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 ABSTRACT

 We investigate several nonparametric methods; the bootstrap, the jackknife, the delta
 method, and other related techniques. The first and simplest goal is the assignment of
 nonparametric standard errors to a real-valued statistic. More ambitiously, we consider setting
 nonparametric confidence intervals for a real-valued parameter. Building on the well under-
 stood case of confidence intervals for the median, some hopeful evidence is presented that
 such a theory may be possible.

 1. INTRODUCTION

 This article concerns nonparametric methods for estimating standard errors and
 confidence intervals. The discussion focuses on the bootstrap (Efron 1979a), which
 is easy to motivate and connects nicely to the jackknife, the delta method, and other
 more or less familiar nonparametric techniques.

 We begin on relatively firm ground-assigning a nonparametric estimate of
 standard error to a real-valued statistic. Whether or not there exists a useful theory
 of nonparametric small-sample confidence intervals is still a matter of speculation.
 Building on the well-understood case of confidence intervals for the median, we offer

 some hopeful, if not conclusive, evidence that such a theory may be possible. Several
 different methods, all related to the bootstrap, are compared in two simple situations.

 The author appreciates the invitation to present these ideas for discussion. There
 has been surprisingly little public discussion ofjackknife-related methods, considering
 their potential importance to the practicing statistician. A much longer review of the
 subject, including related topics such as cross-validation, resampling, subsampling,
 half-sampling, and influence functions, appears in Efron (1980c). Most of the
 presentation here is drawn from that report, and also Efron (1980b, 1980a, 1979a),
 some additional material appearing in the latter sections.

 2. THE BOOTSTRAP ESTIMATE OF THE STANDARD ERROR

 We have a real-valued statistic 8(X1, X2, ..., Xn), which is a function of n
 independent identically distributed observations

 X1, X2, . .., X, F, (2.1)
 * Presented as an invited discussion paper at the 1981 Annual Meeting of the Statistical Society of

 Canada, Dalhousie University, Halifax, Nova Scotia, May 24 & 25, 1981. The texts of the discussants'
 comments are presented along with written submissions from George A. Barnard, V.T. Farewell, Ross L.
 Prentice, Paul Switzer, and W.G. Warren, who were unable to attend the meeting.
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 F being an unknown probability distribution on a space T. Having observed X, =
 x 1, X2 = x2, ..., Xn = Xn, we wish to attach an estimate of standard error to 0.

 EXAMPLE 1. 2 = R1, the real line, and 0 = 25% trimmed mean, i.e., the average
 of the central 50% of the sample.

 EXAMPLE 2. T= R2, the plane, and 9 = (X1, X2, ..., Xn), the Pearson product
 moment correlation coefficient for the observed sample.

 The true standard error of 0 is a function of F, n, and the form of the statistic 0, say

 o(F, n, (., .,..., .)) = o(F). (2.2)
 This last notation emphasizes that, knowing n and the form of 0, the true standard
 error is only a function of the unknown distribution F.
 The bootstrap estimate of the standard error, OB, is simply

 OB = U(F), (2.3)

 where F is the empirical probability distribution

 ,, 1 F: mass- on xi, i = 1, 2, ..., n. (2.4)
 n

 As a simple example suppose T= R1 and 0 = = =Xi/n, the average, in which case
 o(F) = [2 z(F)/n]l/2, where U 2(F) = f (x - &FX) dF(x). Then UB = [- 1z/n]/
 where 2 = ,(xi - )/n

 In fact the function a(F) is usually impossible to express in simple form, and iB
 must be evaluated using a Monte Carlo algorithm:

 Step 1. Construct F as at (2.4).
 Step 2. Draw a bootstrap sample from F,

 iid

 X1*, X1,9...., X , (2.5)

 and calculate * = O(XT, X*2, ..., X).
 Step 3. Independently do Step 2 some number B times, obtaining bootstrap

 replications 0*(1), 0*(2), ..., 0*(B), and calculate

 A B [9*(b) - 9*(.)]2 (2.6) OB =9, (2.6)

 where 0*(.) = >O*(b)/B.
 As B - oo, the right-hand side of (2.6) converges to U(F). In practice, the author
 has found B in the range 50-200 adequate for estimating standard errors. The point
 is discussed further below. Larger values of B are required for the confidence interval
 calculations of Sections 4-10.

 Tables 1 and 2 report on sampling experiments relating to Examples 1 and 2
 respectively. Two distributions F are investigated in Table 1, a standard normal,
 F ~ N(0, 1), and a standard negative exponential F ~ G1. The sample size is n = 15;
 UB is based on B = 200 bootstrap replications in each trial. ["Trial" refers to a new
 choice of the data X1, X2, ..., X, ' F. "Replication" refers to a selection of the
 bootstrap sample XT, X1, ..., X* F. By - we here mean "independently and
 identically distributed as".] Summary statistics are given for 200 trials, both for UB
 and the jackknife estimate of standard error
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 1981 NONPARAMETRIC STANDARD ERRORS 141

 TABLE 1: Estimates of standard error for the 25% trimmed mean using the jackknife and the bootstrap:

 200 trials of Xi, X2, ..., X15S F. The standard deviations of ^n, &j for the 200 trials show a moderate
 advantage for the bootstrap.

 Summary statistics for 200 trials

 F D N(O, 1) F ~ G1

 Ave Std Dev CV Ave Std Dev CV

 Jackknife .280 .084 .30 .224 .085 .38

 Bootstrap (B = 200) .287 .071 .25 .242 .078 .32
 True standard error

 [minimum possible CV] .289 [.19] .232 [.27]

 (= [n - 1(.))2 , (2.7) n

 o(i) = =(xl, X2, * ..., xi-1, Xi+1, ... , Xn), (.) = O(i)/n. Both the bootstrap and the
 jackknife are nearly unbiased. The bootstrap performs better in that its coefficient of
 variation is lower. The bracketed figures show the minimum possible coefficient of
 variation for a scale-invariant estimate of standard error, assuming full knowledge of
 F. In the normal case, for example, 0.19 is the coefficient of variation of [Z (xi - -)2/
 14]1/2. (See Table 1.)

 Table 2 compares several nonparametric estimates for the standard error of ^, the

 correlation coefficient, and also for $ = tanh-'1. The true distribution F is bivariate
 normal with p = 0.5; the sample size is n = 14. The true standard errors are a ({}
 = 0.218, a ($} = 0.299 in this situation. Summary statistics for the estimates of the
 standard error are presented, based on 200 trials.

 The bootstrap was run with B = 128 and also with B = 512. The increased effort
 of the latter value yielded only slightly less variable estimates UB. A standard
 argument based on components of variance shows that further increases of B would
 be pointless. Taking B = oo would reduce the root-mean-square error of B {}), as an
 estimator of the true standard error a ({), to 0.063. [The notation & ({O} indicates the
 bootstrap estimate of a {(}),the true standard deviation for the statistic 0.] Likewise
 the value of vMSE for B ({4} would be reduced to 0.061. As a point of comparison,
 the normal-theory estimate UN {3 = (1 - 32)/(n - 3)1/2 has ,/MSE = 0.056.

 Why not generate the bootstrap observations from a smoother estimate of F than

 F? This is done in lines 3, 4, and 5 of Table 2. Let , = -i1 (x, - ?)(xi - ?)'/n, the sample covariance matrix of the observed data. The normal smoothed bootstrap uses
 X*, X1, ..., X* F- N2(0, 0.25 2), 9 indicating convolution. This amounts to
 estimating F by a normal window estimate, that is, by an equal mixture of the n
 distributions N2z(i, 0.25 1). Smoothing gives a moderate improvement for estimating

 a {(), and an enormous improvement for estimating a {$}. The latter result is
 suspect, since the true sampling situation is itself bivariate normal, and the function

 0 = tanh-'1 is chosen to have a {$} nearly constant in the bivariate normal family.
 The uniform smoothed bootstrap uses XT1, X2, ..., X* - F E U(0, 0.25 1), where
 U(0, 0.25 1) is the uniform distribution on a rhombus selected to have mean vector
 0 and covariance matrix 0.25 1.

 The standard-normal-theory estimates of line 8, Table 2, are themselves bootstrap
 estimates, carried out in a parametric framework. At step 1 of the bootstrap algorithm,
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 TABLE 2: Estimates of standard error for the correlation coefficient ^ and for 4 = tanh-' 1. The sampling experiment consisted of 200 trials of X1, X2, ..., Xs4 "
 bivariate normal, true p = 0.5. The delta-method estimates are badly biased downward. The jackknife estimates are substantially more variable than the bootstrap.

 From a larger table in Efron (1980b).

 Summary statistics for 200 trials

 Standard error estimates for A Standard error estimates for

 Ave Std Dev CV /MSE Ave Std Dev CV /-M-SE
 1. Bootstrap B = 128 .206 .066 .32 .067 .301 .065 .22 .065
 2. Bootstrap B = 512 .206 .063 .31 .064 .301 .062 .21 .062
 3. Normal smoothed bootstrap B = 128 .200 .060 .30 .063 .296 .041 .14 .041
 4. Uniform smoothed bootstrap B = 128 .205 .061 .30 .062 .298 .058 .19 .058
 5. Uniform smoothed bootstrap B = 512 .205 .059 .29 .060 .296 .052 .18 .052
 6. Jackknife .223 .085 .38 .085 .314 .090 .29 .091

 7. Delta method (infinitesimal jackknife) .175 .058 .33 .072 .244 .052 .21 .076
 8. Normal theory .217 .056 .26 .056 .302 0 0 .003
 True standard error .218 .299

 m
 71

 0
 z

 o

 z
 0o
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 1981 NONPARAMETRIC STANDARD ERRORS 143

 the fitted distribution is taken to be the parametric MLE FN = N2(;, I), rather than
 the nonparametric MLE F. The bootstrap observations X*, X', ..., X* are drawn
 independently from FN rather than from F, and the algorithm proceeds as described

 in steps 2 and 3. This process isn't actually carried out. If it were, and if B -* oo, then
 a high-order Taylor-series approximation shows that N { 3} (1 - 2)/[n - 3]1/2,
 N ($} = 1/(n - 3)1/2; see Johnson and Kotz (1970, p. 229). Notice that the normal
 smoothed bootstrap can be thought of as a compromise between using F and using
 FN to begin the bootstrap process.

 3. THE JACKKNIFE AND THE DELTA METHOD

 We can restate the bootstrap idea in a way which makes clear its connection with
 the jackknife and the delta method. Suppose 0 is afunctional statistic, i.e., of the form

 0= O(F), where 0(F) is a functional assigning a real number to any distribution F on
 T. Both examples in Section 2 are of this form. Let P = (Pi, P2, ..., Pn) be a
 probability vector, having nonnegative weights summing to one, and define the
 reweighted empirical distribution

 F(P):mass Pi on xi, i = 1,2,..., n. (3.1)

 Corresponding to P is a resampled value of the statistic, say 0(P) = 0(F(P)). The
 shorthand notation 0(P) assumes that x1, x2, ..., xn are fixed at their observed
 values.

 Another way to describe the bootstrap estimate UB is as follows. Let P* indicate a
 vector drawn from the rescaled multinomial distribution

 Multn(n, P0) P*~ [Po0 = (1, 1, ., 1)/n], (3.2) n

 meaning the observed proportions from n draws on n categories, with equal proba-
 bility 1/n for each category. Then

 GB = [a4*(P*)1/2. (3.3)
 *aK, indicates variance under (3.2). (P* equals #{(X7 = xi)/n in step 2 of the
 bootstrap algorithm.)
 The jackknife values 0(i) equal 0(P()), where P(i) = (1, 1, ..., 0, 1, 1)/(n - 1), 0 in

 the ith place. We can approximate 0(P) by the linear function of P, say OL(P), having
 OL(P(i)) = (P(i)) for i = 1, 2, ..., n. It is easy to see that

 OL(P) = 0(.) + (P - P)U, (3.4)
 where U is the column vector having ith coordinate

 U = (n - 1)(t(.) - (i)). (3.5)

 THEOREM (Efron 1980b). The jackknife estimate of standard error for 0 is

 aJ = [lY t.OL(P*) , (3.6)
 which is [n/(n - 1)]1/2 times the bootstrap estimate of standard error for kL.

 In other words the jackknife is, almost, a bootstrap itself. The factor
 [n/(n - 1)]1/2 makes &2 unbiased for a2 if 0 is a linear statistic, e.g., 0 = X. We could
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 144 EFRON Vol. 9, No. 2

 multiply UB by this same factor, but there doesn't seem to be any particular advantage
 to doing so.

 NOTATION. We shall use /,** and Prob, to indicate variances and probabilities calculated from (2.5), which is equivalent to (3.2). In both (2.5) and (3.2), the observa-
 tions x i, x2,... , xn are fixed.

 The advantage of working with the linear approximation OL, rather than 0, is that

 there is no need for Monte Carlo calculations: 'a,* OL(P*) = Y4**(P* - Po)U =
 E Ui/n2, using the known covariance of (3.2) and the fact that EUi = 0. The
 disadvantage is usually increased error of estimation, as evidenced in Tables I and
 2.

 Instead of approximating 0(P) by L (P), we could use the first-order Taylor-series
 expansion for O(P) about the point P = PO,

 OT(P) = (Po) + (P - P0)U (3.7)

 U? = li (p + E(( - P0)) - 0(pO) U

 8i being the ith coordinate vector. This suggests the standard-error estimate

 Ij = [. OT(P*)]1/2 = [U2/n2]1/2, (3.8)
 with ra* still indicating variance under (3.2). The initials IJ stand for infinitesimal

 jackknife, as defined by Jaeckel in his highly original 1972 paper. The ordinary
 jackknife takes e = -1/(n - 1) in (3.7), while the infinitesimal jackknife lets E -- 0,
 thereby earning its name.

 The U? are values of the empirical influence function (Mallows 1974), their
 definition being an obvious nonparametric estimate of the true influence function

 IF(x) = limo 0((1 - E)F + ESx) - O(F) (3.9)
 where Sx is the degenerate distribution putting mass 1 on point x. The right side of
 (3.8) is then the obvious estimate of the influence-function approximation to the
 standard error of 0, due to Hampel (1974): [flF2(x)dF(x)/n]"/2. The empirical
 influence-function approach and the infinitesimal jackknife give identical estimates
 of standard error.

 The nonparametric delta method applies to statistics of the form t( Q, Q2, ..., QA),

 where t(., *,..., -) is a known function and each Qa is an observed average, Qa =
 X"=1 Qa(Xi)/n. For example, the correlation $ is a function of A = 5 such averages,

 Q4- Qa12 (Xl .... , X,) Q 22 , (3.10)
 [-- - __ ]1/2 _ 5 _ .1/2o Ql(X) = Q1( Y, Z) = Y, Q2 = z, Q = Y2, Q4 = YZ, QS = Z2. The method works

 by (i) expanding t in a linear Taylor series about the expectations of the Qa; (ii)
 evaluating the standard error of the Taylor series, using the usual expressions for
 variances of averages; and (iii) substituting y(F) for any unknown quantity y(F)
 occurring in (ii). For example, the delta-method estimate of the standard error of 5
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 is

 PI 2 0 [04 2i22 4A22 4A31 4A13
 I A ~+O7 + A A A (3.11) 4n 1120 102 11201402 11 1 11U20 11 0W2

 where if x = (yi, zi), then Agh = (y- )(Zi- z-)h/n. See Cramer (1945, p. 359).
 Efron (1980b) proves that for any statistic of the form 0 = t(Q1, .. ., QA), the

 nonparametric delta method and the infinitesimal jackknife give the same estimate
 of standard error. The infinitesimal jackknife, the delta method, and the empirical
 influence-function approach are three names for the same method, and all are
 Taylor-series approximations to the bootstrap, as in (3.8). Notice that the results
 reported in line 7 of Table 2 show a serious downward bias. Efron and Stein (1981)
 prove that the ordinary jackknife estimate of standard error will tend to be biased
 upward, in a sense made precise in that paper. In the author's opinion, the ordinary
 jackknife is the method of choice for estimating standard errors if one doesn't want
 to do extensive bootstrap computations.

 4. THE PERCENTILE METHOD

 Estimated standard errors, along with assumptions of approximate normality,
 provide the rough confidence intervals so widely used in applied statistics: 0 ? z09,
 with z, being the a-point of a standard normal distribution, e.g., zo.05 = -1.645. In
 small-sample parametric situations, where we can do exact calculations, confidence
 intervals are often highly asymmetric about the best point estimate 0. The asymmetry,

 which is O(1/i-n) in magnitude, is substantially more important than the Student t-
 correction (replacing 0 + zu by 0 + tA&, with t, the a-point of an appropriate t-
 distribution), which is only O(1/n). We will discuss some nonparametric methods of
 assigning confidence intervals which attempt to capture the correct degree of asym-
 metry. This is a brave venture, since the problem isn't well understood even in
 parametric settings; but the results are mildly encouraging.

 We begin with an example described more fully in Efron (1979b). The data consist
 of n = 15 pairs of points: (576, 3.39), (635, 3.30), (558, 2.81), (578, 3.03), (666, 3.44),
 (580, 3.07), (555, 3.00), (661, 3.43), (661, 3.36), (605, 3.13), (653, 3.12), (575, 2.74),
 (545, 2.76), (572, 2.88), (594, 2.96). Each pair is two statistics describing the 1973
 entering class at an American law school. The observed correlation between the two
 statistics is ^ = 0.776. Figure 1 shows the histogram of B = 1000 bootstrap replications
 $ *, with the abscissa plotted in terms of * - 3. Also shown is the normal-theory
 density curvefi(j *) for $ = 0.776, plotted versus $ * - (Johnson and Kotz 1970, p.
 222).

 The similarity between the histogram andfJ ( *) is striking. It suggests, in a manner
 motivated in Sections 5-7, a simple method for constructing nonparametric confi-
 dence intervals. Let CDF(t) represent the cumulative of the bootstrap distribution
 for some real-valued functional statistic 0 = 0(F):

 CDF(t) = Prob, (* < t} =#{*(b) < (4.1)
 "Prob," indicates the bootstrap probability, as induced by the mechanism (2.5); the
 last expression equals this probability as B -- oo, a distinction we shall ignore. For a
 given value of a between 0 and I define

 0(a) = cD -l(ao). (4.2)
This content downloaded from 
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 normal theory densitytogram
 /histogram

 histrogram
 percentiles

 16% 50% 84%

 -.4 -.3 -.2 -.1 0 .1 .2

 FIGURE 1: Histogram of 1000 bootstrap replications '$* - '$ for the law-school data. The smooth curve
 is the normal-theory density of ^*, centered at ^, when the true correlation is = 0.776.

 The percentile method assigns

 0 E [0(a), 0(1 - a)] (4.3)
 as a putative 1 - 2a central confidence interval for the parameter 0 = 0(F). With a
 S0. 16, the 1000 bootstrap replications for the law-school data gave p E [0.654, 0.908]
 = [ - 0.12, P + 0.13] as a central 68% interval for p, compared to the standard-
 normal-theory interval [ 0 - 0.16, P + 0.09], obtained by inverting

 0 ~N (+ 2(n- 1)'n-3 )
 We shall also consider the bias-corrected percentile method

 0 E [CDF-1(Q(2zo + z,)), CDF-(Qi(2zo + zl-,))], (4.4)

 where zo = J-1 CDF(O) and Q(z) = (1/ri) fI= e-S&/2 ds. For the law-school data,
 CD(0) = 0.433 (433 out of 1000 bootstrap replications 0* less than 0.776), so zo = ( (0.433) = -0.17. The bias-corrected central 68% interval was

 p E [CDF-1 4(-1.34), CDF -1 1(0.66)] = [= - 0.17, 9 + 0.10],

 almost the same as the normal-theory interval.
 Table 3 shows the results of 10 Monte Carlo trials with X1, X2, ..., X15 bivariate

 normal, true correlation p = 0.5. For each trial, central 68% intervals were constructed

 using normal theory, the percentile method, the bias-corrected percentile method,
 and a smoothed version of this last approach. The smoothed version is based on
 (4.4), but with CDF(t) being the cumulative of smoothed bootstrap replications 0*,
 the smoothing mechanism being the same one used in line 3 of Table 2. The
 resemblance between the normal intervals and the smoothed bias-corrected intervals

 is impressive, though again one must be suspicious of a smoothing mechanism which
 obviously relates to the true distribution. The unsmoothed bias-corrected intervals
 are more variable, but still give an excellent suggestion of the correct left-right
 asymmetry in the normal-theory intervals. The percentile method doesn't do this
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 1981 NONPARAMETRIC STANDARD ERRORS 147

 TABLE 3: Central 68% confidence intervals, 10 trials of X1, X2 ...., X15 bivariate normal, true p = 0.5.
 Each interval has ' subtracted from both endpoints.

 Smoothed and
 Bias-corrected bias-corrected

 Normal Percentile percentile percentile
 Trial theory method method method

 1 .16 (-.29, .26) (-.29, .24) (-.28, .25) (-.28, .24)
 2 .75 (-.17, .09) (-.05, .08) (-.13, .04) (-.12, .08)
 3 .55 (-.25, .16) (-.24, .16) (-.34, .12) (-.27, .15)
 4 .53 (-.26, .17) (-.16, .16) (-.19, .13) (-.21, .16)
 5 .73 (-.18, .10) (-.12, .14) (-.16, .10) (-.20, .10)
 6 .50 (-.26, .18) (-.18, .18) (-.22, .15) (-.26, .14)
 7 .70 (-.20, .11) (-.17, .12) (-.21, .10) (-.18,.11)
 8 .30 (-.29, .23) (-.29, .25) (-.33, .24) (-.29, .25)
 9 .33 (-.29, .22) (-.36, .24) (-.30, .27) (-.30, .26)
 10 .22 (-.29, .24) (-.50, .34) (-.48, .36) (-.38, .34)

 Ave .48 (-.25, .18) (-.21, .19) (-.26, .18) (-.25, .18)

 consistently. On the other hand, 100 trials of the same experiment showed the
 percentile method givyin correct average coverage rates: in 13 out of the 100 trials p
 = 0.5 was less than CDF-'(0.10, compared to the theoretical expected value 10 out
 of 100; likewise 16 trials had CDF-'(0.10) p < CDP-'(0.25), 22 had CDF-'(0.25)

 5 p < CDF-'(0.50), 27 had CD:'(0.50) _ p < CDF-'(0.75), 12 had CDF-'(0.75) -< p < CDF-(0.90), and 10 had CDF-I(0.90) _ p.

 5. BAYESIAN JUSTIFICATION FOR THE PERCENTILE METHOD

 Suppose the sample space X is discrete, say X = {1, 2, ..., L). This is no real
 restriction, since we can discretely approximate most situations if L is taken suffi-
 ciently large. Letfi = ProbF{X = 1) andfi = #{xi = l)/n be the true and observed
 frequencies for category 1, and denote f = (fi,f, ... ,fL), f = (fl, f2..., fL).

 Consider the symmetric Dirichlet prior distribution with parameter a,

 f~ DiL (al), (5.1)

 i.e., take the prior density function of f proportional to flif'. Having observed f,
 the a posteriori density fI f is proportional to 1f ftnl+a-1. Letting a -- 0 to represent
 prior ignorance gives the well-known result

 f f ~ DiL (nf). (5.2)
 The result (5.2) is quite similar to the bootstrap distribution when T is discrete,

 if f n (5.3) n

 wherei f = #W{X" = )l}/n: (i) both distributions are supported entirely on those
 categories in which data were observed, i.e., those I for which fi > 0; (ii) both
 distributions have expectation vector f; (iii) the covariance matrices are also nearly
 equal, kov(f f) = I/(n + 1), 6~o,(f* If) = p;/n, where fj has diagonal elements
 f#(1 -fi), and off-diagonals -fifm. A continuity correction for the discreteness of the
 bootstrap distribution makes the covariance matrices agree even more closely.

 The point here is that the a posteriori distribution of 0(f) I f is likely to be well
 approximated by the bootstrap distribution of 0(f*) I f, whenever 0(f) is a reasonably
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 smooth function of f. If this is true, the percentile-method 1 - 2a central confidence
 interval will be a good approximation to the central Bayes interval of probability
 I - 2a.

 Rubin (1981) has criticized the bootstrap for agreeing with a silly prior, a form of
 guilt by association, and suggests doing a genuine Bayesian analysis for these
 problems. On the other hand, we shall see in Section 7 that the uninformative
 Dirichlet approach gives a quite reasonable answer in the case where 0(F) is the
 median.

 6. TRANSFORMATIONS AND PIVOTAL QUANTITIES

 The argument supporting the bias-corrected percentile method (4.4) is based on
 hypothesizing a transformation to a normal pivotal quantity. Suppose there exists a
 monotonic increasing function g(.) such that the transformed quantities

 4 = g(0), k = g(0), $* = g(0*) (6.1)
 satisfy

 S- 4 ~ N(-zoO, 02) and $* - 4 - N(-zoa, a 2) (6.2)

 for some constants zo and a. The symbol ' indicates distribution under the bootstrap
 sampling (2.5). In other words, 0 - 4 is a normal pivotal having the same distribution
 under both F and F.

 We shall see that (6.2) leads easily to (4.4), and also (4.3). The interesting aspect of
 this argument is that the bias-corrected percentile method requires no knowledge of
 the transformation g(.) or the constants zo, a. All we need to know to construct the
 appropriate interval for 0 = 0(F) is 0 = 0(F) and CDF(t), the cumulative distribution
 of the statistic of interest assuming F = F. This is particularly useful in nonparametric
 contexts, where it is difficult to imagine interesting alternative distributions to the
 MLE F. (An attempt at imagining such alternatives is made in Section 11.)

 In parametric contexts, (6.2) is a device frequently used to obtain confidence
 intervals. Fisher's transformation 4 = tanh-1 p is a classic example. Within the class
 of bivariate normal distributions it produces a good approximation to (6.2), with 02

 = 1/(n - 3) and zo = -pn -v3/2(n - 1). It is interesting to apply (4.4) directl to this parametric situation. To do so it is only necessary to redefine CDF(t)
 -= - f1( *) d*, where f?(A*) is the normal-theory density of the correlation
 coefficient when the true correlation equals A. Then CDF(t) is still the bootstrap
 CDF of *, but working off the parametric maximum-likelihood estimate F = FN.

 For the case n = 15, t = 0.5, the 95% central interval obtained from (4.4) is p E
 [-0.039, 0.798]. Again, it should be emphasized that this calculation requires no
 knowledge of the tanh-i transformation or of zo and a2, only the density f(.). The
 exact 95% interval obtained from the Biometrika Tables (1954) is p E [-0.024, 0.790].

 Now to verify (4.4) from (6.2). Notice that the middle statement in (6.1) is actually

 a definition of the estimator 4. The last relationship in (6.1) then follows from ,* =

 .(X", X2*, . . ., X*) = g(0(Xf, X*, . . ., X,*)) = g(O*). It implies that the bootstrap CDFof 4*, say

 Ci- (s) = Prob, {4* _ s), (6.3)
 is the obvious transformation of CD(t),

 CDG(g(t)) = CDF(t). (6.4)
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 The first relationship in (6.2) gives

 4 E [4 + zoo f za] (6.5)
 as the 1 - 2a central confidence interval for 4. Transforming (6.5) back to the 0-
 scale, by the transformation g-'(.), turns out to give (4.4). First notice that (6.2) and
 (6.4) imply

 Prob. {4~* 4} --= (zo) = CDG(g(O)) = CF(0), (6.6)
 which gives zo = D-1 CDG(O) as in (4.4).

 Using (6.2) again,

 Prob, {(* < 4 + zoo ? z,a} = ProbF({ < 4 + zoo + z,o) = O{2zo + z,).
 A

 This can be written as CDG(4 + zoo ? zai) = 1(2zo ? za), or

 4 + zoo ? z,a = CDG-'[I(2zo ? z,)].

 Transforming (6.5) back to the 0-scale  the mapping g-l(.) ives the interval with

 endpoints g-'(4 + zoo ? za) = g.' CDG-'[(j2zo ? z,)] = CD-lR'(2zo ? za), the last equality following from (6.4): CDF-1 = [CDG g]-' = g-1 CDG-1. We now have
 derived (4.4), the bias-corrected percentile interval, from (6.2).

 The normal distribution plays no special role in this-argument. We could assume
 that the pivotal quantity has some other symmetric distribution than the normal, in
 which case "D" would have a different meaning in (4.4). In the unbiased case, zo =
 0, the normal distribution plays no role at all, since we get the uncorrected percentile

 interval (4.3). This is worth stating separately: if we assume there exists a monotonic
 mapping g(.) such that $ - 4 and 0* - 0 have the same distribution, symmetric about
 the origin, then the percentile interval (4.3) has the correct coverage probability.

 7. THE PERCENTILE METHOD FOR THE MEDIAN

 We now consider a parameter, almost the only one, for which exact nonparametric
 confidence intervals exist, namely, the median 1(F) of a continuous distribution F on

 the real line, p = inft (ProbF(X t } = 0.5). Define

 bk,n(p) = ()pk(l -p)-k. (7.1)
 The random variable Z = # {Xi < t} is a pivotal for p, always having the binomial

 distribution Z " Bi(n, i). Given the observed order statistics x(l) < x(2) < ... < X(n)
 of an independently and identically distributed sample from F, we can make the
 confidence statement

 k2-1

 ProbF{I E [xk,,, x(k2)]} = bk,(0.5), (7.2)
 k=k1

 since {x(k,1) ~ x-2}k has the same probability as (x(k, < , - x(k,2)}, which is equivalent to {kl i Z < k2}.
 As an example, take n = 13, kl = 4, k2 = 10. Then a binomial table shows that

 SE [X44), X(1o)] (7.3)
 is a central 0.908 confidence interval for i.

 It turns out, happily enough, that the percentile method agrees closely with the
 binomial intervals (7.2) in the case of the median. First of all we notice that the
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 bootstrap distribution of the sample median can be calculated exactly without
 resorting to Monte Carlo. Assuming odd sample size, say n = 2m - 1, then = x),
 the middle order statistic, and

 m-1 k- I k
 p(k) - Prob. * = x)} = b ), - b,(7.4) i=o nI n

 (Efron 1979, p. 6). For n = 13 the bootstrap distribution is as follows:

 P(k) .0000 .0015 .0142 .0550 .1242 .1936 .2230
 (7.5)

 k 1 2 3 4 5 6 7

 with p(7+i) = p(7-i) for i = 1, 2, ..., 6, by symmetry.

 In the example just given, [x(4), X(lo) ] is a central 1 - 2a percentile interval for M,
 with a = (0.0000 + 0.0015 + 0.0142 + 0.0550/2) = 0.0432. Here we have split the
 bootstrap probability at the endpointA * = X(4), for reasons having to do with the
 "grainy" nature of the simple median: The bootstrap median f* takes on only n

 possible values, compared to (2n 1)possible bootstrap values for * if is

 smoothly defined, as is the correlation coefficient. Splitting the endpoint probabilities
 can be justified by approximating ^ with a series of less grainy statistics. With the
 endpoint probabilities split, the percentile method gives

 A~ E [X(4), X(10)] (7.6)
 as a central 0.914 confidence interval, agreeing remarkably well with (7.3). Numerical

 investigation confirms that the agreement is always excellent as long as a >? 0.01.
 Some theoretical reasons are given in Section 10.5 of Efron (1980c). The bootstrap
 distribution (7.4) is median unbiased, Prob, {fA * - <} = 0.50 splitting the probability
 Prob, *{A * = }), so the bias correction (4.4) has no effect.
 The Bayesian statement (5.2) gives

 Prob ({ = X(k) I f) = bk-1,n-i(0.5), (7.7)

 assuming that X = R' has been partitioned so finely that t equals 1 or 0 for every
 category 1. [Equation (7.7) makes use of a well-known relationship between the beta
 and binomial distributions.] Realistically we would never believe that the a posteriori
 distribution for I concentrates exclusively on the observed values xi. Interpreting ",i
 = x(k)" in (7.7) as "I = x(k) + e", where e has any distribution symmetric about 0 [for

 example, e ~ N(0, 0.01)], gives
 k2-2

 Prob ( E [xEk,, x(k2)] I}r = A bk -1,n-1(0.5) + bk,n-i(0.5) + bk-l1,n-l(0.5) k=k1

 k2-1

 = C bk,,(0.5). (7.8)
 k=k1

 Splitting the endpoint probabilities makes the Bayesian coverage probability for
 [X(k,), X(k2)] agree exactly with that for the classical confidence level (7.2). From
 Section 5 we then expect the percentile method to agree well with (7.2), which is
 indeed the case.
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 8. CONFIDENCE INTERVALS FOR THE MEAN

 The rest of this paper concerns setting nonparametric confidence intervals for the
 mean ii = &F X of a distribution F on the real line, on the basis of observing X1, X2,

 iid

 ..., X, - F. In one sense this problem is impossible, since modifying F with a tiny
 probability of X being enormous, say ProbF {X = 10100) = 10-10, can totally change
 t without ever showing up in most samples of size n < 105. On the other hand, the
 problem is "solved" every day using the standard Student t-intervals, Z ? te,n-1a
 with a2 = Ii- )2/n(n - 1). Genuine parametric intervals for I are often strikingly
 nonsymmetric about j = i. We shall consider several nonparametric methods which
 attempt to capture this asymmetry.

 The discussion of general methods will be illustrated on the specific problem of
 Table 4. Ten independently and identically distributed samples X1, X2,..., X15 were
 obtained from the negative-exponential distribution centered at 0, Prob{X > x} =
 e-(x+1), x > -1. Each sample xl, x2,..., ,15 was standardized: translated to have A
 = ?= 0 and scaled to have X(xi- ?)2/14 = 1. This stabilized the entries of Table 4
 without affecting comparisons between the various methods of setting confidence
 intervals, all of which scale and translate in the obvious way.

 Four different methods are illustrated in Table 4: (1) the percentile method based
 on the bootstrap distribution of * = X*, B = 1000; (2) random subsampling, B =
 1000, explained in the next paragraph; (3) the bias-corrected percentile method; and
 (4) the Pitman intervals. The latter assume that we are sampling from a translated

 and rescaled negative exponential, say .t + oX, X as above, and are the confidence intervals based on the conditional distribution of the usual t-statistic, given the
 standardized version of the sample. They are also the Bayes posterior intervals versus
 the uninformative prior d1i do/o. The Pitman intervals would usually be considered
 the correct parametric solution, and we shall use them here as a standard of
 comparison. [This is an arguable point. The Pitman intervals based on the translation
 model I + aX, a known, are completely different than (4). The "actual T" intervals
 of Section 9 are another reasonable standard of comparison.] Notice that they extend
 much further to the right of A (=0 in the standardized samples) than to the left.

 Random subsampling is based on Hartigan's typical-value theory (1969, 1971,

 TABLE 4: Nonparametric and parametric confidence intervals for the expectation, negative-exponential
 distribution; 10 standardized samples, n = 15. Confidence limits are listed in the order 5%, 10%, 90%,

 95%, so the outer [inner] two numbers are an approximate 90% [80%] interval.

 Bias corrected

 Percentile method Random subsampling percentile method
 Trial (B = 1000) (B = 1000) (B = 1000) Pitman intervals

 1 -.38, -.31, .34, .41 -.44, -.34, .33, .43 -.34, -.27, .38, .48 -.31, -.25, .45, .60
 2 -.39, -.34, .34, .45 -.47, -.36, .37, .46 -.36, -.27, .38, .54 -.34, -.27, .48, .64
 3 -.44, -.35, .30, .40 -.42, -.36, .36, .46 -.42, -.32, .32, .41 -.42, -.34, .56, .66
 4 -.38, -.32, .33, .45 -.44, -.35, .36, .47 -.38, -.32, .33, .45 -.30, -.24, .44, .58
 5 -.37, -.32, .34, .44 -.42, -.36, .33, .46 -.35, -.28, .39, .49 -.25, -.20, .37, .50
 6 -.37, -.31, .34, .44 -.47, -.36, .36, .48 -.34, -.27, .39, .50 -.41, -.33, .55, .65
 7 -.42, -.34, .31, .39 -,45, -.36, .35, .46 -.38, -.29, .34, .46 -.40, -.32, .54, .65
 8 -.35, -.30, .35, .46 -.42, -.35, .36, .48 -.32, -.27, .40, .50 -.32, -.26, .46, .62
 9 -.40, -.32, .33, .43 -.48, -.37, .34, .42 -.38, -.30, .34, .45 -.33, -.27, .47, .62
 10 -.38, -.31, .32, .41 -.42, -.36, .32, .43 -.37, -.30, .33, .42 -.32, -.26, .46, .61

 Average -.39, -.32, .33, .43 -.44, -.36, .35, .46 -.36, -.29, .36, .47 -.34, -.27, .48, .61
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 1975). A set S is chosen randomly from the 2" - 1 nonempty subsets of (1, 2,..., n},
 n = 15 here, and the subsample mean fs = ZiEs xi/lies I calculated. For column
 (2) of Table 4 this process was independently repeated B = 1000 times for each of
 the standardized samples. The percentile method (4.2), (4.3) provides the confidence
 limits, but with CDF(t) now being the cumulative distribution of the 1000 subsample
 means. The typical-value theorem (Hartigan 1969) says that these confidence inter-
 vals will have exactly the claimed coverage probabilities if F is continuous and
 symmetrically distributed about Et.
 Random subsampling, like the bootstrap, is a resampling plan, as described at the
 beginning of Section 3. Instead of the multinomial distribution (3.2), the resampling

 vector has components Pi = Ii /I.=1 Ij, where the Ij independently equal 0 or 1 with
 probability 1, and Ii indicates whether or not xi is included in the random subsample.

 An easy calculation shows that, given xl, x2,. :., xn, a random subsample mean has
 expectation and variance

 Xs" s , n-19n2 1o +, (8.1) n-1 n (n

 compared to the bootstrap expectation and variance

 S~ ( x- )2) . (8.2)
 Comparing the averages of columns (1) and (2) of Table 4, we see that the random

 subsample intervals are just about /(n + 2)/(n - 1) = 1.10 times as wide as the
 percentile intervals, as suggested by (8.1), (8.2). For 1 - 2a = 0.90, the ratio of widths
 is (0.46 + 0.44)/(0.43 + 0.39) = 1.10. Neither of the methods shows the right-left
 asymmetry of the Pitman intervals. The bias correction of column (3) is helpful in
 this regard, shifting all 10 percentile intervals rightward, though not far enough so.
 A similar bias correction was tried on the subsample intervals, but had little effect,
 often moving the intervals slightly leftwards.

 9. BOOTSTRAP T

 Let Z1, Z2, ..., Zn be independently and identically distributed from a known
 continuous distribution F on the real line, and suppose we observe X1, X2, ..., X,,
 where Xi = l + aZi, ti and a unknown. A confidence interval for i can be based on
 the pivotal quantity

 T A (A = X, 6 = [Z (Xi - X)2/n(n - 1)]1/2). (9.1)

 For example, if n = 15 and F is negative exponential centered at 0, then T has (5%,
 10%, 90%, 95%) percentile points (-2.67, -1.94, 1.08, 1.39), compared to the t14
 percentiles (-1.76, -1.34, 1.34, 1.76) appropriate for n = 15, F~ N(0, 1). [Quadruples
 will always refer to these four percentiles.]

 If t,, t~ , are defined by Prob { T < t,} = a = Prob { T > tl-,}, then

 Se [A, - t,-,t, , - tr&] (9.2)
 is a 1 - 2a central confidence interval for #. In the negative-exponential case,
 [(A - 1.39 &, A + 2.67 &] is a central 90% interval. It extends nearly twice as far to the
 right as to the left of A.
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 We can apply (9.2) just as well if A is any translation statistic, j(al + bX) = a +
 b^(X), and & is any scale statistic &(al + b(X) = b&(X)). Then T = (A - i)/a is still
 pivotal, though of course its distribution, and the values of t,, tl-,, depend upon the
 specific forms of j, a. It is reasonably straightforward to prove the following theorem:
 (9.2) is the central a posteriori interval, probability I - 2a, of u given (~, &), versus the
 uninformative prior dida/a. In other words, (9.2) is the appropriate Bayes interval for
 1i based on a reduced amount of information, the values of 1, & rather than the entire

 sample x1, x2,..., , n.
 In a nonparametric setting we don't know the distribution of T, but we can use the

 bootstrap to estimate it. The entries in column 1 of Table 5 were obtained in this
 way. For each sample, B = 1000 bootstrap values of T,

 T . ((* = X*, * = [A (X? - X*)2/n(n - 1)]1/2) (9.3)
 were generated. The 1 - 2a central confidence interval (9.2) was estimated by [j -

 til_., A - ,t7] with a,, t1-, defined by Prob. { T* < t} = a = Prob. { T* > i-,}.
 Since A = 0 and & = 1/4-5 for each trial in Table 5 (because the samples were
 standardized), the interval is simply [-ti- /VB5, - ./15B]. Notice how closely
 the average endpoints for the 10 trials approximate the actual T-values,
 [-t1-./415, - t./41 }. The bootstrap t-intervals are highly asymmetric about
 A= 0.
 Fraser (1976) has suggested nonparametrically estimating the actual Bayes inter-

 vals, those given xl, x2, ..., x,n rather than those given only [, b. The actual Bayes
 intervals, versus dC1 da/a, are the Pitman intervals of column (4), Table 4. They are

 of the form [A - tf&, A - t &0], where t' is defined by

 a = 70 -0 Lx(, a) da -dff 1 ( Lx(, a) da dA,
 (9.4)

 n

 X(A', a) = fi ,o(X), i=1

 and similarly for tiL., with 1 - a replacing a in (9.4). Here f,,(xi) is the density
 function.

 TABLE 5: Three more nonparametric confidence-interval methods applied to the 10 standardized
 negative-exponential samples of Table 4. The averages of the bootstrap t endpoints almost equal the
 actual T distribution limits for the negative exponential, n = 15. Methods (2) and (3) are explained in

 Sections 10 and 11.

 (1) Bootstrap t (2) Johnson's t (3) Exponential Sample
 Trial (B = 1000) tilting skewness

 1 -.36, -.29, .53, .71 -.37, -.29, .46, .70 -.35, -.27, .42, .56 1.40
 2 -.37, -.28, .52, .65 -.38, -.29, .46, .66 -.35, -.26, .41, .53 1.30
 3 -.42, -.31, .39, .51 -.44, -.34, .36, .47 -.38, -.29, .33, .43 0.15
 4 -.37, -.28, .51, .70 -.37, -.29, .46, .70 -.31, -.26, .42, .53 1.40
 5 -.34, -.27, .62, .84 -.36, -.28, .57, * -.31, -.26, .43, .57 1.86
 6 -.39, -.30, .45, .59 -.39, -.30, .42, .59 -.34, -.30, .39, .50 1.04
 7 -.39, -.29, .41, .61 -.41, -.32, .38, .52 -.38, -.28, .36, .47 0.62
 8 -.33, -.27, .63, .77 -.35, -.28, .64, * -.33, -.24, .45, .62 1.98
 9 -.37, -.30, .45, .60 -.39, -.30, .42, .58 -.34, -.26, .38, .48 1.02
 10 -.34, -.27, .56, .79 -.38, -.29, .45, .66 -.32, -.27, .39, .52 1.32

 Average -.38, -.29, .51, .68 -.38, -.30, .46, * -.34, -.27, .40, .50 1.21
 Actual T (-.36, -.28, .50, .69)
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 One can replace L_(j, a) by I_(g(, o) = II fi, (xi), where f,,(.) is a window estimate of the unknown density function, and thereby estimate ta, til-, from the
 upper equation of (9.4). This was attempted for the 10 samples of Table 5, but with
 unsatisfactory results. The estimates were extremely sensitive to the way the window
 estimate f,,,(.) was constructed. Fraser (1976) obtained better results, but in his
 examples the true f was symmetric and n = 100.

 10. JOHNSON'S t-STATISTIC

 Johnson (1978) uses a Cornish-Fisher expansion to suggest that a certain function
 of (9.1),

 YT2 (10.1) gy(T) = T + + , (10.1)

 is more nearly distributed as a standard t,-_-variable than is T itself. Here y is the skewness of the distribution F, y = 3/3/ 2, Lk = &F(X - FX)k.
 Column (2) of Table 5 was obtained by estimating y by the sample skewness y =

 ju3/s3, where s2 = Z (x _- )2/(n - 1); assuming that g$(T) was distributed as t,-1;
 and solving for the values of which gave g;((A - ji)/&) in the central 1 - 2a region
 for t,-1. For example, in trial 1, ~ in the interval [-0.37, 0.70] gave gl.40((A - t)/6)

 = gl.40(- Ai#.L) in the interval [-1.76, 1.76]. The results are in close agreement with column (1), the bootstrap t. In trials 5 and
 8, which had large skewness, the upper 95% point could not be calculated. This is
 because (10.1) describes a parabolic curve, and in these two trials no value of j gave
 g&(T) < -1.76. [Column (2) of Table 5 ignores those values of j far from 0 which
 also give g;(- ~fJ ) in the proper regions, the solutions on the wrong arm of the
 parabolic function (10.1).]

 It is not surprising that Johnson's t and the bootstrap t tend to agree. Both methods
 can be described as follows: (i) the percentile points of T = (A - )/& are functions
 of F, say t,(F); (ii) if we knew F, we would assign IL central 1 - 2a interval [A -
 &tl-,(F), A - &t,(F)]; (iii) we don't know F, so we assign the interval [A - atl-,(F),
 A - &t,(F)]. The bootstrap evaluates ta(F) directly, while Johnson's method uses an - 1

 asymptotic formula to approximate t,(F), ta(F) = g (~,-1).
 Johnson's t is much easier to use than the bootstrap t. Its unpleasant features, as

 shown in Tables 5 and 8, can be mitigated by replacing gy(T) with a monotonic
 function having the same first and second derivatives at T = 0, and perhaps, by
 estimating y more robustly. It certainly deserves further attention as a device for
 assigning confidence intervals to a location parameter. [The expression (10.1) is
 appropriate only for T as defined in (9.1). For each choice of j, & other than the
 sample mean and standard error, an appropriate transformation of T = (^ - j)/1
 must be derived.]
 The bootstrap t, and by implication Johnson's method also, performed poorly

 when used to set confidence intervals for the correlation coefficient. In this case the
 T-statistic was taken to be

 T = -, (10.2)

 &j being the jackknife estimate of standard error for 5. A bootstrap replication was

 T* = ( * - P)/&3, where &3 was the jackknife estimate of standard error in the
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 bootstrap sample. The bootstrap distribution of T* was obtained by Monte Carlo, its

 percentiles i' calculated, and [_3 - tl- d, - ?7j] assigned as a central 1 - 2a interval for p. The results varied eccentrically with a tendency toward occasional
 extremely long intervals.

 11. NONPARAMETRIC TILTING

 A parametric confidence set consists of those members of the parametric family
 which cannot be soundly discredited as having generated the observed data. "Soundly
 discredited" means rejected by a hypothesis test. The hypothesis test is chosen to
 minimize, at least approximately, the length of the confidence interval for the
 parameter of interest. If the parameter is the expectation j (for example), the test
 might be based on the sampling distribution of j, the MLE for jL.

 This program can be difficult to carry out, even in well-defined parametric
 situations. We have a trial value of j, say It, which we want to test for inclusion or
 exclusion from the confidence interval. However, the distribution of the test statistic

 A depends upon nuisance parameters as well as jt, so it may be difficult to guarantee
 the significance level of the hypothesis test.

 In a nonparametric situation there are an infinity of nuisance parameters, which
 makes the program described above impossible for most parameters /. This section
 discusses a method, nonparametric tilting, which is a less ambitious version of this
 same basic idea. First we give an operational description of how the entries in column
 (3) of Table 5 were obtained, followed by a more general discussion of the method,
 and its connection with the previous results.

 For a given value of the real number t, define weights

 wt- i = 1 2., n, (11.1)
 etxj

 j=1

 the data xl, x2, .... x,n (n = 15 in our example) being fixed as observed. The trial value of the expectation I, which we shall test for inclusion or exclusion from the
 confidence interval, is

 n

 t = wixi. (11.2)
 i=1

 Notice that t = 0 gives jt = = J. Instead of (3.2), consider choosing resampling
 vectors P* = (P T, ..., P*) according to

 Mult,(n, wt)
 P* (11.3)

 n

 wt (w, w ... w t, ). If t = 0 then (11.3) is the same as (3.2), but otherwise the

 bootstrap sample is selected nonuniformly from {Xl, x2, .. ., x,). Prob, (X7 = xi}

 = wf. This defines a "tilted" bootstrap distribution for /* = C1 Pixi, with
 expectation wrx1 = t and variance x ,x'/n, where It has diagonal elements
 wf(1 - wi), off-diagonals -wtwj. We shall write Probt, to indicate probabilities under
 this distribution.

 Define

 at = Prob , {i*" </), (11.4)
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 the achieved significance level of the observed value # = i under the bootstrap
 distribution (11.3) ofA *. The upper 95% point of the tilted confidence interval (=0.56
 for trial I of Table 5) is the value of lt corresponding to that t having at = 0.05, and
 similarly for the other percentile points. The results reported in Table 5 are inter-
 mediate to the Pitman intervals and the bias-corrected percentile intervals (Table 4),
 lying somewhat closer to the latter.
 The distributions (11.3), thought of as a family indexed by t, form a one-parameter

 exponential family with sufficient statistic A* = in1 Pi*xi. (The xi are fixed at their
 observed values, as before.) An easy calculation shows that the probability density
 function of A *, say fti( *), satisfies

 fA(i*) - e"* --, where 4(t) = log n et(xi-i). (11.5)
 fo(A*) n i.,

 In other words, the bootstrap distribution of A * under (11.4) is an exponential tilt of
 the bootstrap distribution under (3.2). The calculations in column 3 of Table 5 were
 obtained using this shortcut trick. Tilting is a useful tool in large-deviations theory;
 see Chernoff (1972, p. 45).
 The motivation for the weights (11.1) is as follows. Among all distributions putting

 mass only on the observed data points xl, x2, ..., Xn,

 w:mass wi on x wi _ 0, wi = 1 (11.6)
 The choice w = wt = (wt ..., wt5) minimizes the Kullback-Leibler distance from wo
 = 1/n,

 n

 D(w, wo) = wi log(nwi), (11.7)
 i=1

 subject to the constraint (w) = wixi = At. In this sense wt is the closest distribution
 to the observed data, subject to A = At. Testing the observed value A versus the wt
 distribution of /*, to see whether or not to include t in the confidence interval, is
 similar to parametric techniques. In effect we are estimating the nuisance parameters
 (everything about F except A) as well as possible, subject to L = Lt, and then using
 this estimated distribution to assign a significance value to the observed value Y.

 In a parametric problem, with parameters (y, q), it is common to estimate the
 nuisance parameters q by ^t, the MLE subject to A = Lt. We can do the same thing
 here. Instead of (11.1), the weights turn out to be

 S= [1 + txi- (11.8)
 E [1 + txj]-1 j=1

 Then wt is the nonparametric maximum-likelihood estimate of F subject to / = #t
 - wixi, with the understanding that we are only considering distributions supported
 on xl,..., x,. The distance minimized is D(1/n, w) = C (1/n) log(1/nwi) rather than
 (11.7). Our method of assigning confidence intervals, comparing the observed A with
 the distribution of * under (It, jt), is now quite similar to standard exponential-
 family testing theory, except that the latter would usually be based on conditional
 rather than unconditional distributions. The most compelling reason for using (11.1)
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 rather than (11.8) in Table 5 was the computational advantage of the tilting argument
 (11.5).

 Nonparametric tilting is fundamentally more ambitious than anything else we
 have considered. The bootstrap, and the other methods, replace the true distribution
 F by an estimate F. Tilting replaces the entire family of possible distributions we
 might consider, say FE 8 3 by an estimated family f The estimated family is

 -:m " Mult,(n, wt) (w, = etxi/ etxi, -oo < t < oo). (11.9)

 The entries in column (3) of Table 5 are the confidence limits for Ji(w) = wixi in
 the family f having observed m = (1, 1, ..., 1). As before, the data xi, ... , x, are
 considered fixed.

 It is easy to verify that the Cramer-Rao variance bound for the unbiased estimation

 of (w) in ;, evaluated at w = w? = (1/n,..., 1/n), equals
 " (x )2
 I 2 (11.10) i=1 fl

 which is the bootstrap estimate of variance for A = 5, i.e., the nonparametric
 maximum-likelihood estimate of variance. The estimated variance is not made

 smaller by restricting attention to the one-parameter family , rather than considering
 the problem of estimating IL in a full nonparametric setting. In this sense at least, the
 restriction to f isn't spuriously helpful. This "least favourable" property of Y can
 be shown to hold everywhere, not just at w = wo, but won't be discussed further here.

 Closed-form expressions for the endpoints of the tilting intervals can be obtained
 if one is willing to accept certain approximations: 4A(t), (11.5), is approximated by a
 Taylor series about 0, beginning (4(t) = A2t2/2 + A3t3/6 + . . ., and the distribution
 of A* = mixil/n under (11.9) is approximated by an Edgeworth series. The crudest
 such approximation gives the interval A + za4I2/n, the standard large-sample
 result. Going to the next level of approximation gives, to a reasonable degree of
 accuracy, Johnson's t-interval, as described in Section 10.

 As a final point, suppose we are interested in a parameter O(F) other than the
 expectation. Let O(w) be the value of 0 for that F putting mass wi on x1, i = 1, 2,
 ..., n, and define

 Ui(w) = lim 0((1 - E)w + Esi) - O(w)
 EO I E

 In particular U1(wo) is the empirical influence function of 0, called U9 in (3.7). For
 a trial value 0 = 0t, we can now look for the vector wt minimizing D(w, w) =
 Z wi log(nwi), as at (11.7), among all w satisfying 0(w) = Ot. Standard calculations
 show that the solution satisfies

 St Ui(w')
 wt-- i-- 1 2, n. (11.12)

 j= 1

 Equation (11.1) is a special case of (11.12), since it can be expressed as wf = exp{t(xi
 - It)}/X exp{t(x1 - it)), 2t= w xj, and Ui(w) = X - C w xj for 0(w) = wixi.

 Confidence intervals for 0 can now be constructed as before. They are the limits
 for 0(w) in = (m ~ Mult,(n, wt)), wt defined by (11.12), having observed m =
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 (1, 1, ..., 1). The Crambr-Rao variance bound for 0(w) in ., evaluated at w = wo, equals Y, U?(wo)/n2. This is the infinitesimal-jackknife, influence-function, delta-
 method nonparametric estimate for the variance of 0 = 0(F), (3.8), in analogy to
 (11.10). Unfortunately, the tilting property (11.5) no longer applies, so that the actual
 computation of the tilted intervals appears difficult.

 RESUME

 Plusieurs methodes non parametriques ont 6t6 6tudi6es, en particulier le *bootstrap*, le

 ,,jackknife*, et la methode de <cdelta,. Dans un premier temps, on attribue des erreurs types
 non parametriques a une statistique ia valeurs r6elles. On considere ensuite le probl6me plus
 ambitieux de construire des intervalles de confiance non parametriques pour un parametre a
 valeurs reelles. Partant du cas bien connu des intervalles de confiance pour la m6diane, des
 indications sont fournies a l'effet qu'une telle theorie semble possible.
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 Efron's paper gives us a very useful survey of some old and some new answers to the
 question: What should we do when we do not know the form of the observational distribution?
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