tk).

• Note that if D22 = 0 and D12 = 0, then these reduce to

var(Yij) = D11 + σ2, cov(Yij , Yik) = D11,

which is the compound symmetry model!

NEED FOR COVARIANCE STRUCTURE: As we have stressed before, just because the GLS estimator

is numerically identical to the OLS estimator under these circumstances is no reason to disregard the

need to characterize the covariance structure of a data vector correctly!

• The approximate covariance matrix of the GLS estimator, V̂ β , depends on the form of Σi, even

if the estimator β̂ doesn’t!

9.4 Inference on individuals

The random coefficient model is intuitively appealing – it comes from thinking first about individuals and

their own unique trajectories, and then about the population of individuals (in terms of the parameters

that characterize these trajectories). Thinking this way leads to a model for the mean and covariance of

a data vector that has a specific form; in particular, the covariance matrix of data vector is represented

explicitly as the sum of 2 terms, incorporating separately the impact of 2 sources of variation, within-

and among-units. This makes it easier for the data analyst:

• The sources of variation may be thought of separately. Thus, for example, a model Ri that best

captures the variation due to the nature of data collection on an individual unit may be entertained

separately from having to think about biological variation (D). In the modeling approach of the

last chapter, this had to be done all at once.

PAGE 329



CHAPTER 9 ST 732, M. DAVIDIAN

The model has still another advantage. It is sometimes the case that investigators may wish not only to

learn about the population(s) of units through things such as the “typical” (mean) slope values and

how they compare across populations. Particularly in medical and educational studies, the investigators

may wish to understand the change in the response over time for specific subjects.

• In a study of AIDS patients, with response “viral load,” measuring “amount” of virus in the

system, investigators may wish to characterize the trajectory of viral load for particular patients

in order to aid in decisions about their future care.

• In educational studies, where response is some measure of “achievement,” investigators may wish

to characterize the progress of individual children in order to place them in the most suitable

learning environment.

If we think in terms of the random coefficient model, then, interest focuses on the subject-specific

parameters βi describing the trajectories of individual subjects. In particular, for individual subjects,

the investigators are interested in “estimating” βi for specific subjects based on the data.

• One way to do this would be just to use estimates based on treating each subject as a separate

regression problem – one could get β̂i from each subject’s data separately.

• However, if the numbers of observations on each i is not too large, these estimates will probably

not be very good.

• Moreover, this does not take into account (nor does it take advantage of) the fact that we have

data from an entire sample of similar subjects from the same population(s). Intuition suggests

that we could stand to gain something from acknowledging that we believe this!

We will take up this issue in the next chapter, when we discuss the general linear mixed effects

model, of which the random coefficient model is a special case.

• Note immediately, however, that the models we have talked about in this course up to now

(Chapters 4–7) do not even explicitly acknowledge individual trajectories!
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9.5 Discussion

“POPULATION-AVERAGED” VS. “SUBJECT-SPECIFIC”: We have seen that the random coefficient

model arises from thinking about the longitudinal data situation in an alternative way. Rather than

thinking in terms of the mean responses at each time point and how they are related, we think of

individual trajectories and then the means of individual-specific parameters that characterize these

trajectories (e.g. mean of the slopes in the population of subjects).

• The first approach, which was used in Chapter 7, is often called a population-averaged approach

for this reason – the focus of modeling is on the averages (means) across the population of

units at each time point, and how these averages are related over time.

• The current approach is often called a subject-specific approach – the focus of modeling is on

individual units.

• In the case where the models considered are linear, the two perspectives ultimately lead to the

same type of model for the mean, so that either interpretation is valid.

• The subject-specific, random coefficient approach has the additional feature that it “automati-

cally” leads to a particular assumption about the structure of the covariance matrix of a data

vector, which naturally acknowledges within- and among-unit variation separately. In contrast,

the population-averaged approach forces the data analyst to model this covariance, thinking about

the two sources of variation together. As a result, the subject-specific approach of the random

coefficient model, and, more generally, the linear mixed effects models we will consider in the

next chapter, has become incredibly popular.

ALTERNATIVE TERMINOLOGY: The random coefficient model, allowing for the possibility of dif-

ferent groups, is sometimes referred to as a growth curve model in the statistical and subject-matter

literature.

CHOICE OF COVARIANCE STRUCTURE: We have noted that the possibilities are quite broad for

modeling covariance structure within the random coefficient model framework.

• One may in principle take the covariance matrix Ri, corresponding to within-unit variation, to

be one of a variety of structures according to knowledge of the data collection process.

• If the main source of within-unit variation is measurement error, or if it is instead fluctuation but

observations are far apart in time taking Ri diagonal may be reasonable.
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• One may in principle take the covariance matrix var(bi), characterizing variation among units

(through how the parameters in the individual trajectories vary) to be the same for all groups or

different, depending on the belief about the pattern of variation for each group.

• The most commonly-used form of the random coefficient model is that where

Ri = σ2Ini
, var(bi) = D = same for all groups.

Often this structure is suitable; e.g. units tend to vary similarly for each group, although the

means may be different (same D is reasonable). This same kind of assumption (means differ,

variance the same) is standard in usual analysis of variance models and methods. This model is

considered extensively and almost exclusively in much of the literature. It is certainly possible to

relax these assumptions; for example, we discussed the possibility of taking D to be different for

each gender group in the dental data example.

• One pitfall of trying to get too fancy with modeling of Ri and var(bi) is that it is quite likely that

one will end up with a model that is too complicated to be sorted out given the data at hand.

This problem of identifiability is mentioned in the next section.

• Thus, many people are willing to risk the possibility that they may incorrectly specify Ri and/or

D by, for example, assuming that thevar(bi) = D is common to all groups when it may not be.

The form of the model

Σi = ZiDZ ′

i + Ri

is sufficiently general that, even if the two components D and Ri are not exactly correctly chosen,

the resulting Σi matrix will differ very little from that one would obtain if they were. Thus, if

one’s main interest is in estimating β and tests about it, this may be okay.

• However, if interest is focused on var(bi) and Ri themselves, then obviously one would want to

investigate all possibilities. Thus, in the first example of section 9.7, we illustrate how both the

commonly-used specification and fancier ones may be implemented in SAS. However, be aware

that fitting very fancy models may lead to difficulties and “over-fitting.” To read more about the

possibilities, see SAS System for Mixed Models (1996, chapter 8) and Vonesh and Chinchilli (1997,

section 6.3).
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9.6 Basic PROC MIXED sytnax

We are now in a position to explain fully exactly how PROC MIXED is set up. In the most general case

of a random coefficient model, we may write the model as

Y i = Xiβ + Zibi + ei.

In fact, just as we did in the previous chapter, we may present this mode in a streamlined form by

“stacking” the contributions from each unit. In particular, Define

Y =




Y 1

Y 2

...

Y m




, e =




e1

e2

...

em




, X =




X1

X2

...

Xm




, R =




R1 0 · · · 0

0 R2 · · · 0
...

...
. . .

...

0 0 · · · Rm




,

b =




b1

b2

...

bm




, Z =




Z1 0 · · · 0

0 Z2 · · · 0
...

...
. . .

...

0 0 · · · Zm




, D̃ =




D 0 · · · 0

0 D · · · 0
...

...
. . .

...

0 0 · · · D




,

where D̃ here has been displayed in the case where var(bi) = D for all units but could be modified if,

say, girls and boys had different matrices DG and DB. We may then write the model concisely as

Y = Xβ + Zb + e, var(Y ) = ZD̃Z ′ + R (9.12)

(verify). This type of concise expression is used in the documentation, except that SAS refers to D̃ as

G.

We have already seen that the model statement is the mechanism by which the analyst may specify

the form the mean vector, denoted X iβ for unit i or Xβ for all units, stacked. We have used the

repeated statement to specify the overall covariance matrix.

• In the context of a model of the above form, however, the repeated statement is used to specify

the within-unit covariance model Ri or, equivalently, R above.

• An additional statement, the random statement, is used to specify the assumption on var(bi) (D̃).

We will see specific examples in the next section.
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For now, we offer a summary of the basic syntax for quick reference.

proc mixed data=dataset method= (ML,REML);

class classification variables;

model response = columns of X / solution;

random columns of Z / type= subject= group= ;

repeated / type= subject= group= ;

run;

proc mixed statement

• method=REML is the default; no method= required in this case

model statement

• columns of X are variables (class or continuous) corresponding to variables associated with

fixed effects β

• Intercept is assumed unless noint option after slash

• solution is an option

random statement

• Describes the matrix D̃ = var(b) (i.e. the matrices var(bi) making up the blocks of D̃

• columns of Z are variables (class or continuous), i.e. variables associated with random effects

b

• subject= tells mixed what class variable denotes the grouping determining the units

• type= allows choice of matrix (e.g. un, unstructured)

• group= allows D to be different according to this class variable (e.g. dental study, boys, girls)
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repeated statement

• Describes the matrix R = var(e) (i.e. the matrices Ri = var(ei)

• If var(ei) = σ2Ini
same for all i repeated statement is NOT needed

• subject= tells mixed what class variable denotes the grouping determining the units

• type= allows choice other than diagonal (e.g. ar(1), cs, etc.

• group= allows Ri to be different depending on group membership (e.g. dental study, var(ei) = σ2
G

girls, var(ei) = σ2
B boys)

We may now observe that, in the previous chapter, to implement a general linear regression model

using proc mixed with the repeated statement, we simply made a correspondence between the model

of form (9.12) with no random effects b, which looks like

Y = Xβ + e,

and the model in that chapter of the form

Y = Xβ + εi.

From purely operational point of view (but not an interpretation point of view), the models have the

same structure – a mean plus a deviation with components of length ni, each of which has a covariance

matrix. Thus, purely to specify these covariance matrices for the second model, the repeated statement

can be used.

See the SAS documentation for PROC MIXED for much more detail on the use of these statements and

available options.
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9.7 Implementation with SAS

We illustrate how to carry out analyses based on random coefficient models for two examples we have

already considered:

1. The dental study data

2. The ultrafiltration data

For each data set, we consider different random coefficient models and address questions of interest such

as whether the mean slope differs across groups (gender or center). As discussed in the last section,

we use SAS PROC MIXED with the random statement to impose the random coefficient model structure

– this statement allows the user to specify var(bi). If there is no repeated statement, it is assumed

that var(ei) = σ2Ini
(see the last section). Otherwise, if a random and repeated statement appear

simultaneously, the repeated statement sets up some other model for var(ei) = Ri.

WARNING – LACK OF IDENTIFIABILITY: It is important to use PROC MIXED with version 6.12 or

higher of SAS; here, we use version 8.2. Even with this improved version, as well as with programs in

other software packages that are designed to fit these models, things may not always go as planned. It

is important to keep in mind that the models are being fit via numerical algorithms that are used to

maximize the likelihood or restricted likelihood. It is possible to specify a model with var(bi) and var(ei)

sufficiently complex that it is too complicated to be fitted given the information available in the data.

That is, one may choose these models in such a way that there are too many parameters, more than

are required to give an adequate characterization of the true covariance structure. Such a model is said

to be over-identified or unidentifiable. The result of specifying such models is that the numerical

algorithms will either fail to find a solution (converge) or will lead to a solution that is nonsensical).

Thus, one pitfall to be aware of when fitting these models and more generally those of the next chapter

is the possibility of getting “carried away” in choosing the structure for Ri, making it too complicated

and leading to an unidentifiable model. If PROC MIXED fails to converge for a particular model choice,

then the analyst may have to consider whether the implied model for Σi is “too rich” for the problem

and adopt simpler choices (at the risk of being “wrong”).
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EXAMPLE 1 – DENTAL STUDY DATA:

• For illustration purposes only, we fit the random coefficient model assuming that the mean inter-

cept and slope differ for the two genders. Note that when fitting a random coefficient model, it is

natural to think in terms of the parameterization of the model that contains intercept and slope

explicitly rather than their difference:

Yij = β0i + β1itij + eij ,

βi = β + bi, β =




β0,G

β1,G


 girls, β =




β0,B

β1,B


 boys.

We consider this parameterization in our fitting.

• For fitting this model, we illustrate how to instruct PROC MIXED to fit models for a number of

different assumptions on the matrices Ri and var(bi). These are:

(i) Ri = σ2I, D same for both genders. This is the most common specification. Recall this

implies a belief that within-child sources of correlation are negligible (Ri diagonal) and

among-child variation is similar in each group. The parameter σ2 may be interpreted as the

aggregate variance due to within-child “fluctuations” in distance and measurement error.

(ii) Ri = σ2
GI if i is a girl and Ri = σ2

BI if i is a boy, D same for both genders. This allows for

the possibility that within-child variation might be different for the different genders (due to

measurement error and fluctuation).

(iii) Ri is the AR(1) covariance matrix, same for both genders, and D is the same for both

genders. This choice of Ri allows for the possibility of nonnegligible within-child correlation.

(iv) Ri = σ2
GI if i is a girl and Ri = σ2

BI if i is a boy, and var(bi) = DG if i is a girl and = DB

if a boy. This allows for the possibility that within-child variation might be different for

the different genders and the possibility that variability in intercepts and slopes is different.

This essentially amounts to fitting two separate models, one for each gender!

(v) Ri is the sum of two components: an AR(1) covariance matrix (corresponding to the fluctua-

tions, allowing within-child correlation) and σ2
2I, which now corresponds to the measurement

error component (assumed common). D is the same for both genders. Specifically, we have

Ri = σ2
1Γ + σ2

2I,

where Γ is the (4×4) AR(1) correlation matrix. To fit this model, we use of the local option

of the repeated statement, which adds the matrix σ2
2I to the requested AR(1) matrix.
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PROGRAM:

/*******************************************************************

CHAPTER 9, EXAMPLE 1

Analysis of the dental study data by fitting a random coefficient
model in time using PROC MIXED.

- the repeated measurement factor is age (time)

- there is one "treatment" factor, gender

The model for each child is assumed to be a straight line.
The intercepts and slopes may have different means depending on
gender, with the same covariance matrix D for each gender.

We use the RANDOM and REPEATED statements to fit models that
make several different assumptions about the forms of the matrices
Ri and D.

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

Read in the data set (See Example 1 of Chapter 4)

*******************************************************************/

data dent1; infile ’dental.dat’;
input obsno child age distance gender;

run;

/*******************************************************************

Use PROC MIXED to fit the random coefficient model via the
RANDOM statement. For all of the fits, we use usual normal
ML rather than REML (the default).

In all cases, we use the usual parameterization for the mean
model.

The SOLUTION option in the MODEL statement requests that the
estimates of the regression parameters be printed.

The G and GCORR options in the RANDOM statement asks that the
D matrix and the corresponding correlation matrix it implies
be printed. The V and VCORR options ask that the overall
Sigma matrix be printed (for the first subject or particular
subjects).

To fit a random coefficient model, we must specify that both
intercept and slope are random in the RANDOM statement.

If no REPEATED statement appears, then PROC MIXED assumes that
Ri = sigma^2*I. Otherwise, we use a REPEATED statement to set
a structure for Ri with the TYPE = option.

*******************************************************************/

* MODEL (i);
* Ri = diagonal with constant variance sigma^2 same in both genders;
* No REPEATED statement necessary to fit this Ri (default);
* D = (2x2) unstructured matrix same for both genders;
* Specified in the RANDOM statement;

title ’RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD’;
title2 ’COVARIANCE MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER’;
title3 ’SAME D MATRIX FOR BOTH GENDERS’;
proc mixed method=ml data=dent1;
class gender child;
model distance = gender gender*age / noint solution;
random intercept age / type=un subject=child g gcorr v vcorr;
estimate ’diff in mean slope’ gender 0 0 gender*age 1 -1;
contrast ’overall gender diff’ gender 1 -1, gender*age 1 -1 /chisq;

run;

* MODEL (ii);
* Fit the same model but with a separate diagonal Ri matrix for;
* each gender. Thus, there are 2 separate variances sigma^2_(G and B);
* D still = (2x2) unstructured matrix same for both genders;
* Specified in the RANDOM statement;

title ’RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD’;
title2 ’COVARIANCE MATRIX WITH SEPARATE CONSTANT VARIANCE FOR EACH GENDER’;
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title3 ’SAME D MATRIX FOR BOTH GENDERS’;
proc mixed method=ml data=dent1;
class child gender;
model distance = gender gender*age / noint solution;
repeated / group=gender subject=child;
random intercept age / type=un subject=child g gcorr v vcorr;
estimate ’diff in mean slope’ gender 0 0 gender*age 1 -1;
contrast ’overall gender diff’ gender 1 -1, gender*age 1 -1 /chisq;

run;

* MODEL (iii);
* Ri is AR(1) with the same variance and rho value for each gender;
* Specified in the REPEATED statement;
* D still = (2x2) unstructured matrix same for both genders;
* Specified in the RANDOM statement;

title ’RANDOM COEFFICIENT MODEL WITH AR(1) WITHIN-CHILD’;
title2 ’CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER’;
title3 ’SAME D MATRIX FOR BOTH GENDERS’;
proc mixed method=ml data=dent1;
class gender child ;
model distance = gender gender*age / noint solution ;
random intercept age / type=un subject=child g gcorr v vcorr;
repeated / type=ar(1) subject=child rcorr;
estimate ’diff in mean slope’ gender 0 0 gender*age 1 -1;
contrast ’overall gender diff’ gender 1 -1, gender*age 1 -1 /chisq;

run;

* MODEL (iv);
* Fit the same model but with a separate diagonal Ri matrix for;
* each gender. Thus, there are 2 separate variances sigma^2_(G and B);
* D still = (2x2) unstructured matrix differs across genders;
* Specified in the RANDOM statement by the GROUP=GENDER option;

title ’RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD’;
title2 ’COVARIANCE MATRIX WITH SEPARATE CONSTANT VARIANCE FOR EACH GENDER’;
title3 ’DIFFERENT D MATRIX FOR BOTH GENDERS’;
proc mixed method=ml data=dent1;
class child gender;
model distance = gender gender*age / noint solution;
repeated / group=gender subject=child;
random intercept age / type=un group=gender subject=child g gcorr v vcorr;
estimate ’diff in mean slope’ gender 0 0 gender*age 1 -1;
contrast ’overall gender diff’ gender 1 -1, gender*age 1 -1 /chisq;

run;

* MODEL (v)
* Ri is the sum of two components, an AR(1) component for fluctuations;
* and a diagonal component with variance sigma^2 common to both genders;
* The LOCAL option adds the diagonal component to the AR(1) structure;
* specified in the REPEATED statement;
* D still = (2x2) unstructured matrix same for both genders;
* Specified in the RANDOM statement;

title ’RANDOM COEFFICIENT MODEL WITH AR(1) + COMMON MEAS ERROR WITHIN-CHILD’;
title2 ’CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER’;
title3 ’SAME D MATRIX FOR BOTH GENDERS’;
proc mixed method=ml data=dent1;
class gender child ;
model distance = gender gender*age / noint solution ;
random intercept age / type=un subject=child g gcorr v vcorr;
repeated / type=ar(1) local subject=child rcorr;
estimate ’diff in mean slope’ gender 0 0 gender*age 1 -1;
contrast ’overall gender diff’ gender 1 -1, gender*age 1 -1 /chisq;

run;

PAGE 339



CHAPTER 9 ST 732, M. DAVIDIAN

OUTPUT: Following the output, we comment on a few aspects of the output.

RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 1
COVARIANCE MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structure Unstructured
Subject Effect child
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 4
Columns in X 4
Columns in Z Per Subject 2
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 427.80595080 0.00000000

Convergence criteria met.

RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 2
COVARIANCE MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Estimated G Matrix

Row Effect child Col1 Col2

1 Intercept 1 4.5569 -0.1983
2 age 1 -0.1983 0.02376

Estimated G Correlation Matrix

Row Effect child Col1 Col2

1 Intercept 1 1.0000 -0.6025
2 age 1 -0.6025 1.0000

Estimated V Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.6216 2.8891 2.8727 2.8563
2 2.8891 4.6839 3.0464 3.1251
3 2.8727 3.0464 4.9363 3.3938
4 2.8563 3.1251 3.3938 5.3788

Estimated V Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.6209 0.6014 0.5729
2 0.6209 1.0000 0.6335 0.6226
3 0.6014 0.6335 1.0000 0.6586
4 0.5729 0.6226 0.6586 1.0000
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Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) child 4.5569
UN(2,1) child -0.1983
UN(2,2) child 0.02376
Residual 1.7162

Fit Statistics

-2 Log Likelihood 427.8
AIC (smaller is better) 443.8
AICC (smaller is better) 445.3
BIC (smaller is better) 454.2

RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 3
COVARIANCE MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 50.44 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.3727 1.1820 54 14.70 <.0001
gender 1 16.3406 0.9801 54 16.67 <.0001
age*gender 0 0.4795 0.09980 54 4.80 <.0001
age*gender 1 0.7844 0.08275 54 9.48 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 54 247.00 <.0001
age*gender 2 54 56.46 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

diff in mean slope -0.3048 0.1296 54 -2.35 0.0224

Contrasts

Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

overall gender diff 2 54 14.19 7.10 0.0008 0.0018

RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 4
COVARIANCE MATRIX WITH SEPARATE CONSTANT VARIANCE FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structures Unstructured, Variance

Components
Subject Effects child, child
Group Effect gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

child 27 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27

gender 2 0 1

Dimensions
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Covariance Parameters 5
Columns in X 4
Columns in Z Per Subject 2
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 418.92503842 1.16632499
2 1 416.18869903 1.23326209
3 1 407.89638533 0.01954268
4 2 406.88264563 0.00645800
5 1 406.10632159 0.00056866
6 1 406.04318997 0.00000764
7 1 406.04238894 0.00000000

RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 5
COVARIANCE MATRIX WITH SEPARATE CONSTANT VARIANCE FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Convergence criteria met.

Estimated G Matrix

Row Effect child Col1 Col2

1 Intercept 1 3.1978 -0.1103
2 age 1 -0.1103 0.01976

Estimated G Correlation Matrix

Row Effect child Col1 Col2

1 Intercept 1 1.0000 -0.4388
2 age 1 -0.4388 1.0000

Estimated V Matrix for child 1

Row Col1 Col2 Col3 Col4

1 3.1426 2.7933 2.8889 2.9845
2 2.7933 3.4128 3.1426 3.3172
3 2.8889 3.1426 3.8411 3.6499
4 2.9845 3.3172 3.6499 4.4275

Estimated V Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8529 0.8315 0.8001
2 0.8529 1.0000 0.8680 0.8534
3 0.8315 0.8680 1.0000 0.8851
4 0.8001 0.8534 0.8851 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

UN(1,1) child 3.1978
UN(2,1) child -0.1103
UN(2,2) child 0.01976
Residual child gender 0 0.4449
Residual child gender 1 2.6294

RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 6
COVARIANCE MATRIX WITH SEPARATE CONSTANT VARIANCE FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Fit Statistics

-2 Log Likelihood 406.0
AIC (smaller is better) 424.0
AICC (smaller is better) 425.9
BIC (smaller is better) 435.7

Null Model Likelihood Ratio Test
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DF Chi-Square Pr > ChiSq

4 72.20 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.3727 0.7386 54 23.52 <.0001
gender 1 16.3406 1.1114 54 14.70 <.0001
age*gender 0 0.4795 0.06180 54 7.76 <.0001
age*gender 1 0.7844 0.09722 54 8.07 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 54 384.72 <.0001
age*gender 2 54 62.66 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

diff in mean slope -0.3048 0.1152 54 -2.65 0.0106

Contrasts

Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

overall gender diff 2 54 14.32 7.16 0.0008 0.0017

RANDOM COEFFICIENT MODEL WITH AR(1) WITHIN-CHILD 7
CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structures Unstructured,

Autoregressive
Subject Effects child, child
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 5
Columns in X 4
Columns in Z Per Subject 2
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 424.08934703 0.00028001
2 1 424.05684775 0.00000096
3 1 424.05673965 0.00000000

Convergence criteria met.

RANDOM COEFFICIENT MODEL WITH AR(1) WITHIN-CHILD 8
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CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER
SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 -0.4680 0.2190 -0.1025
2 -0.4680 1.0000 -0.4680 0.2190
3 0.2190 -0.4680 1.0000 -0.4680
4 -0.1025 0.2190 -0.4680 1.0000

Estimated G Matrix

Row Effect child Col1 Col2

1 Intercept 1 10.1459 -0.7198
2 age 1 -0.7198 0.07508

Estimated G Correlation Matrix

Row Effect child Col1 Col2

1 Intercept 1 1.0000 -0.8248
2 age 1 -0.8248 1.0000

Estimated V Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.6275 2.6363 3.2182 2.5959
2 2.6363 4.4510 2.7601 3.6423
3 3.2182 2.7601 4.8751 3.4846
4 2.5959 3.6423 3.4846 5.8999

Estimated V Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.5809 0.6776 0.4968
2 0.5809 1.0000 0.5925 0.7108
3 0.6776 0.5925 1.0000 0.6497
4 0.4968 0.7108 0.6497 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) child 10.1459
UN(2,1) child -0.7198
UN(2,2) child 0.07508

RANDOM COEFFICIENT MODEL WITH AR(1) WITHIN-CHILD 9
CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate

AR(1) child -0.4680
Residual 1.1940

Fit Statistics

-2 Log Likelihood 424.1
AIC (smaller is better) 442.1
AICC (smaller is better) 443.9
BIC (smaller is better) 453.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

4 54.19 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.4166 1.1586 54 15.03 <.0001
gender 1 16.1544 0.9607 54 16.82 <.0001
age*gender 0 0.4757 0.1010 54 4.71 <.0001
age*gender 1 0.7978 0.08374 54 9.53 <.0001
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Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 54 254.37 <.0001
age*gender 2 54 56.48 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

diff in mean slope -0.3220 0.1312 54 -2.45 0.0174

RANDOM COEFFICIENT MODEL WITH AR(1) WITHIN-CHILD 10
CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Contrasts

Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

overall gender diff 2 54 13.46 6.73 0.0012 0.0025

RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 11
COVARIANCE MATRIX WITH SEPARATE CONSTANT VARIANCE FOR EACH GENDER

DIFFERENT D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structures Unstructured, Variance

Components
Subject Effects child, child
Group Effects gender, gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

child 27 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27

gender 2 0 1

Dimensions

Covariance Parameters 8
Columns in X 4
Columns in Z Per Subject 4
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 405.11800674 0.00000000

Convergence criteria met.
RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 12

COVARIANCE MATRIX WITH SEPARATE CONSTANT VARIANCE FOR EACH GENDER
DIFFERENT D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Estimated G Matrix

Row Effect child gender Col1 Col2 Col3 Col4

1 Intercept 1 0 2.9716 -0.07539
2 age 1 0 -0.07539 0.02151
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3 Intercept 1 1 5.6468 -0.2827
4 age 1 1 -0.2827 0.02530

Estimated G Correlation Matrix

Row Effect child gender Col1 Col2 Col3 Col4

1 Intercept 1 0 1.0000 -0.2982
2 age 1 0 -0.2982 1.0000
3 Intercept 1 1 1.0000 -0.7480
4 age 1 1 -0.7480 1.0000

Estimated V Matrix for child 1

Row Col1 Col2 Col3 Col4

1 3.5889 3.3357 3.5292 3.7226
2 3.3357 4.0618 3.8947 4.1742
3 3.5292 3.8947 4.7069 4.6258
4 3.7226 4.1742 4.6258 5.5240

Estimated V Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.8737 0.8587 0.8361
2 0.8737 1.0000 0.8907 0.8812
3 0.8587 0.8907 1.0000 0.9072
4 0.8361 0.8812 0.9072 1.0000

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

UN(1,1) child gender 0 2.9716
UN(2,1) child gender 0 -0.07539
UN(2,2) child gender 0 0.02151
UN(1,1) child gender 1 5.6468
UN(2,1) child gender 1 -0.2827
UN(2,2) child gender 1 0.02530
Residual child gender 0 0.4466
Residual child gender 1 2.5891

RANDOM COEFFICIENT MODEL WITH DIAGONAL WITHIN-CHILD 13
COVARIANCE MATRIX WITH SEPARATE CONSTANT VARIANCE FOR EACH GENDER

DIFFERENT D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Fit Statistics

-2 Log Likelihood 405.1
AIC (smaller is better) 429.1
AICC (smaller is better) 432.4
BIC (smaller is better) 444.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

7 73.12 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.3727 0.7252 25 23.96 <.0001
gender 1 16.3406 1.1715 25 13.95 <.0001
age*gender 0 0.4795 0.06313 25 7.60 <.0001
age*gender 1 0.7844 0.09835 25 7.98 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 25 384.22 <.0001
age*gender 2 25 60.65 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

diff in mean slope -0.3048 0.1169 25 -2.61 0.0151

Contrasts
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Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

overall gender diff 2 25 14.12 7.06 0.0009 0.0037

RANDOM COEFFICIENT MODEL WITH AR(1) + COMMON MEAS ERROR WITHIN-CHILD 14
CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Model Information

Data Set WORK.DENT1
Dependent Variable distance
Covariance Structures Unstructured,

Autoregressive
Subject Effects child, child
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

gender 2 0 1
child 27 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27

Dimensions

Covariance Parameters 6
Columns in X 4
Columns in Z Per Subject 2
Subjects 27
Max Obs Per Subject 4

Number of Observations

Number of Observations Read 108
Number of Observations Used 108
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 428.22548286 24.55088017
2 2 427.26075815 1.09477678
3 2 426.51452533 1.16919129
4 2 425.99015592 0.08543213
5 2 424.91951841 0.01458002
6 2 424.32018203 0.00323017
7 3 424.01683319 .
8 1 423.99457950 0.00007763

RANDOM COEFFICIENT MODEL WITH AR(1) + COMMON MEAS ERROR WITHIN-CHILD 15
CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Log Like Criterion

9 1 423.99420143 0.00000054
10 2 423.99415208 0.00000007
11 2 423.99414400 0.00000000

Convergence criteria met.

Estimated R Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 -0.2256 0.2241 -0.2227
2 -0.2256 1.0000 -0.2256 0.2241
3 0.2241 -0.2256 1.0000 -0.2256
4 -0.2227 0.2241 -0.2256 1.0000

Estimated G Matrix

Row Effect child Col1 Col2
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1 Intercept 1 6.9045 -0.4333
2 age 1 -0.4333 0.04828

Estimated G Correlation Matrix

Row Effect child Col1 Col2

1 Intercept 1 1.0000 -0.7505
2 age 1 -0.7505 1.0000

Estimated V Matrix for child 1

Row Col1 Col2 Col3 Col4

1 4.5375 2.6344 3.2041 2.4504
2 2.6344 4.5423 2.8323 3.5951
3 3.2041 2.8323 4.9333 3.4165
4 2.4504 3.5951 3.4165 5.7106

RANDOM COEFFICIENT MODEL WITH AR(1) + COMMON MEAS ERROR WITHIN-CHILD 16
CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Estimated V Correlation Matrix for child 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.5803 0.6772 0.4814
2 0.5803 1.0000 0.5983 0.7059
3 0.6772 0.5983 1.0000 0.6437
4 0.4814 0.7059 0.6437 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) child 6.9045
UN(2,1) child -0.4333
UN(2,2) child 0.04828
Variance child 0.3351
AR(1) child -0.9935
Residual 1.1408

Fit Statistics

-2 Log Likelihood 424.0
AIC (smaller is better) 444.0
AICC (smaller is better) 446.3
BIC (smaller is better) 457.0

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

5 54.25 <.0001

Solution for Fixed Effects

Standard
Effect gender Estimate Error DF t Value Pr > |t|

gender 0 17.4148 1.1651 54 14.95 <.0001
gender 1 16.1917 0.9661 54 16.76 <.0001
age*gender 0 0.4757 0.1010 54 4.71 <.0001
age*gender 1 0.7979 0.08376 54 9.53 <.0001

RANDOM COEFFICIENT MODEL WITH AR(1) + COMMON MEAS ERROR WITHIN-CHILD 17
CORRELATION MATRIX WITH CONSTANT VARIANCE SAME FOR EACH GENDER

SAME D MATRIX FOR BOTH GENDERS

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

gender 2 54 252.17 <.0001
age*gender 2 54 56.46 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

diff in mean slope -0.3222 0.1312 54 -2.45 0.0173

Contrasts
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Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

overall gender diff 2 54 13.97 6.99 0.0009 0.0020
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INTERPRETATION:

• For each assumed model, the output shows the estimates of D (or different such matrices where

appropriate), the estimates of parameters making up Ri, and, as usual, the estimates of β. For

the fit of model (i), the estimate of the assumed common D is (Estimated G Matrix) and the

implied correlation matrix (Estimated G Correlation Matrix) are




4.5569 −0.1983

−0.1983 0.02376


 ,




1.0000 −0.6025

−0.6025 1.0000


 ,

respectively. The estimate of σ2 in the assumed model Ri = σ2I is in the Covariance Parameter

Estimates table (along with the distinct elements of D repeated) and is equal to 1.716 (Residual).

Recall that these are balanced data; thus, under this assumption, the matrix Σi is the same for

all children. The estimate of Σi implied by the above estimates and the associated correlation ma-

trix are given in the tables Estimated V Matrix for CHILD 1 and Estimated V Correlation

Matrix for CHILD 1 (see the output, page 1 and 2).

For the other models (ii) – (v), the estimates of the components of the overall covariance structure

are given in a similar fashion. For model (ii), the estimates of D and its implied correlation

matrix appear on page 5 of the output. Here, we assume that the within-child variance is different

depending on gender; from the table Covariance Parameter Estimates, the estimates are given

as σ̂2
G = 0.445 and σ̂2

B = 2.629. These estimates are quite different. The implied matrix Σi is

now different for different i; in particular, it will be the same for all boys and the same for all

girls. The v and vcorr options cause PROC MIXED to print the estimate of Σi for the first child,

so the estimates of Estimated V Matrix for CHILD 1 and Estimated V Correlation Matrix

for CHILD 1 correspond to the estimate for girls.

For the fit of model (iii), where a common AR(1) structure is assumed for both boys and girls,

the estimates of ρ and σ2 may be found on page 9–10 of the output in the table Covariance

Parameter Estimates as -0.468 and 1.194, respectively.

For model (iv), where a different D matrix and Ri matrix as in model (ii) are assumed for each

gender, SAS prints the estimates of the two matrices DG and DB in the Estimated G Matrix

together on page 12; that for girls is




2.9716 −0.0754

−0.0754 0.0215


 .
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The corresponding correlation matrices are printed in Estimated G Correlation Matrix. Again,

the implied Σi matrices will differ for boys and girls; those for the first girl are printed on page

12.

For model (v), which included two components for Ri, results begin on page 14 of the output.

In the Covariance Parameter Estimates table, Variance is generated by the local option and

refers to the estimate of σ2
2. Residual refers to the common variance σ2

1 that appears as part of

the structure requested in type=. AR(1) refers to the estimate of ρ. Note that the estimated value

is −0.99, which is virtually 1! The estimate has wandered off toward the “boundary” of what its

possible values are. Note that the overall covariance model is very “rich.” This is typical behavior

under these conditions and probably reflects that this model is too fancy to be well-identified.

• Note in cases (i), (ii), and (iv) that the estimates of β found in the Solution for Fixed Effects

are identical and are equal to the ordinary least squares estimator. This reflects the argument

given in section 9.3. Of course, the estimated standard errors are different for the different fits,

reflecting the different assumptions about Σi that go into forming V̂ β . For (iii) and (v), where

the AR(1) matrix is involved so that Ri does not have a form like sigma2I for all units, this does

not hold.

• For all analyses, the Wald test of different slopes carried out by the estimate statement gives

a significant result at level α = 0.05. Also obtained is a Wald test for the “overall difference”

between genders – the L matrix for this contrast is

L =




1 −1 0 0

0 0 1 −1


 ;

thus, we are testing whether the mean intercepts and slopes are the same for each gender simul-

taneously. Regardless of the assumption on Σi, the evidence supporting rejection of this null

hypothesis seems very strong.
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• Inspection of the AIC and BIC values for these fits on pages 2, 6, 9, and 13 of the output shows

that model (ii), where a different within-child variance is assumed for each gender and D the same

seem preferable among the four models considered. The AIC and BIC values for this model are

424.0 and 435.7, respectively. Comparing the values to those for the general regression models

considered in the analysis of these data in section 8.8 reveals that these AIC and BIC values seem

comparable to those for the preferred model in that section, where Σi was modeled as following a

different compound symmetry structure for boys and girls. Thus, among all models considered for

these data so far, either of these seems plausible. Model (ii) here may be more pleasing to many

analysts, because it considers the two sources of variation explicitly. The key element seems to

be allowing the within-child variance to be different for the two genders; allowing D to differ as

well in model (iv) offered no improvement in fit. Inspection of the original data plot reveals the

potential source of this result. Note that 2 of the boys, and one especially, have trajectories that

seem to “bounce around” much more than those of the other children. From above, the estimate

of variance for boys, σ2
B, was much larger than that for girls, σ2

G. Otherwise, the trajectories

seem similarly spread out across girls and boys, supporting the choice of common D. Being able

to model the covariance structure in terms of the two sources of variation explicitly makes this

clear, allowing a pleasing interpretation of how the overall covariance structure differs. Such an

interpretation is more difficult with the model of section 8.8.
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EXAMPLE 2 – DIALYZER DATA: In the following program, we consider the issue of whether the

mean slope of a trajectory differs across the centers.

• The “full” model is that assuming that each dialyzer has its own straight line trajectory with its

own intercept and slope. Then, each center has its own mean intercept and slope. We assume

a common var(bi) = D and a common diagonal within-unit covariance matrix Ri = σ2I for all

centers. Other specifications could be investigated to see if they provide a better fit.

• The model is

Yij = β0i + βi1tij + eij ,

βi = Aiβ + bi, β =




β01

β11

β02

β12

β03

β13




, bi ∼ N2(0, D).

where β0`, β1` are the mean intercept and slope for the `th center, ` = 1, 2, 3. Ai is the appropriate

matrix of 0’s and 1’s that “picks off” the correct elements of β for the i dialyzer; e.g. if i is from

center 1, then

Ai =




1 0 0 0 0 0

0 1 0 0 0 0


 .

We fit this model by ML and REML.

• We also consider the reduced model where the slopes are the same for each center (with different

intercepts). Thus, for this model

β =




β01

β02

β03

β1




,

where β1 is the common slope. Thus, Ai would be the (2 × 4) matrix to “pick off” the right

intercept and β1 for the ith center; e.g. for i from center 1,

Ai =




1 0 0 0

0 0 0 1


 .

We fit this model by ML so that we can construct the likelihood ratio test of this model against

the full model.

PAGE 353



CHAPTER 9 ST 732, M. DAVIDIAN

• For the full model fits, we use the estimate and contrast statements of PROC MIXED to construct

the Wald test statistics for different mean slopes, different intercepts, and pairwise comparison of

mean slopes for each pair of centers.

PROGRAM:

/*******************************************************************

CHAPTER 9, EXAMPLE 2

Analysis of the ultrafiltration data by fitting a random
coefficient model in transmembrane pressure (mmHg)

- the repeated measurement factor is transmembrane pressure (tmp)

- there is one "treatment" factor, center

- the response is ultrafiltration rate (ufr, ml/hr)

The model for each dialyzer is a straight line. The intercepts
and slopes have different means for each center. The covariance
matrix D is the same for each center. The matrix Ri is taken
to be diagonal with variance sigma^2 for all units.

We use the RANDOM statement to fit the random coefficient model.

These data are unbalanced both in the sense that the pressures
under which each dialyzer is observed are different.

*******************************************************************/

options ls=80 ps=59 nodate; run;

/******************************************************************

Read in the data set

*******************************************************************/

data ultra; infile ’ultra.dat’;
input subject tmp ufr center;

* rescale the pressures -- see Chapter 8;

tmp=tmp/1000;

run;

/*******************************************************************

Use PROC MIXED to fit the random coefficient model via the
RANDOM statement. For all of the fits, we use REML.

The SOLUTION option in the MODEL statement requests that the
estimates of the regression parameters be printed.

In all cases, we take the (2 x 2) matrix D to be unstructured
(TYPE=UN) in the RANDOM statement.

The G and GCORR options in the RANDOM statement asks that
the D matrix and its corresponding correlation matrix
be printed. The V and VCORR options ask that the overall
Sigma matrix be printed (for the first subject or particular
subjects).

To fit a random coefficient model, we must specify that both
intercept and slope are random in the RANDOM statement.

No REPEATED statement is used because we assume Ri = sigma^2 I,
which is the default.

*******************************************************************/

* "Full" model with different intercept, slope for each center;

title ’FULL MODEL, FIT BY REML’;
proc mixed data=ultra;
class center subject;
model ufr = center center*tmp / noint solution ;
random intercept tmp / type=un subject=subject g gcorr v vcorr;
contrast ’diff in slope’ center 0 0 0 center*tmp 1 -1 0,
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center 0 0 0 center*tmp 1 0 -1 / chisq;
contrast ’diff in int’ center 1 -1 0 center*tmp 0 0 0 ,

center 1 0 -1 center*tmp 0 0 0 / chisq;
estimate ’slope 1 vs 2’ center 0 0 0 center*tmp 1 -1 0 ;
estimate ’slope 1 vs 3’ center 0 0 0 center*tmp 1 0 -1 ;
estimate ’slope 2 vs 3’ center 0 0 0 center*tmp 0 1 -1 ;

run;

title ’FULL MODEL, FIT BY ML’;
proc mixed method=ml data=ultra;
class center subject;
model ufr = center center*tmp / noint solution ;
random intercept tmp / type=un subject=subject g gcorr v vcorr;
contrast ’diff in slope’ center 0 0 0 center*tmp 1 -1 0,

center 0 0 0 center*tmp 1 0 -1 / chisq;
contrast ’diff in int’ center 1 -1 0 center*tmp 0 0 0 ,

center 1 0 -1 center*tmp 0 0 0 / chisq;
estimate ’slope 1 vs 2’ center 0 0 0 center*tmp 1 -1 0 ;
estimate ’slope 1 vs 3’ center 0 0 0 center*tmp 1 0 -1 ;
estimate ’slope 2 vs 3’ center 0 0 0 center*tmp 0 1 -1 ;

run;

* "Reduced" model with different intercepts but same slope for all;
* centers;

title ’REDUCED MODEL WITH DIFF INTERCEPTS, COMMON SLOPE, FIT BY ML’;
proc mixed method=ml data=ultra;
class center subject;
model ufr = center tmp / noint solution ;
random intercept tmp / type=un subject=subject g gcorr v vcorr;

run;

OUTPUT: Following the output, we consider the issue of common slopes in several ways.

FULL MODEL, FIT BY REML 1

The Mixed Procedure

Model Information

Data Set WORK.ULTRA
Dependent Variable ufr
Covariance Structure Unstructured
Subject Effect subject
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

center 3 1 2 3
subject 41 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41

Dimensions

Covariance Parameters 4
Columns in X 6
Columns in Z Per Subject 2
Subjects 41
Max Obs Per Subject 5

Number of Observations

Number of Observations Read 164
Number of Observations Used 164
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 1714.69627411
1 2 1621.10582541 0.00000580
2 1 1621.10190144 0.00000000

Convergence criteria met.

FULL MODEL, FIT BY REML 2

PAGE 355



CHAPTER 9 ST 732, M. DAVIDIAN

The Mixed Procedure

Estimated G Matrix

Row Effect subject Col1 Col2

1 Intercept 1 2327.18 -5715.33
2 tmp 1 -5715.33 32378

Estimated G Correlation Matrix

Row Effect subject Col1 Col2

1 Intercept 1 1.0000 -0.6584
2 tmp 1 -0.6584 1.0000

Estimated V Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 2010.79 1271.01 1217.53 1169.94
2 1271.01 2255.46 1858.33 2113.31
3 1217.53 1858.33 3152.24 3011.76
4 1169.94 2113.31 3011.76 4495.01

Estimated V Correlation Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.5968 0.4836 0.3891
2 0.5968 1.0000 0.6969 0.6637
3 0.4836 0.6969 1.0000 0.8001
4 0.3891 0.6637 0.8001 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) subject 2327.18
UN(2,1) subject -5715.33
UN(2,2) subject 32378
Residual 683.63

Fit Statistics

-2 Res Log Likelihood 1621.1
AIC (smaller is better) 1629.1
AICC (smaller is better) 1629.4
BIC (smaller is better) 1636.0

FULL MODEL, FIT BY REML 3

The Mixed Procedure

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 93.59 <.0001

Solution for Fixed Effects

Standard
Effect center Estimate Error DF t Value Pr > |t|

center 1 -174.43 14.9676 82 -11.65 <.0001
center 2 -172.20 16.9846 82 -10.14 <.0001
center 3 -151.72 19.2842 82 -7.87 <.0001
tmp*center 1 4409.53 51.9683 82 84.85 <.0001
tmp*center 2 4126.00 59.7776 82 69.02 <.0001
tmp*center 3 4067.73 66.9954 82 60.72 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

center 3 82 100.17 <.0001
tmp*center 3 82 5216.74 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

slope 1 vs 2 283.53 79.2090 82 3.58 0.0006
slope 1 vs 3 341.80 84.7885 82 4.03 0.0001
slope 2 vs 3 58.2698 89.7872 82 0.65 0.5182
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Contrasts

Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

diff in slope 2 82 20.83 10.41 <.0001 <.0001
diff in int 2 82 0.96 0.48 0.6194 0.6211

FULL MODEL, FIT BY ML 4

The Mixed Procedure

Model Information

Data Set WORK.ULTRA
Dependent Variable ufr
Covariance Structure Unstructured
Subject Effect subject
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

center 3 1 2 3
subject 41 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41

Dimensions

Covariance Parameters 4
Columns in X 6
Columns in Z Per Subject 2
Subjects 41
Max Obs Per Subject 5

Number of Observations

Number of Observations Read 164
Number of Observations Used 164
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 1762.75143525
1 2 1670.84436023 0.00000724
2 1 1670.83930877 0.00000001

Convergence criteria met.

FULL MODEL, FIT BY ML 5

The Mixed Procedure

Estimated G Matrix

Row Effect subject Col1 Col2

1 Intercept 1 2055.33 -5005.31
2 tmp 1 -5005.31 29044

Estimated G Correlation Matrix

Row Effect subject Col1 Col2

1 Intercept 1 1.0000 -0.6478
2 tmp 1 -0.6478 1.0000

Estimated V Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 1880.09 1159.53 1123.70 1091.81
2 1159.53 2125.05 1711.25 1950.78
3 1123.70 1711.25 2953.75 2768.83
4 1091.81 1950.78 2768.83 4179.84

Estimated V Correlation Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.5801 0.4768 0.3895
2 0.5801 1.0000 0.6830 0.6545
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3 0.4768 0.6830 1.0000 0.7880
4 0.3895 0.6545 0.7880 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) subject 2055.33
UN(2,1) subject -5005.31
UN(2,2) subject 29044
Residual 682.93

Fit Statistics

-2 Log Likelihood 1670.8
AIC (smaller is better) 1690.8
AICC (smaller is better) 1692.3
BIC (smaller is better) 1708.0

FULL MODEL, FIT BY ML 6

The Mixed Procedure

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 91.91 <.0001

Solution for Fixed Effects

Standard
Effect center Estimate Error DF t Value Pr > |t|

center 1 -174.44 14.4204 82 -12.10 <.0001
center 2 -172.19 16.3531 82 -10.53 <.0001
center 3 -151.74 18.6268 82 -8.15 <.0001
tmp*center 1 4409.54 50.0369 82 88.13 <.0001
tmp*center 2 4125.92 57.5800 82 71.66 <.0001
tmp*center 3 4067.81 64.6780 82 62.89 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

center 3 82 107.85 <.0001
tmp*center 3 82 5618.74 <.0001

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

slope 1 vs 2 283.62 76.2833 82 3.72 0.0004
slope 1 vs 3 341.74 81.7737 82 4.18 <.0001
slope 2 vs 3 58.1182 86.5950 82 0.67 0.5040

Contrasts

Num Den
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F

diff in slope 2 82 22.43 11.21 <.0001 <.0001
diff in int 2 82 1.03 0.51 0.5986 0.6005

REDUCED MODEL WITH DIFF INTERCEPTS, COMMON SLOPE, FIT BY ML 7

The Mixed Procedure

Model Information

Data Set WORK.ULTRA
Dependent Variable ufr
Covariance Structure Unstructured
Subject Effect subject
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

center 3 1 2 3
subject 41 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41
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Dimensions

Covariance Parameters 4
Columns in X 4
Columns in Z Per Subject 2
Subjects 41
Max Obs Per Subject 5

Number of Observations

Number of Observations Read 164
Number of Observations Used 164
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 1780.28736784
1 3 1689.51609987 0.00086966
2 1 1688.81130525 0.00008904
3 1 1688.74503369 0.00000128
4 1 1688.74413473 0.00000000

Convergence criteria met.

REDUCED MODEL WITH DIFF INTERCEPTS, COMMON SLOPE, FIT BY ML 8

The Mixed Procedure

Estimated G Matrix

Row Effect subject Col1 Col2

1 Intercept 1 3102.51 -9985.70
2 tmp 1 -9985.70 52598

Estimated G Correlation Matrix

Row Effect subject Col1 Col2

1 Intercept 1 1.0000 -0.7817
2 tmp 1 -0.7817 1.0000

Estimated V Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 1938.92 1088.75 931.75 792.02
2 1088.75 2189.12 1899.08 2250.88
3 931.75 1899.08 3505.66 3640.26
4 792.02 2250.88 3640.26 5562.15

Estimated V Correlation Matrix for subject 1

Row Col1 Col2 Col3 Col4

1 1.0000 0.5285 0.3574 0.2412
2 0.5285 1.0000 0.6855 0.6451
3 0.3574 0.6855 1.0000 0.8244
4 0.2412 0.6451 0.8244 1.0000

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) subject 3102.51
UN(2,1) subject -9985.70
UN(2,2) subject 52598
Residual 685.33

Fit Statistics

-2 Log Likelihood 1688.7
AIC (smaller is better) 1704.7
AICC (smaller is better) 1705.7
BIC (smaller is better) 1718.5

REDUCED MODEL WITH DIFF INTERCEPTS, COMMON SLOPE, FIT BY ML 9

The Mixed Procedure

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 91.54 <.0001

Solution for Fixed Effects
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Standard
Effect center Estimate Error DF t Value Pr > |t|

center 1 -136.02 12.8851 82 -10.56 <.0001
center 2 -194.43 13.7986 82 -14.09 <.0001
center 3 -187.31 14.8087 82 -12.65 <.0001
tmp 4230.63 40.4983 40 104.46 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

center 3 82 90.15 <.0001
tmp 1 40 10912.8 <.0001

PAGE 360



CHAPTER 9 ST 732, M. DAVIDIAN

INTERPRETATION:

• Comparing to the analysis of these data by ordinary least squares in section 8.8, we see that none

of the estimates for β in the full model agree with the OLS estimates for the full model. This is

not surprising, as these data are not balanced.

• In fact, note that the estimates of β and their standard errors in the full model in the Solution

for Fixed Effects table differ slightly for the ML and REML fits. This is to be expected – the

“weighting” by the estimated covariance matrices Σ̂i is slightly different in each case, because the

estimates of (the distinct) elements of D and σ2 are slightly different. This can be seen by in-

specting the estimates of D in Estimated G Matrix and Estimated G Correlation Matrix for

each of the ML and REML fits on pages 2 (REML) and page 5 (ML). Similarly, from Covariance

Parameter Estimates for REML and ML on pages 2 and 5, the estimate of σ2 may be found

(Residual). The estimates differ slightly – σ̂2 = 683.63 for REML and σ̂2 = 682.93 for ML.

Note that the estimates of Σi for the dialyzer i = 1 in Estimated V Matrix for SUBJECT 1 and

Estimated V Correlation Matrix for Subject 1) are similar for the two fits.

• The results of the estimate and contrast statements for each fit lead to the same qualitative

conclusions. From pages 3 and 6, there is strong evidence according to the Wald (chisq) test for

difference in slope with 2 degrees of freedom obtained from the contrast statement that there is

a difference in mean slope for the 3 centers. Here, the L matrix has 2 rows:

L =




0 0 0 1 −1 0

0 0 0 1 0 −1


 .

A contrast statement for difference in intercepts, with corresponding L matrix

L =




1 −1 0 0 0 0

1 0 −1 0 0 0


 ,

yields in each case a Wald test statistic TL = 0.96 (REML) and 1.03 (ML). Comparing these to a

χ2
2 distribution, it is clear that there is not enough evidence to suggest that the intercepts differ

among centers.
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The pairwise comparisons of slopes among centers are obtained from the results of the estimate

statements for each analysis, on pages 3 and 5. Inspection of the results supports the contention

that the mean slope for center 1 is different from that for the other two centers. The estimate of

this mean slope is 4409.5 (mmHg/100 ml/hr) for each analysis, while those for the other centers

are considerably smaller. Thus, it appears that the “typical” rate of change of ultrafiltration rate

with transmembrane pressure is faster for dialyzers used at center 1. A possible explanation for

this result would be up to the investigators. Perhaps the subject population is different at the

first center, or personnel at the first center have different skills operating the devices.

• We may also conduct the test of equal mean slopes via a likelihood ratio test. Here, we use the

“full” and “reduced” model results for the fits based on ML. From pages 5 and 8, −2 log-likelihood

for the “full” and “reduced” models is 1670.8 and 1688.7, respectively, so that the likelihood ratio

test statistic is 1688.7 − 1670.8 = 17.9. This is to be compared to the χ2 distribution with r = 2

degrees of freedom. As χ2
2,0.95 = 5.99, we have strong evidence on the basis of this test to suggest

that there is a difference among the mean slopes, which is in agreement with the inference based

on the Wald test above.

• For the fit of the “full” model by ML, from page 5, we have AIC = 1690.8 and BIC = 1708.0. Re-

call that in section 8.8, we fit the same mean model (although arriving at it from the “population-

averaged” perspective) with several different choices of model for Σi. We may compare those fits

to that here, which implies yet another assumption for Σi, on the basis of AIC and BIC values.

The (AIC, BIC) values assuming Σi has a compound symmetry and Markov structure, respec-

tively (from pages 4 and 7 of the output in section 8.8), are (1713.5,1727.2) and (1706.0,1719.7),

giving support for the “subject-specific” random coefficient modeling approach over the direct,

“population-averaged” regression approach in terms of modeling the covariance structure.
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