Sections 3.9 and 6.8: Transformations

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

Linear Regression Assumptions

$$
Y=X \beta+\epsilon, \quad \epsilon \sim N_{n}\left(0, \sigma^{2} I\right)
$$

Assumptions

- Linear relationship
- Independent observations
- Normally distributed residuals
- Equal variance across X's
- Plus need to check for influential points and outliers: one or a few observations should not dominate the model fit

10.1 Added variable plots (partial regression plot)

- Consider a pool of predictors x_{1}, \ldots, x_{k}.
- Regress Y_{i} vs. all predictors except x_{j}, call the residuals $e_{i}\left(Y \mid \mathbf{x}_{-j}\right)$.
- Regress x_{j} vs. all predictors except x_{j}, call the residuals $e_{i}\left(x_{j} \mid \mathbf{x}_{-j}\right)$.
- The added variable plot for x_{j} is $e_{i}\left(Y \mid \mathbf{x}_{-j}\right)$ vs. $e_{i}\left(x_{j} \mid \mathbf{x}_{-j}\right)$.
- The least squares estimate b_{j} obtained from fitting a line (through the origin) to the plot is the same as one would get from fitting the full model $Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots \beta_{k} x_{i k}+\epsilon_{i}$ (Proof this in homework).
- Gives an idea of the relationship between Y and X_{j} adjusting for all other variables in the model.

Added variable plots: IGROWUP Data

$$
e(W E I G H T \mid H E I G H T)=\beta_{0}+\beta_{1} \times e(\text { age } \mid H E I G H T)
$$

Added Variable Plot

- Some violations of our model assumptions may be fixed by transforming one or more predictors x_{1}, \ldots, x_{k} or Y.
- If the only problem is a nonlinear relationship between Y and the predictors, i.e. constant variance seems okay, a transformation of one or more of the x_{1}, \ldots, x_{k} is preferred.
- If non-constant variance appears in one or more plots of Y versus the predictors, a transformation in Y can help...or make it worse!
- Data analysis is an art. The best way to learn how to analyze data is to analyze data.
- A nonlinear relationship could manifest itself the scatterplot matrix of Y_{i} versus $x_{i j}$ for $j=1, \ldots, k$, or the residuals e_{i} versus $x_{i j}$ from an initial fit.
- The chosen transformation should roughly mimic the relationship seen in the plot.

If there is evidence of nonconstant error variance, a transformation of Y can often fix things. Examples include:

- $Y^{*}=\log (Y)$
- $Y^{*}=\sqrt{Y}$
- $Y^{*}=1 / Y$

All of these are included in the Box-Cox family of transformations.
For some data, a transformation in Y may be followed by one or more transformations in the $x_{i 1}, \ldots, x_{i k}$.

Linear Regression Assumptions: Transformation of Variables

$$
Y=X \beta+\epsilon, \quad \epsilon \sim N_{n}\left(0, \sigma^{2} I\right)
$$

Assumptions

- Linear relationship
- Independent observations
- Normally distributed residuals
- Equal variance across X's
- Plus need to check for influential points and outliers: one or a few observations should not dominate the model fit

Transformations for Y

Prototype Regression Pattern

Transformations on Y

$$
\begin{aligned}
& Y^{\prime}=, Y \\
& Y^{\prime}=\log _{10} Y \\
& Y^{\prime}=1 / Y
\end{aligned}
$$

Non-constant variance

- Breusch-Pagan test (pp. 118-119): tests whether the log error variance increases or decreases linearly with the predictor(s). Where $Y_{i} \sim N\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}, \sigma_{i}^{2}\right)$, set $\log \sigma_{i}^{2}=\alpha_{0}+\alpha_{1} x_{i 1}+\cdots \alpha_{k} x_{i k}$ and test $H_{0}: \alpha_{1}=\cdots=\alpha_{k}=0$, i.e. $\log \sigma_{i}^{2}=\alpha_{0}$. Requires large samples \& assumes normal errors.
- Brown-Forsythe test (pp. 116-117): Robust to non-normal errors. Requires user to break data into groups and test for constancy error variance across groups (not natural for continuous data).
- Graphical methods have advantage of checking for general violations, not just violation of a specific type.

Residual plots: IGROWUP data

Standardized Residuals

>stand.resid<-rstandard(fit1sp)

```
>library(lmtest)
#### Breusch-Pagan test
>bptest(WEIGHT ~ agemons + age12 + age30, data=child)
studentized Breusch-Pagan test
data: WEIGHT ~ agemons + age12 + age30
BP = 49.639, df = 3, p-value = 9.537e-11
```


Box-Cox transformations are of the type

$$
Y^{*}= \begin{cases}Y^{\lambda} & \lambda \neq 0 \\ \log (Y) & \lambda=0\end{cases}
$$

where λ is estimated from the data, typically $-3 \leq \lambda \leq 3$. These include

$$
\begin{array}{lll}
\lambda=2 & Y^{*}=Y^{2} & \\
\lambda=1 & Y^{*}=Y & \text { No transformation! } \\
\lambda=0 & Y^{*}=\log (Y) & \text { By definition } \\
\lambda=-1 & Y^{*}=1 / Y & \text { Reciprocal } \\
\lambda=-2 & Y^{*}=1 / Y^{2} &
\end{array}
$$

R uses boxcox() in the MASS package.

Interpretation changes with transformed data

Note: When working with transformed data, predictions and interpretations of regression coefficients are all in terms of the transformed variables.

To state the conclusions in terms of the original variables, we need to do a reverse transformation...carefully.

Example: IGROWUP Data

$$
E[\ln (\text { Weight })]=\beta_{0}+\beta_{1} \times \text { agemons }
$$

Coefficients:

| | Estimate | Std. Error t value | $\operatorname{Pr}(>\|\mathrm{t}\|)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 2.1722076 | 0.0187270 | 115.99 | $<2 \mathrm{e}-16 * * *$ |
| todd\$agemons | 0.0136300 | 0.0005147 | 26.48 | $<2 \mathrm{e}-16 * * *$ |

$$
E[\ln (\text { Weight })]=\beta_{0}+\beta_{1} \times \text { agemons }
$$

Coefficients:

```
            Estimate Std. Error t value Pr (>|t|)
```



```
> pred<-predict(fit3, new=data.frame(agemons=25), interval="confidence")
> pred
    fit lwr upr
1 2.512957 2.496285 2.529629
```

- What is the "expected" weight of a 25 month-old child? $e^{(2.172+25 * 0.0136)} \approx 12.34$ ($\left.95 \% \mathrm{Cl}: e^{2.496}, e^{2.530}\right)=(12.14$, 12.55). The median weight of a 25 month-old child is 12.34 (95\% CI: 12.14, 12.55).

$$
\begin{aligned}
\widehat{Y^{*}} & \sim N\left(X \beta, \sigma^{2}\right) \\
\widehat{\log (Y)} & \sim N\left(X \beta, \sigma^{2}\right)
\end{aligned}
$$

$E[\log ($ Weight $)] \sim N\left(X \beta, \sigma^{2}\right)$

- What is the expected change in weight for each 1-month increase in age?
The median weight changes by a factor of $e^{\beta_{1}}$ for each 1-month increase in age.

$$
\operatorname{Median}_{Y \mid X=x}=e^{\beta_{0}+\beta_{1} X}
$$

Median $_{Y \mid X=(x+1)}=e^{\beta_{0}+\beta_{1}(x+1)}$

$$
\frac{\text { Median }_{Y \mid X=(x+1)}}{\text { Median }_{Y \mid X=x)}}=e^{\beta_{1}}
$$

- What is the standard error of $e^{\hat{\beta}_{1}}$ (the median)?

$$
\begin{aligned}
g(x) & =g(\theta)+g^{\prime}(\theta)(x-\theta)+\ldots(\text { Taylor expansion }) \\
E[g(x)] & \approx g(\theta)+g^{\prime}(\theta) E[(x-\theta)]=g(\theta) \quad[E(x)=\theta] \\
\operatorname{var}[g(x)] & \approx E[g(x)-g(\theta)]^{2}=\left(g^{\prime}(\theta)\right)^{2} E\left[(x-\theta)^{2}\right] \\
\operatorname{var}(g(x)) & =\left(\frac{\partial g(x)}{\partial x}\right)^{2} \operatorname{var}(x) . \quad \text { Let } x=\beta_{1} \\
\operatorname{var}\left(e^{\hat{\beta_{1}}}\right) & =\left(e^{\hat{\beta_{1}}}\right)^{2} \times \operatorname{var}\left(\hat{\beta_{1}}\right) \\
\text { std } \operatorname{error}\left(e^{\hat{\beta_{1}}}\right) & =\sqrt{\left(e^{\hat{\beta_{1}}}\right)^{2} \times \operatorname{var}\left(\hat{\beta_{1}}\right)}
\end{aligned}
$$

Non-Constant Variance: Iteratively Re-weighted Least Square (IRLS)

If variances are of scientific interest, the following model can be considered:

$$
\begin{aligned}
\mathbf{Y} & =\mathbf{X} \beta+\boldsymbol{\epsilon}, \\
\Sigma & =\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & 0 & 0 \\
\cdots & & & \\
0 & 0 & \cdots & \sigma_{n}^{2}
\end{array}\right] . \\
\hat{\beta} & =\left(X^{\prime} W X\right)^{-1} X^{\prime} W Y .
\end{aligned}
$$

More details in Lecture 12.

$$
Y_{i}=X_{i} \beta+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma_{i}^{2}\right)
$$

- $\hat{\beta}_{i}$ unbiased: $\mathrm{E}(\hat{\beta})=\beta$
- But $\operatorname{se}(\hat{\beta})$ would be wrong \rightarrow inefficient
- $95 \% \mathrm{Cl}, \mathrm{t}$-test, p -value would be wrong also
- Use bootstrap, robust or empirical approaches for estimating se $(\hat{\beta})$.

```
>fit1sp<-lm(WEIGHT ~ agemons + age12 + age30, data=child)
> summary(fit1sp)
Coefficients:
    Estimate Std. Error t value Pr (>|t|)
\begin{tabular}{lrrrrr} 
(Intercept) & 4.699571 & 0.262318 & 17.916 & \(<2 e-16\) & \(* * *\) \\
agemons & 0.454219 & 0.030906 & 14.697 & \(<2 \mathrm{e}-16\) & \(* * *\) \\
age12 & -0.266450 & 0.042567 & -6.260 & \(8.42 \mathrm{e}-10\) & \(* * *\) \\
age30 & 0.009773 & 0.024950 & 0.392 & 0.695
\end{tabular}
> summary(fit1sp, robust=T)
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.699571 0.144109 32.611 < 2e-16 ***
agemons 0.454219 0.018968 23.947 < 2e-16 ***
age12 -0.266450 0.031364 -8.495 2.37e-16 ***
age30 0.009773 0.030328 0.322 0.747
> bootvar<-boots(child$agemons, child$WEIGHT)
> bootvar
    Estimate Std.Error
[1,] 4.713311477 0.15161826
[2,] 0.452656368 0.02008021
[3,] -0.264007819 0.03295003
[4,] 0.007629656 0.03082049
```

