
Homework Assignment 4
Due Date: Friday October 7, 2022 at 5PM

Total Points: 140

Please email your answer (compiled pdf file from R markdown) and R code to Yen-Yi Ho
(hoyen@stat.sc.edu).

1 Effect of asymmetrical distribution in one-sample test

(a) Plot the probability density of a log-normal distribution (µ = 0, σ = 1). Note that
a positive random variable X is log-normally distributed if the logarithm of X is normally
distributed: (5 points)

ln(X) ∼ N(µ, σ2).

(b) Simulate observations from log-normal (µ = 0, σ = 1) distribution with n=3, 5, 10, 30.

With H0 : µ = 0 (population mean=eµ+
σ2

2 = e0.5 or population median= eµ = e0) versus
Ha : µ 6= 0, calculate type I error rate using one-sample t-test, signed test, signed rank test.
Filled the type I error rate in the table below. (15 points)

n=3 n=5 n=10 n=30
One sample t-test
Signed test
Signed-rank test

Recall that type I error rate can be calculated as:

Type I error rate =
# of times test results are significant

# of simulation iterations
.

2 Large sample efficiency

(a) Simulate data from Normal distribution for two groups (n=30 per group) with σ = 1
and mean difference (µ1 − µ2 = 0, 0.5, 1, 2, 3). Calculate statistical power using two-sample
t-test, Mann-Whitney-Wilcoxon (rank sum test), and permutation test. Add power curves
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for each of the three methods in the figure below. (20 points)

(b) based on (a), comment on the statistical power of the three tests. (5 points)

3 Effect of unequal variances in two-sample test

Assume a model Yij = µij +εij, V ar(εij) = σ2
i , i = 1, 2 and j = 1, 2, ...n. The usual t-statistic

used in forming a confidence interval for µ1 − µ2 is

T =
Y1 − Y2 − (µ1 − µ2)

S(n−1
1 + n−1

2 )1/2

where

S2 =
(n1 − 1)s21 + (n2 − 1)s22

n− 2
, n = n1 + n2.

If σ2
1 = σ2

2 and εij is normally distributed, the T ∼ tn−2 ≈ N(0, 1) for large n. The confi-
dence interval (CI) at level α for µ1 − µ2 in this cane is the Y1 − Y2 ± t1−α/2S(n−1

1 + n−1
2 )1/2
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where t1−α/2 is the 1 − α/2 quantile of the t-distribution on n − 2 degrees of freedom, or
Y1 − Y2 ± Φ−11− α/2S(n−1

1 + n−1
2 )1/2 for large n.

However, assume that σ2
1 6= σ2

2. Then heuristically S2 ≈ 1
n
(n1σ

2
1 + n2σ

2
2) for large n, and T

is approximately normally distributed with mean 0 and variance υ.

(a) Show that υ = V ar(T ) ≈
σ21
σ22

+
n1
n2

n1σ
2
1

n2σ
2
2
+1

(10 points)

(b) Investigate the error rate of the confidence interval, i.e. calculate P (µ1−µ2 /∈ CI|µ1 = µ2)
at α = 0.05, using (i) the above approximation to Normal of the test statistics T , (10 points)
and (ii) a simulation study. Discuss in detail your simulation set up (5 points).

Present 2 tables of error rates using (i) normal approximation and (ii) simulation where the
columns and rows are specified by: (30 points)

σ2
1/σ

2
2 =

1

10
,
1

2
, 1, 5, 10

n1/n2 =
1

10
,
1

2
, 1, 5, 10.

(c) Based on results from (a) and (b), comment on the effect of unequal variances in relation
to sample size using t-test. (10 points)
(d) Repeat (b), present another table of error rates using permutation test. (20 points)
Based on (b) & (d), comment on the effect of unequal variances in relation to sample size
using t-test and permutation test (10 points).
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