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Chapter 6 Multiple Regression
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6.1 Multiple regression models

We now add more predictors, linearly, to the model. For example
let’s add one more to the simple linear regression model:

Yi = β0 + β1xi1 + β2xi2 + εi ,

with the usual E (εi ) = 0. For any Y in this population with
predictors (x1, x2) we have

µ(x1, x2) = E (Y ) = β0 + β1x1 + β2x2.

The triple (x1, x2, µ(x1, x2)) = (x1, x2, β0 + β1x1 + β2x2) describes
a plane in R3.
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Multiple regression models
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Multiple regression models

Generally, for k = p − 1 predictors x1, . . . , xk our model is

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi , (6.7)

with mean

E (Yi ) = β0 + β1xi1 + β2xi2 + · · ·+ βkxik . (6.8)

β0 is mean response when all predictors equal zero (if this
makes sense).

βj is the change in mean response when xj is increased by one
unit but the remaining predictors are held constant.

We will assume normal errors:

ε1, . . . , εn
iid∼ N(0, σ2).
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2009 Water Quality Data Set

Water samples from tributaries of the Congaree River. E Coli is to
be replaced by another measure of bacterial water quality.

Y = log E Coli count (colonies/ml H2O)

x1 = log Fecal Coliform count (colonies/ml H2O)

x2 = log Enterococci count (colonies/ml H2O)

Assume the linear model is appropriate. One way to check
marginal relationships is through a scatterplot matrix. However,
these are not infallible.

β2 is the change in the mean log response for a 1 log-colony
increase in Enterococcus, holding “Fecal Coliform log count”
constant.
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R code

ecoli<-read.csv("EColi.csv", header=T, stringsAsFactors=F)

str(ecoli)

lEcoli<-log(ecoli$Ecoli)

lFC<-log(ecoli$FecalColi)

lEntero<-log(ecoli$Enterococci)

dat<-data.frame(lEcoli, lFC, lEntero)

library(psych)

pairs.panels(dat,

method = "pearson", # correlation method

hist.col = "#00AFBB",

density = TRUE, # show density plots

ellipses = F # show correlation ellipses

)
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Scatterplot matrix

7 / 31



- - :

The general linear model encompasses...

Qualitative predictors
Example: Dichotomous predictor

Y = length of hospital stay

x1 = gender of patient (x1 = 0 male, x1 = 1 female)

x2 = severity of disease on 100 point scale

E (Y ) =

{
β0 + β2x2 males
β0 + β1 + β2x2 females

}
.

Response functions are two parallel lines, shifted by β1

units...so-called “ANCOVA” model.
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The general linear model encompasses...

Polynomial regression
Often appropriate for curvilinear relationships between response
and predictor.
Example:

Y = β0 + β1x1 + β2x
2
1 + ε.

Letting x2 = x2
1 places this in the form of the general linear model.

Transformed response
Example:

logY = β0 + β1x1 + β2x2 + β3x3 + ε.

Let Y ∗ = log(Y ) to obtain a general linear model.
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The general linear model encompasses...

Interaction effects
Example:

Y = β0 + β1x1 + β2x2 + β3x1x2 + ε.

Let x3 = x1x2 and get general linear model.

Key: All of these models are linear in the coefficients, the βj terms.
An example of a model that is not in general linear model form is
exponential growth:

Y = β0 exp(β1x) + ε.
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6.2 General linear model in matrix terms

Let Y =


Y1

Y2
...
Yn

 be the response vector.

Let X =


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
...

...
...

. . .
...

1 xn1 xn2 · · · xnk

 be the design matrix

containing the predictor variables. The first column is a
place-holder for the intercept term. What does each column
represent? What does each row represent?
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General linear model in matrix terms

Let β =


β0

β1
...
βk

 be the unkown vector of regression coefficients.

Let ε =


ε1

ε2
...
εn

 be the unobserved error vector.
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General linear model in matrix terms

The general linear model is written in matrix terms as
Y1

Y2
...
Yn


︸ ︷︷ ︸

n×1

=


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
...

...
...

. . .
...

1 xn1 xn2 · · · xnk


︸ ︷︷ ︸

n×p


β0

β1
...
βk


︸ ︷︷ ︸

p×1

+


ε1

ε2
...
εn


︸ ︷︷ ︸

n×1

,

where p = k + 1, or succinctly as

Y = Xβ + ε.
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General linear model in matrix terms

Minimal assumptions about the random error vector ε are

E (ε) = 0 and cov(ε) = Inσ
2,

where In is the n × n identity matrix (zero except for 1’s along the
diagonal).

In general, we will go farther and assume

ε ∼ Nn(0, Inσ
2).

This allows use to construct t and F tests, obtain confidence
intervals, etc.

Writing the model like this saves a lot of time and space as we go
along.
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6.3 Fitting the model

Estimating β = (β0, β1, . . . , βk)′

Recall least-squares method: minimize

Q(β) =
n∑

i=1

[Yi − (β0 + β1xi1 + · · ·βkxik)]2 = (Y−Xβ)′(Y−Xβ),

as a function of β. Vector calculus can show that the least-squares
estimates are

b =


b0

b1
...
bk

 = (X′X)−1X′Y,

typically found using a computer package. Note: there is a typo in
the book (equation (6.25) p. 223).
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6.4 Fitted values & residuals

The fitted values are in the vector

Ŷ =


Ŷ1

Ŷ2
...

Ŷn

 = Xb = [X(X′X)−1X′]︸ ︷︷ ︸
projection matrix

Y = HY. (6.30)

The residuals are in the vector

e =


e1

e2
...
en

 = Y − Ŷ = Y − Xb = [In − X(X′X)−1X′]︸ ︷︷ ︸
projection matrix

Y. (6.31)
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Geometry

Cov(ε, Ŷ) = Cov [(I−H)Y,HY] = 0
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Hat matrix

H = X(X′X)−1X′ is called the “hat matrix.” We’ll use it shortly
when we talk about diagnostics. Note also that e = (I−H)Y.

Back to Congaree water quality data. From R,

b =

 b0

b1

b2

 =

 0.52045
0.83149
0.06155

 ,
so the fitted regression line is

Ŷ = 0.52045 + 0.83149x1 + 0.06155x2.
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Interpretation

Interpretation of b1: We estimate that for each one-unit
increase in log(Fecal coliform), mean log E Coli increases by
0.83149 log counts when log(Enterococci) is held constant.

Interpretation of exp {b1}: We estimate that for a
one-colony increase in Fecal coliform, mean E Coli increases
by exp {0.83149} = 2.30 colonies when log(Enterococci) is
held constant.

Interpretation of b2: We estimate that for each one-unit
increase in log(Enterococci), mean log E Coli increases by
0.06155 log counts when log(Fecal coliform is held constant.
Note: This is nonsensical.
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Analysis of variance (ANOVA) table

Restated: The variation in the data (SSTO) can be divided into
two parts: the part explained by the model (SSR), and the slop
that’s left over, i.e. unexplained variability (SSE).
Associated with each sum of squares are their degrees of freedom
(df) and mean squares, forming a nice table:

Source SS df MS E(MS)

Regression SSR=
∑n

i=1(Ŷi − Ȳ )2 1 SSR
1

σ2 + β2
1

∑n
i=1(Xi − X̄ )2

Error SSE=
∑n

i=1(Yi − Ŷ )2 n − 2 SSE
n−2

σ2

Total SSTO=
∑n

i=1(Yi − Ȳ )2 n − 1
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6.5 Analysis of variance

Again, in multiple regression we can decompose the total sum of
squares into the SSR and SSE pieces. The table is now

Source SS df MS E(MS)

Regression SSR=
∑n

i=1(Ŷi − Ȳ )2 p − 1 SSR
p−1

σ2 + QF

Error SSE=
∑n

i=1(Yi − Ŷ )2 n − p SSE
n−p

σ2

Total SSTO=
∑n

i=1(Yi − Ȳ )2 n − 1

where p = k + 1.
Here, QF stands for “quadratic form” and is given by

QF = 1
2

k∑
j=1

k∑
s=1

βjβs

n∑
i=1

(xij − x̄j)(xis − x̄s) ≥ 0.

Note that QF= 0⇔ β1 = β2 = · · · = βk = 0.
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Overall F-test for a regression relationship (p. 226)

In multiple regression, our F-test based on F ∗ = MSR
MSE tests

whether the entire set of predictors x1, . . . , xk explains a significant
amount of the variation in Y .

If MSR ≈ MSE , there’s no evidence that any of the predictors are
useful. If MSR >> MSE , then some or all of them are useful.

Formally, the F-test tests H0 : β1 = β2 = · · · = βk = 0 versus Ha :
at least one of these is not zero. If F ∗ > Fp−1,n−p(1− α), we
reject H0 and conclude that something is going on, there is some
relationship between or more of the x1, . . . , xk and Y . R provides a
p-value for this test.
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R2 is how much variability soaked up by model

The coefficient of multiple deterimation is

R2 =
SSR

SSTO
= 1− SSE

SSTO
(6.40)

measures the proportion of sample variation in Y explained by its
linear relationship with the predictors x1, . . . , xk . As before,
0 ≤ R2 ≤ 1.

When we add a predictor to the model R2 can only increase.

The adjusted R2

R2
a = 1− SSE/(n − p)

SSTO/(n − 1)
(6.42)

accounts for the number of predictors in the model. It may
decrease when we add useless predictors to the model.
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Congaree water quality, ANOVA table, R2, & R2
a

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 405.94 202.97 349.23 <.0001

Error 251 129.23 0.51

Corrected Total 253 535.17

Root MSE 0.7175 R-Square 0.7585

Dependent Mean 4.687 Adj R-Sq 0.7566

Coeff Var 15.3084

We reject H0 : β1 = β2 = 0 at any reasonable significance level α.
About 76% of the total variability in the data is explained by the
linear regression model.
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Inference about individual regression parameters

The overall F-test concerns the entire set of predictors x1, . . . , xk .

If the F-test is significant (if we reject H0), we will want to
determine which of the individual predictors contribute significantly
to the model.

We will talk about this shortly, but the main methods are forward
selection, backwards elimination, stepwise procedures, Cp, and R2

a .

Aside: There are also fancy new methods including LASSO (Least
Absolute Shrinkage and Selection Operator), LARS (Least-Angle
Regression), etc. These are used when there’s lots of predictors,
e.g. p = 500 or p = 20, 000.

25 / 31



- - :

Multivariate normal

The multivariate normal density is given by

f (y) = |2πΣ|−1/2 exp{−0.5(y − µ)′Σ−1(y − µ)},

where y ∈ Rd . We write

Y ∼ Nd(µ,Σ).

Then E (Y) = µ and cov(Y) = Σ.

For the general linear model,

Y ∼ Nn(Xβ, σ2In).
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Error vector

Note that along the diagonal of cov(Y), cov(Yi ,Yi ) = var(Yi ).

For the general linear model,

E (ε) = 0 =


0
0
...
0

 ,

cov(ε) = σ2In =


σ2 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σ2

 .
cov(Y) = cov( Xβ︸︷︷︸

constant

+ ε︸︷︷︸
random

) = cov(ε) = Inσ
2.
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Back to the general linear model

For Ŷ = HY,

E (Ŷ) = HE (Y) = HXβ = X(X′X)−1X′Xβ = Xβ.

cov(Ŷ) = Hcov(Y)H′ = σ2H,

since HH′ = H (property of a projection matrix).
For e = (In −H)Y,

E (e) = (In −H)E (Y) = (In −H)Xβ = Xβ −HXβ = 0,

as HX = X (projection matrix again).

cov(e) = (In −H)cov(Y)(In −H)′ = σ2(In −H).
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Mean and variance of b (p. 227)

Finally, b = (X′X)−1X′Y is unbiased

E (b) = (X′X)−1X′E (Y) = (X′X)−1X′Xβ = β,

and has covariance matrix

cov(b) = (X′X)−1X′cov(Y)[(X′X)−1X′]′

= σ2(X′X)−1X′[(X′X)−1X′]′

= σ2(X′X)−1X′X(X′X)−1

= σ2(X′X)−1.

b ∼ Np(β, σ2(X′X)−1).
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Table of regression effects (p. 228)

From the previous slide, the jth estimated coefficient βj ,

var(bj) = σ2cjj ,

where cjj is the jth diagonal element of (X′X)−1. Estimate the
standard deviation of bj by its standard error se(bj) =

√
MSEcjj

yielding
bj − βj
se(bj)

∼ tn−p (6.49)

Note: R gives each se(bj) as well as bj , t
∗
j = bj/se(bj), and a

p-value for testing each H0 : βj = 0.
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Congaree water quality output

The R summary gives us F ∗ = MSR/MSE = 394.23 with
associated p-value < 0.0001. We strongly reject (at any
reasonable α) H0 : β1 = β2 = 0.

95% CI’s are (0.73202, 0.93096) for β1 and
(−0.00705, 0.13016) for β2.

For example, we are 95% confident that mean log E Coli
count increases by 0.73202 to 0.93096 for every one log count
increase in fecal coliform, holding enterococci constant.

For H0 : β1 = 0 we get p < 0.0001; for H0 : β2 = 0 we get
p = 0.08.
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