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What Teachers Should Know About the Bootstrap: Resampling in the
Undergraduate Statistics Curriculum

Tim C. HESTERBERG

Bootstrapping has enormous potential in statistics education
and practice, but there are subtle issues and ways to go wrong.
For example, the common combination of nonparametric boot-
strapping and bootstrap percentile confidence intervals is less
accurate than using z-intervals for small samples, though more
accurate for larger samples. My goals in this article are to provide
a deeper understanding of bootstrap methods—how they work,
when they work or not, and which methods work better—and to
highlight pedagogical issues. Supplementary materials for this
article are available online.

KEY WORDS: Bias; Confidence intervals; Sampling distribu-
tion; Standard error; Statistical concepts; Teaching.

1. INTRODUCTION

Resampling methods, including permutation tests and the
bootstrap, have enormous potential in statistics education and
practice. They are beginning to make inroads in education. Cobb
(2007) was influential in arguing for the pedagogical value of
permutation tests in particular. Undergraduate textbooks that
consistently use resampling as tools in their own right and to
motivate classical methods are beginning to appear, including
Lock et al. (2013) for Introductory Statistics and Chihara and
Hesterberg (2011) for Mathematical Statistics. Other texts
(Diez, Barr, and Cetinkaya Rundel 2014; Tintle et al. 2014a) use
permutation or other randomization texts, though minimal boot-
strapping. Experimental evidence suggests that students learn
better using these methods (Tintle et al. 2014b).

The primary focus of this article is the bootstrap, where there
are a variety of competing methods and issues that are subtler
and less well-known than for permutation tests. I hope to pro-
vide a better understanding of the key ideas behind the bootstrap,
and the merits of different methods. Without this understand-
ing, things can go wrong. For example, people may prefer the
bootstrap for small samples, to avoid relying on the central limit
theorem (CLT). However, the common bootstrap percentile con-
fidence interval is poor for small samples; it is like a #-interval
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computed using z instead of ¢ quantiles and estimating s with
a divisor of n instead of n — 1. Conversely, it is more accu-
rate than z-intervals for larger samples. Some other bootstrap
intervals have the same small-sample issues.

The bootstrap is used for estimating standard errors and bias,
obtaining confidence intervals, and sometimes for tests. The
focus here is on relatively simple bootstrap methods and their
pedagogical application, particularly for Stat 101 (introductory
statistics with an emphasis on data analysis) and Mathemati-
cal Statistics (a first course in statistical theory, using math and
simulation), though the methods are useful elsewhere in the cur-
riculum. For more background on the bootstrap and a broader
array of applications, see Efron and Tibshirani (1993) and
Davison and Hinkley (1997). Hesterberg (2014) is a longer ver-
sion of this article. Hesterberg et al. (2005) is an introduction to
the bootstrap and permutation tests for Stat 101 students.

Section 1 introduces the bootstrap for estimators and ¢ statis-
tics, and discusses its pedagogical and practical value. Section 2
develops the idea behind the bootstrap, and implications thereof.
Section 3 visually explores when the bootstrap works or not,
and compares the effects of two sources of variation—the orig-
inal sample and bootstrap sampling. Section 4 surveys selected
confidence intervals and their pedagogical and practical merits.
Section 5 covers pedagogical and practical issues in regression.
Section 6 contains a summary and discussion.

Examples and figures are created in R (R Core Team 2014),
using the resample package (Hesterberg 2015). Scripts are in an
online supplement.

1.1 Verizon Example

The following example is used throughout this article. Verizon
was an Incumbent Local Exchange Carrier (ILEC), responsible
for maintaining land-line phone service in certain areas. Verizon
also sold long-distance service, as did a number of competitors,
termed Competitive Local Exchange Carriers (CLEC). When
something went wrong, Verizon was responsible for repairs,
and was supposed to make repairs as quickly for CLEC long-
distance customers as for their own. The New York Public Utili-
ties Commission (PUC) monitored fairness by comparing repair
times for Verizon and different CLECs, for different classes of
repairs and time periods. In each case a hypothesis test was
performed at the 1% significance level, to determine whether
repairs for CLEC’s customers were significantly slower than
for Verizon’s customers. There were hundreds of such tests. If
substantially more than 1% of the tests were significant, then
Verizon would pay large penalties. These tests were performed
using ¢ tests; Verizon proposed using permutation tests instead.
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Table 1. Verizon repair times

n mean sd
ILEC 1664 8.41 16.5
CLEC 23 16.69 19.5

The data for one combination of CLEC, class of service, and
period are shown in Table 1 and Figure 1. Both samples are
positively skewed. The mean CLEC repair time is nearly double
that for ILEC, suggesting discrimination, though the difference
could be just chance.

The one-sided permutation test p-value is 0.0171, well above
the 1% cutoff mandated by the PUC. In comparison, the pooled
t-test p-value is 0.0045, about four times too small. The permu-
tation test gives the correct answer, with nearly exact Type 1
error rates; this was recognized as far back as Fisher (1936),
who used #-tests as an approximation because perturbation tests
were computationally infeasible then. The z-test is inaccurate
because it is sensitive to skewness when the sample sizes dif-
fer. Using t-tests for 10,000 Verizon fairness tests would result
in about 400 false positive results instead of the expected 100,
resulting in large monetary penalties. Similarly, # confidence in-
tervals are inaccurate. We will see how inaccurate, and explore
alternatives, using the bootstrap.

1.2 One-Sample Bootstrap

Let § be a statistic calculated from a sample of # iid obser-
vations (time series and other dependent data are beyond the
scope of this article). In the ordinary nonparametric bootstrap,
we draw n observations with replacement from the original data
to create a bootstrap sample or resample, and calculate the
statistic §* for this sample (we use * to denote a bootstrap quan-
tity). We repeat that many times, say » = 10,000 (we use 10,000
unless noted otherwise). The bootstrap statistics comprise the
bootstrap distribution. Figure 2 shows bootstrap distributions of
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Figure 1. Normal quantile plot of ILEC and CLEC repair times.
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6 = % for the ILEC and CLEC datasets. We use each distribu-
tion to estimate certain things about the corresponding sampling
distribution, including:

e standard error: the bootstrap standard error is the sam-
ple standard deviation of the bootstrap distribution, s, =

=1 X5, @7 =62,

e confidence intervals: a quick-and-dirty interval, the bootstrap
percentile interval, is the range of the middle 95% of the
bootstrap distribution,

e bias: the bootstrap bias estimate is 0* — 4.
Summary statistics of the bootstrap distributions are

Observed SE Mean Bias
CLEC 16.50913 3.961816 16.53088 0.0217463
ILEC 8.41161 0.357599 8.40411 -0.0075032

The CLEC SE is larger primarily due to the smaller sam-
ple size and secondly to the larger sample sd in the original
data. Bootstrap percentile intervals are (7.73, 9.13) for ILEC and
(10.1, 25.4) for CLEC. For comparison, s //n = 0.36 for ILEC
and 4.07 for CLEC, and standard ¢ intervals are (7.71, 9.12) and
(8.1, 24.9). The distribution appears approximately normal for
the ILEC sample but not for the smaller CLEC sample, suggest-
ing that ¢ intervals might be reasonable for the ILEC mean but
not the CLEC mean.

The bootstrap separates the concept of a standard error—the
standard deviation of a sampling distribution—from the com-
mon formula s/./n for estimating the SE of a sample mean.
This separation should help students understand the concept.
Based on extensive experience interviewing job candidates, I
attest that a better way to teach about SEs is needed—too many
do not understand SEs, and even confuse SEs in other contexts
with the formula for the SE of a sample mean.

1.3 Two-Sample Bootstrap

For a two-sample bootstrap, we independently draw bootstrap
samples with replacement from each sample, and compute a
statistic that compares the samples. For the Verizon data, we
draw a sample of size 1664 from the ILEC data and 23 from the
CLEC data, and compute the difference in means ¥; — X,. The
bootstrap distribution (see online supplement) is centered at the
observed statistic; it is used for confidence intervals and standard
errors. It is skewed like the CLEC distribution; ¢ intervals would
not be appropriate.

For comparison, the permutation test pools the data and splits
the pooled data into two groups using sampling without re-
placement, before taking the difference in means. The sampling
is consistent with the null hypothesis of no difference between
groups, and the distribution is centered at zero.

1.4 Bootstrap ¢-Distribution

It is not surprising that t procedures are inaccurate for skewed
data with a sample of size 23, or for the difference when one
sample is that small. More surprising is how bad ¢ confidence
intervals are for the larger sample, size 1664. To see this, we
bootstrap 7 statistics.
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Figure 2. Bootstrap distributions for Verizon data. Bootstrap distributions for X, for the ILEC and CLEC datasets.

Above we resampled univariate distributions of estimators
like X or X; — X,. Here, we look at joint distributions, for ex-
ample, the joint distribution of X and s, and distributions of
statistics that depend on both 8 and 6. To estimate the sam-
pling distribution of § — @, we use the bootstrap distribution of
0* — 0. The bootstrap bias estimate is E (é* — é), an estimate of
E(0 — 0). To estimate the sampling distribution of a  statistic

t_é—e
~ SE

where SE is a standard error calculated from the original sample,
we use the bootstrap distribution of

ey

o* -9
t* = . 2
SE- ()

Figure 3 shows the joint distribution of X* and s*//n, and
the distribution of ¢*, for the ILEC data with n = 1664. Standard
theory says that for normal populations X and s are indepen-
dent, and the 1 statistic t = (X — u)/(s//n) has a t-distribution.
However, for positively skewed populations X and s are posi-
tively correlated, the correlation does not get smaller with large
n, and the ¢ statistic does not have a z-distribution. While X* is
positively skewed with mean X, ¢ is twice as skewed in the op-
posite direction because the denominator s /+/7 is more affected
by large observations than the numerator X is. And ¢ has a neg-
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Figure 3. CLT with n = 1664. Left: scatterplot of bootstrap means
and standard errors, ILEC data. Right: bootstrap #-distribution.

ative median, so its quantiles end up 3x as asymmetrical to the
left.

The amount of skewness apparent in the bootstrap -
distribution matters. The bootstrap distribution is a sampling
distribution, not raw data; the CLT has already had its one
chance to work. At this point, any deviations indicate errors
in procedures that assume normal or # sampling distributions.
3.6% of the bootstrap distribution is below —t4/ ,—1, and 1.7%
is above 7,7 ,—1 (based on r = 109 samples, o = 0.05). Even
with n = 1664, the ¢ statistic is not even close to having a ¢-
distribution, based on what matters—tail probabilities.

In my experience giving talks and courses, typically over half
of the audience indicates there is no problem with the skewness
apparent in plots like Figure 3. They are used to looking at
normal quantile plots of data, not of sampling distributions.
A common flaw in statistical practice is to fail to judge how
accurate standard CLT-based methods are for specific data; the
bootstrap t-distribution provides an effective way to do so.

1.5 Pedagogical and Practical Value

The bootstrap process reinforces the central role that sam-
pling from a population plays in statistics. Sampling variability
is visible, and it is natural to measure the variability of the
bootstrap distribution using methods students learned for sum-
marizing data, such as the standard deviation. Students can see
if the bootstrap distribution is bell-shaped. It is natural to use the
middle 95% of the distribution as a 95% confidence interval.

The bootstrap makes the abstract concrete—abstract concepts
like sampling distributions, standard errors, bias, central limit
theorem, and confidence intervals are visible in plots of the
bootstrap distribution.

The bootstrap works the same way with a wide variety of
statistics. This makes it easy for students to work with a variety
of statistics, and focus on ideas rather than formulas. This also
lets us do better statistics, because we can work with statistics
that are appropriate rather than just those that are easy—for
example, a median or trimmed mean instead of a mean.

Students can obtain confidence intervals by working directly
with the statistic of interest, rather than using a ¢ statistic. You
could skip talking about ¢ statistics and # intervals, or defer that

The American Statistician, November 2015, Vol. 69, No. 4 373
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Figure 4.

Ideal world. Sampling distributions are obtained by drawing repeated samples from the population, computing the statistic of interest

for each, and collecting (an infinite number of) those statistics as the sampling distribution.

until later. At that point you may introduce another quick-and-
dirty confidence interval, the ¢ interval with bootstrap standard
error, 0 £ 1, /28p. In mathematical statistics, students can use
the bootstrap to help understand joint distributions of estimators
like X and s, and to understand the distribution of 7 statistics, and
compute bootstrap t confidence intervals, see Section 4.3.

The bootstrap can also reinforce the understanding of formula
methods, and provide a way for students to check their work.
Students may know the formula s/./n without understanding
what it really is; but they can compare it to s, or to an eyeball
estimate of standard deviation from a histogram of the bootstrap
distribution, and see that it measures how the sample mean varies
due to random sampling.

Resampling is also important in practice. It often provides
the only practical way to do inference—when it is too dif-
ficult to derive formulas, or the data are stored in a way
that make calculating the formulas impractical; a longer ver-
sion of this article (Hesterberg 2014) and (Chamandy 2015)
contains examples from Google, from my work and oth-
ers. In other cases, resampling provides better accuracy than
formula methods. For one simple example, consider confi-
dence intervals for the variance of the CLEC population.
s2 = 380.4, the bootstrap SE for s? is 267, and the 95% per-
centile interval is (59, 932). The classical normal-based in-
terval is ((n — l)sz/xzzz’oms, (n— 1)32/)(222,0.025) = (228, 762).
It assumes that (n — 1)s?/a> ~ x2(n — 1), but for long-tailed
distributions the actual variance of s is far greater than for

normal distributions. I recommend not teaching the x2 inter-
vals for a variance, or F-based intervals for the ratio of vari-
ances, because they are not useful in practice, with no robust-
ness against nonnormality. Their coverage does not improve as
n— oQ.

2. THE IDEA BEHIND BOOTSTRAPPING

Inferential statistics is based on sampling distributions. In
theory, to get these we

e draw (all or infinitely many) samples from the population,
and

e compute the statistic of interest for each sample (such as the
mean, median, etc.).

The distribution of the statistics is the sampling distribution,
see Figure 4.

However, in practice we cannot draw arbitrarily many samples
from the population; we have only one sample. The bootstrap
idea is to draw samples from an estimate of the population, in
lieu of the population:

e draw samples from an estimate of the population, and
e compute the statistic of interest for each sample.

The distribution of the statistics is the bootstrap distribution,
see Figure 5.

Estimate of
population=
— K original data F
X
Bootstrap .
Bootstrap % distribution of i =X
Samples v \l/ N .
5 . == é
: : : e )
| | E —> — '
f |i 1 |i 11 i; | = p X 3
-6 X 8-6 X 8-6 X 8

Figure 5. Bootstrap world. The bootstrap distribution is obtained by drawing repeated samples from an estimate of the population, computing
the statistic of interest for each, and collecting those statistics. The distribution is centered at the observed statistic (¥), not the parameter ().
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2.1 Plug-In Principle

The bootstrap is based on the plug-in principle—if something
is unknown, we substitute an estimate for it. This principle is
very familiar to statisticians. For example, the sd of the sample
mean is o/+/n; when o is unknown we substitute an estimate
s, the sample standard deviation. With the bootstrap we go one
step farther—instead of plugging in an estimate for a single
parameter, we plug in an estimate for the whole population F.

This raises the question of what to substitute for F. Possi-
bilities include the nonparametric, parametric, and smoothed
bootstrap. The primary focus of this article is the nonparamet-
ric bootstrap, the most common procedure, which consists of
drawing samples from the empirical distribution £, (with prob-
ability 1/n on each observation), that is, drawing samples with
replacement from the data.

In the parametric bootstrap, we assume a model (e.g., a
gamma distribution with unknown shape and scale), estimate
parameters for that model, then draw bootstrap samples from
the model with those estimated parameters.

The smoothed bootstrap is a compromise between parametric
and nonparametric approaches; if we believe the population is
continuous, we may sample from a continuous F, say a ker-
nel density estimate (Silverman and Young 1987; Hall, DiCi-
ccio, and Romano 1989; Hesterberg 2014). Smoothing is not
common; it is rarely needed, and does not generalize well to
multivariate and factor data.

2.2 Fundamental Bootstrap Principle

The fundamental bootstrap principle is that this substitution
usually works—that we can plug in an estimate for F, then
sample, and the resulting bootstrap distribution provides useful
information about the sampling distribution.

The bootstrap distribution is in fact a sampling distribution.
The bootstrap uses a sampling distribution (from an estimate F)
to estimate things about the sampling distribution (from F).

There are some things to watch out for, ways the bootstrap
distribution differs from the sampling distribution. We discuss
some of these below, but one is important enough to mention
immediately.

2.3 Inference, Not Better Estimates

The bootstrap distribution is centered at the observed statis-
tic, not the population parameter, for example, at X, not u.

This has two profound implications. First, it means that we do
not use the mean of the bootstrap statistics as a replacement for
the original estimate.! For example, we cannot use the bootstrap
to improve on X; no matter how many bootstrap samples we

I There are exceptions, where the bootstrap is used to obtain better estimates,
for example, in random forests. These are typical where a bootstrap-like proce-
dure is used to work around a flaw in the basic procedure. For example, consider
estimating E(Y|X = x) where the true relationship is smooth, using only a step
function with relatively few steps. By taking bootstrap samples and applying
the step function estimation procedure to each, the step boundaries vary be-
tween samples; by averaging across samples the few large steps are replaced
by many smaller ones, giving a smoother estimate. This is bagging (bootstrap
aggregating).

take, they are centered at X, not u. Instead we use the bootstrap
to tell how accurate the original estimate is. In this regard the
bootstrap is like formula methods that use the data twice—once
to compute an estimate, and again to compute a standard error
for the estimate. The bootstrap just uses a different approach to
estimating the standard error.

If the bootstrap distribution is not centered at the observed
statistic—if there is bias—we could subtract the estimated bias
to produce a bias-adjusted estimate, § — Bias = 20 — 6*. We
generally do not do this—bias estimates can have high variabil-
ity (Efron and Tibshirani 1993). Bias is another reason not to use

the average of bootstrap estimates 0* = 6 + Bias to replace the
original estimate /—that adds the bias estimate to the original
statistic, doubling any bias.

The second implication is that we do not use the CDF or quan-
tiles of the bootstrap distribution of * to estimate the CDF or
quantiles of the sampling distribution of an estimator 6. Instead,
we bootstrap to estimate things like the standard deviation, the
expected value of @ — 6, and the CDF and quantiles of § — 6 or
(6 — 6)/SE.

2.4 Key Idea Versus Implementation Details

What people may think of as the key bootstrap idea—drawing
samples with replacement from the data—is just a pair of im-
plementation details. The first is substituting the empirical dis-
tribution for the population; alternatives include smoothed or
parametric distributions. The second is using random sampling.
Here too there are alternatives, including analytical methods
(e.g., when = ¥ we may calculate the mean and variance of
the bootstrap distribution analytically) and exhaustive calcu-
lations. There are n" possible bootstrap samples from a fixed
sample of size n, (Z"n_l) if order does not matter, or even fewer
in some cases like binary data; if n is small we could evaluate
all of these. We call this an exhaustive bootstrap or theoretical
bootstrap. But more often exhaustive methods are infeasible, so
we draw say 10,000 random samples instead; we call this the
Monte Carlo sampling implementation.

2.5 How to Sample

Normally we should draw bootstrap samples the same way
the sample was drawn in real life, for example, simple random
sampling or stratified sampling. Pedagogically, this reinforces
the role that random sampling plays in statistics.

One exception to that rule is to condition on the observed in-
formation. For example, when comparing samples of size n; and
ny, we fix those numbers, even if the original sampling process
could have produced different counts. (This is the conditional-
ity principle in statistics, the idea of conditioning on ancillary
statistics.) Conditioning also avoids some technical problems,
particularly in regression, see Section 5.

We can also modify the sampling to answer what-if questions.
For example, we could bootstrap with and without stratification
and compare the resulting standard errors, to investigate the
value of stratification. We could also draw samples of a different
size; say we are planning a large study and obtain an initial
dataset of size 100, we can draw bootstrap samples of size

The American Statistician, November 2015, Vol. 69, No. 4 375



2000 to estimate how large standard errors would be with that
sample size. Conversely, this also answers a common question
about bootstrapping—why we sample with the same size as the
original data—because by doing so the standard errors reflect the
actual data, rather than a hypothetical larger or smaller dataset.

3. VARIATION IN BOOTSTRAP DISTRIBUTIONS

We claimed above that the bootstrap distribution usually pro-
vides useful information about the sampling distribution. We
elaborate on that now with a series of visual examples, one
where things generally work well and three with problems. We
address two questions:

e How accurate is the theoretical (exhaustive) bootstrap?

e How accurately does the Monte Carlo implementation ap-
proximate the theoretical bootstrap?
Both reflect random variation:

e The original sample is chosen randomly from the

e Bootstrap resamples are chosen randomly from the original
sample.

3.1 Sample Mean: Large Sample Size

Figure 6 shows a population, the sampling distribution for
the mean with n = 50, four samples, and the corresponding
bootstrap distributions. Each bootstrap distribution is centered
at the statistic ¥ from the corresponding sample rather than at
the population mean p. The spreads and shapes of the bootstrap
distributions vary a bit but not a lot.

These observations inform what the bootstrap distributions
may be used for. The bootstrap does not provide a better esti-
mate of the population parameter, because the bootstrap means
are centered at ¥, not u. Similarly, quantiles of the boot-
strap distributions are not useful for estimating quantiles of
the sampling distribution. Instead, the bootstrap distributions
are useful for estimating the spread and shape of the sampling
distribution.

The right column shows additional bootstrap distributions
for the first sample, with » = 1000 or r = 10* resamples. Using

population. more resamples reduces random Monte Carlo variation, but does

: Bootstrap

Population B ki distribution

of X from sample 1

_/\/\ R = 1000

f 1 T 1

-3 K 8 0 4 0 X 4
Bootstrap Bootstrap

Sample 1 distribution distribution

from sample 1 from sample 1

of X R = 1000

-3 X 8 0 X 4 0 X 4
Bootstrap Bootstrap

Sample 2 gisribution distribution

from sample 2 from sample 1

of ¥ R = 1000

1 r

=3 X 8 0 X 4 0 X 4
Bootstrap Bootstrap

Sample 3 distribution distribution

from sample 3 from sample 1

of X R = 10000
=3 X 8 0 X 4 0 X 4
Bootstrap Bootstrap

Sample 4 distribution distribution

from sample 4 from sample 1

of X R = 10000

f T 1T I 1

-3 X 8 0 X 4 0 X 4

Figure 6. Bootstrap distribution for the mean, n = 50. The left column shows the population and four samples. The middle column shows the
sampling distribution for X, and bootstrap distributions of X* for each sample, with » = 10*. The right column shows more bootstrap distributions

for the first sample, three with » = 1000 and two with r = 10*.
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not fundamentally change the bootstrap distribution—it still has
the same approximate center, spread, and shape.

The Monte Carlo variation is much smaller than the vari-
ation due to different original samples. For many uses, such
as quick-and-dirty estimation of standard errors or approximate
confidence intervals, r = 1000 resamples is adequate. However,
there is noticeable variability (including important but less-
noticeable variability in the tails) so when accuracy matters,
r = 10* or more samples should be used.

3.2 Sample Mean: Small Sample Size

Figure 7 is similar to Figure 6, but for a smaller sample size,
n =9 (and a different population). As before, the bootstrap dis-
tributions are centered at the corresponding sample means, but
now the spreads and shapes of the bootstrap distributions vary
substantially, because the spreads and shapes of the samples vary
substantially. As a result, bootstrap confidence interval widths
vary substantially (this is also true of standard ¢ confidence in-
tervals). As before, the Monte Carlo variation is small and may
be reduced with more resamples.

While not apparent in the pictures, bootstrap distributions
tend to be too narrow on average, by a factor of \/(n — 1)/n for
the sample mean, and approximately that for many other statis-
tics. This goes back to the plug-in principle; the empirical distri-
bution has variance 6% = varg (X) = 1/n > (xi — %)%, and the
theoretical bootstrap standard error is the standard deviation of
a mean of n independent observations from that distribution,
sp = 6 /+/n. That is, smaller than the usual formula s//n by
a factor of 4/(n — 1)/n. For example, the CLEC s, = 3.96 is
smaller than s//n = 4.07.

The combination of this narrowness bias and variability in
spread makes some bootstrap confidence intervals under-cover,
see Section 4. Classical ¢ intervals compensate using two fudge
factors—a factor of /n/(n — 1) in computing the sample stan-
dard deviation s, and using ¢ rather than normal quantiles. Boot-
strap percentile intervals lack these factors, so tend to be too nar-
row and under-cover in small samples. ¢ intervals with bootstrap
SE include the ¢ /7 factor, but suffer narrowness bias. Some other
bootstrap procedures do better. For Stat 101 I suggest warning
students about the issue; for higher courses you may discuss
remedies (Hesterberg 2004, 2014).
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Figure 7. Bootstrap distributions for the mean, n = 9. The left column shows the population and four samples. The middle column shows the
sampling distribution for X, and bootstrap distributions of X* for each sample, with » = 10*. The right column shows more bootstrap distributions

for the first sample, three with » = 1000 and two with r = 10%.
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In two-sample or stratified sampling situations, the narrow-
ness bias depends on the individual sample or strata sizes. This
can result in severe bias. For example, the U.K. Department
of Work and Pensions wanted to bootstrap a survey of wel-
fare cheating. They used a stratified sampling procedure that
resulted in two subjects in each stratum—so an uncorrected
bootstrap standard error would be too small by a factor of

Vi =D/ni = 1/2.

3.3 Sample Median

Now turn to Figure 8, where the statistic is the sample me-
dian. Here the bootstrap distributions are poor approximations
of the sampling distribution. The sampling distribution is con-
tinuous, but the bootstrap distributions are discrete—for odd
n the bootstrap sample median is always one of the original
observations—and with wildly varying shapes.

The ordinary bootstrap tends not to work well for statis-
tics such as the median or other quantiles in small samples
that depend heavily on a small number of observations out of
a larger sample. The bootstrap depends on the sample accu-
rately reflecting what matters about the population, and those

few observations cannot do that. The right column shows the
smoothed bootstrap; it is better, though is still poor for this
small n.

In spite of the inaccurate shape and spread of the bootstrap
distributions, the bootstrap percentile interval for the median is
not bad (Efron 1982). For odd n, percentile interval endpoints
fall on one of the observed values. Exact interval endpoints also
fall on one of the observed values (order statistics), and for
a 95% interval those are typically the same or adjacent order
statistics as the percentile interval.

3.4 Mean—Variance Relationship

In many applications, the spread or shape of the sampling
distribution depends on the parameter of interest. For example,
the binomial distribution spread and shape depend on p. Simi-
larly, for an exponential distribution, the standard deviation of
the sampling distribution of ¥ is proportional to p.

This mean—variance relationship is reflected in bootstrap dis-
tributions. Figure 9 shows samples and bootstrap distributions
for an exponential population. There is a strong dependence be-
tween X and the corresponding bootstrap SE. This relationship
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Figure 8. Bootstrap distributions for the median, n = 15. The left column shows the population and four samples. The middle column shows
the sampling distribution, and bootstrap distributions for each sample, with » = 10*. The right column shows smoothed bootstrap distributions,

with kernel sd s//n and r = 10*.
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has important implications for confidence intervals; procedures
that ignore the relationship are inaccurate. We discuss this more
in Section 4.5.

There are other applications where sampling distributions
depend strongly on the parameter, for example, sampling dis-
tributions for chi-squared statistics depend on the noncentrality
parameter. Use caution when bootstrapping such applications;
the bootstrap distribution may be very different from the sam-
pling distribution.

Here there is a bright spot. The right column of Figure 9
shows the sampling distribution and bootstrap distributions of
the 7 statistic, Equations (1) and (2). These distributions are much
less sensitive to the original sample. We use these bootstrap ¢
distributions below to construct accurate confidence intervals.

3.5 Summary of Visual Lessons

The bootstrap distribution reflects the original sample. If the
sample is narrower than the population, the bootstrap distribu-
tion is narrower than the sampling distribution. Typically for
large samples the data represent the population well; for small
samples they may not. Bootstrapping does not overcome the
weakness of small samples as a basis for inference. Indeed, for
the very smallest samples, it may be better to make additional
assumptions such as a parametric family.

Looking ahead, two things matter for accurate inferences:

e how close the bootstrap distribution is to the sampling distri-
bution (the bootstrap ¢ has an advantage, see Figure 9);
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e how well the procedures allow for variation in samples, for
example, by using fudge factors.

Another visual lesson is that random sampling using
only 1000 resamples causes more random variation in the
bootstrap distributions. Let us consider this issue more
carefully.

3.6 How Many Bootstrap Samples

I'suggested above using 1000 bootstrap samples for rough ap-
proximations, or 10* or more for better accuracy. This is about
Monte Carlo accuracy—how well the usual Monte Carlo imple-
mentation of the bootstrap approximates the theoretical boot-
strap distribution. A bootstrap distribution based on r random
samples corresponds to drawing r observations with replace-
ment from the theoretical bootstrap distribution.

Brad Efron, inventor of the bootstrap, suggested in 1993 that
r = 200, or even as few as r = 25, suffices for estimating stan-
dard errors and that » = 1000 is enough for confidence intervals
(Efron and Tibshirani 1993).

I argue that more resamples are appropriate. First, comput-
ers are faster now. Second, those criteria were developed using
arguments that combine variation due to the original random
sample with the extra variation from the Monte Carlo imple-
mentation. I prefer to treat the data as given and look just at the
variability due to the implementation. Two people analyzing the
same data should not get substantially different answers due to
Monte Carlo variation.

Quantify accuracy by formulas or bootstrapping. We can quan-
tify the Monte Carlo variation in two ways—using formulas, or
by bootstrapping. For example, let G be the cdf of a theoretical
bootstrap distribution and G the Monte Carlo approximation,
then the variance of G(x) is G(x)(1 — G(x))/r, which we esti-
mate using G(x)(1 — G(x))/r.

Similarly, a bootstrap bias estimate is a mean of r random
values minus a constant, o — é; the Monte Carlo standard error
for the bias is s;,/4/7, Where s, is the sample standard deviation
of the bootstrap distribution.

We can also bootstrap the bootstrap distribution! The r boot-
strap statistics are an iid sample from the exhaustive boot-
strap distribution; we can bootstrap that sample. For example,
the 95% percentile confidence interval for the CLEC data is
(10.09, 25.41); these are 2.5% and 97.5% quantiles of the boot-
strap distribution; r = 10*. To estimate the accuracy of those
quantiles, we draw resamples of size r from the bootstrap dis-
tribution and compute the quantiles for each resample. The re-
sulting SEs for the quantile estimates are 0.066 and 0.141.

Need r > 15,000 to be within 10%. Next we determine how
large r should be for accurate results, beginning with two-sided
tests with size 5%. Suppose the true one-sided p-value is 0.025,
and we want the estimated p-value to be within 10% of that,
between 0.0225 and 0.0275. To have a 95% probability of being
that close requires that 1.96,/0.025 - 0.975/r < 0.025/10, or
r > 14, 982. Similar results hold for a bootstrap percentile or
bootstrap ¢t confidence interval. If ¢ is the true 2.5% quantile of
the theoretical bootstrap distribution (for 6* or t*, respectively),
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for the estimated G(q) to fall between 2.25% and 2.75% with
95% probability requires r > 14,982.

For a ¢ interval with bootstrap SE, r should be large enough
that variation in s, has a similar small effect on coverage. For
large n and an approximately normal bootstrap distribution,
about r > 5000 suffices (Hesterberg 2014).

Rounding up, we need r > 15,000 to have 95% probability
of being within 10%, for permutation tests and percentile and
bootstrap ¢ confidence intervals, and r > 5000 for the ¢ with
bootstrap SE. While students may not need this level of accuracy,
itis good to get in the habit of doing accurate simulations. Hence,
I recommend 10* for routine use. In practice, if the results with
r = 10* are borderline, then we can increase r to reduce the
Monte Carlo error. We want decisions to depend on the data,
not random variation in the Monte Carlo implementation. We
used r = 500,000 in the Verizon project.

Students can do multiple runs with different r, to see how
the results vary. They should develop some intuition into how
results vary with different r; this intuition is valuable not only
for resampling, but for general understanding of how estimates
vary for different n.

4. CONFIDENCE INTERVALS

In this section, I describe a number of confidence intervals,
and compare their pedagogical value and accuracy.

A hypothesis test or confidence interval is first-order accu-
rate if the actual one-sided rejection probabilities or one-sided
noncoverage probabilities differ from the nominal values by
O(n~Y?). 1t is second-order accurate if the differences are
O(n=").

4.1 Statistics 101—Percentile, and ¢ with Bootstrap SE

For Stat 101, I would stick with the two quick-and-dirty inter-
vals mentioned earlier: the bootstrap percentile interval, and the
t interval with bootstrap standard error 0 +1, /255 If using soft-
ware that provides it, you may also use the bootstrap ¢ interval
described below. The percentile interval will be more intuitive
for students. The ¢ with bootstrap standard error helps them learn
formula methods. Students can compute both and compare.

Neither interval is very accurate. They are only first-order
accurate, and are poor in small samples—they tend to be too
narrow. The bootstrap standard error is too small, by a factor
/(n — 1)/n so the t interval with bootstrap SE is too narrow by
that factor, this is, the narrowness bias discussed in Section 3.2.

The percentile interval suffers the same narrowness and
more—for symmetric data it is like using z426 /4/n in place
of 142, n—15/+/n. Random variability in how skewed the data are
also adds variability to the endpoints, further reducing coverage.
These effects are O(n~') (effect on coverage probability) or
smaller, so they become negligible fairly quickly as n increases.
But they matter for small n, see Figure 10. The interval also
has O(n~'/?) errors—because it only makes a partial skewness
correction, see Section 4.5.

In practice, the ¢ with bootstrap standard error offers no ad-
vantage over a standard ¢ procedure for the sample mean. Its
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Figure 10. Confidence interval one-sided miss probabilities for nor-
mal and exponential populations. 95% confidence interval, the ideal
noncoverage is 2.5% on each side. The intervals are described at the
beginning of Section 4.4. For the normal population noncoverage prob-
abilities are the same on both sides, and the reverse percentile interval
is omitted (it has the same coverage as the percentile interval). For the
exponential population, curves with letters are noncoverage probabil-
ities on the right, where the interval is below 6, and curves without
letters correspond to the left side.

advantages are pedagogical, and that it can be used for statistics
that lack easy standard error formulas.

The percentile interval is not a good alternative to standard
t intervals for the mean of small samples—while it handles
skewed populations better, it is less accurate for small samples
because it is too narrow. For exponential populations, the per-
centile interval is less accurate than the standard 7 interval for
n < 34.

In Stat 101, it may be best to avoid the small-sample problems
by using examples with larger n. Alternately, some software cor-
rects for the small-sample problems, for example, the resample
package (Hesterberg 2015) includes the expanded percentile in-
terval (Hesterberg 1999, 2014) a percentile interval with fudge
factors motivated by standard ¢ intervals.

4.2 Reverse Bootstrap Percentile Interval

The reverse bootstrap percentile interval (called “basic boot-
strap confidence interval” in Davison and Hinkley 1997) is a
common interval, with pedagogical value in teaching manipu-
lations like those shown just below. But it is poor in practice; |
include it here to help faculty and students understand why and
to discourage its use.

It is based on the distribution of § = § — #. We estimate the
CDF of § using the bootstrap distribution of §* = * — 4. Let
go be the o quantile of the bootstrap distribution of §*, that

is, @ = P(8* < g4). Then

a/2 = PO —0 < qup)
~ PO =0 < qop) = PO — qapp < 0).

Similarly for the other tail. The resulting confidence interval is

O = qi-a2s0 — qapp) = 20 — Q1-02,20 — Qupp),  (3)

where Q, is the quantile of the bootstrap distribution of §*.

This interval is the mirror image of the bootstrap percentile
interval; it reaches as far above 6 as the bootstrap percentile
interval reaches below. For example, for the CLEC mean, the
sample mean is 16.5, the percentile interval is (10.1,25.4) =
16.5 4+ (—6.4, 8.9), and the reverse percentile interval is 16.5 +
(—8.9,6.4) =2-16.5 —(25.4,10.1) = (7.6, 22.9).

Reversing works well for a pure translation family, but those
are rare in practice. More common are cases like Figure 9, where
the spread of the bootstrap distribution depends on the statistic.
Then a good interval needs to be asymmetric in the same direc-
tion as the data, see Section 4.5. The reverse percentile interval
is asymmetrical in the wrong direction! Its coverage accuracy in
Figure 10 is terrible. It also suffers from the same small-sample
narrowness issues as the percentile interval.

Hall (1992) called the bootstrap percentile interval “the wrong
pivot, backward”; the reverse percentile interval uses that same
wrong pivot in reverse. 8 is the wrong pivot because it is not even
close to pivotal—a pivotal statistic is one whose distribution is
independent of the parameter. A ¢ statistic is closer to pivotal;
this leads us to the next interval.

4.3 Bootstrap ¢ Interval

We saw in Section 1.4 that the ¢ statistic does not have a
t-distribution when the population is skewed. The bootstrap ¢
confidence interval is based on the 7 statistic, but estimates quan-
tiles of the actual distribution using the data rather than a table.
Efron and Tibshirani (1993) called this “Confidence intervals
based on bootstrap tables”—using the bootstrap to generate the
right table for an individual dataset, rather than using a table
from a book. This has the best coverage accuracy of all intervals
in Figure 10.

We assume that the distribution of ¢* is approximately the
same as the distribution of # (Equations (1) and (2)); the right
column of Figure 9 suggests that this assumption holds, that is,
the statistic is close to pivotal. Let g, be the o quantile of the
bootstrap ¢-distribution, then

6
a/2=P ( < qaﬂ)

6—0

P (F < Qa/2> = P(é — Qa/ZSE < 9)

-0
SE*

Similarly for the other tail. The resulting confidence interval is
(6 — 41-0/2SE. 0 — qu/2SE). “)

Note that endpoints are reversed: we subtract an upper quantile

of the bootstrap 7-distribution to get the lower endpoint of the
interval, and the converse (this reversal is easy to overlook with
standard ¢ intervals due to symmetry).
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4.4 Confidence Interval Accuracy

Next we compare the accuracy of the different confidence
intervals:

t = t: ordinary ¢ interval;

B = tBoot: t interval with bootstrap standard error;
p = perc: bootstrap percentile interval;

r = reverse: reverse percentile interval,

T = bootT: bootstrap t.

For a 95% interval, a perfectly accurate interval misses the
parameter 2.5% of the time on each side. Figure 10 shows actual
noncoverage probabilities for normal and exponential popula-
tions, respectively. The figure is based on extremely accurate
simulations, see the appendix.

Normal population. The percentile interval (“p” on the plot)
does poorly. It corresponds to using z instead of 7, using a divisor
of n instead of n — 1 when calculating SE, and doing a partial
correction for skewness; since the sample skewness is random
this adds variability. For normal data the skewness correction
does not help, and the other three things kill it for small samples.
The reverse percentile interval is similarly poor, with exactly the
same coverage for normal populations.

The ¢ interval with bootstrap SE (“B”’) does somewhat better,
though still under-covers. The ¢ interval (“t”) and bootstrap ¢
(“T”) interval do very well. That is not surprising for the ¢ inter-
val, which is optimized for this population, but the bootstrap ¢
does extremely well, even for very small samples.

Exponential population. This is a harder problem. All intervals
badly under-cover on the right—the intervals are too short on
the right side—and over-cover (by smaller amounts) on the left.
(Over-covering on one side does not compensate for under-
covering on the other—instead, having both endpoints too low
gives an even more biased picture about where the parameter
may be than having just one endpoint too low.)

The bootstrap ¢ interval (“T”) does best, by a substantial
margin. It is second-order accurate, and gives coverage within
10% for n > 101. The other intervals are all poor. The reverse
percentile interval (“r”) is the worst. The percentile interval
(“p”) is poor for small samples, but better than the ordinary ¢
(“t”) for n > 35. To reach 10% accuracy requires n > 2383 for
percentile, 4815 for ordinary ¢, 5063 for  with bootstrap standard
errors, and over 8000 for the reverse percentile method.

4.5 Skewness and Mean-Variance Relationship

Take another look at Figure 9, for the sample mean from
a skewed population. Note how the spread of the bootstrap
distribution for ¥* depends on the statistic x. To obtain accurate
confidence intervals, we need to allow for such a relationship
(and Mathematical Statistics students should be aware of this).

For positively skewed populations, when ¥ < p the sample
standard deviation and bootstrap SE also tend to be small, so
a confidence interval needs to reach many (small) SE’s to the
right to avoid missing p too often. Conversely, when X > u, s
and s;, tend to be large, so a confidence interval does not need
to reach many (large) SE’s to the left to reach p.

In fact, a good interval, like the bootstrap ¢ interval, is even
more asymmetrical than a bootstrap percentile interval—about
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three times as asymmetrical in the case of a 95% intervals for
a mean (Hesterberg 2014). The bootstrap ¢ explicitly estimates
how many standard errors to go in each direction. This table
shows how far the endpoints for the ¢, percentile, reverse per-
centile, and bootstrap ¢ intervals are above and below the sample
mean of the Verizon ILEC data:

t Reverse Percentile bootstrapT
25% —0.701 —0.718 —0.683 —0.646
97.5% 0.701  0.683 0.718 0.762
-ratio 1 0.951 1.050 1.180

The bootstrap percentile interval is asymmetrical in the right
direction, but falls short; the reverse percentile interval goes the
wrong way.

For right-skewed data, you may be surprised that good con-
fidence intervals are 3x as asymmetrical as the bootstrap per-
centile interval; You may even be inclined to “downweight the
outliers,” and use an interval that reaches farther left; the reverse
percentile interval does so, with catastrophic effect. Instead,
think of it this way: the data show that the population is skewed,
take that as given; we may have observed too few observations
from the long right tail, so the confidence interval needs to reach
far to the right to protect against that—many (small) SE’s to the
right.

4.6 Confidence Interval Details

There are different ways to compute quantiles common in
statistical practice. For intervals based on quantiles of the boot-
strap distribution, I recommend letting the kth largest value in
the bootstrap distribution be the (k + 1)/r quantile, and inter-
polating for other quantiles. In R (R Core Team 2014) this is
quantile(x, type=6).Other definitions give narrower inter-
vals, and exacerbate the problem of intervals being too short.

Bootstrap ¢ intervals require standard errors—for the original
sample, and each bootstrap sample. When formula SE’s are not
available, we can use the bootstrap to obtain these SE’s (Efron
and Tibshirani 1993), using an iterated bootstrap, in which a set
of second-level bootstrap samples is drawn from each top-level
bootstrap sample to estimate the SE for that bootstrap sample.
This requires r 4 rr, resamples if r, second level samples are
drawn from each top-level sample. The computational cost has
been an impediment, but should be less so in the future as
computers make use of multiple processors.

While the simulation results here are for the sample mean,
the bootstrap ¢ is second-order accurate and the others are first-
order accurate under quite general conditions, see Efron and
Tibshirani (1993) and Davison and Hinkley (1997). Efron and
Tibshirani (1993) noted that the bootstrap ¢ is particularly suited
to location statistics like the sample mean, median, trimmed
mean, or percentiles, but performs poorly for a correlation co-
efficient; they obtain a modified version by using a bootstrap ¢
for a transformed version of the statistic ¢ = h(6), where A is a
variance-stabilizing transformation (so that var(lﬂ) does not de-
pend on 1) estimated using a creative use of the bootstrap. The
same method improves the reverse percentile interval (Davison
and Hinkley 1997).



4.7 Bootstrap Hypothesis Testing

There are two broad approaches to bootstrap hypothesis test-
ing. One approach is to invert a confidence interval—reject Hy if
the corresponding interval excludes 6.

Another approach is to sample in a way that is consistent with
Hy, then calculate a p-value as a tail probability. For example,
we could perform a two-sample bootstrap test by pooling the
data and drawing bootstrap samples of size n; and n, with
replacement from the pooled data. However, this bootstrap test
is not as accurate as the permutation test. Suppose, for example,
that the data contain three outliers. The permutation test tells
how common the observed statistic is, given the three outliers.
With a pooled bootstrap the number of outliers would vary.
The permutation test conditions on the data, treating only group
assignment as random.

Another example, for a one-sample mean, is to translate the
data, subtracting ¥ — o from each x; so the translated mean
is [Lo, then resample from the translated data. This is equiva-
lent to inverting a reverse percentile confidence interval, with
corresponding inaccuracy for skewed data. It can also yield
impossible data, like negative values for data that must be
positive.

Translation modifies a distribution by modifying the values.
A better way to modify a distribution is to keep the same values,
but change the probabilities on those values, using bootstrap
tilting (Efron 1981; Davison and Hinkley 1997); empirical like-
lihood (Owen 2001) is related. Tilting preserves mean—variance
relationships. I believe tilting has great pedagogical potential
for mathematical statistics; it nicely connects parametric and
nonparametric statistics, can help students understand the re-
lationship between parameters and sampling distributions, and
better understand confidence intervals. See the online supple-
ment for an example. But suitable software for educational use
is not currently available.

Neither approach is as accurate as permutation tests, in situa-
tions where permutation tests can be used. The actual one-sided
rejection probabilities when inverting confidence intervals cor-
respond to Figure 10. In contrast, permutation tests are nearly
exact.

o — Bootstrap lines

5. REGRESSION

There are two ways that bootstrapping in regression is par-
ticularly useful pedagogically. The first is to help students un-
derstand the variability of regression predictions by a graphical
bootstrap. For example, in Figure 11 we bootstrap regression
lines; those lines help students understand the variability of
slope and intercept coefficients, and of predictions at each value
of x. The more we extrapolate in either direction, the more vari-
able the predictions become. A bootstrap percentile confidence
interval for E(Y|x) is the range of the middle 95% of the y
values for regression lines at any x; these intervals are wider for
more extreme x.

The second is to help students understand the difference be-
tween confidence and prediction intervals. In the left panel, we
see that the variability of individual observations is much larger
than the variability of the regression lines; confidence intervals
based on the lines would capture only a small fraction of ob-
servations. To capture observations, prediction intervals must
be much wider, and should approximate the quantiles of the
residual distribution, because they are primarily intervals for in-
dividual observations—no CLT applies for prediction intervals.

The bootstrap estimates the performance of the model that
was actually fit to the data, regardless of whether that is a poor
model. In the right panel of Figure 11, a linear approximation
was used even though the relationship is quadratic; the boot-
strap measures the variability of the linear approximation, and
estimates the bias of (a linear approximation to the data) as an
estimate of (a linear approximation to the population). The boot-
strap finds no bias—for any x, the bootstrap lines are centered
vertically around the original fit.

5.1 Resample Observations or Conditional Distributions
Two common procedures when bootstrapping regression are

e bootstrap observations, and
e bootstrap residuals.

The latter is a special case of a more general rule:

e resample y from its estimated conditional distribution given x.

= = Original line

Co

Figure 11.

Bootstrapping linear regression. Left: Linear regression linear model fits. At any x, the y values from the bootstrap lines form

a bootstrap distribution that may be used for standard errors or confidence intervals. Prediction intervals are wider, to capture individual
observations. Right: Fitting a linear relationship to data that are not linear; the bootstrap does not diagnose the poor fit.
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In bootstrapping observations, we sample with replacement
from the observations, keeping y and corresponding x’s together.
In any bootstrap sample some observations may be repeated
multiple times, and others not included.

In bootstrapping residuals, we fit aregression model, compute
predicted values ¥; and residuals e; = y; — J;, then create a
bootstrap sample using the same x values as in the original
data, but with y obtained by adding the predictions and random
residuals, y/ = §; + e/, where ¢} are sampled randomly with
replacement from the original residuals.

Bootstrapping residuals correspond to a designed experiment
where the x’s are fixed and only y is random, and bootstrapping
observations to randomly sampled data where both x and y are
sampled from a joint distribution. By the principle of sampling
the way the data were drawn, we would bootstrap observations
if the x’s were random. Alternately, we can follow the prece-
dent set by the common formula approach, where formulas are
derived assuming the x’s are fixed, and in practice we use these
even when the x’s are random. In doing so we condition on
the observed x’s, and hence on the observed information (in re-
gression the information depends on the spread of the x’s—the
wider the spread, the less f varies). Similarly, in bootstrapping,
we may resample the residuals, conditioning on the observed
X’s.

Fixing the x’s can make a big difference in practice; boot-
strapping observations can be dangerous. For example, suppose
one of the x’s is a factor variable with a rare level, say only five
observations. When resampling observations, about 67 out of
10,000 samples omit those five observations entirely; then the
regression software cannot estimate a coefficient for that level.
Worse, many samples will include just one or two observations
from that level; then the software produces estimates with high
variance, with no error message to flag the problem. Similar
problems occur in models with interactions, or with continuous
variables when some linear combination ) c;x; has most of
its variation in a small number of observations. We avoid these
problems by bootstrapping residuals.

Bootstrapping residuals is a special case of a more general
rule, to sample Y from its estimated conditional distribution
given X. For example, when bootstrapping logistic regression,
we fit the model, and calculate predicted values §; = E(Y|X =
X)) = ﬁ(Y = 1|X = x;). To generate a bootstrap sample, we
keep the same x’s, and let y; = 1 with probability J;, otherwise
v = 0. This is an example of a parametric bootstrap. We use
this at Google in a complicated multi-stage logistic regression
procedure.

The conditional distribution idea also helps in linear regres-
sion where there is heteroscedasticity or lack of fit; we sample
residuals from observations with similar residual distributions,
for example, from observations with similar predictions (for
heteroscedasticity) or x’s (for lack of fit).

6. DISCUSSION

We first summarize some points from above, then discuss
books and software.

Bootstrapping offers a number of pedagogical benefits. The
process of bootstrapping mimics the central role that sampling
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plays in statistics. Students can use familiar tools like histograms
to visualize sampling distributions and standard errors. They
may understand that an SE is the standard deviation of a sam-
pling distribution. Students can work directly with estimates of
interest, like sample means, instead of 7 statistics, and use the
same basic procedure for many different statistics without new
formulas. Robust statistics like medians and trimmed means
can be used throughout the course. Students can focus on the
ideas, not formulas. When learning formulas, they can compare
formula and bootstrap answers. Graphical bootstrapping for re-
gression demonstrates the variation in regression predictions,
and the difference between confidence and prediction intervals.

Understanding the key idea behind the bootstrap—sampling
from an estimate of the population—is important to use the
bootstrap appropriately, and helps to understand when it may
not work well, or which methods may work better. When using
Monte Carlo sampling, enough samples should be used to obtain
accurate answers—10,000 is good for routine use. Students can
gain insight into sampling variation by trying different numbers.

Bootstrap distributions and percentile confidence intervals
tend to be too narrow, particularly for small samples. As a result,
percentile intervals are less accurate than common ¢ intervals
for small samples, though more accurate for larger samples.
Most accurate are bootstrap ¢ intervals. The reason relates to the
fundamental idea of the bootstrap—to replace the population by
an estimate of the population, then use the resulting bootstrap
distribution as an estimate of the sampling distribution. This
substitution is more accurate for a pivotal statistic—and the
t statistic is close to pivotal.

For skewed data, confidence intervals should reach longer in
the direction of the skewness; the bootstrap ¢ does this well, the
percentile makes about 1/3 of that correction, ¢ intervals ignore
skewness, and reverse percentile intervals go the wrong way.

We generally sample the way the data were produced (e.g.,
simple random or stratified sampling), except to condition on
observed information. For regression, that means to fix the x
values, that is, to resample residuals rather than observations.
This avoids problems in practice.

To reach the full potential of bootstrapping in practice and
education, we need better software and instructional materials.
Software such as https://www.stat.auckland.ac.nz/wild/VIT or
http://lock5stat.com/statkey has a place in education, to help
students visualize the sampling process, but is not suitable when
students go into real jobs. In R (R Core Team 2014), students can
write bootstrap loops from scratch, but this is difficult for Stat
101 students. For that matter it may be difficult for higher level
students, but it is worth putting in that effort. Modern statistics
requires extensive computing skills including resampling and
simulation (ASA 2014), and developing those skills should start
early. The Mosaic package (Pruim, Kaplan, and Horton 2015)
can make this easier, and the package contains one vignette for
resampling and another with resources including supplements
using Mosaic for (Lock et al. 2013; Tintle et al. 2014a). In
practice, implementing some of the more accurate bootstrap
methods is difficult (especially those not described here), and
people should use a package rather than attempt this themselves.
For R, the boot package (Canty and Ripley 2014) is powerful
but difficult to use. The resample package (Hesterberg 2015) is


https://www.stat.auckland.ac.nz/wild/VIT
http://lock5stat.com/statkey

easier but limited in scope. The boot and resample packages
are designed for practice, not for pedagogy, they hide details and
do not provide dynamic simulations demonstrating resampling.
boot offers tilting. resample offers the expanded percentile
interval, with improved small-sample coverage.

Books need improvement. Too few textbooks use the boot-
strap, and those that do could stand improvement. Chihara
and Hesterberg (2011) and Lock et al. (2013) used permuta-
tion/randomization tests and bootstrapping to introduce infer-
ence, and later to introduce formula methods. The treatments are
largely pedagogically appropriate and valuable. However, nei-
ther recognizes that bootstrap percentile intervals are too narrow
for small samples and inappropriately recommend that method
for small samples. Lock et al. (2013) also recommended testing
a single mean using the translation technique discussed in Sec-
tion 4.7; while that is useful pedagogically to demonstrate some
manipulations, it should be replaced with better alternatives like
the bootstrap t. Diez, Barr, and Cetinkaya Rundel (2014) used
the bootstrap for only one application, a ¢ interval with bootstrap
SE for confidence intervals for a standard deviation. Otherwise
they avoid the bootstrap, due to poor small-sample coverage of
percentile intervals.

These imperfections should not stop teachers from using the
bootstrap now. The techniques can help students understand
statistical concepts related to sampling variability.

I hope that this article spurs progress—that teachers better
understand what the bootstrap can do and use it to help students
understand statistical concepts, that people make more effec-
tive use of bootstrap techniques appropriate to the application
(not the percentile interval for small samples!), that textbook
authors recommend better techniques, and that better software
for practice and pedagogy results.

APPENDIX: SIMULATION DETAILS

Figure 10 is based on 10* samples (except 5 - 10° for n > 6000),
with r = 10* resamples for bootstrap intervals, using a variance re-
duction technique based on conditioning. For normal data, X and
V=X —-X,...,X,—X) are independent, and each interval is
translation-invariant (the intervals for V and V + x differ by x).
Let U be the upper endpoint of an interval, and P(U < p) =
Ev(E(U < w|V)). The inner expected value is a normal probability:
EWU < p|V)=PX+UWV) < ulV)=P(X < pu—U(V)|V). This
technique reduces the variance by factors ranging from 9.6 (forn = 5)
to over 500 (for n = 160).

Similarly, for the exponential distribution, X and V =
(X,/X, ..., X,/X) are independent, and we use the same conditioning
technique. This reduces the Monte Carlo variance by factors ranging
from 8.9 (for n = 5) to over 5000 (for n = 8000). The resulting accu-
racy is as good as using 89,000 or more samples without conditioning.
For example, standard errors for one-sided coverage for n = 8000 are
0.000030 or smaller.

SUPPLEMENTARY MATERIALS

The online supplement contains R scripts for all examples,
and a document with additional figures and more information
about bias estimates and confidence intervals.
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