Chapter 6 Multiple Regression

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

We now add more predictors, linearly, to the model. For example let's add one more to the simple linear regression model:

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\epsilon_{i}
$$

with the usual $E\left(\epsilon_{i}\right)=0$. For any Y in this population with predictors $\left(x_{1}, x_{2}\right)$ we have

$$
\mu\left(x_{1}, x_{2}\right)=E(Y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2} .
$$

The triple $\left(x_{1}, x_{2}, \mu\left(x_{1}, x_{2}\right)\right)=\left(x_{1}, x_{2}, \beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}\right)$ describes a plane in \mathbb{R}^{3}.

Multiple regression models

Multiple regression models

Generally, for $k=p-1$ predictors x_{1}, \ldots, x_{k} our model is

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{k} x_{i k}+\epsilon_{i} \tag{6.7}
\end{equation*}
$$

with mean

$$
\begin{equation*}
E\left(Y_{i}\right)=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{k} x_{i k} . \tag{6.8}
\end{equation*}
$$

- β_{0} is mean response when all predictors equal zero (if this makes sense).
- β_{j} is the change in mean response when x_{j} is increased by one unit but the remaining predictors are held constant.
- We will assume normal errors:

$$
\epsilon_{1}, \ldots, \epsilon_{n} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)
$$

Water samples from tributaries of the Congaree River. E Coli is to be replaced by another measure of bacterial water quality.

- $Y=\log$ E Coli count (colonies/ml $\mathrm{H}_{2} \mathrm{O}$)
- $x_{1}=\log$ Fecal Coliform count (colonies $/ \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$)
- $x_{2}=\log$ Enterococci count (colonies/ml $\mathrm{H}_{2} \mathrm{O}$)

Assume the linear model is appropriate. One way to check marginal relationships is through a scatterplot matrix. However, these are not infallible.
β_{2} is the change in the mean log response for a 1 log-colony increase in Enterococcus, holding "Fecal Coliform log count" constant.

```
ecoli<-read.csv("EColi.csv", header=T, stringsAsFactors=F)
str(ecoli)
1Ecoli<-log(ecoli$Ecoli)
lFC<-log(ecoli$FecalColi)
lEntero<-log(ecoli$Enterococci)
dat<-data.frame(lEcoli, lFC, lEntero)
library(psych)
pairs.panels(dat,
                            method = "pearson", # correlation method
                            hist.col = "#00AFBB",
density = TRUE, # show density plots
    ellipses = F # show correlation ellipses
)
```


Scatterplot matrix

Qualitative predictors
Example: Dichotomous predictor

- $Y=$ length of hospital stay
- $x_{1}=$ gender of patient ($x_{1}=0$ male, $x_{1}=1$ female)
- $x_{2}=$ severity of disease on 100 point scale

$$
E(Y)=\left\{\begin{array}{ll}
\beta_{0}+\beta_{2} x_{2} & \text { males } \\
\beta_{0}+\beta_{1}+\beta_{2} x_{2} & \text { females }
\end{array}\right\} .
$$

Response functions are two parallel lines, shifted by β_{1} units...so-called "ANCOVA" model.

Polynomial regression
Often appropriate for curvilinear relationships between response and predictor.
Example:

$$
Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}+\epsilon
$$

Letting $x_{2}=x_{1}^{2}$ places this in the form of the general linear model.
Transformed response
Example:

$$
\log Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\epsilon
$$

Let $Y^{*}=\log (Y)$ to obtain a general linear model.

Interaction effects
Example:

$$
Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}+\epsilon
$$

Let $x_{3}=x_{1} x_{2}$ and get general linear model.

Key: All of these models are linear in the coefficients, the β_{j} terms. An example of a model that is not in general linear model form is exponential growth:

$$
Y=\beta_{0} \exp \left(\beta_{1} x\right)+\epsilon
$$

Let $\mathbf{Y}=\left[\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n}\end{array}\right]$ be the response vector.
Let $\mathbf{X}=\left[\begin{array}{ccccc}1 & x_{11} & x_{12} & \cdots & x_{1 k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2 k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n 1} & x_{n 2} & \cdots & x_{n k}\end{array}\right]$ be the design matrix
containing the predictor variables. The first column is a place-holder for the intercept term. What does each column represent? What does each row represent?

Let $\boldsymbol{\beta}=\left[\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k}\end{array}\right]$ be the unkown vector of regression coefficients.
Let $\boldsymbol{\epsilon}=\left[\begin{array}{c}\epsilon_{1} \\ \epsilon_{2} \\ \vdots \\ \epsilon_{n}\end{array}\right]$ be the unobserved error vector.

General linear model in matrix terms

The general linear model is written in matrix terms as

$$
\underbrace{\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]}_{n \times 1}=\underbrace{\left[\begin{array}{ccccc}
1 & x_{11} & x_{12} & \cdots & x_{1 k} \\
1 & x_{21} & x_{22} & \cdots & x_{2 k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n 1} & x_{n 2} & \cdots & x_{n k}
\end{array}\right]}_{n \times p} \underbrace{\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right]}_{p \times 1}+\underbrace{\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right]}_{n \times 1}
$$

where $p=k+1$, or succinctly as

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

Minimal assumptions about the random error vector ϵ are

$$
E(\boldsymbol{\epsilon})=\mathbf{0} \text { and } \operatorname{cov}(\boldsymbol{\epsilon})=\mathbf{I}_{n} \sigma^{2},
$$

where \mathbf{I}_{n} is the $n \times n$ identity matrix (zero except for 1 's along the diagonal).

In general, we will go farther and assume

$$
\boldsymbol{\epsilon} \sim N_{n}\left(\mathbf{0}, \mathbf{I}_{n} \sigma^{2}\right)
$$

This allows use to construct t and F tests, obtain confidence intervals, etc.

Writing the model like this saves a lot of time and space as we go along.

6.3 Fitting the model

Estimating $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right)^{\prime}$
Recall least-squares method: minimize
$Q(\boldsymbol{\beta})=\sum_{i=1}^{n}\left[Y_{i}-\left(\beta_{0}+\beta_{1} x_{i 1}+\cdots \beta_{k} x_{i k}\right)\right]^{2}=(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})$,
as a function of $\boldsymbol{\beta}$. Vector calculus can show that the least-squares estimates are

$$
\mathbf{b}=\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{k}
\end{array}\right]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

typically found using a computer package. Note: there is a typo in the book (equation (6.25) p. 223).

The fitted values are in the vector

$$
\hat{\mathbf{Y}}=\left[\begin{array}{c}
\hat{Y}_{1} \tag{6.30}\\
\hat{Y}_{2} \\
\vdots \\
\hat{Y}_{n}
\end{array}\right]=\mathbf{X} \mathbf{b}=\underbrace{\left[\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right]}_{\text {projection matrix }} \quad \mathbf{Y}=\mathbf{H} \mathbf{Y}
$$

The residuals are in the vector

$$
\mathbf{e}=\left[\begin{array}{c}
e_{1} \tag{6.31}\\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right]=\mathbf{Y}-\hat{\mathbf{Y}}=\mathbf{Y}-\mathbf{X} \mathbf{b}=\underbrace{\left[\mathbf{I}_{n}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right]}_{\text {projection matrix }} \mathbf{Y} .
$$

Geometric Interpretation OLS

$$
\operatorname{Cov}(\boldsymbol{\epsilon}, \hat{\mathbf{Y}})=\operatorname{Cov}[(\mathbf{I}-\mathbf{H}) \mathbf{Y}, \mathbf{H Y}]=0
$$

$\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$ is called the "hat matrix." We'll use it shortly when we talk about diagnostics. Note also that $\mathbf{e}=(\mathbf{I}-\mathbf{H}) \mathbf{Y}$.

Back to Congaree water quality data. From R,

$$
\mathbf{b}=\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
0.52045 \\
0.83149 \\
0.06155
\end{array}\right],
$$

so the fitted regression line is

$$
\hat{Y}=0.52045+0.83149 x_{1}+0.06155 x_{2}
$$

- Interpretation of b_{1} : We estimate that for each one-unit increase in \log (Fecal coliform), mean log E Coli increases by $0.83149 \log$ counts when \log (Enterococci) is held constant.
- Interpretation of $\exp \left\{b_{1}\right\}:$ We estimate that for a one-colony increase in Fecal coliform, mean E Coli increases by $\exp \{0.83149\}=2.30$ colonies when $\log ($ Enterococci) is held constant.
- Interpretation of b_{2} : We estimate that for each one-unit increase in \log (Enterococci), mean \log E Coli increases by 0.06155 log counts when \log (Fecal coliform is held constant. Note: This is nonsensical.

Analysis of variance (ANOVA) table

Restated: The variation in the data (SSTO) can be divided into two parts: the part explained by the model (SSR), and the slop that's left over, i.e. unexplained variability (SSE).
Associated with each sum of squares are their degrees of freedom (df) and mean squares, forming a nice table:

Source		SS	df	MS
Regression	SSR $=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$	1	$\frac{S(M S}{}$	$\sigma^{2}+\beta_{1}^{2} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
Error	SSE $=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}\right)^{2}$	$n-2$	$\frac{S E}{n-2}$	σ^{2}
Total	SSTO $=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$	$n-1$		

6.5 Analysis of variance

Again, in multiple regression we can decompose the total sum of squares into the SSR and SSE pieces. The table is now

Source	SS	df	MS	$E(M S)$
Regression	SSR $=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$	$p-1$	$\frac{S S R}{p-1}$	$\sigma^{2}+$ QF
Error	SSE $=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}\right)^{2}$	$n-p$	$\frac{S S E}{n-p}$	σ^{2}
Total	SSTO $=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$	$n-1$		

where $p=k+1$.
Here, QF stands for "quadratic form" and is given by

$$
\mathrm{QF}=\frac{1}{2} \sum_{j=1}^{k} \sum_{s=1}^{k} \beta_{j} \beta_{s} \sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)\left(x_{i s}-\bar{x}_{s}\right) \geq 0
$$

Note that $\mathrm{QF}=0 \Leftrightarrow \beta_{1}=\beta_{2}=\cdots=\beta_{k}=0$.

Overall F-test for a regression relationship (p. 226)

In multiple regression, our F-test based on $F^{*}=\frac{M S R}{M S E}$ tests whether the entire set of predictors x_{1}, \ldots, x_{k} explains a significant amount of the variation in Y.

If $M S R \approx M S E$, there's no evidence that any of the predictors are useful. If $M S R \gg M S E$, then some or all of them are useful.

Formally, the F-test tests $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{k}=0$ versus H_{a} : at least one of these is not zero. If $F^{*}>F_{p-1, n-p}(1-\alpha)$, we reject H_{0} and conclude that something is going on, there is some relationship between or more of the x_{1}, \ldots, x_{k} and Y. R provides a p -value for this test.

R^{2} is how much variability soaked up by model

The coefficient of multiple deterimation is

$$
\begin{equation*}
R^{2}=\frac{S S R}{S S T O}=1-\frac{S S E}{S S T O} \tag{6.40}
\end{equation*}
$$

measures the proportion of sample variation in Y explained by its linear relationship with the predictors x_{1}, \ldots, x_{k}. As before, $0 \leq R^{2} \leq 1$.

When we add a predictor to the model R^{2} can only increase.
The adjusted R^{2}

$$
\begin{equation*}
R_{a}^{2}=1-\frac{\operatorname{SSE} /(n-p)}{\operatorname{SSTO} /(n-1)} \tag{6.42}
\end{equation*}
$$

accounts for the number of predictors in the model. It may decrease when we add useless predictors to the model.

Congaree water quality, ANOVA table, $R^{2}, \& R_{a}^{2}$

We reject $H_{0}: \beta_{1}=\beta_{2}=0$ at any reasonable significance level α. About 76% of the total variability in the data is explained by the linear regression model.

Inference about individual regression parameters

The overall F-test concerns the entire set of predictors x_{1}, \ldots, x_{k}.
If the F-test is significant (if we reject H_{0}), we will want to determine which of the individual predictors contribute significantly to the model.

We will talk about this shortly, but the main methods are forward selection, backwards elimination, stepwise procedures, C_{p}, and R_{a}^{2}.

Aside: There are also fancy new methods including LASSO (Least Absolute Shrinkage and Selection Operator), LARS (Least-Angle Regression), etc. These are used when there's lots of predictors, e.g. $p=500$ or $p=20,000$.

Multivariate normal

The multivariate normal density is given by

$$
f(\mathbf{y})=|2 \pi \boldsymbol{\Sigma}|^{-1 / 2} \exp \left\{-0.5(\mathbf{y}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right\}
$$

where $\mathbf{y} \in \mathbb{R}^{d}$. We write

$$
\mathbf{Y} \sim N_{d}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) .
$$

Then $E(\mathbf{Y})=\boldsymbol{\mu}$ and $\operatorname{cov}(\mathbf{Y})=\boldsymbol{\Sigma}$.
For the general linear model,

$$
\mathbf{Y} \sim N_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
$$

Note that along the diagonal of $\operatorname{cov}(\mathbf{Y}), \operatorname{cov}\left(Y_{i}, Y_{i}\right)=\operatorname{var}\left(Y_{i}\right)$.
For the general linear model,

$$
\begin{gathered}
E(\epsilon)=\mathbf{0}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right], \\
\operatorname{cov}(\boldsymbol{\epsilon})=\sigma^{2} \mathbf{I}_{n}=\left[\begin{array}{cccc}
\sigma^{2} & 0 & \cdots & 0 \\
0 & \sigma^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma^{2}
\end{array}\right] . \\
\operatorname{cov}(\mathbf{Y})=\operatorname{cov}(\underbrace{\mathbf{X} \boldsymbol{\beta}}_{\text {constant }}+\underbrace{\epsilon}_{\text {random }})=\operatorname{cov}(\boldsymbol{\epsilon})=\mathbf{I}_{n} \sigma^{2} .
\end{gathered}
$$

Back to the general linear model

For $\hat{\mathbf{Y}}=\mathbf{H Y}$,

$$
\begin{gathered}
E(\hat{\mathbf{Y}})=\mathbf{H} E(\mathbf{Y})=\mathbf{H} \mathbf{X} \boldsymbol{\beta}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=\mathbf{X} \boldsymbol{\beta} \\
\operatorname{cov}(\hat{\mathbf{Y}})=\mathbf{H} \operatorname{cov}(\mathbf{Y}) \mathbf{H}^{\prime}=\sigma^{2} \mathbf{H}
\end{gathered}
$$

since $\mathbf{H H}^{\prime}=\mathbf{H}$ (property of a projection matrix).
For $\mathbf{e}=\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbf{Y}$,

$$
E(\mathbf{e})=\left(\mathbf{I}_{n}-\mathbf{H}\right) E(\mathbf{Y})=\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbf{X} \boldsymbol{\beta}=\mathbf{X} \boldsymbol{\beta}-\mathbf{H} \mathbf{X} \boldsymbol{\beta}=\mathbf{0}
$$

as $\mathbf{H X}=\mathbf{X}$ (projection matrix again).

$$
\operatorname{cov}(\mathbf{e})=\left(\mathbf{I}_{n}-\mathbf{H}\right) \operatorname{cov}(\mathbf{Y})\left(\mathbf{I}_{n}-\mathbf{H}\right)^{\prime}=\sigma^{2}\left(\mathbf{I}_{n}-\mathbf{H}\right)
$$

Mean and variance of \mathbf{b} (p. 227)

Finally, $\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}$ is unbiased

$$
E(\mathbf{b})=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E(\mathbf{Y})=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=\boldsymbol{\beta}
$$

and has covariance matrix

$$
\begin{aligned}
\operatorname{cov}(\mathbf{b}) & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \operatorname{cov}(\mathbf{Y})\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right]^{\prime} \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right]^{\prime} \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

$$
\mathbf{b} \sim N_{p}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)
$$

From the previous slide, the j th estimated coefficient β_{j},

$$
\operatorname{var}\left(b_{j}\right)=\sigma^{2} c_{j j}
$$

where $c_{j j}$ is the j th diagonal element of $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$. Estimate the standard deviation of b_{j} by its standard error $\operatorname{se}\left(b_{j}\right)=\sqrt{M S E c_{j j}}$ yielding

$$
\begin{equation*}
\frac{b_{j}-\beta_{j}}{\operatorname{se}\left(b_{j}\right)} \sim t_{n-p} \tag{6.49}
\end{equation*}
$$

Note: R gives each se $\left(b_{j}\right)$ as well as $b_{j}, t_{j}^{*}=b_{j} / \operatorname{se}\left(b_{j}\right)$, and a p -value for testing each $H_{0}: \beta_{j}=0$.

Congaree water quality output

- The R summary gives us $F^{*}=M S R / M S E=394.23$ with associated p -value <0.0001. We strongly reject (at any reasonable α) $H_{0}: \beta_{1}=\beta_{2}=0$.
- 95\% Cl's are (0.73202, 0.93096) for β_{1} and $(-0.00705,0.13016)$ for β_{2}.
- For example, we are 95% confident that mean $\log \mathrm{E}$ Coli count increases by 0.73202 to 0.93096 for every one log count increase in fecal coliform, holding enterococci constant.
- For $H_{0}: \beta_{1}=0$ we get $p<0.0001$; for $H_{0}: \beta_{2}=0$ we get $p=0.08$.

