Assumptions and Relation between Confidence Interval and Hypothesis Test
On t based Inference for \(\mu \)

Assumptions for Validity of Confidence Interval and Hypothesis test for \(\mu \)

- Data must be from a random sample from large population
- Observations in the sample must be independent of each other
- \(n \) small, population distribution must be approximately normal
- \(n \) large, population need not be approximately normal (CLT kicks in)

A statistical procedure is said to be robust if the results of the procedure are not affected very much when the conditions for validity are violated.

The \(t \) procedures are fairly robust to non normality except in the case of outliers or strong skewness. Why?

The following are some loose guidelines:
Relationship between Confidence Interval and Hypothesis Test

Draw two pictures: The hypothesis test corresponding to $H_A: \mu \neq \mu_0$ when we

- Reject H_0
- Fail to reject H_0

When we fail to reject, we have the following inequality:

And this should look familiar...

So, the events that lead to the decision to fail to reject H_0 for the two-sided test are exactly the events that form the $(1-\alpha)\%$ confidence interval for μ.

The Moral If the confidence interval contains μ_0, then we would fail to reject H_0 for the two-sided test of $H_0: \mu = \mu_0$ against $H_A: \mu \neq \mu_0$ and *vice versa*.